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Data-Driven Prediction of Urban Micromobility

A STUDY OF DOCKLESS ELECTRIC SCOOTERS
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ince the early modern age, the development of various

means of transit has contributed to a dramatic improve-

ment in quality of life. However, in past decades (partic-
ularly in urban environments), the simultaneous utilization
of mobility options has resulted in poor air quality, traffic
congestion, and a lack of parking. To solve these problems
without imposing severe restrictions on personal mobility,
alternatives to cars powered by internal combustion engines
are necessary (see “Summary”).

One of these alternatives is the electric-powered scooter.
Unlike its conventionally powered counterparts, an
e-scooter uses a battery and an electrical drivetrain and can
accommodate many personal mobility needs within the city.
Owing to their small size, e-scooters can significantly reduce
traffic congestion and may alleviate the ever-worsening
problem of urban air pollution. Shared, dockless e-scooter
companies (for example, Lime and Bird) provide a conve-
nient, sustainable mode of transportation to help commuters
travel the first or last mile.

Because of their convenience, flexibility, and pleasant
riding experience, e-scooters have become very popular in
many U.S. cities since 2017. Lime researched transit usage
in New York City and argued that the existence of transit
deserts [1] and income disparity were two major causes of
declining transit ridership [2]. As a partial solution, Lime
proposed using micromobility, such as e-scooters, to cover
intermediate distances to and from transit stops.

Since the analysis and prediction of e-scooter usage are
not widely studied, rental companies record trip data and
use empirical methods to distribute the vehicles through-
out a city to maximize utilization. Empirical and statistical
studies of e-scooter utilization are very limited. Accord-
ing to [3], e-scooter data from Washington, D.C. resemble
those of spontaneous bike sharing for leisure activities. In
[4], Mathew et al. analyzed the spatiotemporal e-scooter
data from Indianapolis and identified the downtown and
university campus as two e-scooter traffic hotspots. In Sin-
gapore, compact land use, the widespread availability of
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public transport, and better cycling infrastructure have
promoted dockless e-scooters as the last-mile solution
[5]. However, dockless e-scooter distributions often favor
socioeconomically advantaged neighborhoods [6]-[8].

For the analysis and prediction of dockless e-scooter
trips, a machine learning approach is proposed. Recently
developed machine learning techniques are useful for solv-
ing a wide variety of problems, including the classification
of data sets, speech recognition [9], and board games [10].
These techniques use a deep neural network to approximate
an unknown function by optimizing the weights of the net-
work layers through backpropagation [11]. Recurrent neural
networks (RNNs) are particularly useful for the model-free
prediction of time series data. For example, an echo-state
network (ESN) [12] can model even a chaotic time series [13],
[14]. A newly developed technique [15] uses a fusion of ESN
and an ensemble Kalman filter (EnKF) for time series esti-
mation with sparse measurements.

As the recurrent neural engine for modeling the time series,
an ESN can be trained quickly with limited computational

Summary
E-scooters are the latest development for urban micro-
mobility solutions. Due to their small sizes and effective-
ness as a first-/last-mile solution, dockless e-scooters are
increasingly popular in U.S. cities. The lack of widespread
statistical studies of e-scooter mobility patterns forces
many e-scooter rental companies to resort to empirical
methods for deploying the vehicles. This article proposes
a data-driven method to predict e-scooter mobility in ur-
ban areas. Scooter trip origins and destinations are parti-
tioned by geographical region, and the trip origin volume
is predicted as a time series using an echo-state network
coupled with an ensemble Kalman filter. A Markov operator
prediction technique is used to predict the spatiotemporal
distribution of the scooter trip destinations. The proposed
method is tested on anonymized data sets from Austin,
Texas; Louisville, Kentucky; and Minneapolis, Minnesota to
demonstrate its effectiveness.
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resources by cutting the computational cost of the backpropa-
gation through time. The ESN adopts an input-output neu-
ral network with a randomly generated recurrent reservoir.
Linear regression determines the output weights. An EnKF
is incorporated in the feedback loop of the ESN to improve
the measurement assimilation in comparison to a previous
observer [13] because the former accounts for the measure-
ment noise with the help of a traditional Bayesian frame-
work and assimilates a series of measurements over the
testing phase, whereas the latter uses the current (noise-free)
measurement only [13]. This machine learning framework,
along with traditional Bayesian filtering, provides a power-
ful tool to predict the personal transit utilization in today’s
urban environment.

Shared transit vehicles, such as electric scooters, are
usually aggregated into trip-level origin—destination tables
between regional partitions—for example, census tracts
and/or block groups—and can be modeled as a Markov
process. Ulam’s method [16] is one way of approximating
the Markov state transition matrix from origin—-destination
data. However, it uses only one pair of origin-destination
data snapshots and, thus, suffers from low accuracy. Con-
strained Ulam dynamic mode decomposition (CU-DMD)
[17] utilizes a time series of data snapshots to approximate
the Markov matrix. Subsequently, this matrix may be used
to predict movement patterns from a given initial distribu-
tion. The Markov-based method enables the prediction of
trip destinations from a time series of trip origins.

This article presents a data-driven analysis and predic-
tion of e-scooter utilization and trip density in a city by
applying an RNN and Markov operator theory. First, a city
is divided into a number of geographical regions (for exam-
ple, census tracts or census block groups). Then, a neural
network is trained on a data set of trip origins and destina-
tions over a number of days to predict the volume of trips
originating from each region. Finally, a Perron-Frobenius
(PF) operator is approximated in a stochastic matrix form
to predict the trip destinations. The overall algorithm uses
past data to predict trip origin and destination volumes in
the future, enabling more effective and equitable operation
of dockless scooters.

This article is organized as follows. First, a brief overview
of the ESM algorithm with an EnKF (ESN-EnKF) and the
PF approximation techniques using CU-DMD is provided.
Then, the algorithms for trip origin and destination volumes
using ESN-EnKF and CU-DMD are presented. The proposed
algorithm is applied to data sets from Austin, Louisville, and
Minneapolis to illustrate its performance. Lastly, the article
is summarized, and future work is discussed.

PREDICTION ALGORITHMS FOR
ORIGIN-DESTINATION DATA

This article presents a data-driven model to predict
e-scooter trip origins and destinations with or without the
availability of sparse observations after the training period.

Origin—destination data are used to train the time series
prediction of trip origins via an RNN. A Markov operator-
based method is then used to predict the corresponding
trip destinations.

Echo-State Network With Ensemble

Kalman Filter

The data-driven prediction of time series is of recent inter-
est in the control and machine learning communities.
RNNs are particularly useful for such predictions. For
example, an ESN [12] can model chaotic systems effectively
[13], [14]. The prediction of dockless e-scooter mobility is
an important problem in micromobility that can benefit
from the utilization of such techniques. This article uses
an ESN with an EnKF to predict e-scooter trip origin vol-
umes in a city. The destination prediction is treated in the
next section.

An ESN is composed of three principal components: a
linear input layer u with m input nodes, a recurrent nonlin-
ear reservoir network r with # neurons, and a linear output
layer y with p output nodes. The reservoir network evolves
with the following dynamics [18]:

r(t+At) = (1 - o) r(t) + oy (Wr(t) + Winu(1)), @

where W is the n x n reservoir weight matrix, Wi is the n x
m input weight matrix, u is the m-dimensional input signal,
and y is the p-dimensional output signal. The time step At
is chosen according to the sampling interval of the train-
ing data. The parameter o € (0, 1] is called the leakage rate,
which forces the reservoir to evolve more slowly as o — 0.
The activation function y is usually a sigmoid function, for
example, tanh(-) or a logistic function. The output is taken
as a linear combination of the reservoir states [18], that is,

y(t) = Wour(h), @)

where Wou is the p x n output weight matrix. The input Win
and reservoir W weights are initially randomly drawn and
then held fixed. The weight Wou: is adjusted during the train-
ing process. The reservoir weight matrix W is usually kept
sparse for computational efficiency. See “Echo-State Network”
for more information on ESNs. The predictive skill of the ESN
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Echo-State Network

Echo-state networks (ESNs) are a special kind of fixed recur-
rent neural network (RNN) in which a large, random, and
fixed RNN is driven by the input signal. The nonlinear response
signals thus induced in the neurons are then linearly combined
to match a desired output signal. The random, fixed network is
called a reservoir, and the technique is also known as reservoir
computing [18]. An ESN consists of a linear input layer u with
m input nodes, a recurrent nonlinear reservoir network r with n
neurons, and a linear output layer y with p output nodes. The
reservoir network evolves in a nonlinear fashion [18]:
r(t+ At)y=(1—a)r(t) + ay (Wr(t) + Winu(t)), (S1)
where W € R"™" is the reservoir weight matrix, Wi, € R™" is
the input weight matrix, u is the m-dimensional input signal,
and y is the p-dimensional output signal. The time step At
denotes the sampling interval of the time series data. The leak-
age rate o € (0, 1] forces the reservoir to evolve more slowly as
o — 0. The activation function that incorporates the nonlinear-
ity v is usually a sigmoid function, for example, tanh(-) or a
logistic function. The network output is a linear combination of

the reservoir states [18]; that is,
y (t) = Wour (t), (82)
where W, is the p x n output weight matrix. The weights W,,
and W are initially randomly drawn and then held fixed. The
weight Wout is adjusted during the training process. The res-
ervoir weight matrix W is usually kept sparse for computational
efficiency. During the training phase, the ESN is driven by an
input sequence {u(t1),...,u(tn)} that yields a sequence of res-
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ervoir states {r(t1),...,r(tn)}. The reservoir states are stored in a
matrix R =[r(t1),...,r(tn)]. The correct outputs {y(t1),...,y(tn)},
which are part of the training data, are also arranged in a ma-
trix Y =[y(t1),...,y(tn)]. The training is implemented by a linear
regression with Tikhonov regularization as [12]

Wou= (RR” + BI) 'RY, (S3)
where B>0 is a regularization parameter that ensures non-
singularity. For an ESN to be a universal approximator (that
is, to realize every nonlinear operator with bounded memory
arbitrarily accurately), it must satisfy the echo-state property
(ESP) [12], which states that the reservoir will asymptotically
wash out any information from the initial conditions. For the
tanh(-) activation function, it is empirically observed that the
ESP holds for any input if the spectral radius of W is smaller
than unity [12]. To ensure this condition is met, the randomly
generated W is normalized by its spectral radius.

An ESN is advantageous over other kinds of RNNs when a
cheap, fast, and adaptive training is required since its training
does not require backpropagation through time. An ESN can
be trained to predict a time series {x;€R“:i € N} generated
by a dynamical system by setting u(f) and y(t) as the current
and next state values (that is, x: and xs.), respectively. The
network is trained for a certain training length N of the time
series data {x:,i=1,...,N} and then can run freely by feeding
the output y: back to the input us., of the reservoir. In this
case, both u and y have the same dimension d as that of the
time series data. This setup is shown in Figure S1(b), where a
trained ESN is used to predict the next states of a dynamical
time series starting from an initial condition.

> Xt

(b)

The architecture of an echo-state network (ESN) as a time series predictor: (a) the basic ESN and (b) a free-running

ESN for time series prediction.
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is refined by assimilating any available sparse and/or noisy
measurements after the conclusion of the training phase using
an EnKF [19], as shown in Figure 1. The EnKF block takes
sparse observations and uses the state forecast from the res-
ervoir output to generate a state estimate for feedback to the
reservoir input [15].

The EnKEF is realized as follows. For time step k = 0,
an ensemble X;, = [xﬁ),...,xfﬁﬂ)] is chosen from a Gaussian
distribution with an ensemble covariance R.. Then, for
k=0,1,..., the following steps are computed:

X, = )
X0 = Woury (Wry, + Winx{)), fori=1,...,.M

_ra@ ~ (M)
X{kﬂ - [XEkill "'/X§k+l . (3)

These steps carry out the motion update for the ensemble
using the ESN. The superscript (i) denotes the ith ensem-
ble member. The forecast ensemble is collected in the X{M
matrix. Next, the observations are assimilated through an
EnKEF as

Vi = h(X],,,
Pry(trs1) = (XE, = XE) Ve = Vi)'
Pyy(te+1) = (Vi — j)tm) Vi — V)"
Kiior = Py (tre1) Py (tr+1) ™
Xtr = X{M + Kot (Yeer — Vi)

c 1.0
Xt = M,; Xtesrr (4)

where Yi., = [Yu., ..., Yua] is @a matrix constructed by stack-
ing M copies of the true observation. Py (tr+1) denotes the
sample cross covariance between the states and the obser-
vation, whereas Py, (tx+1) denotes the sample observation
covariance for the ensemble. The sample mean is taken as
the state estimate Xy.,. For more information on EnKFs, see
“Ensemble Kalman Filter.”

Markov Operator Approximation Using Constrained
Ulam Dynamic Mode Decomposition

This article constructs a finite-dimensional approximation
of the PF transfer operator to analyze e-scooter mobility
in a city. This model predicts future movement patterns
based on training data. The transfer-operator approxi-
mation is a finite-dimensional matrix that characterizes
the dynamics of a complex system using a data-driven
approach [17]. Assume the movement of each scooter in a
population is a stochastic dynamical system that permits
modeling the evolution of its probability density in a linear
Markov fashion. The PF operator is utilized to character-
ize the mobility patterns by treating them as the density
of states in a dynamical system. However, the PF operator
operates on the space of L; densities and must be approxi-
mated on a finite-dimensional basis. This approximation

generates a Markov state transition matrix with the spa-
tial partitions as its states. The approximation is carried
out in a data-driven fashion using CU-DMD [17]. CU-
DMD combines the data-driven extended dynamic mode
decomposition [20], [21] (see “Extended Dynamic Mode
Decomposition”) algorithm with Ulam’s method to better
approximate the PF operator through a constrained least-
squares optimization.

CU-DMD provides an improvement over Ulam’s
method [16] for the computation of the Markov state transi-
tion matrix. Ulam’s method uses a one-pass Monte Carlo
approach to numerically estimate the Markov state transi-
tion matrix P.. Within each partition B; of the state space, a
set of N initial points x;1,...,x;~ is defined and propagated
using the system dynamics to obtain ¢f(z, xix), k=1,...,n,
that is, their final positions. The estimated P is [16]

#{k:xix € Bi, ¢s(7, xix) € Bj}
N . 5)

Prij =

The choice of 7 is important and depends on the resolu-
tion of the partition D =B;i=1,...,M in this method.
If the resolution is coarse [that is, there are too few grid
cells (M is small), and 7 is also small], then many of the
test points will not leave their original grid cell B;, and the
estimated P: will be close to the identity matrix. In the con-
text of e-scooter mobility, the census block groups or other
regional blocks define the partition D, and 7 is defined by
the time step of the users’ location data.

CU-DMD improves the accuracy of Ulam’s method
using data for multiple time intervals, starting from N ini-
tial points within each partition B;, i = 1...,M. Let px € RM
denote the vector of the particle volumes in M partitions in
the kth time interval and {po,...,pu+1} be the particle vol-
umes for n + 2 subsequent time intervals. The linearity of
the PF operator yields px+1 = pxP:. Define

Yo =[pd,....pr1"5, Yi=Ipi,....pis1]" (6)

X b

r=(rq, r, ...

» In)

Ensemble Kalman Filter }—q;

y fir

The architecture of an echo-state network with an ensemble
Kalman filter.
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Ensemble Kalman Filter
The ensemble Kalman filter (EnKF) is a Monte Carlo im-
plementation of the traditional Kalman filter where the
covariance matrix is replaced with the sample covariance
of an ensemble realization of the state. It can be read-
ily extended to nonlinear dynamical systems with a large
number of states and/or complex state equations where
an extended Kalman filter (EKF) becomes infeasible.
An EKF uses an ensemble of state vector realizations at
time t,

1 M
xtx = [x§k): ~~-:x§k )]:

which is then used as the samples of the prior distribution at
time t,. However, the ensemble members are not, in general,
independent except in the initial ensemble since every EnKF
step ties them together. They are deemed to be approximately
independent, and all calculations proceed as though they actu-
ally are independent. Let the dynamics be

Xteor = F(Xte) + Wk

Vi = h(Xe) + Vi, (S4)

where wi and v are independent zero-mean Gaussian noise.
For k = 0, an ensemble realization Xi, =[x\, ...,x] is chosen
from a Gaussian distribution with an ensemble covariance R,.

For each time step, the forecast step is computed as

1 M)
X(k:[xﬁk),..l,xﬁk )]
X0 =f(x?), fori=1,...M
- (1 o (M)
Xheor = [XE, . X0

Next, the measurement is assimilated using the sample
covariances P,, and P, as

Therefore, from the Markov relation (¥1 = WYoPx),
P ~ ¥, ¥,. @)

Since Pr must satisfy the positivity and stochastic proper-
ties of a Markov operator, the unconstrained least-squares
solution is modified to a constrained least-squares formu-
lation [17]:

min%mize [¥1— Yol
subjectto Pr;=>0,i,j€{1,...,M}
M
> Pi=1,iell,...,M)}. ®)

j=1

Because this formulation is a convex quadratic pro-
gramming problem, it yields a unique minimum and
can be solved using gradient-descent or interior-point
methods [22].
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Vb = h(xt{m 1)
Py (1) = Kb, = Xbe ) Voer = Vi) T
Py (tx+1) = Vit — Vi) Qbirs = Vo) T
Kt = Pry (tks1) Pyy (tks1) ™!
Xeerr = Xbeor + Ko (Yeerr — Vo)

. 135 0
Xty = VZ Xtir1s
i=1

(S5)
where Yi., =Yt ..., Y] IS @ matrix constructed by stacking
M copies of the true observation. EnKF relies on the Gaussian
assumption, although in practice it is used for nonlinear prob-
lems where the Gaussian assumption may not be satisfied.
Related filters attempting to relax the Gaussian assumption in
EnKF while preserving its advantages include filters that fit the
state probability density function (PDF) with multiple Gaussian
kernels [S1], filters that approximate the state PDF by Gauss-
ian mixtures [S2], [S3], a variant of the particle filter with the
computation of particle weights by density estimation, and a
variant of the particle filter with a thick-tailed data PDF to allevi-
ate particle filter degeneracy [S4].
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PREDICTION OF E-SCOOTER TRIPS

This section describes the proposed data-driven method
for the prediction of e-scooter trip volumes in a city using
the neural network and Markov operator theory described
previously.

Trip Origin Prediction Using Echo-State Network

With Ensemble Kalman Filter

Consider a data set of scooter trips in which each trip is
identified by its start time, origin and destination coor-
dinates, and duration. These data are preprocessed into
a series of origin—destination tables, where each entry
denotes the number of trips made from one geographi-
cal region to another during a specific time interval.
The geographical regions and time intervals may be cho-
sen according to the desired spatial and temporal reso-
lution. This article uses census tracts or block groups
to partition a city into regions and 24-h time intervals.
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Extended Dynamic Mode Decomposition
Extended dynamic mode decomposition (EDMD) [21] is
a method to extract the modes of a complex dynamical
system by solving a least-squares problem. Consider the au-
tonomous time-invariant ordinary differential equation (ODE)

x =f(x). (S6)

Let ¢/:RxX -~ X be the flow map of the ODE (S6); that is,
¢1(t, x0) is a solution of the ODE (S6) with the initial condi-
tion x(0)=xo. EDMD estimates the eigenvalues and ei-
genfunctions of the Koopman operator [S5], the dual of the
Perron—Frobenius (PF) operator, which operates on the space
of [~ observables. The Koopman semigroup of operator
Kt L*(X) — L=(X) is defined as

(K'p)(-)=pogr(t,). (S7)

If the time step t =7 is fixed, then the ODE (S6) becomes an
iterative map x((k +1)7) = ¢+(z,x(k7)), and T can be dropped
and ¢¢(t,x) = F(x) defined. The discrete-time dynamics are

Xk+1=F(Xk). (S8)

The time-discretized version of the Koopman operator is
(K@) ()=@oF (). In EDMD, just like Ulam’s method, the
infinite-dimensional operator C* is projected onto a finite-
dimensional basis in L~(X) to represent it as a matrix K. Let
{w1,...,yum} be the basis functions, and, as in Ulam’s method,
define 7y : L= (X) - sp{yi,...,wwm} to project ¢ onto the span of
these basis functions. Then,

Trip Origin Data
Xo(t), k=1,...,n

L
-
!

Trained ESN

Predicted Trip

SRR Origin Volume

]

Initial Condition
xo(tn+1)

Observation

ﬁo(tn+1 ), )A(o(tn+2)v o00

o(x)= ; aiyi(x) (S9)
me:ﬁawm+n (S10)

with residue r. Now, observe {Xo,...,Xxn+1} for any n > 0, where
x; are from the discretized dynamics (S8). The matrix K can be
estimated by the least-squares formulation

K=%%¥x, (S11)

where Wy ;= yi(x)) and
j=0,...,n.

In the same light, the weak approximation of the PF op-
erator can be thought of as projecting onto the basis function
wi=1/m(Bi)xs, where

and  ¥x,ji=wi(xj+1),i=1,...,M,

7{1, if x € Bi
x8()= 0, otherwise

for partition B;. Since the basis functions are related to the den-
sity of states and cannot be readily observed, the origin—desti-
nation data approximate them.
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Trip Origin and Destination Data
Xo(t), Xq(te), k=1, ..., n

L
-
!

Approximate PF Matrix

=) Predicted Trip
T Destination Volume

Xg(the1), Xg(tne2): -

A flowchart of the trip origin and destination prediction method.
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If the city is divided into M geographical regions, let

c 2
xo(t) € RM denote the number of trips originating from TABLE 1 The echo-state network with ensemble Kalman
M regions on the kth day. The ESN-EnKF is trained on N filter parameters for the e-scooter case studies.
N
the prior data available to predict the trip origin vol-
P .. p . . P & . Parameter Name Symbol Value
umes. The prediction can be carried out in two specific
ways. A prediction can be made with a free-running Leaking rate a 0.8
ESN without any Kalman filter, or the multiday predic- Activation w() 0.5(1 + tanh())
tion accuracy can be improved by observing some of
. . . .. Reservoir size n 2000
the regions during the testing/prediction phase and
using them as observations in the EnKF module. Regularization factor B 10°°
. T . g . Initial ensemble covariance 52 100
Trip Destination Prediction Using Markov e
Operator Theory Measurement noise o2 100
A finite-dimensional approximation of the PF operator covariance
computed by CU-DMD is used to predict the trip destination J
| —— True Volume --- Estimated Volume - -- Observed Volume
15,000 F _ 15,000 [ _.
% 10,000 ™\ % 10,000 ¥
5,000 /\4 S . e 5,000 |
5 10 15 20 25 30
Time (days)
3,000 f 3,000 F
x 2,000 K\ y ‘ x 2,000 R_ .
1,000 t . Y L\ 1,000
5 10 15 20 25 30
Time (days) Time (days)
1,800 ' ' ' ' ' 1,800 ' ' ' ' '
< 1,400 | 1 > 1400} ]
1,000 L . . . . ; 1,000 L . . . . ; ]
5 10 15 20 25 30 5 10 15 20 25 30
Time (days) Time (days)
(a) (b)
30.4 30.4
10° 2 10°
5 5
30.35 S 30.35 w
102 § 102 &
[0) =] [0} s
S 303 = S 303 g
w 3 ® a
3 10! O = 10" o
o =)
30.25 2 30.25 >
0 @D
ie) Q
o) <
100 E 100
30.2 30.2
107" 107"
-97.8 -97.75 -97.7 -97.65 -97.8 -97.75 -97.7 -97.65
Longitude Longitude

(©)

(d)

The prediction of e-scooter trips in Austin, Texas: the (a) trip origination and (b) trip destination volume prediction for three
census tracts, where the trip origination volume for the third tract is measured with added noise; (c) the estimated termination volumes
on day 6 of the testing phase; and (d) the absolute error in the termination volume estimation. The three focal census tracts from (a) and
(b) are highlighted in red.
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volumes. The transfer-operator approximation is a finite-
dimensional matrix that characterizes the dynamics of a
complex system using a data-driven approach [17]. The
dimensions of the matrix approximation are determined
by the number of starting/ending regions. By counting
the number of trips that transition from one region to
another for all pairs of start/end regions and applying the
constraint that every trip must end in one of the regions
(including possibly the starting one), construct a map P:
that, once normalized, can be used to predict the future
mobility over time span 7. Specifically, P. operating on
an initial distribution x,(tx) of trips origins at time tx gen-
erates a future distribution x«(tx) of trip destinations.
The origin—-destination tables described in the pre-
vious section are used to generate the Markov operator,
assuming the movement of each individual in a popu-

lation is a stochastic dynamical system that permits
modeling the evolution of its probability density in a
linear Markov fashion. The PF operator characterizes
the city-level mobility patterns by treating them as the
density of states in a dynamical system. To facilitate
the use of CU-DMD, the origin-destination trip vol-
ume data are preprocessed and sorted into a table for
each day. The CU-DMD algorithm is then used to find
the Markov state transition matrix P. for time inter-
val 7. In the context of e-scooter mobility, the regional
blocks define the partition D, and 7 is defined by the
time step of the location data. Let x,(tx) denote the vec-
tor of the trip origin volume in M regions in the kth
time instant and xu(tx) be the trip destination volume
vector. The Markov assumption on the user mobility
yields x4(tx) = X, (tx) Pr. Define
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The prediction of e-scooter trips in Louisville, Kentucky: the (a) trip origination and (b) trip destination volume prediction for
three census block groups, where the trip origination volume for the first block group is measured with added noise; (c) the estimated
termination volumes on day 14 of the testing phase; and (d) the absolute error in the termination volume estimation. The three focal

census block groups from (a) and (b) are highlighted in red.
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Vo= [xo(t)7, ..., %0 () T]"

and
¥y =[xa(t)7, ... [xa(tn)T]".

The constrained least-squares problem (8) approximates
the PF operator P: that is used to predict the mobility/flow
of e-scooters at the desired spatial resolution (for example,
by census tracts or census block groups). A flowchart of the
proposed method to predict scooter mobility is presented
in Figure 2.

EXAMPLES: AUSTIN, LOUISVILLE, AND
MINNEAPOLIS SCOOTER USAGE

The proposed method is illustrated on publicly available
e-scooter data sets from Austin, Texas; Louisville, Ken-
tucky; and Minneapolis, Minnesota from 2018 to 2019. The
cities are divided into regional divisions, and the numbers

of e-scooter trips originating and terminating in each of
them are organized in a origin—destination table for each
day. Census tracts are used as the divisions for Austin,
whereas census block groups are used for Louisville and
Minneapolis, based on the spatial resolution of the data.
The parameters used for training the ESN are provided in
Table 1. Figure 3 shows the ESN-EnKF prediction frame-
work for e-scooter trips in Austin.

The training data for this example are one year of
daily trip origins partitioned by census tracts; the test-
ing phase was one month with sparse measurements
from only 30% of the tracts. The observed tracts are cho-
sen randomly with a uniform probability. The estimated
volume of trip origins tracks the true volume during
the 30-day testing phase, even in census tracts without
observations. Both the temporal and spatial results are
provided along with the absolute prediction error for a
time snapshot.
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The prediction of e-scooter trips in Minneapolis, Minnesota: the (a) trip origination and (b) trip destination volume prediction for
three census block groups, where the trip origination volume for the second block group is measured with added noise; (c) the estimated
termination volumes on day 3 of the testing phase; and (d) the absolute error in the termination volume estimation. The three focal cen-

sus block groups from figures (a) and (b) are highlighted in red.

26 IEEE CONTROL SYSTEMS » OCTOBER 2022

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 09,2023 at 19:55:04 UTC from IEEE Xplore. Restrictions apply.



Figures 4 and 5 show the estimation results for Lou-
isville and Minneapolis with census block groups as the
regional divisions. Training periods are one year and 130
days for Louisville and Minneapolis, respectively. Data for
one entire year from the Minneapolis database were not
available. The testing phases last for one month and two
weeks, respectively. The other parameters are the same as
for the Austin case study.

The ESN-EnKF method is compared to a reservoir
observer [13] that uses sparse observations to predict the
trip volumes without an EnKF. The reservoir observer uses
the true values of the trip volumes in a day and feeds them
directly to the ESN to generate a prediction. The results are
also compared with a standard autoregressive moving-aver-

B ESN-EnKF
B ESN (Reservoir Observer)
— ARMA Regression

Average Correlation

0 10 20 30 40
Percentage of Observed Census Tracts

(a)

age (ARMA) regression that does not use any measure-
ment in the testing phase. The Pearson correlation and the
normalized root-mean-square error (RMSE) between the
original and predicted time series of the trip origin vol-
umes are computed for both the ESN-EnKF and reservoir-
observer methods with different numbers of observable
census tracts/block groups. The Pearson correlation coef-
ficient is expressed as

D (xi = X)(Xit — X)

it S— 9
\/ 2 (xie = X X (e =X ¥

it

r(x, X) =

Correlation (0.9997) When the PF Operator Is
Used on the True Origin Volume
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FIGURE 6 (a) The Pearson correlation between the true and estimated trip origin volumes for the Austin data: the echo-state network
algorithm with an ensemble Kalman filter (ESN-EnKF) is compared with the reservoir observer and a standard autoregressive moving-
average (ARMA) regression with different percentages of observable census tracts. (b) The same result is shown for the trip destination
volume with ESN-EnKF only. (The horizontal line shows the Pearson correlation between the estimated and true destination volume
when the true origin volume is used by the approximate PF operator.) (c) The normalized root-mean-square error (RMSE) for the desti-
nation volume is compared among the ESN-EnKF, reservoir observer, and ARMA regression. PF: Perron—Frobenius.
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where x;; and x;: denote the true and estimated scooter
traffic volume on the tth day in the ith census tract/block
group, respectively. The normalized RMSE is

Z (Xi,t - )A(“)z
RMSE(x, %) = [ s 10

(%) S (10)

it

The correlation coefficient and the normalized RMSE are
also computed for the ARMA regression. True values of
the trip origin volumes can be obtained from the observ-
able census tracts/block groups. A comparison of the

B ESN-EnKF
B ESN (Reservoir Observer)
— ARMA Regression

Average Correlation

0 10 20 30 40
Percentage of Observed Census Block Groups

(a)

mean correlation coefficient computed for more than 50
Monte Carlo runs with randomized initialization of the
ESN reservoir for the Austin data is shown in Figure 6(a).
It is evident that the ESN performs better with the EnKF.
The performance does not significantly change after 35%
of the census tracts become observable. The same corre-
lation is computed between the true and predicted trip
destination volume time series, and the results are shown
in Figure 6(b), where the trip destination volumes are
predicted using the approximate PF operator from the
predicted trip origin volumes. The average normal-
ized RMSEs between the true and predicted destination

Correlation (0.9986) When the PF Operator Is
Used on the True Origin Volume
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FIGURE 7 (a) The Pearson correlation between the true and estimated trip origin volumes for the Louisville data: The echo-state network
algorithm with an ensemble Kalman filter (ESN-EnKF) is compared with the reservoir observer and a standard autoregressive moving-
average (ARMA) regression with different percentages of observable census block groups. (b) The same result is shown for the trip
destination volume with ESN-EnKF only. (The horizontal line shows the Pearson correlation between the estimated and true destination
volume when the true origin volume is used by the approximate PF operator.) (c) The normalized root-mean-square error (RMSE) for the
destination volume is compared among the ESN-EnKF, reservoir observer, and ARMA regression. PF: Perron—Frobenius.
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volume series computed for more than 50 Monte Carlo
runs are shown in Figure 6(c).

The same correlation and normalized RMSE compari-
sons between the true and predicted origin and destination
data for the Louisville and Minneapolis data sets are pre-
sented in Figures 7 and 8, respectively. The proposed ESN-
EnKF outperforms a standard ARMA regression, in terms of
both the correlation coefficient and normalized RMSE, after
20%-25% of the census tracts/block groups become observ-
able. The performance of the ESN-EnKF is significantly bet-
ter than the ARMA regression for the Minneapolis data set
[Figure 8(c)] in terms of the normalized RMSE, where the lat-
ter has a near 100% prediction error. A comparison of trip

I ESN-EnKF
B ESN (Reservoir Observer)
— ARMA Regression

1 . . . .

Average Correlation
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Percentage of Observed Census Block Groups

(a)

destination volume predictions using the true and predicted
trip origin volume data is presented in Figure 9.

CONCLUSION

This article describes a data-driven method to predict
e-scooter micromobility trends in cities with an ESN and Mar-
kov operator theory. The scooter trip data of a city are pre-
processed and partitioned into different geographical regions
(census tracts or block groups) according to their origin and
destination. The resultant time series of trip origin volumes is
used to train a neural network for future prediction. The trip
destination volumes are predicted using an approximate
PF operator, assuming a Markov relationship between the

Correlation (0.9926) When the PF Operator Is
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FIGURE & (a) The Pearson correlation between the true and estimated trip origin volumes for the Minneapolis data: the echo-state
network algorithm with an ensemble Kalman filter (ESN-EnKF) is compared against the reservoir observer and a standard autore-
gressive moving-average (ARMA) regression with different percentages of observable census block groups. (b) The same result is
shown for the trip destination volume with ESN-EnKF only. (The horizontal line shows the Pearson correlation between the estimated
and true destination volume when the true origin volume is used by the approximate PF operator.) (c) The normalized root-mean-
square error (RMSE) for the destination volume is compared among the ESN-EnKF, reservoir observer, and ARMA regression. PF:

Perron—Frobenius.
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A comparison between the predictions of trip destination volume from the true and predicted origin volume data in (a) Austin,

(b) Louisville, and (c) Minneapolis.

trip origin and destination. The proposed method is dem-
onstrated over e-scooter data sets from three cities: Austin,
Louisville, and Minneapolis. The method is also compared
against the reservoir-observer method using the normalized
RMSE and Pearson correlation as metrics.

The predicted usage data are useful in determining the
optimal distribution of the shared mobility resources. They
also may be used to quantify the equity and accessibility
of personal mobility options in various neighborhoods of a
city. The trip origin—destination prediction framework is not
specific to e-scooters and could be applied to other data sets
(for example, cell phone location data to predict population
movement during pandemic-related travel restrictions).
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