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A B S T R A C T   

The CyberWater project is created to develop an open data and open model integration framework for studying 
complex environmental and water problems, where diverse online data sources can be directly accessed by 
diverse models without any need of users’ extra effort on the tedious tasks of data preparation for their models. 
We present our design and development of a novel generic model agent toolkit in the context of CyberWater, 
which enables users to integrate their models into the CyberWater system without writing any new code, 
significantly simplifying the data and model integration task. CyberWater adopts a visual scientific workflow 
system, VisTrails, which also supports provenance and reproducible computing. Our approach and the developed 
generic model agent toolkit are demonstrated, via CyberWater framework, with automated and flexible work
flows through integrating data and models using real-world use cases. Two popular hydrological models, VIC and 
DHSVM, are used for illustrations.   

Software/data availability  

Name Author/Contact Year first 
available 

Format/Language Cost Size Availability 

VisTrails New York University (https://www.vistrails.org/index.php 
/People) 

2007 Python Free 300 
MB 

https://www.vistrails.org/index.ph 
p/Main_Page 

VIC University of Washington (http://uw-hydro.github.io/t 
eam/) 

1994 C Free 2 MB https://vic.readthedocs.io/en/ 
master/ 

DHSVM Pacific Northwest National Laboratory (ning.sun@pnnl.gov; 
mark.wigmosta@pnnl.gov) 

1994 C Free 60 MB https://www.pnnl.gov/source-code 

USGS Water 
Services 

USGS (https://water.usgs.gov/contact/gsanswers) N/A XML webservices Free N/A https://waterdata.usgs.gov/nwis 
/dv 

NCA-LDAS NASA (gsfc-dl-help-disc@mail.nasa.gov) 2018 Tiff, GRIB or 
NetCDF 
Webservices 

Free N/A https://doi.org/10.5067/7V3 
N5DO04MAS 

NLDAS NASA (gsfc-dl-help-disc@mail.nasa.gov) 2009 Tiff or NetCDF 
Webservices 

Free N/A https://doi.org/10.5067/6J5 
LHHOHZHN4   
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1. Introduction 

With diverse data across disciplines being increasingly available on 
today’s internet, it has become more urgent and important to have a 
framework facilitating data and computational model integration for 
studying problems involved in many complex processes (e.g., physical, 
hydrological, biological, and atmospheric) such as predictions of floods, 
droughts, water quality, and air quality. While there are many online 
data sources available on the internet, the key challenge is how to make 
these data sources directly accessible to various models without users’ 
additional effort on data preparation or data preprocessing for their 
models. Such model input data preparation task is usually very time- 
consuming, tedious, and error-prone due to the fact that individual 
data sources offer their different access protocols and have their 
different data organizations and formats. Previous research focused 
more on model integration (Argent, 2004; Belete et al., 2017) and the 
papers therein), with little consideration or treatment on the general 
problem of integrating data and models together. For example, existing 
modeling systems for different needs in environmental and water fields 
include Open Modeling Interface (OpenMI)1 (Moore and Tindall, 2005; 
Gregersen et al., 2007; Knapen et al., 2013; Harpham et al., 2019), 
Community Surface Dynamics Modeling System (CSDMS)2 (Peckham 
et al., 2013; University of Colorado Boulder, 2012), Object Modeling 
System (OMS)3 (Ahuja et al., 2005; David et al., 2013), Earth System 
Modeling Framework (ESMF)4 (Collins et al., 2005; DeLuca et al., 2012; 
Hill et al., 2004), The Invisible Modeling Environment (TIME) (Rahman 
et al., 2003; Stenson et al., 2011), and Geographic Modeling and 
Simulation Systems (OpenGMS) (Chen et al., 2019; Zhang et al., 2019; 
Wang et al., 2020). These modeling systems do not directly address the 
challenge of enabling users’ models to access the heterogeneous data 
sources automatically and seamlessly over the internet to carry out their 
modeling studies. While some of these systems support public sharing of 
data, modeling, and/or simulation resources, they are generally limited 
to some specific models and data rather than providing a general 
framework to integrate diverse data and models like CyberWater. 
Although OpenMI2.0 and OpenGMS, for example, increase the flexi
bility by turning numerical models into linkable components to receive 
exchange data from each other, there is remaining work for these sys
tems to wrap up the existing models to be feasible components running 
in these frameworks. Salas et al. (2020) provided comprehensive re
views of these systems and compared them with the earlier version of 
the CyberWater framework – a recent effort aiming at developing a 
systemic solution to this challenge. The key idea and feature of the 
CyberWater system is its focus on building an open architecture 
framework to facilitate realizations of open science (Salas et al., 2020) 
which facilitates resource sharing (e.g., data and models), reproduc
ibility of the work, and community participation. To this end, an open 
data and open modeling framework (Salas et al., 2020), referred to as 
MSM (Meta Scientific Modeling) that provides the foundation for the 
CyberWater framework, is developed. MSM is designed to offer scientific 
researchers and practitioners a sophisticated open modeling environ
ment, where data agents are developed to access heterogeneous online 
data products provided by different data sources so that the data can 
directly flow seamlessly from the data sources to the users’ models 
without any need for the users to preprocess the input data for their 
models. The model input data preparation has been performed by each 
individual data agent developed in MSM for its corresponding data 
source, such as the USGS and NASA data products. The implementation 
of MSM is called msm, which incorporates the workflow system of 

VisTrails5 to provide not only a graphical workflow mechanism for 
achieving the modeling task but also data provenance to ensure trace
ability and reproducibility (Salas et al., 2020). To make use of the fa
cilities of data agents in msm, however, one needs to integrate his/her 
model into the msm system by means of writing a model agent based on 
the interface provided by msm. Once a user’s model is integrated into 
msm via its agent, the user’s model can use all the data agents available 
in the msm system for direct data and model integration and can also 
couple his/her model with another model already integrated into msm 
for model-to-model coupling/integration without coding. Another 
recent work on the model input data preparation is HydroDS web ser
vices (Gichamo et al., 2020), which is applicable to two specific models, 
the Utah Energy Balance (UEB) snowmelt model (Tarboton et al., 2014) 
and the TOPNET hydrologic model (Bandaragoda et al., 2004). The use 
of HydroDS, an integration of model UEB with data, is demonstrated 
through the development of a web application (Gan et al., 2020). The 
strength of HydroDS, a webservice based data and model integration 
approach, is that there is no need for local software installation. Its 
limitations include not supporting other models beyond UEB and TOP
NET, nor providing users with any mechanism to integrate new models 
into HydroDS. CyberWater is a standalone system at present, which 
avoids the potential bottleneck of the centralized server, facilitating 
scalability and sustainability. CyberWater will be extended to include 
web services as well in the future, to further complement its standalone 
system. For the webservice-based systems, Chen et al. (2020) provided a 
comprehensive review. 

While the msm framework has its unique merit for open data and 
open model integration, it nevertheless still requires programming a 
model agent per new model integration. To write a model agent means 
that the user needs to do programming/coding. To overcome such a 
limitation, this work extends the previous msm framework. Here, we 
present a general approach to construct a generic model agent template 
using workflow for handling models’ input interfaces for the environ
mental and hydrological models. We then design and develop a set of 
tools called generic model agent toolkit for our approach, with which a 
user can construct his/her model agent by simply doing parameter- 
based configuration steps without coding for most of the environ
mental and hydrological models. This effort, together with other ex
tensions to and improvements on the msm system, including accessing 
high performance computing on demand (Li et al., 2021), constitutes the 
latest development of our CyberWater framework software system. 

In this paper, we present the design and development of the generic 
model agent toolkit in CyberWater. We then demonstrate how this set of 
tools can significantly eliminate the user’s task of writing a model agent 
in order to integrate a new model into the system, and thus further 
enhance the usability and effectiveness of the CyberWater framework 
for open data and model integration and greatly improve the capability 
of the community to share diverse models for model validation, evalu
ation, scientific explorations, etc. Different versions of the Variable 
Infiltration Capacity (VIC) model (Hamman et al., 2018; Liang et al., 
1994, 1996a, 1996b; Liang and Xie, 2003)and the Distributed Hydrol
ogy Soil Vegetation Model (DHSVM) (Wigmosta et al., 1994) are used in 
this study for illustration via use cases over several watersheds in 
Pennsylvania, USA. 

The remainder of this paper is organized as follows. Section 2 briefly 
overviews the background to set up the context. Section 3 presents our 
approach and design, while Section 4 describes the implementation of 
the generic model agent toolkit. Section 5 provides two use cases of 
reproducible end-to-end model simulations to demonstrate the use of 
the developed generic model agent toolkit for open data and model 
integration in CyberWater and offers our insights through discussions. 
Finally, Section 6 concludes the presented work and provides planned 
future work. 

1 https://www.openmi.org/.  
2 https://csdms.colorado.edu/wiki/Main_Page.  
3 https://alm.engr.clolstate.edu/cb/wiki/16961.  
4 https://earthsystemmodeling.org/. 

5 https://www.vistrails.org/index.php/Main_Page. 
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2. Background 

2.1. MSM architecture 

MSM (Meta-Scientific-Modeling) is an Open-data Open-model 
framework that provides a sophisticated workflow-controlled modeling 
environment for heterogeneous data and model integration without a 
need for a central administration (Salas et al., 2020). The implementa
tion of the MSM framework, having VisTrails (Bavoil et al., 2005) 
incorporated in it, is called msm system which, running on the user’s 
local desktop or laptop, constitutes several components, including the 
core (i.e., msm core), Data Agents, and Model Agents. Basically, the msm 
system interacts with the workflow engine of VisTrails, accesses remote 
heterogeneous data sources through Data Agents, and invokes users’ 
computational models for simulations through Model Agents. 

The msm core is the center of all the components in the Open-data 
Open-model framework. Through its connection with the workflow 
engine of VisTrails, the msm system invokes external models and couples 
various data sources with respective model agents and data agents via a 
friendly and feasible workflow controlled working environment. 
Therefore, the MSM enables access to external data of diverse sources 
conveniently and effectively, and execution of sophisticated numerical 
models efficiently. The open-model feature allows various models or 
modules to be smoothly integrated into the MSM system via Model 
Agents. The architecture of MSM offers a novel “information bus” 
connection pattern of linear complexity (i.e., the complexity of the 
development of data and model agents is O(m + n) for integration of m 
data sources and n computational models), the lowest possible 
complexity, among all independent models and external heterogeneous 
data sources, as opposed to quadratic complexity involved in a pair-wise 
based one-to-one integration architecture (i.e., the complexity of O(mn 
+ n2) for integration of m data sources and n computational models) 
(Salas et al., 2020). 

In the MSM framework, the modeling processes are dynamically 
decided by the end-users through a workflow engine. Users can 
customize the sequence of activities and construct any workflow series 
for their modeling process based on the building blocks or modules 
provided by the msm system. Each workflow activity conducts interac
tively with the other workflow activities in the same workflow. 

MSM’s design criteria enable a creation of a general and flexible 
system so that the MSM framework can be easily plugged into various 
open-source workflow engines. The MSM takes advantage of the existing 
workflow engines and avoids reinventing the wheel. The overall archi
tecture of the MSM system is shown in Fig. 1. 

2.2. Model agent 

In msm, various computational models are added into the MSM 
modeling framework by means of their corresponding model agents. 
Any model added into MSM can then be freely integrated with various 
data agents as well as other models in a workflow constructed by the 
user, where model agents represent and execute the corresponding 
external models in the workflow (Salas et al., 2020). Thus, the effort to 
add a model into the MSM modeling framework is to develop the 
model’s agent. Since no modification of the original model code is 
required in the msm system, a model agent needs to perform three main 
tasks as follows:  

• Preparing model’s inputs: The agent collects the model’s required 
input data from the workflow and transforms them into the model’s 
input files, which are needed by the model’s execution. 

• Executing model: The agent invokes the model executable file, ac
cording to the workflow control, and runs the model.  

• Retrieving model’s outputs: After finishing the model’s execution, 
the agent needs to retrieve the model’s output files and transform the 
output data into the msm system in the format of msmDataSet before 
the subsequent workflow item gets to be executed. 

The Generic Agent is a class developed in the msm system to assist 
users in their development process of model agents. In the Generic Agent 
base class, a generic run_model method is declared. Each model’s agent is 
inherited from the Generic Agent class and overrides the generic run_
model method, enabling the customized model’s invocation from the 
workflow. The model agent uses services offered by the Generic Agent 
class to read the inputs from and write the outputs into the msm core 
datastore, which simplifies the agent’s coding for integrating an external 
model into the msm system. 

The model agent’s primary responsibilities are to be implemented by 
overriding the run_model function. That is, first, read the model inputs 
from the msm core and save the data into the model’s input files; then, 
run the model executable file. Finally, read the model’s output files after 
the model’s execution, transform them into the msm dataset format, and 
save the model’s outputs into the msm core. 

To write a model agent, the user has to create a text file including a 
class in Python as outlined here:    

In the run_model function, the user writes all the necessary codes to 
prepare the inputs, execute the model and store the outputs. These are 
the three main tasks that the model agent is supposed to perform to 
integrate the user’s model into the msm system. For more details, readers 
are referred to Salas et al. (2020). 

Fig. 1. An overall architecture of the MSM framework system, in which each 
model (i.e., Model 1, Model 2, …, and Model n) represents an individual 
computational model integrated to the MSM framework to perform its model 
simulation instance. 
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3. Approach 

3.1. The idea 

While the Generic Agent class in the msm system reduces users’ 
burden to develop their model agents to some extent, it would be 
desirable if users’ model agents can be constructed without any coding. 
Since, in general, any model agent will conduct the three tasks described 
in Section 2.2, our idea is to construct a generic model agent template for 
most environmental and hydrological models, which predefines/out
lines tasks of preparing model inputs, executing model, and storing 
outputs in a workflow environment. In the msm system, all workflow 
modules can be dynamically defined and configured. Thus, using the 
divide and conquer technique, a generic model agent can be achieved by 
first composing a generic workflow segment (template) of predefined 
generic modules as part of the overall workflow in the msm system. Such 
a workflow segment (template) will then be configured by individual 
users for their specific models, where each model’s variability is 
accommodated via the configuration of the generic workflow segment 
(template). The predefined generic modules represent the abstraction of 
each aspect of the generic model agent. This way, the variability of an 
individual model is treated and represented through parameter-based 
configuration options of the workflow segment where specific infor
mation concerning an individual model, such as the model’s parameter 
values, is configured via a graphic user interface of the input panel 
associated with the configuration option. Therefore, a user no longer 
needs to write any specific model agent code to integrate an external 
model into the msm system, which greatly enhances the usability of the 
MSM modeling framework for achieving the data and model integration. 

3.2. The design 

To fulfill our idea, we attempt to systematically predefine and design 
a set of generic workflow modules (i.e., components) to be used for 
constructing a model agent for an individual model in the form of a 
generic workflow segment (i.e., template), where each component rep
resents and fulfills an individual task that a user’s specific model agent 
would accomplish. To this end, our design strategy is as follows.  

a) We developed a set of basic template-based workflow components 
based on an analysis of the representative model interface structures 
and organizations of most environmental and hydrological models. 
Those workflow components are used as building blocks for con
structing a generic model agent, where each component (i.e., 
building block) is called a generic model agent tool.  

b) A specific model agent for a given scientific model is constructed by 
composing the predeveloped component templates into a workflow 
segment (template) which is then incorporated into the user’s overall 
modeling workflow sequence.  

c) The workflow segment (template) is configured by the user for the 
model simulation needs to serve as the model agent. This way, the 
model agent’s construction and its corresponding configurations are 
realized within the msm system via an interactive graphical workflow 
interface without any coding. 

Our design includes the following six major generic model agent 
tools (i.e., components). Users are only expected to be knowledgeable 
about their own models’ input/output details when they use these 
generic model agent tools for integrating their models into the Cyber
Water system. A model’s inputs are typically classified into three cate
gories: static parameters, forcing data, and the initial states of the model. 

1 MainGenerator: This is the first component (i.e., the root compo
nent) to build up a model agent in the form of a workflow segment 
(template) for a user’s specific model. This component is responsible 
for setting up a working directory for performing the user’s model 

simulation. Inside this working directory folder, all the input infor
mation needed for executing the user’s model and the output infor
mation after the model’s execution will be placed. The path of the 
working directory is specified by the user. This component is also 
responsible for receiving the forcing information required for the 
model’s execution. The order in which these forcing data are 
collected to the MainGenerator as datasets through its module infor
mation panel matters since the final forcing data files created and 
placed in the working directory folder for the model execution will 
have these forcing data organized in columns following the same 
order. In addition, this MainGenerator reads in other important in
formation needed for setting up the required execution condition/ 
environment for the user’s specific model, for example, information 
specifying certain options such as the number of soil layers to be used 
by the model, the water or energy balance mode to be executed, etc. 
Such information is typically provided through a model’s global file 
or model’s configuration file whose path is provided to this compo
nent, and also through the use of its module information panel. This 
module outputs two pieces of information through its two output 
ports. One is called WD_Path, which provides the working directory’s 
path information where all the model’s needed input information 
and the model’s output information will reside. The other is called 
DataSet_Class, which is a list of all the datasets comprising the 
model’s forcings.  

2 AreaWiseParamGenerator: This component organizes parameter 
files (e.g., vegetation and soil related parameter files), and places the 
imported parameter files into the parameter folder created by it. This 
parameter folder will be automatically placed under the working 
folder provided by the MainGenerator module. Information on all the 
paths of the parameter files needed for executing the user’s model is 
collected in this module by specifying them through the module’s 
information panel from the user interface. This module outputs a 
“ready” signal which will be discussed later.  

3 ForcingDataFileGenerator: This component is responsible for 
creating the forcing data for the user’s model. Specifically, this 
component organizes the forcing data brought in by the Main
Generator. The user should be aware of the expected format of the 
model’s forcing data. By default, this module creates the forcing data 
to be used by the user’s model in a folder named “Forcing” inside the 
working directory. Such forcing data are always created as a time- 
series, where different columns hold different variables according 
to the order specified in the MainGenerator. The data are divided into 
separate files, where each one represents a single modeling cell/unit 
of the forcing inputs. This module has two input ports, one is the 
working directory, and the other is the list of forcing datasets, both of 
which are provided by the MainGenerator module. Like the Area
WiseParamGenerator, this module also outputs a “ready” signal. 

4 InitialStateFileGenerator: This is an optional component which or
ganizes the data of initial states for the user’s model, as the initial 
state files are not always required for the execution of a given model. 
However, if a user would like to conduct data assimilation to 
improve the user’s model forecast reliability, the user may need to 
use this module. In any event, if required, this module receives the 
information of the working directory from the MainGenerator mod
ule. Also, the initial states’ file paths will be specified through this 
module’s information panel and be placed either inside the working 
directory or a new directory created by the InitialStateFileGenerator, 
with a name given as an input from the user. The output of this 
module is again a “ready” signal.  

5 RunModuleAgent: This component is responsible for invoking the 
user’s model (e.g., executable) on the local machine, and for 
retrieving the model’s outputs. It executes the model in the same way 
as the model runs alone without the msm system environment, where 
the user must manually prepare all the input files (e.g., forcing data, 
parameter files, initial state files) of the model. This module has three 
pieces of input information. First, it connects to the output of the 
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AreaWiseParamGenerator, ForcingDataFileGenerator, and Initial
StateFileGenerator (if required), separately, to receive their “ready” 
signals. Second, it receives the information of the working directory 
from the MainGenerator. Third, it receives the dataset information 
outputted from the MainGenerator. This module also requires the 
path where the model’s executable file is located. By setting up all 
the aforementioned information and receiving all the required in
formation passed onto it from the other modules/components, this 
RunModuleAgent component is now ready to execute the user’s 
model. The model’s simulated results will be written back to the 
CyberWater system for the workflow to continue.  

6 HPC: This component is the module responsible for accessing remote 
High-Performance Computing (HPC) facility on-demand. This mod
ule aims to provide high-performance computing capacity for 
executing the user’s model by seamlessly connecting it to either ac
ademic supercomputers or commercial cloud platforms (Li et al., 
2021). It retrieves the results back to the workflow when the 
execution of the user’s model on the remote HPC platform is 
completed. 

In a nutshell, regarding the three tasks that a model agent needs to 
perform (Sec. 2.2), preparing model’s input is fulfilled by a combination of 
three corresponding generic components (i.e., components 2, 3, and 4 
described above), while the tasks of both executing model and retrieving 
model’s outputs are combined and fulfilled by the generic component 
RunModuleAgent (component 5 above) or HPC (component 6 above), 
depending on whether the model is executed on a local machine or a 
remote HPC platform. Based on our approach, users construct their 
model agents, using the generic model agent toolkit (i.e., the six modules 
or building components) described above, at the same time as they 
employ the msm system to build their overall modeling workflows. Fig. 2 
illustrates a typical workflow construction for hydrological/environ
mental modeling in the msm system with a graphical workflow interface. 
The dotted block indicates how the generic workflow components pre
sented above are used to construct and configure a user’s model agent in 
the workflow. After the completion of the user’s construction and 
configuration of the workflow, the workflow is then executed in the msm 
system. A sequence diagram of a typical modeling workflow with the 
constructed model agent using the generic model agent toolkit is 

illustrated in Fig. 3. 
In summary, the generic model agent toolkit is designed to help the 

user construct a model agent to integrate the user’s model into Cyber
Water without writing any codes. Such a goal is achieved through some 
combinations of the six modules in the toolkit together to perform the 
following main functionalities:  

• Set up the user’s model working directory.  
• Write data sets retrieved from data agent(s) or local files into model 

input files. That is, prepare input data files for the user’s model.  
• Invoke the user’s model codes to run the user’s model.  
• Write the user’s model output results back to the CyberWater system. 

4. Implementation 

The generic model agent toolkit, called GenericModelAgentTools, is 
developed and implemented in Python outside of the msm system as an 
extensive VisTrails package, which is a significant extension to the 
original msm system in the overall CyberWater system. However, the 
GenericModelAgentTools need the support of the corresponding DAO and 
Cache modules of the msm system to access data sets flowed into the 
workflow modules. The hierarchical architecture of the CyberWater 
system is shown in Fig. 4. 

Each generic model agent tool in the toolkit is designed and imple
mented as a template-based workflow module. To illustrate, we present, 
in the following, the implementation of the template-based generic 
model agent tool MainGenerator in Sections 4.1, and its configuration in 
Section 4.2, respectively. 

4.1. Generic model agent tool as a template 

The MainGenerator creates a working directory folder as a workspace 
for the user’s model, where it hosts all the input information required for 
executing the user’s model and the output results of the model after its 
execution, copies the model’s global parameter file or configuration file 
into this created working directory for carrying out the model’s execu
tion task, and converts the datasets into DATASET_CLASS elements in 
the form of Python dictionaries. This component also gathers all the 
forcing datasets required by running the user’s model. The maximum 

Fig. 2. A typical construction process of hydrological/environmental modeling workflow in the msm system, where the dotted block indicates how the generic 
workflow components are used to construct and configure a user’s model agent in the workflow. 
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number of the MainGenerator’s input ports for datasets is set to be 15 as a 
default for convenience. However, the input ports of the MainGenerator 
can be expanded if needed. Hence, in the template-based component 
MainGenerator, the path of the working directory, the path of the 
model’s global parameter file, and the datasets of the forcing to be used 
are all configurable by the user. For illustration, the pseudocode of the 
MainGenerator is given in Fig. 5. 

In general, there are three types of input files needed for executing a 
numerical model, namely parameter files, forcing data files, and initial 
state files. The AreaWiseParamGenerator organizes the parameter files 
for performing the numerical model; the ForcingDataFileGenerator cre
ates the model’s forcing data files; and the InitialStateFileGenerator is 
engaged in preparing the initial state files, if needed, for performing the 
numerical model simulation. The RunModuleAgent module is for setting 
up the path where the model’s executable file is located. It also obtains 
the information of the arguments for executing the model and the 
configuration information for the model’s output variables. During the 
workflow execution, the AreaWiseParamGenerator, For
cingDataFileGenerator, and InitialStateFileGenerator modules process the 
datasets to generate the needed input files for the user’s model. The 
module of the RunModuleAgent invokes the user’s model execution based 
on the datasets passed. The model’s simulated results will be written 
back to the CyberWater system. Similar to the MainGenerator, each of 
these template-based components also has its places configurable for the 
user to construct part of the user’s model agent. 

4.2. Configuration of generic model agent modules 

A configuration example with the MainGenerator (Fig. 6) is used here 
to illustrate how the user can configure a generic model agent module. 

a. Input Port Specification 
01_Path: The path of the working directory folder where files for 

executing the user’s model will reside. 
02_GPF: The path of the global or configuration file if such a file is 

required by the user’s model. This file is commonly used for setting up 
the variables for the model’s execution. 

Dataset_x: Collecting the forcing Dataset_x (x = 01, 02, 03, …, 15) 
from the msm system, in which x indicates the index of the dataset, and 
passing the forcing datasets to the ForcingDataFileGenerator to generate 
the required forcing files for the user’s model to run. 

b. Output Port Specification 
WD_Path: An output port that passes the working directory path 

information to the next module. 
DataSet_Class: Another output port that passes the information of a 

dataset cluster, i.e., the information of the forcing datasets, to the next 
module. 

5. Use cases 

There are two approaches to integrate a new model into CyberWater. 
One is to program a model agent by the user, while the other is to use the 
generic model agent toolkit provided in CyberWater to build the model 
agent without coding. This section shows how to achieve the integration 
of a user’s model into the CyberWater system using our developed 
generic model agent toolkit without writing a single line of code. The 
user’s model integration will be illustrated using our generic model 
agent toolkit versus adopting the user’s manually programmed model 
agent. Two use cases with the VIC model and DHSVM model integrations 
are provided in Sections 5.1 and 5.2, respectively. 

5.1. VIC model simulation 

CyberWater provides various modules that help users construct their 
model simulation workflow to directly access online data from diverse 
data sources (e.g., forcing data from NASA and streamflow data from 
USGS), execute models, and produce model simulation results. In this 
use case, the Variable Infiltration Capacity (VIC) model (Liang et al., 
1994, 1996a, 1996b; Liang and Xie, 2003) is employed for illustration. 
First, we show the integration of the VIC model version 4.0 (VIC4) into 
the CyberWater system via the user’s manually coded model agent 
called VIC-Agent. The integrated VIC4 runs a water balance simulation 
of the French Creek basin in CyberWater. This is a small watershed with 

Fig. 3. An illustration of a sequential execution diagram of a typical modeling workflow with the constructed model agent by the agent toolkit in the msm system.  

Fig. 4. Diagram of the hierarchical architecture of the CyberWater system.  
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Fig. 5. Pseudocode of MainGenerator, where the variables in bold and italic are to be configured by the user.  

Fig. 6. User Interface of the MainGenerator module in Generic Model Agent toolkit with 01_Path and 02_GPF filled, and four datasets input ports enabled and 
connected with the data agent modules retrieving the four datasets. 
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a drainage area of 153 km2 located in the southeast of Pennsylvania, 
United States. Note that all the model parameters in this simulation are 
default values that the user can further modify through a parameter 
calibration process. 

5.1.1. Workflow with manually developed VIC-model-agent 
We first show how to build a complete example of a model simula

tion workflow using the VIC model via a user’s manually developed VIC- 
Agent. In general, creating a model simulation workflow starts with 
model input data preparation based on various data sources for a given 
study area over a given time period. Thus, the workflow starts first with 
a TimeRange module which is used to specify the simulation time extend. 
For this example, the simulation will go from 2010/01/01 00:00:00 
(time start) to 2011/01/01 00:00:00 (time end); then a SpaceRange 
module is added to specify the study area with four bounds (i.e., east, 
west, north, and south) as: − 75.58, − 75.86, 40.24, 40.10 (x_max, x_min, 
y_max, y_min, respectively). 

To access the forcing information required for this simulation, the 
NCALDAS Data Agent will be used. This agent accesses NASA NCALDAS6 

Earth Data database to automatically bring NASA’s spatially organized 
daily hydrometric information to the local machine. Four NCALDAS
Agent boxes are added into the workflow area. Each one of these four 
new boxes will be used to retrieve a different variable of the forcing data. 
The four forcing variables required to execute VIC4 include: Wind Speed 
[m/s], Total Precipitation Rate [mm/s], Temperature Max [K], and 
Temperature Min [K]. 

Now, bring the VIC4 model into the workflow. The user’s model is 
added into the workflow through its model agent. So, the VICAgent 
module developed by us (Salas et al., 2020) is added to the workflow 
area. Basically, this VICAgent enables the usage of the VIC model in the 
CyberWater workflow. It collects VIC forcing information either 
extracted via CyberWater’s Data-Agents (e.g., Wind Speed and Precipi
tation) online or reads in the forcing data from files locally provided by 
the user. It also reads in all the parameter files provided by the user to 
run the VIC model. If these parameter files are not provided, the VIC
Agent will generate all the parameter files required for the simulation 
using default values automatically. Values of the parameters in these 
files can later be modified or calibrated by the user for re-running the 
VIC model. The VICAgent also provides users the flexibility of selecting 
their desired output variables from the VICAgent interface for visualizing 
them through the workflow execution. The workflow chart shown in 
Fig. 7 represents the main functionalities accomplished by the VICAgent 
code. 

Note that VIC, like any other model, requires inputs to be included in 
specific units, depending on the individual variables. Details of such 
input information are included in the VICAgent documentation available 
via the Documentation button in CyberWater. For example, the tem
perature must be in Celsius, and for this case study, the precipitation will 
need to be in mm per day, since the expected results will be daily. Thus, 
the user only needs to check if the units of the retrieved data from data 
providers match the units required by the user’s model. If not, unit 
transformations are needed. The msmUnitConversion module can be used 
to perform such transformations. For instance, to convert the tempera
ture from the NCALDAS dataset in Kelvin into Celsius, the user needs to 
set the input “operation” to be “x-273.15”. This “operation” allows the 
user to execute simple mathematical operations using “x” as the variable 
representing the dataset given as an input. To transform the input pre
cipitation data from mm per second to mm per day, for example, the user 
just needs to set the “operation” to “x*86400” by creating another 
msmUnitConversion box. This module also allows the user to indicate the 
new resulting units of the transformed dataset. The last step for creating 
this workflow is to set up visualization tools, which will allow the user to 
see the model simulated results, for example, the baseflow and surface 

runoff. This visualization can be achieved by adding two “msmShow
Chart” boxes into the workflow and naming them “Baseflow” and “Sur
face Runoff”, respectively. The completely created workflow for this VIC 
simulation case is shown in Fig. 8. 

After executing this workflow, two charts, shown in Fig. 9(a) and 
Fig. 9(b), will be prompted. This example produces outputs of these two 
variables offered by default in the VIC Agent. However, if the user goes 
to the Outputs tab in the Module Info panel, more model output results 
available to be displayed are listed. 

5.1.2. Constructing VIC4 model agent using generic model agent toolkit 
This section shows how to use the generic model agent toolkit 

Fig. 7. Flowchart of the VICAgent that is manually programmed. The number of 
lines of code for each respective element in the flowchart is: (1) 78, (2) 9, (3) 
269, (4) 184, (5) 12, (6) 115, (7) 56. Total number of lines of code is 723. 

Fig. 8. A created workflow for a VIC simulation with its results plotted as time 
series using CyberWater. Execution of the workflow starts when the user clicks 
the “Execute” button. The green color displayed in each module of the work
flow indicates that the workflow is successfully executed. 

6 https://ldas.gsfc.nasa.gov/nca-ldas/forcing. 

R. Chen et al.                                                                                                                                                                                                                                    

https://ldas.gsfc.nasa.gov/nca-ldas/forcing


Environmental Modelling and Software 152 (2022) 105384

9

presented in Sections 3 and 4 to construct/configure the VIC4 model 
agent for the model integration instead of manually writing the VIC4 
model agent code. The important benefit here is that a user can integrate 
the user’s own model into the CyberWater environment using this 
generic toolkit with little or no programming effort. To use this toolkit, 
users are only expected to be knowledgeable about their own models’ 
inputs and outputs organizations. Our following example of the VIC4 
model illustrates a simulation for the same period of time over the same 
study area described in Section 5.1.1. Thus, the time range, space range, 
and forcing data construction part of the workflow is the same as those 
described in Section 5.1.1. Here, we focus on steps to construct the VIC4 
model agent using the toolkit. 

5.1.2.1. MainGenerator. To start constructing the VIC model agent, 
first, bring a MainGenerator box, the main control component of the 
generic model agent toolkit, into the workflow working area. This 
component is responsible for setting up the working directory for the 
model simulation where it receives all the forcing datasets as inputs. The 
users can adjust the paths accordingly for their specific folder structure 
for the working directory. For this example, this working directory 
folder will be saved on “C:\temp\CYBERWATER\GT\VIC4\French_
Creek”; thus, the inputs of Path and GPF can be set up, respectively, as: C: 
\temp\CYBERWATER\GT\VIC4\French_Creek\MainAgent and C: 
\temp\CYBERWATER\GT\VIC4\French_Creek\Source\vic_global_fi
le_val. In addition, all forcing data are collected by the MainGenerator by 
connecting the forcing data modules to this MainGenerator. The working 
directory path information will be passed (via its WD_Path output port) 
to all the other components in the toolkit to be used for constructing the 
user’s model agent. 

5.1.2.2. AreaWiseParamGenerator. Add an AreaWiseParamGenerator, 
which is in charge of setting up the parameter files (e.g., soil parameter 
files and vegetation parameter files) of the model. These files need to be 
previously created by the user. The user needs to enter the information 
of the file’s path for each of the parameter files required as the model’s 
inputs in the AreaWiseParamGenerator module. For this example, the 
files used are stored in the folder: <C:\temp\CYBERWATER\GT\VIC4 
\French_Creek\Source >. 

5.1.2.3. ForcingDataFileGenerator. Add a ForcingDataFileGenerator, 
which is responsible for the creation of the forcing data files of the 
model. This component takes the forcing information gathered from the 
MainGenerator and saves it into the user’s specified folder. 

5.1.2.4. InitialStateFileGenerator. Add an InitialStateFileGenerator. This 
module is responsible for placing the initial state files in the right folder 

in the working directory. 

5.1.2.5. RunModuleAgent. Add the RunModuleAgent. It is responsible for 
setting up the path where CyberWater can locate the model’s executable 
file (e.g., C, Fortran, Python, Java, and MATLAB which have been tested 
so far). Also, the arguments of the execution, as well as the model output 
variables selected, and their formats are configured here. The user’s 
model can only be executed when all of its inputs are ready, which is 
guaranteed by connecting the output port of each of the three previous 
components (i.e., AreaWiseParamGenerator, ForcingDataFileGenerator, 
and InitialStateFileGenerator) to the Ready_List input port of the 
RunModuleAgent. 

As in Section 5.1.1, the user can now add the msmShowChart modules 
to plot the surface runoff and the baseflow for viewing. After adding two 
msmShowChart modules to plot the Output01 (Surface Runoff) and 
Output02 (Baseflow) ports of the RunModuleAgent, the user will be able 
to execute the created workflow shown in Fig. 10. The VIC4 model 
simulated baseflow and surface runoff results obtained using the generic 
model agent toolkit are exactly the same as shown in Fig. 9. 

5.1.3. Coupling the routing agent with the VIC4 model simulation using 
generic model agent toolkit 

The generic model agent toolkit can also be used to couple different 
models in the workflow. To illustrate, we use the outputs of the VIC 
model as the inputs to the routing model. This routing model takes 
datasets of the surface and subsurface runoff (i.e., baseflow) as inputs 
(through the MainGenerator and the ForcingDataFileGenerator) and 
computes the resulting streamflow of a given watershed following the 
Muskingum method. Other required input parameter files are provided 
to the routing model through the AreaWiseParameterGenerator module, 
which are prepared offline, including those related to geographic in
formation. The routing model’s core functionalities are compiled in a *. 
jar file, which requires the presence of Java in the local machine to be 
able to work. The RunModuleAgent component takes this *.jar file 
through the “exe” input as “java -jar ‘jar_compiled_model_file.jar’”. The 
workflow of coupling these two models using the generic model agent 
toolkit is given in Fig. 11. The simulated streamflow results from the 
coupled models are depicted in Fig. 12. 

5.1.4. Constructing model agent for VIC5 
The more recent available version of the VIC model is VIC5 (VIC 

version5.0) which has some significant differences in the model’s I/O 
from those in the VIC4 version. Consequently, the model agent previ
ously developed or coded for VIC4 no longer works for VIC5 (v5.0). 
However, with the generic model agent toolkit, a user can easily 
reconstruct a new model agent for VIC5. The following example 

Fig. 9. VIC4 model simulated results of the French Creek watershed obtained using the VicAgent: (a) baseflow time series, (b) surface runoff time series.  
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illustrates the construction of the VIC5 model agent and its associated 
workflow to simulate the water and energy fluxes for a different and 
large watershed using the CyberWater system. 

In this example, an hourly model simulation of a large watershed 
inside the state of Pennsylvania is conducted. The watershed is the West- 
Branch Susquehanna (WBS) river basin covering more than 17,700 
square kilometers. This river basin is selected to illustrate that Cyber
Water can scale up to handle large watersheds. In this case, a new VIC 
Agent is constructed using the generic model agent toolkit and is 
executed in an energy-balance mode using VIC5. This watershed in
cludes 299 modeling cells at 1/8th-degree resolution. Like the French 
Creek watershed example, all the parameter values used in this simu
lation are default values that can be modified later by the user to 
perform parameter calibrations. 

The simulation is set up for a period of time between 2010/01/01 
00:00:00 and 2010/03/01 00:00:00. Since this simulation is hourly, it 
requires more than 1,400 data files per forcing variable as each data file 
represents 1 h (i.e., one time step) covering the entire watershed with 
299 modeling cells at a spatial resolution of 1/8◦ per cell. In other words, 
each forcing data file is a map with 299 cells representing 1 h time step 
to be automatically retrieved from NASA. The space range of the WBS 

Fig. 10. Workflow where the French Creek watershed’s fluxes are simulated using the generic model agent toolkit to execute the VIC4 model.  

Fig. 11. Workflow with the complete setup of using the generic model agent toolkit to perform the VIC model and routing model coupling execution.  

Fig. 12. Simulated streamflow time series of the French Creek watershed in PA 
from the coupled VIC and routing models using the generic model agent toolkit. 
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watershed is given by the limits: − 76.213, − 78.9155, 41.933, and 
40.454 (i.e., x_max, x_min, y_max, y_min, respectively). Eight NLDAS
Agent boxes are used to bring hourly forcing data from the NASA data 
source into CyberWater for the following eight variables: Temperature 
[K], Pressure [Pa], Radiation Flux Long Wave [W/m2], Radiation Flux 
Short Wave [W/m2], Total Precipitation [mm/h], Specific Humidity 
[kg/kg], U-Wind [m/s], and V-Wind [m/s]. 

CyberWater offers the msmDatasetOperation module, facilitating 
performing operations between two datasets. Thus, it can be used to 
compute the magnitude of the wind speed based on information of the 
two components associated with two directions of the wind speed, i.e., 
U-Wind and V-Wind, given by the NASA data source. For this example, 
add the msmDatasetOperation module to compute the magnitude of the 
wind speed (x2 + y2)

1/2 required as a forcing variable by VIC5, where x 
and y represent obtained U-Wind and V-Wind from the NASA data 
source respectively. Then, use the msmUnitConversion to transform the 
units of the Temperature and Pressure datasets. In addition, the energy- 
balance mode of VIC requires the user to provide Water Vapor Pressure 
as a forcing variable. To do so, the user needs to read in the specific 
humidity information provided by NLDAS data product using the 
NLDASAgent, then convert it to vapor pressure using the equation below 
as an approximation, 

VP = 1.61⋅qh⋅P (1)  

where VP is the water vapor pressure [kPa], qh is the specific humidity 
[Kg/Kg], and P is the pressure [kPa]. This operation can be performed 
using again the msmDatasetOperation module. 

5.1.4.1. MainGenerator. After the data preparation, one is ready to 
construct the VIC5 model agent using the generic model agent toolkit. 
First, bring a MainGenerator box, the main control component of the 
generic model agent toolkit, into the working area. Then, have each 
required input information provided in a similar way as it is illustrated 
in Section 5.1.2. Note that the order of the input Datasets is determined 
by the order given in the VIC model’s global file, “vic_global_file_val”. 

CyberWater-VisTrails offers a nice feature that allows the user to 
group multiple modules to facilitate displaying a larger workflow. Select 
all the modules between SpaceRange and MainGenerator and go to the 
Workflow − > Group menu on the top toolbar as shown in Fig. 13 to 
group these modules. 

5.1.4.2. AreaWiseParamGenerator. Add an AreaWiseParamGenerator to 
set up the parameter files (e.g., soil parameter files and vegetation 
parameter files) for the model. These files need to be previously created 
by the user before using the AreaWiseParamGenerator module. Again, the 

user needs to provide the required information in a similar way as it is 
illustrated in Section 5.1.2 for the AreaWiseParamGenerator module. 

5.1.4.3. ForcingDataFileGenerator. Add a ForcingDataFileGenerator for 
taking care of the forcing data file preparation for the model. This 
component takes the forcing information collected from the Main
Generator and saves it into the user specified folder. 

5.1.4.4. InitialStateFileGenerator. Add an InitialStateFileGenerator to 
place the initial state files into the right folder in the working directory. 

5.1.4.5. RunModuleAgent. Add the final component, the RunModule
Agent, to complete the construction of the VIC5 model agent. It is 
responsible for setting up the path where the executable file of the model is 
located. Also, the arguments of the execution, as well as the selected 
outputs, should be configured here. 

Now, the user can add the msmShowChart module to plot the surface 
runoff and baseflow for visualization. After adding the two msmShow
Chart modules to plot the Output01 (Surface Runoff) and Output02 
(Baseflow) ports of the RunModuleAgent, the user will be able to execute 
the workflow shown in Fig. 14. The two time-series obtained are 
depicted in Fig. 15(a) and Fig. 15(b). 

5.2. DHSVM model simulation 

The Distributed Hydrology Soil Vegetation Model (DHSVM) is a 
high-resolution hydrological model that simulates water and energy 
fluxes by considering the effects of terrain features (Wigmosta et al., 
1994). One of the main differences in the modeling structures between 
VIC and DHSVM is that in the latter, terrain or topography information is 
needed as routing process is part of DHSVM, i.e., the routing process is 
internally coupled to other processes inside DHSVM. In this use case, we 
illustrate simulations of the DHSVM model, through both its manually 
developed DHSVMAgent, and the agent constructed using the generic 
model agent toolkit, separately. The Indiantown Run basin, a small 
watershed in Pennsylvania, is used to illustrate these features. Seven 
types of forcing data are required for DHSVM: pressure, precipitation, 
relative humidity, temperature, wind speed, longwave radiation, and 
shortwave radiation. Since the simulation will be performed at an hourly 
time step, the NLDAS data agent will be used again. However, this data 
source does not provide relative humidity but the specific humidity. 
Thus, one needs to calculate the relative humidity based on the other 
given forcing data, employing an approach similar to that used in the 
VIC5 example with the msmDatasetOperation module. 

Fig. 13. Illustration of the grouping feature used to group modules related to the forcing data for the VIC5 model simulation.  
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5.2.1. Constructing DHSVM model agent using generic model agent toolkit 
In this section, we show how to integrate the DHSVM model by using 

the generic model agent toolkit and escape steps that are similar to those 
described before. 

To construct a workflow running the DHSVM model, the user needs 
to add TimeRange, SpaceRange, NLDASAgent modules like before, and use 
msmDatasetOperation and msmUnitConversion modules to calculate 
certain forcing input variables based on available input data and to 
convert units. For this example, the user needs to use eight NLDASAgent 
boxes to retrieve eight different hourly forcing variables which are 
Temperature [K], Pressure [Pa], Radiation Flux Long Wave [W/m2^], 
Radiation Flux Short Wave [W/m2^], Specific Humidity [kg/kg], Total 
Precipitation [mm/h], U-Wind [m/s] and V-Wind [m/s], and then to 
compute the relative humidity and magnitude of wind required by 
DHSVM. 

To run the DHSVM model one needs to use GIS7 (Geographic Infor
mation System) tools to prepare data for the routing related processes, 
like those involved in the routing model described in subsection 5.1.3, as 

these routing related processes are part of the DHSVM model. One can 
either prepare these GIS related files offline and have them inputted 
through the AreaWiseParameterGenerator as illustrated in subsection 
5.1.3 or prepare them as part of the overall workflow as in this example. 
To facilitate the in-workflow preparation of these GIS related files 
required for the integration of models, such as the DHSVM model, 
CyberWater has incorporated GRASS GIS,8 an open-source GIS software, 
in its msm system. A module called GISEngine is developed to interface 
between the msm system and the GRASS GIS system. Through this 
GISEngine module and other GIS related modules developed in Cyber
Water, one can automatically and seamlessly access the GRASS GIS 
system, and easily and effectively make use of the various functionalities 
offered by GRASS GIS to accomplish the user’s various tasks, such as 
identifying the flow directions, flow paths, and the stream network 
within the studied area, given its DEM9 (Digital Elevation Model) map 
file. The resulting files from GIS are then automatically passed back to 
the msm system. Thus, all the input files required to be produced by GIS 

Fig. 14. A successfully executed workflow for VIC5 where the WBS river basin’s fluxes are simulated in CyberWater using the generic model agent toolkit to build the 
model agent without coding. The dashed line box of VIC-Forcing Data Agents in the workflow is the grouped portion of workflow including multiple data agents and 
their related unit conversions and dataset operations as illustrated in Fig. 13. 

Fig. 15. VIC5 model simulated results of the WBS river basin using the generic model agent toolkit: (a) baseflow, and (b) surface runoff.  

7 https://en.wikipedia.org/wiki/Geographic_information_system. 

8 https://grass.osgeo.org/.  
9 https://en.wikipedia.org/wiki/USGS_DEM. 

R. Chen et al.                                                                                                                                                                                                                                    

https://en.wikipedia.org/wiki/Geographic_information_system
https://grass.osgeo.org/
https://en.wikipedia.org/wiki/USGS_DEM


Environmental Modelling and Software 152 (2022) 105384

13

can be obtained using our developed GIS related modules (Luna et al., 
2020, 2021a). Details on the integration of GRASS GIS and its relevant 
modules developed in the CyberWater system are presented in Luna 
et al. (2021b) and will be discussed in detail in a separate paper (Luna 
et al., 2022). In this example, most of the GIS-related input files are 
automatically prepared and are passed to the Area
WiseParameterGenerator as indicated by the dashed line box “Parameter 
File Preparation” in Fig. 16 which is achieved by using our developed 
GISEngine and the static parameter agent modules (Luna et al., 2021b, 
2022) which are grouped together in the “Parameter File Preparation” 
box and described below. 

5.2.1.1. Parameter files preparation. This preparation mainly includes 
the following major steps:  

1) Use four StaticBinaryMapAgent modules which are configured with 
the soil depth map, soil map, vegetation map, and DEM map paths, 
respectively;  

2) Use a GisDefineWatershed module, configured with the path of the 
DEM map;  

3) Use a StreamMapAndRoutingFiles_DHSVM module, configured with 
the north coordinator, south coordinator, west coordinator, east 
coordinator as mask limits;  

4) Group all the modules above in a module box for a neat and concise 
workflow outlook, and name these grouped components as 
“Parameter File Preparation”, as shown in Fig. 16. 

5.2.1.2. DHSVM model agent construction with the toolkit.  

1) Add a MainGenerator module and create a new working directory 
folder on the user’s computer, where the DHSVM simulation will 
occur. For this example, this folder will be saved on “C:\temp 
\CYBERWATER”. The inputs are set up in a similar way as described 
in subsection 5.1.4 for VIC5, but the variables corresponding to each 
dataset are different since they are determined by the model’s global 
file or configuration file.   

2) Add an AreaWiseParamGenerator module, and the inputs are set up in 
a similar way as described in subsection 5.1.4 for VIC5.   

3) Add ForcingDataFileGenerator to take care of the forcing data file 
preparation for the DHSVM model. This component takes the forcing 
information collected from the MainGenerator and saves it into the 
user specified folder.   

4) Add an InitialStateFileGenerator module, and let the path be the folder 
path of “C:\temp\CYBERWATER\GT\DHSVM\IRun10years 
\Source”.   

5) Add a RunModuleAgent module, and its inputs are set up in a similar 
way as described in subsection 5.1.4 for VIC5. 

The newly created workflow after execution is shown in Fig. 16. The 
resulting plot after the execution of this workflow is depicted in Fig. 17. 
In contrast, Fig. 18 shows the complete workflow if the user employs the 
manually written DHSVM model agent for integrating the DHSVM 
model. 

Fig. 16. Full workflow of DHSVM model simulation via the constructed model agent using the generic model agent toolkit.  

Fig. 17. The DHSVM model simulated streamflow time series of the Indian
town Run watershed obtained using the generic model agent toolkit. 
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5.3. Discussion 

Based on our investigation of the popular hydrological and envi
ronmental models, it shows that the complexity of these models’ inter
face structures often lies in the organizations of models’ input files with 
many different options/types (e.g., soil and vegetation related libraries 
and parameter files, snow related information, and GIS related infor
mation), rather than the organizations and structures of the models’ 
output files. Thus, we designed three components to handle a given 
model’s input interface organizations, i.e., AreaWiseParamGenerator, 
ForcingDataFileGenerator, and InitialStateFileGenerator, so that each 
component would not be too complicated for users to configure. These 
three components correspond to the three major types that a typical 
model would have. On the other hand, as the model’s output interface 
organizations and structures are usually straightforward, e.g., values of 
computed state variables, fluxes, and input information, organized 
either in time series or spatial maps, we thus combined the receiving of 
the model’s outputs into the component handling the model’s execution 
(e.g., RunModuleAgent), rather than creating a dedicated component for 
that. Furthermore, the organizations and structures of the computa
tional models’ interfaces can be briefly classified into the following two 
categories: (1) The model itself does not include the use of GIS related 
information and/or functionalities, such as VIC; (2) The model itself 
utilizes GIS related information and/or functionalities as well, such as 
the routing model, and DHSVM where the routing processes are 
included. The former does not directly involve GIS to handle its area- 
wise parameter files, while the latter usually directly involves the use 
of GIS for handling its area-wise parameter files. To facilitate the latter 
case, the GRASS GIS is integrated into the CyberWater system via our 
developed GISEngine and its related modules; in addition, the static 
parameter agent modules are developed to automatically prepare GIS- 
related input files for such models, which will be discussed in a sepa
rate paper (Luna et al., 2022). Once the GIS-related input files are 
created, they are passed to the AreaWiseParameterGenerator as indicated 
in the use case of subsection 5.2.1. 

We note that among the three types of the input data files, the 
structure and format interfaces of the forcing data files are less hetero
geneous and complex compared to those of the parameter files and 
initial state files among the different hydrological and environmental 
models. For the forcing data files, the majority of the models (e.g., VIC, 
DHSVM, Routing, and CASA-CNP) have their formats fall into two types, 
namely, single-point time series or spatio-temporal maps. These two 
types are both taken care of inside CyberWater’s For
cingDataFileGenerator module which also allows for customizable time- 
stamps for the data. In addition, the ForcingDataFileGenerator module 

allows the users to modify the order of the columns inside the forcing 
data files to represent different forcing variables read in so that the order 
of the variables involved in the forcing data files can be adjusted to 
match the structure requirements of different models’ forcing data files. 
For the input parameter files and initial state files, however, interfaces of 
the structures and formats of the individual files are then taken care of 
by the static parameter agent modules developed in CyberWater (Luna 
et al., 2021b, 2022). 

We also note that the generic model agent toolkit not only makes the 
integration of one’s model an easier task, but also significantly saves 
user’s time and efforts and reduces the error-prone process of writing the 
model agent codes, since one does not need to write any code to inte
grate a model into the CyberWater system. By manually writing a model 
agent to integrate a model, one needs to not only write codes initially, 
but also to re-write the codes whenever the model’s I/O interface 
changes as shown in the example of using VIC4 (version 4) versus VIC5 
(version 5). On the other hand, due to the existing large number of 
diverse types of models, it is possible that some unusual model structures 
and features might not be covered by the generic model agent toolkit we 
have developed. In such a case, the option of manually writing a model 
agent in CyberWater provides more flexibility. Consequently, Cyber
Water provides users with the flexibility to either use the generic model 
agent toolkit for most models or to manually write their own model 
agents when needed for any model with unusual I/O structures. 

From the illustrations of the use cases in Sections 5.1 and 5.2, we can 
see the flexibility and straightforwardness of using the generic model 
agent toolkit in integrating various computational models with signifi
cantly different model input structures and formats without the need of 
writing any code. The strengths of using the visual drag and drop 
approach of the generic model agent toolkit to construct a model agent 
for integrating a model into the CyberWater system as opposed to the 
traditional approach of writing programming codes, e.g., the VICAgent 
and DHSVMAgent, include:  

1) Usability (Ease of use): One can easily construct a model agent with 
the toolkit to integrate a model into CyberWater without writing 
computer codes, in which the functionalities and responsibilities of 
the individual modules are clear. The relationships/connections be
tween different modules in the toolkit provide a clear overview and 
big picture of a model’s data file structure/organization, logic, and 
its workflow processes, making model integration an easier task, 
reducing the error-prone code writing process, and saving time.  

2) Clarity: the organizations and structures of a model’s input/output 
files can be clearly seen from the five/six modules included in the 
generic model agent toolkit. For example, from the configuration 

Fig. 18. A complete workflow to execute DHSVM model simulation in CyberWater via user’s programed DHSVMAgent.  
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panel associated with each module, users can easily see where the 
model’s input files are located and what they are. Such a neat visual 
presentation helps users identify missing information and 
debugging. 

3) Generality: Our toolkit is applicable to a wide range of computa
tional models since most of the models have similar input file orga
nizations, e.g., global file/configuration file, parameter file, forcing 
data file, and initial state file. In fact, we have been successfully 
applied the toolkit to integrate other hydrological and environmental 
models with ease (Luna et al., 2020), such as the biogeochemical 
model – CASA-CNP (The Carnegie-Ames Stanford Approach model 
with Carbon, Nitrogen, and Phosphorous cycles) which computes the 
net primary productivity of terrestrial ecosystems, together with 
detailed distributions of the amount of Carbon, Nitrogen, and 
Phosphorous present in the biosphere and its surroundings (Wang 
et al., 2010), and the USGS environmental model – PHREEQC model 
which is used to calculate a variety of aqueous geochemical reactions 
and processes in natural waters or laboratory experiments (Parkhurst 
and Appelo, 1999). 

4) Agility: Any changes in a model’s interface can be easily accommo
dated with the toolkit. For example, when a model’s inputs’ structure 
is changed as shown in Section 5.1, VIC4 versus VIC5, one can easily 
reconstruct the model agent for VIC5 using the toolkit instead of 
rewriting hundreds of new codes to have a new VICAgent. 

6. Conclusion 

In the fields of sciences and engineering, the need for open data and 
open model integration is urgent. While our previous work on the open 
data and open modeling framework of MSM lays a solid foundation for 
effectively and efficiently addressing the challenge faced by the broad 
community, this new work on the development of the generic model 
agent toolkit enables modelers to construct their own model agents 
without coding, therefore further simplifying the data and model inte
gration task by eliminating users’ effort of writing model agent code. 
This is achieved by the innovative design and development of a suite of 
feature-oriented code templates that extract each individual model 
agent’s characteristics, and therefore reduce the model agent pro
gramming work to the template-based components’ configuration task. 
This approach of the generic model agent toolkit in CyberWater is 
capable of applying to diverse models developed in the broad commu
nity without modifying any code of the original models or writing any 
model agents’ code. With CyberWater, users can individually and easily 
make their models pluggable into comprehensive end-to-end workflows 
with automated and seamless access to various online data sources for 
their scientific study without any need for a central control adminis
tration or service. Therefore, our presented approach not only provides a 
general and elegant solution for open data and open model integration 
for complex modeling systems, but also offers a truly sustainable and 
scalable solution for broad applications. The current limitation of the 
generic model agent toolkit is that it only works for grid-based models. 
As we know, there are hydrological models developed based on hillslope 
units or sub-watershed units, all of which have irregular modeling grids. 
Our future work is to extend the generic model agent toolkit to handle 
irregular grid-based models. We also plan to extend CyberWater to 
include web services to further complement its current standalone sys
tem, which can better support education in colleges and universities as 
most universities have very strict limitations for software installations 
on their laboratory computers. 
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