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ABSTRACT: Small ribonucleic acid (sRNA) sequences are 50-500 nucleotide long, noncoding RNA (ncRNA) sequences that play an impor-
tant role in regulating transcription and translation within a bacterial cell. As such, identifying sSRNA sequences within an organism’s genome
is essential to understand the impact of the RNA molecules on cellular processes. Recently, numerous machine learning models have been
applied to predict sRNAs within bacterial genomes. In this study, we considered the sRNA prediction as an imbalanced binary classification
problem to distinguish minor positive sSRNAs from major negative ones within imbalanced data and then performed a comparative study with six
learning algorithms and seven assessment metrics. First, we collected numerical feature groups extracted from known sRNAs previously identi-
fied in Salmonella typhimurium LT2 (SLT2) and Escherichia coli K12 (E. coli K12) genomes. Second, as a preliminary study, we characterized
the sRNA-size distribution with the conformity test for Benford’s law. Third, we applied six traditional classification algorithms to sRNA features
and assessed classification performance with seven metrics, varying positive-to-negative instance ratios, and utilizing stratified 10-fold cross-
validation. We revisited important individual features and feature groups and found that classification with combined features perform better
than with either an individual feature or a single feature group in terms of Area Under Precision-Recall curve (AUPR). We reconfirmed that AUPR
properly measures classification performance on imbalanced data with varying imbalance ratios, which is consistent with previous studies on
classification metrics for imbalanced data. Overall, eXtreme Gradient Boosting (XGBoost), even without exploiting optimal hyperparameter
values, performed better than the other five algorithms with specific optimal parameter settings. As a future work, we plan to extend XGBoost
further to a large amount of published sRNAs in bacterial genomes and compare its classification performance with recent machine learning

models’ performance.
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Introduction

Small or noncoding ribonucleic acids (sSRNAs or ncRNAs)
play a major role in the regulation of several molecular pro-
cesses within a bacterial cell. They are usually between 50 and
500 nucleotides long and can be classified into two major cat-
egories: cis-encoded (or antisense), and #rans-encoded sSRNAs.!
The basis of this classification relies on the location of the
sRNA sequence within DNA regarding its corresponding
messenger RNA (mRNA) target, as well as the base-pair inter-
action between sSRNA and mRNA transcript.? As sSRNAs are
transcribed from DNA strands but do not undergo translation,
they are usually located in non-coding regions of DNA (also
referred to as intergenic regions).’ Cis-encoded sRNAs can be
found in regions of the genome that overlap with the sequence
of their mRNA target, resulting in extensive and complete
complementarity of the SRNA-mRNA hybrid.* 7rans-encoded
sRNAs are found in regions separate from their target mRNA
genes; thus, they resemble minimal, but are with effective com-
plementarity to their targets.” In addition, the nonspecific
binding of sSRNA molecules allows for multiple targets to be
accessed by a single #rans-encoded sRNA.¢

The binding of sRNAs to mRNA transcripts plays an
important role in regulating transcriptional and/or transla-
tional processes. A majority of sRNAs, both cis- and zrans-
encoded, regulate their respective targets in a negative manner
through different mechanisms that interfere with translational
machinery” Small RNAs, such as RyhB® and CsrA’ in
Escherichia coli, bind to important translation initiation
sequences and block translational machinery from recognizing
the mRNA transcript. Other sSRNAs, such as SgrS in Escherichia
coli and Salmonella strains,'® bind to regions further upstream
the translation initiation sites, covering sequences required for
promoting translation. Positive effects of SRNAs on translation
have also been identified, where sSRNAs can bind and alter the
structure of a mRNA to be easily accessed by translational
machinery.’ In addition, sSRNAs can have an impact on the
transcriptional activity of a target gene by inhibiting proper
termination of a pre-determined transcript.'?

The recognition of sSRNAs in bacteria is useful in under-
standing the way bacteria regulate gene expression under vari-
ous environmental conditions. Previous research has revealed
the value of sSRNAs in regulating gene expression when a
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bacterium is placed under stress.!3 Certain stressors, such as
nutrient deficiency,»1> cell envelope stress,’*18 and oxidative
stress, %22 are a few examples where sRNAs are found to be
most prevalent in bacterial regulatory systems. In addition,
sRNAs play a big role in regulating genes responsible for viru-
lency in pathogenic microbes.?3 Aside from sRINAs being pre-
sent under stress and virulence, these regulatory molecules
have been shown to influence everyday cellular metabolism at
primary and secondary levels in different bacterial species.?*
While sRNA identification has been thoroughly examined in
bacterial model organisms such as Escherichia coli and
Salmonella enterica,®® a large majority of bacterial species have
yet to be explored for the presence of regulatory sRNAs. The
ability to efficiently recognize sRNA sequences in different
bacterial genomes can assist in conducting experiments to
understand how these regulatory molecules impact cellular
processes. Furthermore, identifying sRNAs across different
groups of bacteria can shine a light on the evolutionary history
of bacterial strains.”

To verify the presence of any potential sSRNA sequence,
various laboratory techniques such as microarrays, Northern
blotting, and size-selective RNA sequencing are necessary.?
This verification is necessary to correctly determine the pres-
ence of a SRNA in vive. In addition, other laboratory experi-
mentations are required to validate the mechanisms by which
an sRNA interacts with its respective target(s).”’ However,
such wet-lab experiments are tedious, time-consuming, and
costly for laboratory researchers. To maximize efficiency for
experimental design, it is crucial to utilize cost-efficient meth-
ods of accurately predicting novel SRNA sequences and their
potential mRNA targets. Therefore, it is beneficial to employ
computational approaches that can streamline experimental
verification processes for detecting sSRNAs and their interac-
tions with targets.

Recently, various machine learning-based approaches have
been applied to predict sSRNAs in any given bacterial genome.
Griill et al?® identified putative sSRNAs in Rhodobacter capsu-
latus by the sequence similarity to sSRNAs in a sSRNA collec-
tion and represented each putative sSRNA (or a random
genomic sequence) as a group of seven numerical attributes
that biologically characterize the putative sRNAs’ distinct
genomic contexts and characteristics. Then, using the logistic
regression model, they obtained the likelihood of the putative
sRNAs to be a potential candidate for sSRNA. Tang et al?
integrated various sequence-derived 17 feature groups and
built two ensemble learning models, the Weighted Average
Ensemble Method (WAEM) and the Neural Network
Ensemble Method (NNEM), for the sRNA prediction. In
another study, Eppenhof and Pefia-Castillo3® adopted seven
biological features by Grill et al,?® employed five traditional
machine learning algorithms (including Logistic Regression
(LR),3" Multi-Layer Perceptron (MLP),3? Adaptive Boosting
(AB),® Gradient Boosting (GB),** and Random Forest

(RF)),* and assessed the performance of the algorithms on
benchmark datasets.

Motivated by the encouraging result from the related
research work?8-30 that utilized varied individual feature sets
along with several machine learning algorithms, we aim to lev-
erage the classification performance by identifying and com-
bining best features, varying positive to negative data ratios,
utilizing another decision tree-based ensemble learning algo-
rithm, eXtreme Gradient Boosting (XGBoost),3¢ and employ-
ing seven evaluation metrics. As in the existent studies,?30 we
make use of the Salmonella typhimurium LT2 (SLT2) and the
Escherichia coli K12 (E. coli K12) datasets. Specifically, we
concatenated seven numerical attributes (or features) published
work by Eppenhof and Pefia-Castillo®® and let G1 denote the
group of seven attributes. In addition, we extracted 2,222
sequence-derived features by utilizing the python package rep-
DNA®” and let G2—G15 denote each of 14 sets of attributes,
respectively. Characteristics of two previous research that moti-
vated the current study are summarized in Table 1 and details
of 15 feature groups are described in Table 2.

As in Table 1, the sSRNA datasets are imbalanced as the
class of interest (i.e. positive, or minority class) is relatively
rare, compared to the other class (i.e. negative, or major
classes). One of the most common challenges while trying to
classify imbalanced data is that the classifier can be heavily
biased toward the majority negative class.3®3%To illustrate the
challenge in evaluating classification performance on imbal-
anced data, let us consider that accuracy, the most often used
metric that measures the fraction of correctly classified
instances, is employed to evaluate the classification perfor-
mance with the skewed dataset, whose positive to negative
data ratio is 1-to-10. As the minority class makes 10% of the
instances while the majority occupies the remaining 90% of
the instances, one can obtain an accuracy of 0.9 (i.e. 90%) by
simply predicting all instances as the majority class. The
minority class has very little impact on the accuracy as com-
pared to that of the majority class. An accuracy of 0.9 (i.e.
90%) seems high; however, it can be misleading as it has no
predictive power on the minority class. This is called accuracy
paradox, which states that predictive model with a given level
of accuracy may have greater predictive power than models
with higher accuracy.*0 Accuracy paradox has been identified
and discussed in real-life applications with skewed or imbal-
anced datasets.*1-43

In this research, we interpreted the prediction of sSRNAs as
a supervised learning with imbalanced data. Then, we aimed to
comparatively assess three questions on the learning problem:
what numerical features extracted from sRINAs are suitable for
learning; what traditional classification algorithms are robust
to various feature groups, and what evaluation metrics are
appropriate for measuring the performance of learning from
imbalanced data, using published data and well-studied met-
rics for classification performance.
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Table 1. Characteristics of related research and this study.

SOURCE TANG ET AL2®

Algorithms Weighted Average Logistic Regression (LR),
Ensemble Method (WAEM) Multilayer Perceptron (MP or MLP),
and Random Forest (RF),
Neural Network Ensemble Adaptive Boosting (AB, or AdaBoost),
Method (NNEM) and Gradient Boosting (GB)

Training Salmonella typhimurium Rhodobacter capsulatus

Datasets LT2

enterica,
and combined

Test Datasets Salmonella typhimurium

EPPENHOF AND PENA-CASTILLO30

Streptococcus pyogenes, Salmonella

Rhodobacter capsulatus,
LT2 Streptococcus pyogenes,
Salmonella enterica,

THIS STUDY

Logistic Regression (LR),

Multilayer Perceptron (MLP),

Random Forest (RF),

Adaptive Boosting (AB),

Gradient Boosting (GB), and

eXtreme Gradient Boosting (XGB, or XGBoost)

Salmonella typhimurium LT2 and Escherichia
coli K12

Salmonella typhimurium LT2 and Escherichia
coli K12

Escherichia coli K12, and
Mycobacterium tuberculosis

Features 2,222 sequence-derived

7 biological features

7 biological features and

features 2,222 sequence-derived features

Feature Groups G2—G15 G1 G1—G15

Positive to 1-to-1, 1-to-2, 1-t0-3, 1-to-4, 1-to-3 for training data, and 1-to-1, 1-to-2, 1-to-3, 1-to-4, 1-to-5, 1-t0-6,

Negative Data and 1-to-5 either 1-t0-37 or 1-to-10 for test data 1-to-7, 1-to-8, 1-to-9, and 1-to-10

Ratio

Metrices Accuracy and AUROC and Accuracy, Balanced Accuracy, Precision,
Area Under the ROC curve Area Under the Precision Recall curve Recall, F1-measure, AUROC, and AUPR
(AUROC, or AUC) (AUPR)

Validation 5—fold cross-validation Random 80% — 20% split for each of 5 Stratified k—fold cross-validation with k=5 and

training runs

k=10

Abbreviations: AB, Adaptive Boosting; AUPR, Area Under the Precision Recall curve; AUROC, Area Under the ROC curve; GB, Gradient Boosting; LR, Logistic
Regression; MLP, Multilayer Perceptron; NNEM, Neural Network Ensemble Method; RF, Random Forest; WAEM, Weighted Average Ensemble Method; XGB, eXtreme

Gradient Boosting.

Materials and Methods
Datasets

To effectively compare our classifier performance against cur-
rently existing predictive models, we utilized the same training
and testing datasets originally generated and used by Tang et al®
and Eppenhof and Pefa-Castillo.3® Specifically, we used data
trom the Salmonella typhimurium LT2 (SLT2) genome and the
Escherichia coli K12 (E. coli K12) genome. Browser Extensible
Data (BED) files from the study by Eppenhof and Pefa-
Castillo®® contain information about all experimentally verified
sRNAs in SI'T2, such as genomic coordinates, length, and strand
in which the sRNAs are located. First, we processed the BED
files and extracted the respective sSRNA sequences from the
genome. For sequences located on the negative strand, we gener-
ated the reverse complement of the equivalent sequence on the
positive strand. After compiling these sequences, we stored this
list of verified sSRNAs as a positive dataset.

An ideal negative dataset is one that is clearly separable
from the positive dataset. We used the dataset used by
Eppenhof and Pefia-Castillo.?® They generated the negative
instances from the coding regions of DNA that are character-
istically distinct from the intergenic/non-coding sRNA
sequences and then they removed any negative data that

overlapped with positive sSRNA sequences to ensure that this
negative dataset would perform optimally. The remaining data-
set had approximately 10 times as many negative instances as
positive instances. Therefore, we assessed the performances of
learning models with varying positive-to-negative instance
ratios to consider all the spectrum of the data ratios, where
1-to-1 ratio is balanced, and the others are imbalanced.

The two specific datasets were publicly available for SL'T2.
The first STL2 dataset is the fixed training-test split with a
total of 1239 instances, including 361 (90(+) and 271(-))
training instances and 878 (23(+) and 855(-) test instances
and the other one is the whole positive-negative split with the
total of 1986 (182(+) and 1804(-)) instances, where plus (+)
and minus (-) symbols denote positive and negative sSRNAs,
respectively. We used the fixed training-test data to compare
the performance between the training-test split and the k-fold
cross-validation. The fixed training-test dataset with the
reduced number of instances, selected from the whole positive-
negative split, was originally used by Tang et al?®” and later by
Eppenhof and Pefia-Castillo.?® The whole positive-negative
split is the second STL2 dataset and it is available in the BED
files by Eppenhof and Pefia-Castillo.®® The whole positive-
negative split dataset with 1986 instances of SLT2 was used to
assess the feature importance and feature group importance. E.
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coli K12 dataset has only the positive-negative split with the
total of 1369 (125(+) and 1244(-)) instances. As the positive-
to-negative instance ratio is approximately 1-to-10, the posi-
tive-negative split datasets were used to assess how the different
data ratios affect the classification performance.

Sequence-derived feature sets

From the positive and negative sSRNAs in SLT2 and E. coli
K12, we extracted the total of 15 groups of distinct numerical
teatures, which have been already studied in the related
approaches.?$30 Using a Python pipeline tool, sRNACharP3°
(available at https://github.com/BioinformaticsLabAtMUN/
sRNACharP), we obtained numerical features that character-
ize various biochemical aspects of each sequence. Specifically,
the tool generates the group (denoted as G1) of seven features,
including free energy of the sSRNA secondary structure (f1),
distance to the closest promoter upstream of the sRNA (£2),
distance to the closest Rho-independent terminator (£3), dis-
tance to the closest left Open Reading Frame (ORF) (f4),
Boolean value (0 or 1) indicating if sSRNA is on the same strand
as left ORF (£5), distance to the closest right ORF (£6), and
Boolean value indicating if sSRNA is on the same strand as
right ORF.

In addition to above seven biological features extracted, uti-
lizing another python package, repDNAY (available at http://
bioinformatics.hitsz.edu.cn/repDNA/), we converted each
input sequence into a list of L1-norm normalized values relat-
ing to different sequence-derived characteristics. Tang et al*
extracted a total of 17 distinct numerical feature groups
(indexed from F1 to F17) from the 182 experimentally verified
sRNAs in SLT2 for their study. However, using repDNA, we
were able to generate only a total of the 14 feature groups as
follows: K-mer (with k ranging from 1 to 5) (G2—G6), reverse
compliment k-mer (with k ranging from 1 to 5) (G7—G11),
parallel correlation pseudo dinucleotide composition (G12),
parallel correlation pseudo trinucleotide composition (G13),
series correlation pseudo dinucleotide composition (G14), and
series correlation pseudo trinucleotide composition (G15).
Specifically, mismatch profile group,® including the three fea-
ture sets F5—F7, was not used for our study. For the reference,
the indices of our feature groups and the matched feature
groups by Tang et al?” are given in Table 2.

The k-mer features represent the frequency of the unique
k-sized subsequences in each given sequence. For example,
1-mer would return the four frequency values, corresponding
to the four mononucleotides (i.e. adenosine (A), cytosine
(C), guanine (G), and thymine (T)). For 2-mer, it would
return 16 frequency values for the 16 dinucleotides, respec-
tively. The reverse compliment k-mer functions act in a simi-
lar fashion; however, it removes redundancies based on
sub-sequences that are the reverse complement of each other.
The four pseudo-nucleotide composition features return the

Table 2. Feature groups publicly available and used for this study.

ABBREVIATION  FEATURE NUMBER OF REFERENCE
GROUP FEATURES

G1 Biological 7 Eppenhof &
features Pefa-Castillo3°

G2 (F1) 1-mer 4 Tang et al®

G3 (F2) 2-mer 16

G4 (F3) 3-mer 64

G5 (F4) 4-mer 256

G6 (F5) 5-mer 1,024

G7 (F9) 1-RCkmer 2

G8 (F10) 2-RCkmer 10

G9 (F11) 3-RCkmer 32

G10 (F12) 4-RCkmer 136

G11 (F13) 5-RCkmer 512

G12 (F14) PCPseDNC 17

G13 (F15) PCPseTNC 65

G14 (F16) SCPseDNC 18

G15 (F17) SCPseTNC 66

Abbreviations: PCPseDNC, parallel correlation pseudo dinucleotide composition;
PCPseTNC, parallel correlation pseudo trinucleotide composition; RCkmer,
reverse complement k-mer; SCPseDNC, series correlation pseudo dinucleotide
composition; SCPseTNC, series correlation pseudo trinucleotide composition.

frequencies of different dinucleotide and trinucleotide
sequences relating to specific physiochemical properties. A
more in-depth explanation can be found in the repDNA
manual. The entire feature set collected for this study con-
sists of 2,229 features over 15 feature groups, which include
both G1 with seven features and G2—G15 with 2,222 fea-

tures, as summarized in Table 2.

Tools and software

The entire experiment was performed on Google Colab, a col-
laborative Python Integrated Development Environment (IDE).
repDINA® package and sSRNACharP® pipeline tool were utilized
to extract numerical sequence-derived features that characterize
various biochemical aspects of each RNA sequence for our study.
Scikit-learn (sklearn) (wver. 1.0)* for the implementation of
the six machine learning algorithms in Python: Logistic
Regression (LR) (LogisticRegression () ), Multi-Layer
Perceptron (MP or MLP) (MLPClassifier ()), Random
Forest (RF) (RandomForestClassifier ()), Adaptive
Boosting (AB or AdaBoost) (AdaBoostClassifier()), Gradient
Boosting (GB) (GradientBoostingClassifier()),
and eXtreme Gradient Boosting (XGB or XGBoost)
(XGBClassifier ()), which is the scikit-learn wrapper class
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for the XGBoost library.3¢ Finally, all figures based on the perfor-
mance metrics were generated through MATLAB (ver. R2021a).

Hyperparameter values for classification algorithms

Eppenhof and Pefia-Castillo®® used five traditional classifica-
tion algorithms, including Logistic Regression (LR), Multi-
Layer Perceptron (MP or MLP), Adaptive Boosting (AB or
AdaBoost), Gradient Boosting (GB),** and Random Forest
(RF), with specific hyperparameter values to fit each model.
They obtained best parameter values for each algorithm in
terms of maximizing the average area under the ROC curve
(AUROC or AUC) with leave-one-out cross-validation (LOO
CV) on the training data. Finding best hyperparameters and
values that optimize each learning algorithm and specific data-
sets is another challenging research problem. Therefore, we
used the identical hyperparameters and values originally found
by Eppenhof and Pefia-Castillo.° They performed leave-one-
out cross-validation (LOO CV) on the training data as
depicted in Figure 2 of Eppenhof and Pena-Castillo’® and
identified best parameter values per each classifier that maxi-
mized the average area under the ROC curve (AUROC).
Specifically, for LR (LogisticRegression()), the
maximum likelihood and the balanced mode are used to adjust
class weights inversely proportional to class frequencies in the
input data (i.e. class weight='balanced'). For MLP
(MLPClassifier ()), the standard backpropagation with the
logistic sigmoid activation function, a hidden layer with 400 neu-
rons, the maximum iteration of 200, the quasi-Newton optimizer,
the L2 penalty of 0.0001, a constant running rate, the initial
learning late with 0.9, the exponent for inverse scaling learning
rate with 0.8 are used (i.e. hidden layer sizes= (400),
activation="'logistic', solver='lbfgs', max
iter=200, alpha=0.0001, wverbose=0,
ing rate='constant', learning rate init=0.9,
power t=0.8). For AB (AdaBoostClassifier()), a
random forest (RF) (RandomForestClassifier ()) classi-

learn-

fier with 100 decision trees (estimators) and a maximum depth of
lisused.(ie. n jobs=3, n estimators=100, max
depth=1). For GB (GradientBoosting
Classifier()),a total of 50 decision trees (estimators) with
a maximum depth of 15, maximum features of 7, minimum sam-
ples (at a leaf node) of 5, stochastic gradient boosting with sub-
sampling of 0.9 are used (ie. n_estimators=50,
max_depth=15, max features=7, min samples
leaf=5, verbose=1, subsample=0.90). For RF
(RandomForestClassifier ()), the maxim number of
decision trees (estimators) of 400 and the maximum number of
features (for the best splitin a node) of 2 are set (i.e.n_jobs=3,
n estimators=400, max features= 2).
EXtreme Gradient Boosting (XGBoost, or XGB) is the one of
the latest evolutions of the traditional decision tree algorithm.3
As it is known to optimize the performance of existing decision
tree-based models, we employed XGBoost to see if it further

improves upon the results of the existing studies. Particularly,
we executed XGBoost (XGBoostClassifier ()) with no
search for best hyperparameter values; thus, the baseline experi-
mental performance of XGBoost reported here can be improved
further with a grid search of hyperparameter values if needed.

FEvaluation metrics

Confusion matrix summarizes a model’s capability for generat-
ing true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN), where TP is the number of
positive instances correctly classified as positive, TN is the
number of negative instances correctly classified as negative,
FP is the number of negative instances incorrectly classified as
positive, and FN is the number of positive instances incorrectly
classified as negative.

Evaluation metrics can be defined directly from a confusion
matrix as follows.

Accuracy, defined as (TP +TN)/(TP + FP +TN + FN), is
the most often used metric that measures the fraction of cor-
rectly classified instances. As discussed previously, accuracy is
not an appropriate evaluation metric for imbalanced data since
it does not distinguish between the numbers of correctly classi-
fied examples of different classes. Specifically, it ignores two
different types of errors, false positive (i.e. Type I error) and
false negative (i.e. Type II error).

Precision (also known as positive predictive value), defined
as TP/(TP + FP), measures how often an instance was pre-
dicted as positive that is originally known positive.

Recall (also known as TP rate or sensitivity), defined as TP/
(TP + FN), measures how many of positive instances in a data-
set were detected. Note that specificity (also known as true
negative rate or 1—FP rate), defined as TN/(TN + FP), meas-
ures how many of negative instances in a dataset were detected.
In evaluation performance for imbalanced data, it is desirable
to improve recall without hurting precision. However, this goal
is often conflicting, as we try to increase the TP for the minor-
ity class, the FP is also often increased, which results in reduced
precision. Also, precision can be biased by very unbalanced
class priors in the test sets.

More advanced evaluation metrics have been proposed to
remedy for accuracy paradox for imbalanced data as follows.

The first alternative is balanced accuracy,>* which is
designed to avoid inflated performance estimates on imbal-
anced data. It is defined as the macro average of recall scores
per class (or equivalently, raw accuracy where each sample is
weighted according to the inverse prevalence of its true class).
Notice that for a balanced dataset, balanced accuracy score is
equal to accuracy and for a binary case, it is equivalent to the
arithmetic mean of sensitivity (TPN) and specificity (TNR)
(=% (TP/(TP+ FN) +TN/((TN + FP)). Therefore, different
from accuracy, balanced accuracy computes the average of the
percentage of positive class instances correctly classified and the
percentage of negative class instances correctly classified, taking
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into consideration to give an equal weight to the relative pro-
portions for the two classes.

The second alternative is F; score (also known as balanced
F-score or F-measure), a special case of the general equation
Fg-measure,?”  defined as Fy= (1+ B»)*(precision*recall) /
((B**precision) + recall). Fy-measure is a family of metrics that
can measure trade-offs between precision and recall by output-
ting a single value that reflects the goodness of a classifier in the
presence of rare classes. With a higher B, the more weight or
emphasis is on recall over precision. Specifically, F; score (i.e.
B=1) is a harmonic mean of precision and recall; thus, both
precision and recall are equally weighted.

The third alternative is Area Under the Receiver Operating
Characteristic curve (AUROC)* (also known as area under the
curve (AUC)), which is a numerical representation of a binary
classifier’s ability to differentiate between positive and negative
inputs. AUROC is based on a ROC curve, which is plotted to
visualize the classification performance between TP rate (also
known as Recall or sensitivity) at the y-axis and FP rate
(=1-specificity=1-TN/(TN + FP)=FP/(FP + TN)) at all
classification thresholds. Therefore, ROC curves represent the
trade-off between different TP rates and FP rates.

The fourth alterative metric to better understand the trade-
offs between precision and recall for imbalanced data is Area
Under the Precision-Recall curve (AUPR),*»0 which is another
numerical representation of a binary classifier’s ability to dif-
ferentiate between positive and negative inputs. AUPR is based
on a PR curve like AUROC on a ROC curve. Notice that while
in a ROC curve, FP rate (also as recall) is at x-axis and TP rate
at y-axis, in PR curves, recall is at x-axis and precision at y-axis.
Previous research suggests that AUPR provide more robust
and better performance metrics for imbalanced data.->!
Furthermore, AUPR is considered a better discriminator of
classification performance than AUROC.

Throughout the empirical study, we aimed to gain insight
on characteristics of target datasets, importance of numerical
features extracted from sRINAs, effectiveness of seven metrics
on imbalanced class distributions, and effect of positive-to-
negative data ratio (from 1-to-1 to 1-to-10). The predictive
power of all six classification models were assessed by seven
metrics over k-fold cross-validation.52 Both 5-fold cross-vali-
dation (5-fold CV) and 10-fold cross-validation (10-fold CV')
were performed, where each dataset was split into k equal-sized
folds using the stratified sampling and all the performance
metrics were macro-averaged over the k-fold iterations for k=5
and 10, respectively. Particularly, stratified k-fold cross-valida-
tion is employed to unbiasedly learn from imbalanced class
distributions. Note that the range of all seven metrics used in
this study is [0, 1] with no unit, which can be interpreted as
percentages; however, for simplicity, the real values in [0, 1] are
used as they are. Also, mean and standard deviation (std) of
metric values from k-fold cross-validation are denoted by
(mean*std) for reference.

Results and Discussion

Conformity test for Benfords law on lengths of
sRNAs in Salmonella typhimurium LT2 (SLT2)
and Escherichia coli K12 (E. coli K12)

In 1881, Simon Newcomb®? originally found that numbers more
frequently begin with smaller digits than with larger digits and
the probability of each following digit at the most significant
position progressively decreases. Later in 1938, Frank Benford>*
rediscovered and extended it with extensive testing and analysis
with a wide variety of observations of natural numbers in numer-
ous real-life datasets. Therefore, it is known as a first digit law,
leading digit phenomenon, or Benford-Newcomb phenomenon.
According to Benford’s law, there are expected frequencies of
digits in a randomly generated dataset. Specifically, the leading
digits of numbers in a naturally occurring set of numbers do not
occur with uniform probability; thus, it has become one of the
most popular digital analytical techniques for numerous applica-
tions such as accounting, economies, natural sciences, engineer-
ing, medicines, to name a few. Some known criteria for data to
obey Benford’s law include that the quantities are geometrically
distributed, the mean is greater than the median, and data span
several orders of magnitude.>>-7

Our focus is to examine whether sSRNA lengths conform
the leading digit phenomenon as observed in various natural
numbers in real-life applications. sSRNAs maintain variation
under different selection pressures in genomes. Although pri-
mary sequence variation is originated by random mutation,
mutated sequences coevolve with their corresponding target
gene sequences, resulting in optimal gene regulating mecha-
nisms. Therefore, sSRNA lengths may not comply a leading
digit phenomenon of the Benford’s law. If there are deviations
from Benford’s law, we may conclude that sSRNAs do not evolve
through random mutation alone. Instead, specific nucleotide
locations are differentially constrained due to biological adap-
tation to complementary sequences in target genes.

The summary statistics of the lengths of the known sRNAs of
the two datasets are as follows: SU’T'2 (count=182, mean =206.98,
std=184.20, median=145.50, min=45, Q1=95.25, Q2=145.50,
Q3=258.50, max=1,236) and E. coli K12 (count=125,
mean=156.63, std=148.56, median=113.0, min=40, Q1 =82,
Q2 =113, Q3 =184, and max=1454), where Q1, Q2, and Q3
stand for first, second, and third quartile, respectively. The length
distribution of sSRNAs in SLI2 can be found in Figure 1 by Tang
et al.?? Other detailed stochastic properties or characteristics of
the sSRNAs are yet to be analyzed, but we noticed that the mean
of the lengths of the known sRINAs is greater than the corre-
sponding median as well as the grouped length distribution in
Figure 1 by Tang et al®’ is skewed. Therefore, to further character-
ize the sRINAs, we investigated whether there might exist any
regularities in the sSRNA-size distribution, using the conformity
test for Benford’s law.>3-55

The first 1 digits (F1Ds) of the sSRNA size of SI'I'2 do not
conform to Benford’s law as the Mean Absolute Deviation
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Figure 1. The first 1 digit test for the lengths of SRNAs in SLT2 (top) and E. coli K12 (bottom). Each graph depicts distribution of first 1 digits (in bar
graphs), region of confidence level, and entries with significant positive or negative deviations (in orange bar graphs). The region of 95% confidence
interval is shown in the left graph and the region of 99.9% confidence interval in the right graph, respectively. The graphs and results are generated using

the python package Benford_py (available at https://github.com/milcent/benford_py).
E. coli K12 indicates Escherichia coli K12; SLT2, Salmonella typhimurium LT2; sRNA, Small Ribonucleic Acid.

(MAD) of 0.035434 is greater than the critical value of
0.015000. For the 95% confidence interval, it fails both
Kolmogorov-Smirnov (K-S) test (0.111058 > 0.100662 (criti-
cal value)) and Chi-square test (24.564711 > 15.507000 (criti-
cal value)). Particularly, F1D 1 is with significant positive
deviation (0.30103 (expected), 0.412088 (observed), and
3.185464 (z-score)) and F1D 4 is with significant negative
deviation (0.096910 (expected), 0.038462 (observed), and
2.540099 (z-score)). However, for the 99.9% confidence inter-
val, it passes both K-S test (0.111058 <0.183089 (critical
value)) and Chi-square test (24.564711<37.332000 (critical
value)).

The F1Ds of the sSRNA size of E. co/i K12 do not conform
to Benford’s law, either. The MAD of 0.048015 is greater than
critical value of 0.015000. For the 95% confidence interval, it
passes K-S test (0.109098 <0.121463 (critical value)), but it
fails Chi-square test (29.896199 >15.507000 (critical value)).
Particularly, the two entries are with significant positive devia-
tions: F1D 8 (0.051153 (expected), 0.112 (observed), and
2.884925 (z-score)) and F1D 1 (0.301030 (expected), 0.408
(observed), and 2.509756 (z-score)) and two entries are with
significant negative deviations: F1D 4 (0.096910 (expected),
0.032 (observed),and 2.301939 (z-score)) and F1D 2 (0.176091

(expected),0.096 (observed),and 2.233476 (z-score)). However,
for the 99.9% confidence interval, it passes both K-S test
(0.111058 < 0.183089 (critical value)) and Chi-square test
(24.564711 >37.332000 (critical value)).

Even though the F1Ds of the lengths of the known sRNAs
in SLT2 and E. co/i K12 have the cases of nonconformity to
Benford’s law in terms of MAD, both datasets have cases of
passing the K-S test and the Chi-square test with the small
number of instances as discussed above. Therefore, it might be
too early to draw a conclusion. The deviations from Benford’s
law might be attributed to the small subset (or sample) prob-
lem, lacking statistical power and representativeness, or the
latent bias toward different dynamics of biological domains as
discussed by Friar et al.””

Classification with G1 feature group of fixed
training~test split data of SLT2

We analyzed the learning models’ performance on the fixed G1
dataset published by Eppenhof and Pefia-Castillo.®® The dataset
captures a unique set of seven biological features for sSRNAs. First,
these seven features are extracted for each instance (or sequence)
in the fixed G1, which consists of the reduced set (i.e. the selected
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instances) from the full SL’T'2 data. Then, we assessed classifica-
tion performance of six classification models (LR, MLP,
AdaBoost, GB, RE, and XGBoost). The fixed training-testing
split of G1 executed one time execution, while k-fold cross-vali-
dation (CV) performed k iterations. Eppenhof and Pefa-
Castillo® originally found the optimized hyper-parameter values
for LR, MLP, AdaBoost, GB, and RF, that could maximize
AUROC; thus, we used the optimized hyper-parameters for the
five algorithms as they were. However, we did not exploit optimal
parameter values for XGBoost in our study. We assessed the clas-
sification performance using both 5—fold CV and 10—fold CV as
shown in Figure 2. We found that the difference of mean perfor-
mance between 5—fold CV and 10—fold CV was not significant.
For example, two-tailed #-test for two independent means at sig-
nificant levela,=.01 for AUPR is as follows: LR (#13)=-0.369,
P=.726) with 5-fold CV (0.37 = 0.04) and 10-fold CV (0.41 =
0.17); MLP (A13)=-0.845, P=.414) with 5-fold CV (0.62 *
0.01) and 10-fold CV (0.67 * 0.11); AdaBoost ((13)=-0.341,
P=.738) with 5-fold CV (0.82 * 0.01) and 10-fold CV (0.84 =
0.05); GB (#13)=-0.186, P=.855) with 5-fold CV (0.79 *+ 0.02)
and 10-fold CV (0.80 * 0.07); RF (A13)=-0.314, P=0.759)
with 5-fold CV (0.80 = 0.01) and 10-fold CV (0.82 * 0.07);
and XGBoost (113)=-0.875, P=0.397) with 5-fold CV (0.82 =+
0.02) and 10-fold CV (0.85 = 0.05). Therefore, we rather discuss
the result with 10-fold CV in the remaining sections, unless oth-
erwise specified.

In terms of accuracy, precision, and recall, it is ambiguous to
rank the performance. However, the other four metrics clearly
helps identify algorithms’ performance. Overall, LR and MLP
performed poorly; GB and RF did reasonably better; and
AdaBoost and XGBoost demonstrated best performance. As
GB, RF, AdaBoost, and XGBoost are tree-based ensemble
models, similar results could be expected in fact. It is important
to note that XGBoost without optimized parameters performs
roughly as similar as or even a little bit better than AdaBoost
with optimized parameters. Specifically, with G1 feature group
of the fixed training-test split of SLT2, AdaBoost and XGBoost
achieved AUROC (0.97 = 0.02, 0.97 * 0.02) and AUPR
(0.835 = 0.028,0.847 = 0.048), respectively.

Figure 2 clearly illustrates that training-test split experi-
ences the accuracy paradox we discussed earlier. Specifically,
accuracy values by all six algorithms for the training-test split
are high. High recall values attribute to high accuracy values,
although corresponding precision values are very low.

It was trained once with the dedicated training dataset and
then tested once with the dedicated test dataset; thus, classifi-
cation performance was affected by the bias latent in the fixed
training-test split. It means that if the original training-test
split is biased, this biased data split causes low precision, and
the one-time running does not help resolve the bias. As illus-
trated in Figure 2, stratified k-fold CV helps distribute bias
over k iteration, resulting in improved precision performance
without deteriorating recall performance. Stratified k-fold CV
and advanced metrics (including balanced accuracy, F1-score,

G1 feature group of training-test split (SLT2)
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Figure 2. Classification performance on fixed training-test split of G1
feature group of sSRNAs in SLT2. Each subplot shows classification
performance of six classification algorithms, measured by one of seven
metrics. The x-axis displays the tree groups of experiments, including the
fixed (or published) training-test split, 5-fold CV, and 10-fold CV. The
range of y-axis is adjusted to emphasize changes in values. Only single
mean value is available for fixed training-test split, while both micro-
average means and standard deviations are calculated over 5-/10-fold

cross-validations.

AUPR indicates Area Under Precision-Recall curve; AUROC, area under

the ROC curve; CV, cross-validation; GB, Gradient Boosting; LR, Logistic
Regression; MLP, Multi-Layer Perceptron; RF, Random Forest; SLT2, Salmonella
typhimurium LT2; sRNA, Small Ribonucleic Acid.

AUROC, and AUPR), which have been proposed to address
the accuracy paradox for imbalanced class distributions, worked
properly with the fixed G1 feature group.

Analysis of importance of individual features in G1
feature group

Individual feature quality is critical to overall performance of
learning algorithm. Therefore, we analyzed the importance of
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emphasize changes in values.

AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; LR, Logistic Regression; MLP, Multi-Layer Perceptron; SLT2, Salmonella

typhimurium LT2.

seven individual numerical features (or attributes) within G1
feature group. Previously, Eppenhof and Pefia-Castillo’® iden-
tified three levels of the attribute importance as follows: high
(distance to the closest left Open Reading Frame (ORF) (f4),
distance to the closest right ORF (6), and distance to the clos-
est Rho-independent terminator (£3)); medium (free energy of
secondary structure (f1) and distance to the closest promoter
(f2)); and low (on the same strand as its left ORF (f5) and on
the same strand as its right ORF (£7)).

Eppenhof and Pefia-Castillo3® determined the attribute
importance by measuring the decrease in accuracy caused by
the exclusion of a single attribute upon running the RF algo-
rithm in their study. Different from their approach, we recog-
nized feature importance by measuring the classification
performance in terms of seven metrics caused by a single
attribute-based learning with the four learning algorithms as

shown in Figure 3. The performance with GB and RF was not

reported as the two algorithms were not feasible with a single
feature. Specifically, we observed that learning algorithms with
a single scalar attribute as an input feature was challenging as
ill-defined conditions such as the zero division were introduced
during the algorithmic steps or metric computation. As shown
in Figure 3, accuracy metric was not able to reveal the impor-
tance of individual features for all four learning algorithms.
However, the remaining six metrics worked well with each sin-
gle feature and were able to identify three levels of attribute
importance, previously identified by Eppenhof and Pefia-
Castillo,30 for seven individual features (i.e. f1-f7) of G1 in
SI'T2 and E. coli K12.

We further investigated feature importance by combining
multiple features as follows: f4 and {6 (denoted as 4/6); {3, f4,
and f6 (denoted as £3/4/6); and all seven features, which is G1
(also denoted as f1-7) in Figure 3. The three attributes, {3, {4,
and {6, are the high important attributes by Eppenhof and
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Pefia-Castillo.30 The intuition behind this combination is that
combining important attributes results in a more important fea-
ture set. More careful visual inspection was needed to observe
the improvement of accuracy with the extension as the change is
relatively small, while the other five metrics clearly demonstrated
improved performance along with the increased size of com-
bined feature set, i.e. f4/6 < £3/4/6 < f1-7, where “<” indicates
improved performance. Accordingly, G1 itself turned out to be
the best combined feature group and it worked well with all
seven metrics and four algorithms. Particularly, we found that
AB and XGB performed well overall. Specifically, with G1 of
STL2, AdaBoost and XGBoost achieved accuracy (0.937 =
0.009, 0.942 = 0.008), balanced accuracy (0.758 * 0.053, 0.78
*+ 0.049), precision (0.72 = 0.088, 0.748 = 0.09), recall (0.539
+ 0.113, 0.583 % 0.107), F1-score (0.606 * 0.068, 0.642 =+
0.056), AUROC (0.938 #+ 0.038,0.936 = 0.041), and AUPR
(0.698 = 0.079,0.701 = 0.092), respectively. Also, with G1 of E.
coli K12, AB and XGB achieved accuracy (0.925 = 0.022,0.933
+ 0.018), balanced accuracy (0.693 = 0.08,0.72 = 0.076), pre-
cision (0.648 * 0.217,0.707 = 0.185), recall (0.411 = 0.154,
0.46 £ 0.15), F;-score (0.493 = 0.165,0.547 + 0.148), AUROC
(0.884 * 0.058, 0.881 =+ 0.055), and AUPR (0.569 + 0.163,
0.575 = 0.174), respectively.

The models evaluated with a single non-inclusive numerical
teature and accuracy metric didn't provide useful information
regarding the importance of individual features. It rather gets
stuck with the accuracy paradox as there exist imbalanced class
distributions in both datasets. However, we observed that every
feature captures a unique characteristic; thus, the combination
of all seven features results in best classification performance.
Our data confirm that features by Tang et al?® and Eppenhof
and Pefia-Castillo® features work well for predicting sSRNAs in
our tested genomes.

Analysis of importance of individual feature groups
(G1-G15)

We adopted the same idea of exploiting the importance of the
individual features of G1 and recognized the importance of the
individual feature groups. Like the individual features in the
previous section, we measured classification performance on
every individual feature group from G1 to G15 in terms of six
learning algorithms with seven metrics. The overall perfor-
mance was consistently similar, regardless of learning algo-
rithms, evaluation metrics, and datasets with some variations;
thus, we reported the performance only with the two best per-
forming classifiers, AB and XGB in Figure 4.

Tang et al* analyzed contributions of individual feature-
based predictors as weights to their ensemble model, called
WAEM, and concluded that all individual feature-based pre-
dictors were useful for improving the sSRNA predicting per-
formance. Specifically, they recognized the importance of
individual features as follows: high (G4 (F4), G6 (F5), G10
(F12), G11 (F13), and G13 (F14)); and low (G2 (F1), G3

(F2),G7 (F9),GS8 (F10), G12 (F14),and G15 (F17)). See the
detailed discussion on the optimal weights for their WAEM
models in Figure 4 by Tang et al.?’ Referring the seven sub-
plots in Figure 4, we recognized the importance of individual
feature groups as follows: high (G10 and G11), medium high
(G4, G5, G6, and G13), medium low (G8 and G12), and low
(G2,G7,and G15), which is consistent with what Tang et al?’
observed in their study. Notice that Tang et al*® obtained the
feature group importance as the contribution (or weight) to
their specific ensemble model, while we recognized the fea-
ture group importance by directly measuring the classifica-
tion performance in terms of evaluation metrics, when a
single feature group was used as an input for learning algo-
rithms, as we did for the assessment of the feature
importance.

Still, G1 yielded stable results over all the algorithms as well
as it performed better than the remaining 14 feature groups
(G2-G15). Among the remaining 14 feature groups, G11
results in the second-best performance and G7 performed the
worst. We observed during the experimental study that the low
performing single feature groups, particularly G2 and G7,
incorrectly classified all test data into the negative class (i.e. one
class assignment). Tang et al* hinted that no feature groups
extremely poorly performed and different features could bring
different information. Thus, we tested the performance with
the two combined groups: G2-14 and G1-15. As displayed in
Figure 4, G2-14 improved performance better than the other
14 feature groups (i.e. G2 to G15) and G1-15 improved it fur-
ther, close to or slightly better than G1’s performance.
Therefore, we conclude that the most consistent and optimal
performance for each model comes from the use of all com-
bined feature groups (G1-15) rather than a single feature

group.

Assessment of classification performance on
combined feature groups

We considered 15 sequence characterizations (G1-G15) of
each single sRNA sequence to numerical features. We
employed six classification algorithms and seven performance
assessment metrics. Then, we separately explored how classi-
fication performance changed with individual features, with
individual feature groups, and with combined feature groups.
Through stratified 10-fold CV, we recognized the three best
forming groups of features, G1(7), G2-15(2222), and G1-
15(2229) and illustrated their performance in Figures 3 and 4.

(G2-15(2222) feature group is a combination of 14 feature
groups, which was a subset of the original feature groups by
Tang et al.? It includes 2222 numerical features, which are
independent from the seven features of G1(7) feature group.
The 10-fold CV performance for G2-15(2222) feature group
is better than each of the 14 individual feature groups as shown
in Figure 4; however, it turned out that its performance is worse

than the performance of G1(7).
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Figure 4. Classification performance on individual feature groups with AdaBoost and XGBoost. Left graphs represent classification performance for SLT2
and right ones are for the E. coli K12 dataset. Standard deviation is represented by error bars and y-axis range is adjusted to emphasize changes in

values.

AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; E. coli K12, Escherichia coli K12; SLT2, Salmonella typhimurium LT2.

(G1-15(2229) is a combination of G1(7) and G2-15(2222),
by which it was intended to combine different information in
the two sets of feature groups. It results in a total of 2229
numerical features. We found that G1-15 performed consist-
ently better than G2-15 feature group and G1(7) feature
group as shown Figures 4 and 5. Particularly, G1-15(2229)
achieves best performance with AdaBoost and XGBoost
algorithms, beating the two other tree-based ensemble meth-
ods, GB and RF. Furthermore, it highlights best performance
when it is combined with AUROC and AUPR with stratified
k-fold CV.

After inspecting the confusion matrix for each of the 10-fold
CV folds, we found that both GB and RF assigned every input
to the negative label instead of learning to differentiate the two
class labels. This one class assignment resulted in a low AUROC
for both models. Meanwhile, both AdaBoost and XGBoost
demonstrated similar performance, maintaining the high per-
formance with the larger feature set. Specifically, this result
hinted that the combined feature group, G1-15, might be a

good feature set that matched well with specific

learning models and evaluation metrics, resulting in the robust
classification performance in learning the imbalanced class
distributions.

As recommended in the literature, the four metrics, includ-
ing balanced accuracy, F1-score, AUROC, and AUPR, worked
consistently with imbalanced class distributions. Particularly,
AdaBoost and XGBoost with the largest feature set (G1-15)
were consistently learning and accurately classifying the
sequences. Another result worth noting is that the model com-
parisons consistently hold for the two datasets that were tested.

Performance with varying positive-to-negative
instance ratios

Another variable factor that may affect the performance of
machine learning models is the positive-to-negative (or nega-
tive-to-positive) instance ratio. We assessed the performance of
all six learning algorithms using the positive-to-negative
instance ratios from one balanced ratio (1-to-1) to nine imbal-
anced ones (from 1-to-2 to 1-to-10). For example, we used all
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Figure 5. Classification performance on combined feature groups. Left graphs represent classification performance for SLT2 and right ones are for E. coli

K12 dataset. Standard deviation is represented by error bars and y-axis range is adjusted to emphasize changes in values.
AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; E. coli K12, Escherichia coli K12; GB, Gradient Boosting; LR, Logistic
Regression; MLP, Multi-Layer Perceptron; RF, Random Forest; SLT2, Salmonella typhimurium LT2.

the known sRNA sequences as positive ones and adjusted the
number of negative sequences so that the correct number of
negative sequences for the specified ratio can be fed to the
learning algorithm.

As before, the overall performance was consistently similar
with a little variation, regardless of algorithms, metrics, and fea-
ture groups. Specifically, we observed three patterns of classifica-
tion performance change over varying positive-to-negative data
ratios of the largest feature group (i.e. G1-15 with 2,229 fea-
tures) as shown in Figure 6: increasing, stable, and decreasing
upon increasing negative-to-positive instance ratios. Similar pat-
terns were also observed in other individual feature groups (not
reported). Specifically, as in the previous study by Tang et al,?’ we
found that accuracy increases as the number of negative instances
increases, which means that the highest accuracy value was
obtained at the positive-to-negative instance ratio of 1-to-10. In
this case, it is highly probable that the learning algorithm experi-
ences the accuracy paradox condition, simply by assigning class
labels to the major class. Therefore, it is known that accuracy is

not a reasonable metric for imbalanced data distributions. Only
AUROC performance maintains the stable (or horizontal) pat-
tern without much up and down fluctuations over varying
imbalance ratios. Assume the case that the learning algorithm
experiences the accuracy paradox because of the imbalanced
class distributions. Therefore, if AUROC remaining the stable
pattern as shown in Figure 6, then AUROC might not be appro-
priate for the case. We found that the remaining performance
plots with precision, recall, balanced accuracy, F1-score, and
AUPR show a decreasing trend along with an increase of the
positive-to-negative imbalance instance ratios.

The increasing or decreasing trends over the increasing neg-
ative-to-positive instance ratios might be applicable to recog-
nize the balancing factor (i.e. the ratio between positive and
negative instances) and/or the class labels of a set of instances
as the expected trends can be estimated with adding and
removing known instances. Accordingly, it can be a potential
future work as it might be also adaptable to an online learning
scenario with streamlining data.
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Effect of negative-to-positive instance ratio ( SLT2)
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Figure 6. Classification performance change over varying positive-to-negative data ratios of G1-15 feature group. Left graphs represent classification
performance for SLT2 and right ones are for E. coli K12 dataset. Standard deviation is represented by error bars and y-axis range is adjusted to

emphasize changes in values.

AUPR indicates Area Under Precision-Recall curve; AUROC, area under the ROC curve; E. coli K12, Escherichia coli K12; GB, Gradient Boosting; LR, Logistic
Regression; MLP, Multi-Layer Perceptron; RF, Random Forest; SLT2, Salmonella typhimurium LT2.

Conclusion

The mean lengths of sSRNAs in SLT2 and E. co/i K12 are
greater than the corresponding median as well as the grouped
length distributions are skewed, which partially supports the
criteria that obey Benford’s law. However, the expanded con-
formity tests (IMAD, K-S test, and Chi-square test) do support
for the 99.9% confidence interval, while it does not fully sup-
port for the 95% confidence interval. The deviations from
Benford’s law might be attributed to the small subset (or sam-
ple) problem, lacking statistical power and representativeness,
or a latent bias of different sSRNA dynamics of functional
domains toward interaction with their target genes.

Different from Eppenhof and Pefia-Castillo® and Tang et al,?
we identified importance individual features (or feature groups) by
directly measuring the performance of the metrics when a single
attribute (or a single feature group) was used as an input for each
learning algorithm, which is simpler and straight-forward. Three
levels of feature importance in features in G1 feature group,

previously identified in the literature, were recognized, including
distance to the closest left ORF (f4), distance to the closest right
OREF (f6), and distance to the closest Rho-independent termina-
tor (£3)). Also, the levels of feature group importance, previously
identified in the literature, were recognized, including 4-RCkmer
(G10) and 5-RCkmer (G11) as best feature groups, while 1-mer
(G2) and 1-RCkmer (G7) as worst performing feature groups.
Combining a few well-performing features worked better
than a single feature and combining all seven features (i.e.
G1(7)) performed better than combining a few features as well
as G2-15(2222) feature group. The best performing feature set
is G1-15(2229), which consists of G1(7) and G2-15(2222).
We validated that no single feature group performed extremely
poorly, and different features could bring different information.
GB and RF tended to result in one-class assignment as the fea-
ture set size increased. AdaBoost and XGBoost with G1-15
feature group consistently generated high AUROC and AUPR
values, indicating that both models similarly learned well for all
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experimental settings. AdaBoost and XGBoost with G1-15

teature group performed better with increased features.

Therefore, it is worth extending this study to validate the per-

formance of the two ensemble learning algorithms with sSRNAs
in more genomes available in biological databases.
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