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ARTICLE INFO ABSTRACT

Keywords: The CyberWater project is created to develop an open data and open model integration framework for studying
Open d.ata and.model complex environmental and water problems, where diverse online data sources can be directly accessed by
Model integration diverse models without any need of users’ extra effort on the tedious tasks of data preparation for their models.

Generic model agent
Scientific workflow
Reproducible process

We present our design and development of a novel generic model agent toolkit in the context of CyberWater,
which enables users to integrate their models into the CyberWater system without writing any new code,
significantly simplifying the data and model integration task. CyberWater adopts a visual scientific workflow
system, VisTrails, which also supports provenance and reproducible computing. Our approach and the developed
generic model agent toolkit are demonstrated, via CyberWater framework, with automated and flexible work-
flows through integrating data and models using real-world use cases. Two popular hydrological models, VIC and
DHSVM, are used for illustrations.

Software/data availability

Name Author/Contact Year first Format/Language  Cost  Size Availability
available
VisTrails New York University (https://www.vistrails.org/index.php 2007 Python Free 300 https://www.vistrails.org/index.ph
/People) MB p/Main_Page
VIC University of Washington (http://uw-hydro.github.io/t 1994 C Free 2 MB https://vic.readthedocs.io/en/
eam/) master/
DHSVM Pacific Northwest National Laboratory (ning.sun@pnnl.gov; 1994 C Free 60 MB  https://www.pnnl.gov/source-code
mark.wigmosta@pnnl.gov)
USGS Water USGS (https://water.usgs.gov/contact/gsanswers) N/A XML webservices Free N/A https://waterdata.usgs.gov/nwis
Services /dv
NCA-LDAS NASA (gsfc-dl-help-disc@mail.nasa.gov) 2018 Tiff, GRIB or Free N/A https://doi.org/10.5067/7V3
NetCDF N5DO04MAS
Webservices
NLDAS NASA (gsfc-dl-help-disc@mail.nasa.gov) 2009 Tiff or NetCDF Free N/A https://doi.org/10.5067/6J5
Webservices LHHOHZHN4
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1. Introduction

With diverse data across disciplines being increasingly available on
today’s internet, it has become more urgent and important to have a
framework facilitating data and computational model integration for
studying problems involved in many complex processes (e.g., physical,
hydrological, biological, and atmospheric) such as predictions of floods,
droughts, water quality, and air quality. While there are many online
data sources available on the internet, the key challenge is how to make
these data sources directly accessible to various models without users’
additional effort on data preparation or data preprocessing for their
models. Such model input data preparation task is usually very time-
consuming, tedious, and error-prone due to the fact that individual
data sources offer their different access protocols and have their
different data organizations and formats. Previous research focused
more on model integration (Argent, 2004; Belete et al., 2017) and the
papers therein), with little consideration or treatment on the general
problem of integrating data and models together. For example, existing
modeling systems for different needs in environmental and water fields
include Open Modeling Interface (OpenMI)1 (Moore and Tindall, 2005;
Gregersen et al., 2007; Knapen et al., 2013; Harpham et al., 2019),
Community Surface Dynamics Modeling System (CSDMS)? (Peckham
et al., 2013; University of Colorado Boulder, 2012), Object Modeling
System (OMS)3 (Ahuja et al., 2005; David et al., 2013), Earth System
Modeling Framework (ESMF)* (Collins et al., 2005; DeLuca et al., 2012;
Hill et al., 2004), The Invisible Modeling Environment (TIME) (Rahman
et al., 2003; Stenson et al.,, 2011), and Geographic Modeling and
Simulation Systems (OpenGMS) (Chen et al., 2019; Zhang et al., 2019;
Wang et al., 2020). These modeling systems do not directly address the
challenge of enabling users’ models to access the heterogeneous data
sources automatically and seamlessly over the internet to carry out their
modeling studies. While some of these systems support public sharing of
data, modeling, and/or simulation resources, they are generally limited
to some specific models and data rather than providing a general
framework to integrate diverse data and models like CyberWater.
Although OpenMI2.0 and OpenGMS, for example, increase the flexi-
bility by turning numerical models into linkable components to receive
exchange data from each other, there is remaining work for these sys-
tems to wrap up the existing models to be feasible components running
in these frameworks. Salas et al. (2020) provided comprehensive re-
views of these systems and compared them with the earlier version of
the CyberWater framework — a recent effort aiming at developing a
systemic solution to this challenge. The key idea and feature of the
CyberWater system is its focus on building an open architecture
framework to facilitate realizations of open science (Salas et al., 2020)
which facilitates resource sharing (e.g., data and models), reproduc-
ibility of the work, and community participation. To this end, an open
data and open modeling framework (Salas et al., 2020), referred to as
MSM (Meta Scientific Modeling) that provides the foundation for the
CyberWater framework, is developed. MSM is designed to offer scientific
researchers and practitioners a sophisticated open modeling environ-
ment, where data agents are developed to access heterogeneous online
data products provided by different data sources so that the data can
directly flow seamlessly from the data sources to the users’ models
without any need for the users to preprocess the input data for their
models. The model input data preparation has been performed by each
individual data agent developed in MSM for its corresponding data
source, such as the USGS and NASA data products. The implementation
of MSM is called msm, which incorporates the workflow system of

! https://www.openmi.org/.

2 https://csdms.colorado.edu/wiki/Main_Page.
3 https://alm.engr.clolstate.edu/cb/wiki/16961.
* https://earthsystemmodeling.org/.
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VisTrails® to provide not only a graphical workflow mechanism for
achieving the modeling task but also data provenance to ensure trace-
ability and reproducibility (Salas et al., 2020). To make use of the fa-
cilities of data agents in msm, however, one needs to integrate his/her
model into the msm system by means of writing a model agent based on
the interface provided by msm. Once a user’s model is integrated into
msm via its agent, the user’s model can use all the data agents available
in the msm system for direct data and model integration and can also
couple his/her model with another model already integrated into msm
for model-to-model coupling/integration without coding. Another
recent work on the model input data preparation is HydroDS web ser-
vices (Gichamo et al., 2020), which is applicable to two specific models,
the Utah Energy Balance (UEB) snowmelt model (Tarboton et al., 2014)
and the TOPNET hydrologic model (Bandaragoda et al., 2004). The use
of HydroDS, an integration of model UEB with data, is demonstrated
through the development of a web application (Gan et al., 2020). The
strength of HydroDS, a webservice based data and model integration
approach, is that there is no need for local software installation. Its
limitations include not supporting other models beyond UEB and TOP-
NET, nor providing users with any mechanism to integrate new models
into HydroDS. CyberWater is a standalone system at present, which
avoids the potential bottleneck of the centralized server, facilitating
scalability and sustainability. CyberWater will be extended to include
web services as well in the future, to further complement its standalone
system. For the webservice-based systems, Chen et al. (2020) provided a
comprehensive review.

While the msm framework has its unique merit for open data and
open model integration, it nevertheless still requires programming a
model agent per new model integration. To write a model agent means
that the user needs to do programming/coding. To overcome such a
limitation, this work extends the previous msm framework. Here, we
present a general approach to construct a generic model agent template
using workflow for handling models’ input interfaces for the environ-
mental and hydrological models. We then design and develop a set of
tools called generic model agent toolkit for our approach, with which a
user can construct his/her model agent by simply doing parameter-
based configuration steps without coding for most of the environ-
mental and hydrological models. This effort, together with other ex-
tensions to and improvements on the msm system, including accessing
high performance computing on demand (Li et al., 2021), constitutes the
latest development of our CyberWater framework software system.

In this paper, we present the design and development of the generic
model agent toolkit in CyberWater. We then demonstrate how this set of
tools can significantly eliminate the user’s task of writing a model agent
in order to integrate a new model into the system, and thus further
enhance the usability and effectiveness of the CyberWater framework
for open data and model integration and greatly improve the capability
of the community to share diverse models for model validation, evalu-
ation, scientific explorations, etc. Different versions of the Variable
Infiltration Capacity (VIC) model (Hamman et al., 2018; Liang et al.,
1994, 1996a, 1996b; Liang and Xie, 2003)and the Distributed Hydrol-
ogy Soil Vegetation Model (DHSVM) (Wigmosta et al., 1994) are used in
this study for illustration via use cases over several watersheds in
Pennsylvania, USA.

The remainder of this paper is organized as follows. Section 2 briefly
overviews the background to set up the context. Section 3 presents our
approach and design, while Section 4 describes the implementation of
the generic model agent toolkit. Section 5 provides two use cases of
reproducible end-to-end model simulations to demonstrate the use of
the developed generic model agent toolkit for open data and model
integration in CyberWater and offers our insights through discussions.
Finally, Section 6 concludes the presented work and provides planned
future work.

5 https://www.vistrails.org/index.php/Main_Page.
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2. Background
2.1. MSM architecture

MSM (Meta-Scientific-Modeling) is an Open-data Open-model
framework that provides a sophisticated workflow-controlled modeling
environment for heterogeneous data and model integration without a
need for a central administration (Salas et al., 2020). The implementa-
tion of the MSM framework, having VisTrails (Bavoil et al., 2005)
incorporated in it, is called msm system which, running on the user’s
local desktop or laptop, constitutes several components, including the
core (i.e., msm core), Data Agents, and Model Agents. Basically, the msm
system interacts with the workflow engine of VisTrails, accesses remote
heterogeneous data sources through Data Agents, and invokes users’
computational models for simulations through Model Agents.

The msm core is the center of all the components in the Open-data
Open-model framework. Through its connection with the workflow
engine of VisTrails, the msm system invokes external models and couples
various data sources with respective model agents and data agents via a
friendly and feasible workflow controlled working environment.
Therefore, the MSM enables access to external data of diverse sources
conveniently and effectively, and execution of sophisticated numerical
models efficiently. The open-model feature allows various models or
modules to be smoothly integrated into the MSM system via Model
Agents. The architecture of MSM offers a novel “information bus”
connection pattern of linear complexity (i.e., the complexity of the
development of data and model agents is O(m + n) for integration of m
data sources and n computational models), the lowest possible
complexity, among all independent models and external heterogeneous
data sources, as opposed to quadratic complexity involved in a pair-wise
based one-to-one integration architecture (i.e., the complexity of O(mn
+ n?) for integration of m data sources and n computational models)
(Salas et al., 2020).

In the MSM framework, the modeling processes are dynamically
decided by the end-users through a workflow engine. Users can
customize the sequence of activities and construct any workflow series
for their modeling process based on the building blocks or modules
provided by the msm system. Each workflow activity conducts interac-
tively with the other workflow activities in the same workflow.

MSM’s design criteria enable a creation of a general and flexible
system so that the MSM framework can be easily plugged into various
open-source workflow engines. The MSM takes advantage of the existing
workflow engines and avoids reinventing the wheel. The overall archi-
tecture of the MSM system is shown in Fig. 1.

2.2. Model agent

Environmental Modelling and Software 152 (2022) 105384

‘Workflow Engine

D
source 1

)
@ ‘Workflow Interface

MSM CORE

Model 1

Model 2

—
Ok
Model 3 HOH
f—]
o

ALh
o2
1= sy
-

=

Model n T

| .. Olle ©
é ééé

e

Fig. 1. An overall architecture of the MSM framework system, in which each
model (i.e., Model 1, Model 2, ..., and Model n) represents an individual
computational model integrated to the MSM framework to perform its model
simulation instance.

e Preparing model’s inputs: The agent collects the model’s required
input data from the workflow and transforms them into the model’s
input files, which are needed by the model’s execution.

Executing model: The agent invokes the model executable file, ac-
cording to the workflow control, and runs the model.

Retrieving model’s outputs: After finishing the model’s execution,
the agent needs to retrieve the model’s output files and transform the
output data into the msm system in the format of msmDataSet before
the subsequent workflow item gets to be executed.

The Generic Agent is a class developed in the msm system to assist
users in their development process of model agents. In the Generic Agent
base class, a generic run_model method is declared. Each model’s agent is
inherited from the Generic Agent class and overrides the generic run -
model method, enabling the customized model’s invocation from the
workflow. The model agent uses services offered by the Generic Agent
class to read the inputs from and write the outputs into the msm core
datastore, which simplifies the agent’s coding for integrating an external
model into the msm system.

The model agent’s primary responsibilities are to be implemented by
overriding the run_model function. That is, first, read the model inputs
from the msm core and save the data into the model’s input files; then,
run the model executable file. Finally, read the model’s output files after
the model’s execution, transform them into the msm dataset format, and
save the model’s outputs into the msm core.

To write a model agent, the user has to create a text file including a
class in Python as outlined here:

class MyAgent (GenericAgent):

from msm_core.msm...... import GenericAgent

def run_model (self, inputs, parameters):

In msm, various computational models are added into the MSM
modeling framework by means of their corresponding model agents.
Any model added into MSM can then be freely integrated with various
data agents as well as other models in a workflow constructed by the
user, where model agents represent and execute the corresponding
external models in the workflow (Salas et al., 2020). Thus, the effort to
add a model into the MSM modeling framework is to develop the
model’s agent. Since no modification of the original model code is
required in the msm system, a model agent needs to perform three main
tasks as follows:

In the run model function, the user writes all the necessary codes to
prepare the inputs, execute the model and store the outputs. These are
the three main tasks that the model agent is supposed to perform to
integrate the user’s model into the msm system. For more details, readers
are referred to Salas et al. (2020).
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3. Approach
3.1. The idea

While the Generic Agent class in the msm system reduces users’
burden to develop their model agents to some extent, it would be
desirable if users’ model agents can be constructed without any coding.
Since, in general, any model agent will conduct the three tasks described
in Section 2.2, our idea is to construct a generic model agent template for
most environmental and hydrological models, which predefines/out-
lines tasks of preparing model inputs, executing model, and storing
outputs in a workflow environment. In the msm system, all workflow
modules can be dynamically defined and configured. Thus, using the
divide and conquer technique, a generic model agent can be achieved by
first composing a generic workflow segment (template) of predefined
generic modules as part of the overall workflow in the msm system. Such
a workflow segment (template) will then be configured by individual
users for their specific models, where each model’s variability is
accommodated via the configuration of the generic workflow segment
(template). The predefined generic modules represent the abstraction of
each aspect of the generic model agent. This way, the variability of an
individual model is treated and represented through parameter-based
configuration options of the workflow segment where specific infor-
mation concerning an individual model, such as the model’s parameter
values, is configured via a graphic user interface of the input panel
associated with the configuration option. Therefore, a user no longer
needs to write any specific model agent code to integrate an external
model into the msm system, which greatly enhances the usability of the
MSM modeling framework for achieving the data and model integration.

3.2. The design

To fulfill our idea, we attempt to systematically predefine and design
a set of generic workflow modules (i.e., components) to be used for
constructing a model agent for an individual model in the form of a
generic workflow segment (i.e., template), where each component rep-
resents and fulfills an individual task that a user’s specific model agent
would accomplish. To this end, our design strategy is as follows.

a) We developed a set of basic template-based workflow components
based on an analysis of the representative model interface structures
and organizations of most environmental and hydrological models.
Those workflow components are used as building blocks for con-
structing a generic model agent, where each component (i.e.,
building block) is called a generic model agent tool.

b) A specific model agent for a given scientific model is constructed by

composing the predeveloped component templates into a workflow

segment (template) which is then incorporated into the user’s overall
modeling workflow sequence.

The workflow segment (template) is configured by the user for the

model simulation needs to serve as the model agent. This way, the

model agent’s construction and its corresponding configurations are
realized within the msm system via an interactive graphical workflow
interface without any coding.

C

=

Our design includes the following six major generic model agent
tools (i.e., components). Users are only expected to be knowledgeable
about their own models’ input/output details when they use these
generic model agent tools for integrating their models into the Cyber-
Water system. A model’s inputs are typically classified into three cate-
gories: static parameters, forcing data, and the initial states of the model.

1 MainGenerator: This is the first component (i.e., the root compo-
nent) to build up a model agent in the form of a workflow segment
(template) for a user’s specific model. This component is responsible
for setting up a working directory for performing the user’s model
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simulation. Inside this working directory folder, all the input infor-
mation needed for executing the user’s model and the output infor-
mation after the model’s execution will be placed. The path of the
working directory is specified by the user. This component is also
responsible for receiving the forcing information required for the
model’s execution. The order in which these forcing data are
collected to the MainGenerator as datasets through its module infor-
mation panel matters since the final forcing data files created and
placed in the working directory folder for the model execution will
have these forcing data organized in columns following the same
order. In addition, this MainGenerator reads in other important in-
formation needed for setting up the required execution condition/
environment for the user’s specific model, for example, information
specifying certain options such as the number of soil layers to be used
by the model, the water or energy balance mode to be executed, etc.
Such information is typically provided through a model’s global file
or model’s configuration file whose path is provided to this compo-
nent, and also through the use of its module information panel. This
module outputs two pieces of information through its two output
ports. One is called WD_Path, which provides the working directory’s
path information where all the model’s needed input information
and the model’s output information will reside. The other is called
DataSet_Class, which is a list of all the datasets comprising the
model’s forcings.

2 AreaWiseParamGenerator: This component organizes parameter
files (e.g., vegetation and soil related parameter files), and places the
imported parameter files into the parameter folder created by it. This
parameter folder will be automatically placed under the working
folder provided by the MainGenerator module. Information on all the
paths of the parameter files needed for executing the user’s model is
collected in this module by specifying them through the module’s
information panel from the user interface. This module outputs a
“ready” signal which will be discussed later.

3 ForcingDataFileGenerator: This component is responsible for
creating the forcing data for the user’s model. Specifically, this
component organizes the forcing data brought in by the Main-
Generator. The user should be aware of the expected format of the
model’s forcing data. By default, this module creates the forcing data
to be used by the user’s model in a folder named “Forcing” inside the
working directory. Such forcing data are always created as a time-
series, where different columns hold different variables according
to the order specified in the MainGenerator. The data are divided into
separate files, where each one represents a single modeling cell/unit
of the forcing inputs. This module has two input ports, one is the
working directory, and the other is the list of forcing datasets, both of
which are provided by the MainGenerator module. Like the Area-
WiseParamGenerator, this module also outputs a “ready” signal.

4 InitialStateFileGenerator: This is an optional component which or-
ganizes the data of initial states for the user’s model, as the initial
state files are not always required for the execution of a given model.
However, if a user would like to conduct data assimilation to
improve the user’s model forecast reliability, the user may need to
use this module. In any event, if required, this module receives the
information of the working directory from the MainGenerator mod-
ule. Also, the initial states’ file paths will be specified through this
module’s information panel and be placed either inside the working
directory or a new directory created by the InitialStateFileGenerator,
with a name given as an input from the user. The output of this
module is again a “ready” signal.

5 RunModuleAgent: This component is responsible for invoking the
user’s model (e.g., executable) on the local machine, and for
retrieving the model’s outputs. It executes the model in the same way
as the model runs alone without the msm system environment, where
the user must manually prepare all the input files (e.g., forcing data,
parameter files, initial state files) of the model. This module has three
pieces of input information. First, it connects to the output of the
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AreaWiseParamGenerator, ForcingDataFileGenerator, and Initial-
StateFileGenerator (if required), separately, to receive their “ready”
signals. Second, it receives the information of the working directory
from the MainGenerator. Third, it receives the dataset information
outputted from the MainGenerator. This module also requires the
path where the model’s executable file is located. By setting up all
the aforementioned information and receiving all the required in-
formation passed onto it from the other modules/components, this
RunModuleAgent component is now ready to execute the user’s
model. The model’s simulated results will be written back to the
CyberWater system for the workflow to continue.

6 HPC: This component is the module responsible for accessing remote
High-Performance Computing (HPC) facility on-demand. This mod-
ule aims to provide high-performance computing capacity for
executing the user’s model by seamlessly connecting it to either ac-
ademic supercomputers or commercial cloud platforms (Li et al.,
2021). It retrieves the results back to the workflow when the
execution of the user’s model on the remote HPC platform is
completed.

In a nutshell, regarding the three tasks that a model agent needs to
perform (Sec. 2.2), preparing model’s input is fulfilled by a combination of
three corresponding generic components (i.e., components 2, 3, and 4
described above), while the tasks of both executing model and retrieving
model’s outputs are combined and fulfilled by the generic component
RunModuleAgent (component 5 above) or HPC (component 6 above),
depending on whether the model is executed on a local machine or a
remote HPC platform. Based on our approach, users construct their
model agents, using the generic model agent toolkit (i.e., the six modules
or building components) described above, at the same time as they
employ the msm system to build their overall modeling workflows. Fig. 2
illustrates a typical workflow construction for hydrological/environ-
mental modeling in the msm system with a graphical workflow interface.
The dotted block indicates how the generic workflow components pre-
sented above are used to construct and configure a user’s model agent in
the workflow. After the completion of the user’s construction and
configuration of the workflow, the workflow is then executed in the msm
system. A sequence diagram of a typical modeling workflow with the
constructed model agent using the generic model agent toolkit is
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illustrated in Fig. 3.

In summary, the generic model agent toolkit is designed to help the
user construct a model agent to integrate the user’s model into Cyber-
Water without writing any codes. Such a goal is achieved through some
combinations of the six modules in the toolkit together to perform the
following main functionalities:

e Set up the user’s model working directory.

e Write data sets retrieved from data agent(s) or local files into model
input files. That is, prepare input data files for the user’s model.

e Invoke the user’s model codes to run the user’s model.

o Write the user’s model output results back to the CyberWater system.

4. Implementation

The generic model agent toolkit, called GenericModelAgentTools, is
developed and implemented in Python outside of the msm system as an
extensive VisTrails package, which is a significant extension to the
original msm system in the overall CyberWater system. However, the
GenericModelAgentTools need the support of the corresponding DAO and
Cache modules of the msm system to access data sets flowed into the
workflow modules. The hierarchical architecture of the CyberWater
system is shown in Fig. 4.

Each generic model agent tool in the toolkit is designed and imple-
mented as a template-based workflow module. To illustrate, we present,
in the following, the implementation of the template-based generic
model agent tool MainGenerator in Sections 4.1, and its configuration in
Section 4.2, respectively.

4.1. Generic model agent tool as a template

The MainGenerator creates a working directory folder as a workspace
for the user’s model, where it hosts all the input information required for
executing the user’s model and the output results of the model after its
execution, copies the model’s global parameter file or configuration file
into this created working directory for carrying out the model’s execu-
tion task, and converts the datasets into DATASET_CLASS elements in
the form of Python dictionaries. This component also gathers all the
forcing datasets required by running the user’s model. The maximum
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workflow components are used to construct and configure a user’s model agent in the workflow.
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Fig. 3. An illustration of a sequential execution diagram of a typical modeling workflow with the constructed model agent by the agent toolkit in the msm system.
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Fig. 4. Diagram of the hierarchical architecture of the CyberWater system.

number of the MainGenerator’s input ports for datasets is set to be 15 as a
default for convenience. However, the input ports of the MainGenerator
can be expanded if needed. Hence, in the template-based component
MainGenerator, the path of the working directory, the path of the
model’s global parameter file, and the datasets of the forcing to be used
are all configurable by the user. For illustration, the pseudocode of the
MainGenerator is given in Fig. 5.

In general, there are three types of input files needed for executing a
numerical model, namely parameter files, forcing data files, and initial
state files. The AreaWiseParamGenerator organizes the parameter files
for performing the numerical model; the ForcingDataFileGenerator cre-
ates the model’s forcing data files; and the InitialStateFileGenerator is
engaged in preparing the initial state files, if needed, for performing the
numerical model simulation. The RunModuleAgent module is for setting
up the path where the model’s executable file is located. It also obtains
the information of the arguments for executing the model and the
configuration information for the model’s output variables. During the
workflow execution, the AreaWiseParamGenerator, For-
cingDataFileGenerator, and InitialStateFileGenerator modules process the
datasets to generate the needed input files for the user’s model. The
module of the RunModuleAgent invokes the user’s model execution based
on the datasets passed. The model’s simulated results will be written
back to the CyberWater system. Similar to the MainGenerator, each of
these template-based components also has its places configurable for the
user to construct part of the user’s model agent.

4.2. Configuration of generic model agent modules

A configuration example with the MainGenerator (Fig. 6) is used here
to illustrate how the user can configure a generic model agent module.

a. Input Port Specification

01_Path: The path of the working directory folder where files for
executing the user’s model will reside.

02_GPF: The path of the global or configuration file if such a file is
required by the user’s model. This file is commonly used for setting up
the variables for the model’s execution.

Dataset_x: Collecting the forcing Dataset x (x = 01, 02, 03, ..., 15)
from the msm system, in which x indicates the index of the dataset, and
passing the forcing datasets to the ForcingDataFileGenerator to generate
the required forcing files for the user’s model to run.

b. Output Port Specification

WD _Path: An output port that passes the working directory path
information to the next module.

DataSet Class: Another output port that passes the information of a
dataset cluster, i.e., the information of the forcing datasets, to the next
module.

5. Use cases

There are two approaches to integrate a new model into CyberWater.
One is to program a model agent by the user, while the other is to use the
generic model agent toolkit provided in CyberWater to build the model
agent without coding. This section shows how to achieve the integration
of a user’s model into the CyberWater system using our developed
generic model agent toolkit without writing a single line of code. The
user’s model integration will be illustrated using our generic model
agent toolkit versus adopting the user’s manually programmed model
agent. Two use cases with the VIC model and DHSVM model integrations
are provided in Sections 5.1 and 5.2, respectively.

5.1. VIC model simulation

CyberWater provides various modules that help users construct their
model simulation workflow to directly access online data from diverse
data sources (e.g., forcing data from NASA and streamflow data from
USGS), execute models, and produce model simulation results. In this
use case, the Variable Infiltration Capacity (VIC) model (Liang et al.,
1994, 1996a, 1996b; Liang and Xie, 2003) is employed for illustration.
First, we show the integration of the VIC model version 4.0 (VIC4) into
the CyberWater system via the user’s manually coded model agent
called VIC-Agent. The integrated VIC4 runs a water balance simulation
of the French Creek basin in CyberWater. This is a small watershed with
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1. PROGRAM MainGenerator

23

3. START

4.

5. //Get Inputs

6. GET the WD_PATH, which points at an empty folder on user’s machine and where the relative simulation will occur as

a working directory.
7. GET the GPF, which points at the global parameter configuration file.
8. GET the datasets by connecting the previous modules that brings needed dataset.

10. FOR every dataset connected to the input ports

11. GET the Dataset_x. //x indicates the index of the dataset.

12. ENDFOR

13.

14. //Start computing

15. INIT the variable DATASET CLASS as an empty dictionary

16.

17. //Fill the DATASET CLASS with the datasets obtained from previous modules.
18. FOR every dataset connected to the input ports

19. SET the key as a string variable with the index of the dataset
20. SET the value to be the initial address of dataset

21. INSERT the pair into the DATASET CLASS dictionary

22. ENDFOR

23.

24. //Create working directory where simulator occurs according to the WD_PATH

25. IF the folder which variable WD_PATH indicates does not exist

26. CREATE the responding folder

27. ENDIF

28.

29. //Copy the global parameters configuration file to the working directory, which is created by last procedure.
30. BEGIN

31. COPY GPF file into the folder created

32. EXCEPTION

33. WHEN fails to copy files

34. PRINT “Could not copy GPF file to folder”

35. END

36.

37. //Pass the value of WD _PATH and pointer of dictionary for DATASET CLASS to next modules.
38. OUTPUT WD_PATH and DATASET CLASS

39.
40. END
Fig. 5. Pseudocode of MainGenerator, where the variables in bold and italic are to be configured by the user.
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Fig. 6. User Interface of the MainGenerator module in Generic Model Agent toolkit with 01_Path and 02_GPF filled, and four datasets input ports enabled and
connected with the data agent modules retrieving the four datasets.



R. Chen et al.

a drainage area of 153 km? located in the southeast of Pennsylvania,
United States. Note that all the model parameters in this simulation are
default values that the user can further modify through a parameter
calibration process.

5.1.1. Workflow with manually developed VIC-model-agent

We first show how to build a complete example of a model simula-
tion workflow using the VIC model via a user’s manually developed VIC-
Agent. In general, creating a model simulation workflow starts with
model input data preparation based on various data sources for a given
study area over a given time period. Thus, the workflow starts first with
a TimeRange module which is used to specify the simulation time extend.
For this example, the simulation will go from 2010/01/01 00:00:00
(time start) to 2011/01/01 00:00:00 (time end); then a SpaceRange
module is added to specify the study area with four bounds (i.e., east,
west, north, and south) as: —75.58, —75.86, 40.24, 40.10 (x_max, Xx_min,
y_max, y_min, respectively).

To access the forcing information required for this simulation, the
NCALDAS Data Agent will be used. This agent accesses NASA NCALDAS®
Earth Data database to automatically bring NASA’s spatially organized
daily hydrometric information to the local machine. Four NCALDAS-
Agent boxes are added into the workflow area. Each one of these four
new boxes will be used to retrieve a different variable of the forcing data.
The four forcing variables required to execute VIC4 include: Wind Speed
[m/s], Total Precipitation Rate [mm/s], Temperature Max [K], and
Temperature Min [K].

Now, bring the VIC4 model into the workflow. The user’s model is
added into the workflow through its model agent. So, the VICAgent
module developed by us (Salas et al., 2020) is added to the workflow
area. Basically, this VICAgent enables the usage of the VIC model in the
CyberWater workflow. It collects VIC forcing information either
extracted via CyberWater’s Data-Agents (e.g., Wind Speed and Precipi-
tation) online or reads in the forcing data from files locally provided by
the user. It also reads in all the parameter files provided by the user to
run the VIC model. If these parameter files are not provided, the VIC-
Agent will generate all the parameter files required for the simulation
using default values automatically. Values of the parameters in these
files can later be modified or calibrated by the user for re-running the
VIC model. The VICAgent also provides users the flexibility of selecting
their desired output variables from the VICAgent interface for visualizing
them through the workflow execution. The workflow chart shown in
Fig. 7 represents the main functionalities accomplished by the VICAgent
code.

Note that VIC, like any other model, requires inputs to be included in
specific units, depending on the individual variables. Details of such
input information are included in the VICAgent documentation available
via the Documentation button in CyberWater. For example, the tem-
perature must be in Celsius, and for this case study, the precipitation will
need to be in mm per day, since the expected results will be daily. Thus,
the user only needs to check if the units of the retrieved data from data
providers match the units required by the user’s model. If not, unit
transformations are needed. The msmUnitConversion module can be used
to perform such transformations. For instance, to convert the tempera-
ture from the NCALDAS dataset in Kelvin into Celsius, the user needs to
set the input “operation” to be “x-273.15”. This “operation” allows the
user to execute simple mathematical operations using “x” as the variable
representing the dataset given as an input. To transform the input pre-
cipitation data from mm per second to mm per day, for example, the user
just needs to set the “operation” to “x*86400” by creating another
msmUnitConversion box. This module also allows the user to indicate the
new resulting units of the transformed dataset. The last step for creating
this workflow is to set up visualization tools, which will allow the user to
see the model simulated results, for example, the baseflow and surface

6 https://ldas.gsfc.nasa.gov/nca-ldas/forcing.
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Fig. 7. Flowchart of the VICAgent that is manually programmed. The number of
lines of code for each respective element in the flowchart is: (1) 78, (2) 9, (3)
269, (4) 184, (5) 12, (6) 115, (7) 56. Total number of lines of code is 723.
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runoff. This visualization can be achieved by adding two “msmShow-
Chart” boxes into the workflow and naming them “Baseflow” and “Sur-
face Runoff”, respectively. The completely created workflow for this VIC
simulation case is shown in Fig. 8.

After executing this workflow, two charts, shown in Fig. 9(a) and
Fig. 9(b), will be prompted. This example produces outputs of these two
variables offered by default in the VIC Agent. However, if the user goes
to the Outputs tab in the Module Info panel, more model output results
available to be displayed are listed.

5.1.2. Constructing VIC4 model agent using generic model agent toolkit
This section shows how to use the generic model agent toolkit
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Fig. 9. VIC4 model simulated results of the French Creek watershed obtained using the VicAgent: (a) baseflow time series, (b) surface runoff time series.

presented in Sections 3 and 4 to construct/configure the VIC4 model
agent for the model integration instead of manually writing the VIC4
model agent code. The important benefit here is that a user can integrate
the user’s own model into the CyberWater environment using this
generic toolkit with little or no programming effort. To use this toolkit,
users are only expected to be knowledgeable about their own models’
inputs and outputs organizations. Our following example of the VIC4
model illustrates a simulation for the same period of time over the same
study area described in Section 5.1.1. Thus, the time range, space range,
and forcing data construction part of the workflow is the same as those
described in Section 5.1.1. Here, we focus on steps to construct the VIC4
model agent using the toolkit.

5.1.2.1. MainGenerator. To start constructing the VIC model agent,
first, bring a MainGenerator box, the main control component of the
generic model agent toolkit, into the workflow working area. This
component is responsible for setting up the working directory for the
model simulation where it receives all the forcing datasets as inputs. The
users can adjust the paths accordingly for their specific folder structure
for the working directory. For this example, this working directory
folder will be saved on “C:\temp\CYBERWATER\GT\VIC4\French -
Creek”; thus, the inputs of Path and GPF can be set up, respectively, as: C:
\temp\CYBERWATER\GT\VIC4\French_Creek\MainAgent and C:
\temp\CYBERWATER\GT\VIC4\French_Creek\Source\vic_global fi-
le_val. In addition, all forcing data are collected by the MainGenerator by
connecting the forcing data modules to this MainGenerator. The working
directory path information will be passed (via its WD_Path output port)
to all the other components in the toolkit to be used for constructing the
user’s model agent.

5.1.2.2. AreaWiseParamGenerator. Add an AreaWiseParamGenerator,
which is in charge of setting up the parameter files (e.g., soil parameter
files and vegetation parameter files) of the model. These files need to be
previously created by the user. The user needs to enter the information
of the file’s path for each of the parameter files required as the model’s
inputs in the AreaWiseParamGenerator module. For this example, the
files used are stored in the folder: <C:\temp\CYBERWATER\GT\VIC4
\French_Creek\Source >.

5.1.2.3. ForcingDataFileGenerator. Add a  ForcingDataFileGenerator,
which is responsible for the creation of the forcing data files of the
model. This component takes the forcing information gathered from the
MainGenerator and saves it into the user’s specified folder.

5.1.2.4. InitialStateFileGenerator. Add an InitialStateFileGenerator. This
module is responsible for placing the initial state files in the right folder

in the working directory.

5.1.2.5. RunModuleAgent. Add the RunModuleAgent. It is responsible for
setting up the path where CyberWater can locate the model’s executable
file (e.g., C, Fortran, Python, Java, and MATLAB which have been tested
so far). Also, the arguments of the execution, as well as the model output
variables selected, and their formats are configured here. The user’s
model can only be executed when all of its inputs are ready, which is
guaranteed by connecting the output port of each of the three previous
components (i.e., AreaWiseParamGenerator, ForcingDataFileGenerator,
and InitialStateFileGenerator) to the Ready List input port of the
RunModuleAgent.

As in Section 5.1.1, the user can now add the msmShowChart modules
to plot the surface runoff and the baseflow for viewing. After adding two
msmShowChart modules to plot the OutputOl (Surface Runoff) and
Output02 (Baseflow) ports of the RunModuleAgent, the user will be able
to execute the created workflow shown in Fig. 10. The VIC4 model
simulated baseflow and surface runoff results obtained using the generic
model agent toolkit are exactly the same as shown in Fig. 9.

5.1.3. Coupling the routing agent with the VIC4 model simulation using
generic model agent toolkit

The generic model agent toolkit can also be used to couple different
models in the workflow. To illustrate, we use the outputs of the VIC
model as the inputs to the routing model. This routing model takes
datasets of the surface and subsurface runoff (i.e., baseflow) as inputs
(through the MainGenerator and the ForcingDataFileGenerator) and
computes the resulting streamflow of a given watershed following the
Muskingum method. Other required input parameter files are provided
to the routing model through the AreaWiseParameterGenerator module,
which are prepared offline, including those related to geographic in-
formation. The routing model’s core functionalities are compiled in a *.
jar file, which requires the presence of Java in the local machine to be
able to work. The RunModuleAgent component takes this *jar file
through the “exe” input as “java -jar ‘jar_compiled_model file.jar’”. The
workflow of coupling these two models using the generic model agent
toolkit is given in Fig. 11. The simulated streamflow results from the
coupled models are depicted in Fig. 12.

5.1.4. Constructing model agent for VIC5

The more recent available version of the VIC model is VIC5 (VIC
version5.0) which has some significant differences in the model’s I/0
from those in the VIC4 version. Consequently, the model agent previ-
ously developed or coded for VIC4 no longer works for VIC5 (v5.0).
However, with the generic model agent toolkit, a user can easily
reconstruct a new model agent for VIC5. The following example
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10

illustrates the construction of the VIC5 model agent and its associated
workflow to simulate the water and energy fluxes for a different and
large watershed using the CyberWater system.

In this example, an hourly model simulation of a large watershed
inside the state of Pennsylvania is conducted. The watershed is the West-
Branch Susquehanna (WBS) river basin covering more than 17,700
square kilometers. This river basin is selected to illustrate that Cyber-
Water can scale up to handle large watersheds. In this case, a new VIC
Agent is constructed using the generic model agent toolkit and is
executed in an energy-balance mode using VIC5. This watershed in-
cludes 299 modeling cells at 1/8th-degree resolution. Like the French
Creek watershed example, all the parameter values used in this simu-
lation are default values that can be modified later by the user to
perform parameter calibrations.

The simulation is set up for a period of time between 2010/01/01
00:00:00 and 2010/03/01 00:00:00. Since this simulation is hourly, it
requires more than 1,400 data files per forcing variable as each data file
represents 1 h (i.e., one time step) covering the entire watershed with
299 modeling cells at a spatial resolution of 1/8° per cell. In other words,
each forcing data file is a map with 299 cells representing 1 h time step
to be automatically retrieved from NASA. The space range of the WBS
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watershed is given by the limits: —76.213, —78.9155, 41.933, and
40.454 (i.e., x_max, x_min, y_max, y_min, respectively). Eight NLDAS-
Agent boxes are used to bring hourly forcing data from the NASA data
source into CyberWater for the following eight variables: Temperature
[K], Pressure [Pa], Radiation Flux Long Wave [W/mz], Radiation Flux
Short Wave [W/mz], Total Precipitation [mm/h], Specific Humidity
[kg/kgl, U-Wind [m/s], and V-Wind [m/s].

CyberWater offers the msmDatasetOperation module, facilitating
performing operations between two datasets. Thus, it can be used to
compute the magnitude of the wind speed based on information of the
two components associated with two directions of the wind speed, i.e.,
U-Wind and V-Wind, given by the NASA data source. For this example,
add the msmDatasetOperation module to compute the magnitude of the
wind speed (x2 + y2)'/? required as a forcing variable by VIC5, where x
and y represent obtained U-Wind and V-Wind from the NASA data
source respectively. Then, use the msmUnitConversion to transform the
units of the Temperature and Pressure datasets. In addition, the energy-
balance mode of VIC requires the user to provide Water Vapor Pressure
as a forcing variable. To do so, the user needs to read in the specific
humidity information provided by NLDAS data product using the
NLDASAgent, then convert it to vapor pressure using the equation below
as an approximation,

VP =1.61-g,-P @
where VP is the water vapor pressure [kPal, qy, is the specific humidity
[Kg/Kgl, and P is the pressure [kPa]. This operation can be performed
using again the msmDatasetOperation module.

5.1.4.1. MainGenerator. After the data preparation, one is ready to
construct the VIC5 model agent using the generic model agent toolkit.
First, bring a MainGenerator box, the main control component of the
generic model agent toolkit, into the working area. Then, have each
required input information provided in a similar way as it is illustrated
in Section 5.1.2. Note that the order of the input Datasets is determined
by the order given in the VIC model’s global file, “vic_global file_val”.

CyberWater-VisTrails offers a nice feature that allows the user to
group multiple modules to facilitate displaying a larger workflow. Select
all the modules between SpaceRange and MainGenerator and go to the
Workflow —> Group menu on the top toolbar as shown in Fig. 13 to
group these modules.

5.1.4.2. AreaWiseParamGenerator. Add an AreaWiseParamGenerator to
set up the parameter files (e.g., soil parameter files and vegetation
parameter files) for the model. These files need to be previously created
by the user before using the AreaWiseParamGenerator module. Again, the
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user needs to provide the required information in a similar way as it is
illustrated in Section 5.1.2 for the AreaWiseParamGenerator module.

5.1.4.3. ForcingDataFileGenerator. Add a ForcingDataFileGenerator for
taking care of the forcing data file preparation for the model. This
component takes the forcing information collected from the Main-
Generator and saves it into the user specified folder.

5.1.4.4. InitialStateFileGenerator. Add an InitialStateFileGenerator to
place the initial state files into the right folder in the working directory.

5.1.4.5. RunModuleAgent. Add the final component, the RunModule-
Agent, to complete the construction of the VIC5 model agent. It is
responsible for setting up the path where the executable file of the model is
located. Also, the arguments of the execution, as well as the selected
outputs, should be configured here.

Now, the user can add the msmShowChart module to plot the surface
runoff and baseflow for visualization. After adding the two msmShow-
Chart modules to plot the OutputOl (Surface Runoff) and Output02
(Baseflow) ports of the RunModuleAgent, the user will be able to execute
the workflow shown in Fig. 14. The two time-series obtained are
depicted in Fig. 15(a) and Fig. 15(b).

5.2. DHSVM model simulation

The Distributed Hydrology Soil Vegetation Model (DHSVM) is a
high-resolution hydrological model that simulates water and energy
fluxes by considering the effects of terrain features (Wigmosta et al.,
1994). One of the main differences in the modeling structures between
VIC and DHSVM is that in the latter, terrain or topography information is
needed as routing process is part of DHSVM,, i.e., the routing process is
internally coupled to other processes inside DHSVM. In this use case, we
illustrate simulations of the DHSVM model, through both its manually
developed DHSVMAgent, and the agent constructed using the generic
model agent toolkit, separately. The Indiantown Run basin, a small
watershed in Pennsylvania, is used to illustrate these features. Seven
types of forcing data are required for DHSVM: pressure, precipitation,
relative humidity, temperature, wind speed, longwave radiation, and
shortwave radiation. Since the simulation will be performed at an hourly
time step, the NLDAS data agent will be used again. However, this data
source does not provide relative humidity but the specific humidity.
Thus, one needs to calculate the relative humidity based on the other
given forcing data, employing an approach similar to that used in the
VIC5 example with the msmDatasetOperation module.

% Untitled” - CyberWater VisTrails
File Edit Workflow Vistrail Views Publish Packages Window Help

Execute Ctrl+Return

= & B @

New Op ¥ Stop on first error

Workspace  Erase Cache Contents
Ctrl+L
CulG

Ctrl+Shift+G

Re-Layout
Group.

Ungroup

Show Pipeline

WBSusquehanna
(SpaceRange)

Create Subworkflow

Convert to Subworkflow

> GenericC

v Generich

AreaV
. Module Documentation
Forcrgmee

InitialStateFileGenerator

Ctrl+E

MainGenerator
RunModuleAgent
> HighPerformanceCompu...
> ParameterAgents
> Basic Modules
CLTools

[Pa] to [kPa]

[K] to [C] > y
(msmUnitConversion) (msmUnitConversion)

>

> Control Flow
> Dialogs

> Maps

3 tolatlib,

[<

-2

Pipeline History Search Explore Provenance Mashup

>
MainGenerator
oo

"

Execute

ranrchen
;30 Apr 2021 07:17:21

»
LongRadiation
(NLDASAgent)

Preview:

| 1% Mashups (0)

> Module Info

Workflow Info

Fig. 13. Illustration of the grouping feature used to group modules related to the forcing data for the VIC5 model simulation.

11



R. Chen et al.

Environmental Modelling and Software 152 (2022) 105384

| Workspace & X Ppelne: ROOT + 255 Module Info & x
“C E < Search ® TS %
> Current Vistrails ] Name: Surface Runoff |
> My Vistrails Type: msmShowChart
i »
Package: edu.pitt.hydro.
WBSusquehanna adoos sa iy ro mem
(SpaceRange) Namespace: Visualzation
1d:8
Modules &3 Configure Documentation
-84 >
Inputs Outputs Annotations
Q V] x
~ units
> AgentTools A
> Basic Modules + String|mm/h
> CLTools @ S dataset_names_mainAxis
> Control Flow < dataset_names_secondaryAxis
> Dialogs < legend_location
> Maps < line_type
> matplotlib < scale
> msm < variable_name
> My SubWorkflows < vertical_range
> Persistent Archive
> PythonCalc
> saL
> tabledata f
q Surface Runoff Basefl:
> tej ShowChar Showchart
> URL
> VisTrails Spreadsheet | v Module Info Workflow Info

Fig. 14. A successfully executed workflow for VIC5 where the WBS river basin’s fluxes are simulated in CyberWater using the generic model agent toolkit to build the
model agent without coding. The dashed line box of VIC-Forcing Data Agents in the workflow is the grouped portion of workflow including multiple data agents and

their related unit conversions and dataset operations as illustrated in Fig. 13.

0.07

Baseflow [mm/hr]
o o o o
o o o (=]
w D 1% (=)

°
o
N

0.01

>
<e®

o Qe\°\ \6‘0\0 \

P =
ol o I ‘&"

o ™ o
Q’\

0\5’\ 0\/

Q
B oS

@

»
N

[
=)

o
©

o
o

©

Surface runoff [mm/hr]
D

©
N

aaaldaly

AL \ \ >
10@\\3“’\@\’ \\a“\ RS \\z“\ \, \\a“\ \, \<<e\'> \(»?p \Qe“\ \/ \%‘3\

®)

Fig. 15. VIC5 model simulated results of the WBS river basin using the generic model agent toolkit: (a) baseflow, and (b) surface runoff.

5.2.1. Constructing DHSVM model agent using generic model agent toolkit

In this section, we show how to integrate the DHSVM model by using
the generic model agent toolkit and escape steps that are similar to those
described before.

To construct a workflow running the DHSVM model, the user needs
to add TimeRange, SpaceRange, NLDASAgent modules like before, and use
msmDatasetOperation and msmUnitConversion modules to calculate
certain forcing input variables based on available input data and to
convert units. For this example, the user needs to use eight NLDASAgent
boxes to retrieve eight different hourly forcing variables which are
Temperature [K], Pressure [Pa], Radiation Flux Long Wave [W/mZA],
Radiation Flux Short Wave [W/rnzA], Specific Humidity [kg/kg], Total
Precipitation [mm/h], U-Wind [m/s] and V-Wind [m/s], and then to
compute the relative humidity and magnitude of wind required by
DHSVM.

To run the DHSVM model one needs to use GIS’ (Geographic Infor-
mation System) tools to prepare data for the routing related processes,
like those involved in the routing model described in subsection 5.1.3, as

7 https://en.wikipedia.org/wiki/Geographic_information_system.
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these routing related processes are part of the DHSVM model. One can
either prepare these GIS related files offline and have them inputted
through the AreaWiseParameterGenerator as illustrated in subsection
5.1.3 or prepare them as part of the overall workflow as in this example.
To facilitate the in-workflow preparation of these GIS related files
required for the integration of models, such as the DHSVM model,
CyberWater has incorporated GRASS GIS, an open-source GIS software,
in its msm system. A module called GISEngine is developed to interface
between the msm system and the GRASS GIS system. Through this
GISEngine module and other GIS related modules developed in Cyber-
Water, one can automatically and seamlessly access the GRASS GIS
system, and easily and effectively make use of the various functionalities
offered by GRASS GIS to accomplish the user’s various tasks, such as
identifying the flow directions, flow paths, and the stream network
within the studied area, given its DEM’ (Digital Elevation Model) map
file. The resulting files from GIS are then automatically passed back to
the msm system. Thus, all the input files required to be produced by GIS

8 https://grass.osgeo.org/.
9 https://en.wikipedia.org/wiki/USGS_DEM.
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Fig. 16. Full workflow of DHSVM model simulation via the constructed model agent using the generic model agent toolkit.

can be obtained using our developed GIS related modules (Luna et al.,
2020, 2021a). Details on the integration of GRASS GIS and its relevant
modules developed in the CyberWater system are presented in Luna
et al. (2021b) and will be discussed in detail in a separate paper (Luna
et al., 2022). In this example, most of the GIS-related input files are
automatically prepared and are passed to the Area-
WiseParameterGenerator as indicated by the dashed line box “Parameter
File Preparation” in Fig. 16 which is achieved by using our developed
GISEngine and the static parameter agent modules (Luna et al., 2021b,
2022) which are grouped together in the “Parameter File Preparation”
box and described below.

5.2.1.1. Parameter files preparation. This preparation mainly includes
the following major steps:

1) Use four StaticBinaryMapAgent modules which are configured with
the soil depth map, soil map, vegetation map, and DEM map paths,
respectively;

2) Use a GisDefineWatershed module, configured with the path of the
DEM map;

3) Use a StreamMapAndRoutingFiles DHSVM module, configured with
the north coordinator, south coordinator, west coordinator, east
coordinator as mask limits;

4) Group all the modules above in a module box for a neat and concise
workflow outlook, and name these grouped components as
“Parameter File Preparation”, as shown in Fig. 16.

5.2.1.2. DHSVM model agent construction with the toolkit.

1) Add a MainGenerator module and create a new working directory
folder on the user’s computer, where the DHSVM simulation will
occur. For this example, this folder will be saved on “C:\temp
\CYBERWATER”. The inputs are set up in a similar way as described
in subsection 5.1.4 for VIC5, but the variables corresponding to each
dataset are different since they are determined by the model’s global
file or configuration file.

2) Add an AreaWiseParamGenerator module, and the inputs are set up in
a similar way as described in subsection 5.1.4 for VIC5.
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3) Add ForcingDataFileGenerator to take care of the forcing data file
preparation for the DHSVM model. This component takes the forcing
information collected from the MainGenerator and saves it into the
user specified folder.

4) Add an InitialStateFileGenerator module, and let the path be the folder
path of “C:\temp\CYBERWATER\GT\DHSVM\IRun10years
\Source”.

5) Add a RunModuleAgent module, and its inputs are set up in a similar
way as described in subsection 5.1.4 for VICS5.

The newly created workflow after execution is shown in Fig. 16. The
resulting plot after the execution of this workflow is depicted in Fig. 17.
In contrast, Fig. 18 shows the complete workflow if the user employs the
manually written DHSVM model agent for integrating the DHSVM
model.
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Fig. 17. The DHSVM model simulated streamflow time series of the Indian-
town Run watershed obtained using the generic model agent toolkit.
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Fig. 18. A complete workflow to execute DHSVM model simulation in CyberWater via user’s programed DHSVMAgent.

5.3. Discussion

Based on our investigation of the popular hydrological and envi-
ronmental models, it shows that the complexity of these models’ inter-
face structures often lies in the organizations of models’ input files with
many different options/types (e.g., soil and vegetation related libraries
and parameter files, snow related information, and GIS related infor-
mation), rather than the organizations and structures of the models’
output files. Thus, we designed three components to handle a given
model’s input interface organizations, i.e., AreaWiseParamGenerator,
ForcingDataFileGenerator, and InitialStateFileGenerator, so that each
component would not be too complicated for users to configure. These
three components correspond to the three major types that a typical
model would have. On the other hand, as the model’s output interface
organizations and structures are usually straightforward, e.g., values of
computed state variables, fluxes, and input information, organized
either in time series or spatial maps, we thus combined the receiving of
the model’s outputs into the component handling the model’s execution
(e.g., RunModuleAgent), rather than creating a dedicated component for
that. Furthermore, the organizations and structures of the computa-
tional models’ interfaces can be briefly classified into the following two
categories: (1) The model itself does not include the use of GIS related
information and/or functionalities, such as VIC; (2) The model itself
utilizes GIS related information and/or functionalities as well, such as
the routing model, and DHSVM where the routing processes are
included. The former does not directly involve GIS to handle its area-
wise parameter files, while the latter usually directly involves the use
of GIS for handling its area-wise parameter files. To facilitate the latter
case, the GRASS GIS is integrated into the CyberWater system via our
developed GISEngine and its related modules; in addition, the static
parameter agent modules are developed to automatically prepare GIS-
related input files for such models, which will be discussed in a sepa-
rate paper (Luna et al., 2022). Once the GIS-related input files are
created, they are passed to the AreaWiseParameterGenerator as indicated
in the use case of subsection 5.2.1.

We note that among the three types of the input data files, the
structure and format interfaces of the forcing data files are less hetero-
geneous and complex compared to those of the parameter files and
initial state files among the different hydrological and environmental
models. For the forcing data files, the majority of the models (e.g., VIC,
DHSVM, Routing, and CASA-CNP) have their formats fall into two types,
namely, single-point time series or spatio-temporal maps. These two
types are both taken care of inside CyberWater’'s For-
cingDataFileGenerator module which also allows for customizable time-
stamps for the data. In addition, the ForcingDataFileGenerator module
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allows the users to modify the order of the columns inside the forcing
data files to represent different forcing variables read in so that the order
of the variables involved in the forcing data files can be adjusted to
match the structure requirements of different models’ forcing data files.
For the input parameter files and initial state files, however, interfaces of
the structures and formats of the individual files are then taken care of
by the static parameter agent modules developed in CyberWater (Luna
et al., 2021b, 2022).

We also note that the generic model agent toolkit not only makes the
integration of one’s model an easier task, but also significantly saves
user’s time and efforts and reduces the error-prone process of writing the
model agent codes, since one does not need to write any code to inte-
grate a model into the CyberWater system. By manually writing a model
agent to integrate a model, one needs to not only write codes initially,
but also to re-write the codes whenever the model’s I/O interface
changes as shown in the example of using VIC4 (version 4) versus VIC5
(version 5). On the other hand, due to the existing large number of
diverse types of models, it is possible that some unusual model structures
and features might not be covered by the generic model agent toolkit we
have developed. In such a case, the option of manually writing a model
agent in CyberWater provides more flexibility. Consequently, Cyber-
Water provides users with the flexibility to either use the generic model
agent toolkit for most models or to manually write their own model
agents when needed for any model with unusual I/O structures.

From the illustrations of the use cases in Sections 5.1 and 5.2, we can
see the flexibility and straightforwardness of using the generic model
agent toolkit in integrating various computational models with signifi-
cantly different model input structures and formats without the need of
writing any code. The strengths of using the visual drag and drop
approach of the generic model agent toolkit to construct a model agent
for integrating a model into the CyberWater system as opposed to the
traditional approach of writing programming codes, e.g., the VICAgent
and DHSVMAgent, include:

1) Usability (Ease of use): One can easily construct a model agent with
the toolkit to integrate a model into CyberWater without writing
computer codes, in which the functionalities and responsibilities of
the individual modules are clear. The relationships/connections be-
tween different modules in the toolkit provide a clear overview and
big picture of a model’s data file structure/organization, logic, and
its workflow processes, making model integration an easier task,
reducing the error-prone code writing process, and saving time.

2) Clarity: the organizations and structures of a model’s input/output
files can be clearly seen from the five/six modules included in the
generic model agent toolkit. For example, from the configuration
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panel associated with each module, users can easily see where the
model’s input files are located and what they are. Such a neat visual
presentation helps users identify missing information and
debugging.

Generality: Our toolkit is applicable to a wide range of computa-
tional models since most of the models have similar input file orga-
nizations, e.g., global file/configuration file, parameter file, forcing
data file, and initial state file. In fact, we have been successfully
applied the toolkit to integrate other hydrological and environmental
models with ease (Luna et al., 2020), such as the biogeochemical
model — CASA-CNP (The Carnegie-Ames Stanford Approach model
with Carbon, Nitrogen, and Phosphorous cycles) which computes the
net primary productivity of terrestrial ecosystems, together with
detailed distributions of the amount of Carbon, Nitrogen, and
Phosphorous present in the biosphere and its surroundings (Wang
et al., 2010), and the USGS environmental model - PHREEQC model
which is used to calculate a variety of aqueous geochemical reactions
and processes in natural waters or laboratory experiments (Parkhurst
and Appelo, 1999).

Agility: Any changes in a model’s interface can be easily accommo-
dated with the toolkit. For example, when a model’s inputs’ structure
is changed as shown in Section 5.1, VIC4 versus VIC5, one can easily
reconstruct the model agent for VIC5 using the toolkit instead of
rewriting hundreds of new codes to have a new VICAgent.

3
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Conclusion

In the fields of sciences and engineering, the need for open data and
open model integration is urgent. While our previous work on the open
data and open modeling framework of MSM lays a solid foundation for
effectively and efficiently addressing the challenge faced by the broad
community, this new work on the development of the generic model
agent toolkit enables modelers to construct their own model agents
without coding, therefore further simplifying the data and model inte-
gration task by eliminating users’ effort of writing model agent code.
This is achieved by the innovative design and development of a suite of
feature-oriented code templates that extract each individual model
agent’s characteristics, and therefore reduce the model agent pro-
gramming work to the template-based components’ configuration task.
This approach of the generic model agent toolkit in CyberWater is
capable of applying to diverse models developed in the broad commu-
nity without modifying any code of the original models or writing any
model agents’ code. With CyberWater, users can individually and easily
make their models pluggable into comprehensive end-to-end workflows
with automated and seamless access to various online data sources for
their scientific study without any need for a central control adminis-
tration or service. Therefore, our presented approach not only provides a
general and elegant solution for open data and open model integration
for complex modeling systems, but also offers a truly sustainable and
scalable solution for broad applications. The current limitation of the
generic model agent toolkit is that it only works for grid-based models.
As we know, there are hydrological models developed based on hillslope
units or sub-watershed units, all of which have irregular modeling grids.
Our future work is to extend the generic model agent toolkit to handle
irregular grid-based models. We also plan to extend CyberWater to
include web services to further complement its current standalone sys-
tem, which can better support education in colleges and universities as
most universities have very strict limitations for software installations
on their laboratory computers.
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