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Since the early modern age, the development of various 
means of transit has contributed to a dramatic improve-
ment in quality of life. However, in past decades (partic-

ularly in urban environments), the simultaneous utilization 
of mobility options has resulted in poor air quality, traffic 
congestion, and a lack of parking. To solve these problems 
without imposing severe restrictions on personal mobility, 
alternatives to cars powered by internal combustion engines 
are necessary (see “Summary”). 

One of these alternatives is the electric-powered scooter. 
Unlike its conventionally powered counterparts, an 
e-scooter uses a battery and an electrical drivetrain and can 
accommodate many personal mobility needs within the city. 
Owing to their small size, e-scooters can significantly reduce 
traffic congestion and may alleviate the ever-worsening 
problem of urban air pollution. Shared, dockless e-scooter 
companies (for example, Lime and Bird) provide a conve-
nient, sustainable mode of transportation to help commuters 
travel the first or last mile. 

Because of their convenience, flexibility, and pleasant 
riding experience, e-scooters have become very popular in 
many U.S. cities since 2017. Lime researched transit usage 
in New York City and argued that the existence of transit 
deserts [1] and income disparity were two major causes of 
declining transit ridership [2]. As a partial solution, Lime 
proposed using micromobility, such as e-scooters, to cover 
intermediate distances to and from transit stops.

Since the analysis and prediction of e-scooter usage are 
not widely studied, rental companies record trip data and 
use empirical methods to distribute the vehicles through-
out a city to maximize utilization. Empirical and statistical 
studies of e-scooter utilization are very limited. Accord-
ing to [3], e-scooter data from Washington, D.C. resemble 
those of spontaneous bike sharing for leisure activities. In 
[4], Mathew et al. analyzed the spatiotemporal e-scooter 
data from Indianapolis and identified the downtown and 
university campus as two e-scooter traffic hotspots. In Sin-
gapore, compact land use, the widespread availability of 

public transport, and better cycling infrastructure have 
promoted dockless e-scooters as the last-mile solution 
[5]. However, dockless e-scooter distributions often favor 
socioeconomically advantaged neighborhoods [6]–[8]. 

For the analysis and prediction of dockless e-scooter 
trips, a machine learning approach is proposed. Recently 
developed machine learning techniques are useful for solv-
ing a wide variety of problems, including the classification 
of data sets, speech recognition [9], and board games [10]. 
These techniques use a deep neural network to approximate 
an unknown function by optimizing the weights of the net-
work layers through backpropagation [11]. Recurrent neural 
networks (RNNs) are particularly useful for the model-free 
prediction of time series data. For example, an echo-state 
network (ESN) [12] can model even a chaotic time series [13], 
[14]. A newly developed technique [15] uses a fusion of ESN 
and an ensemble Kalman filter (EnKF) for time series esti-
mation with sparse measurements. 

As the recurrent neural engine for modeling the time series, 
an ESN can be trained quickly with limited computational  
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resources by cutting the computational cost of the backpropa-
gation through time. The ESN adopts an input–output neu-
ral network with a randomly generated recurrent reservoir. 
Linear regression determines the output weights. An EnKF 
is incorporated in the feedback loop of the ESN to improve 
the measurement assimilation in comparison to a previous 
observer [13] because the former accounts for the measure-
ment noise with the help of a traditional Bayesian frame-
work and assimilates a series of measurements over the 
testing phase, whereas the latter uses the current (noise-free) 
measurement only [13]. This machine learning framework, 
along with traditional Bayesian filtering, provides a power-
ful tool to predict the personal transit utilization in today’s  
urban environment. 

Shared transit vehicles, such as electric scooters, are 
usually aggregated into trip-level origin–destination tables 
between regional partitions—for example, census tracts 
and/or block groups—and can be modeled as a Markov 
process. Ulam’s method [16] is one way of approximating 
the Markov state transition matrix from origin–destination 
data. However, it uses only one pair of origin–destination 
data snapshots and, thus, suffers from low accuracy. Con-
strained Ulam dynamic mode decomposition (CU-DMD) 
[17] utilizes a time series of data snapshots to approximate 
the Markov matrix. Subsequently, this matrix may be used 
to predict movement patterns from a given initial distribu-
tion. The Markov-based method enables the prediction of 
trip destinations from a time series of trip origins. 

This article presents a data-driven analysis and predic-
tion of e-scooter utilization and trip density in a city by 
applying an RNN and Markov operator theory. First, a city 
is divided into a number of geographical regions (for exam-
ple, census tracts or census block groups). Then, a neural 
network is trained on a data set of trip origins and destina-
tions over a number of days to predict the volume of trips 
originating from each region. Finally, a Perron–Frobenius 
(PF) operator is approximated in a stochastic matrix form 
to predict the trip destinations. The overall algorithm uses 
past data to predict trip origin and destination volumes in 
the future, enabling more effective and equitable operation 
of dockless scooters.

This article is organized as follows. First, a brief overview 
of the ESM algorithm with an EnKF (ESN-EnKF) and the 
PF approximation techniques using CU-DMD is provided. 
Then, the algorithms for trip origin and destination volumes 
using ESN-EnKF and CU-DMD are presented. The proposed 
algorithm is applied to data sets from Austin, Louisville, and 
Minneapolis to illustrate its performance. Lastly, the article 
is summarized, and future work is discussed.

PREDICTION ALGORITHMS FOR  
ORIGIN–DESTINATION DATA
This article presents a data-driven model to predict 
e-scooter trip origins and destinations with or without the 
availability of sparse observations after the training period. 

Origin–destination data are used to train the time series 
prediction of trip origins via an RNN. A Markov operator-
based method is then used to predict the corresponding 
trip destinations.

Echo-State Network With Ensemble  
Kalman Filter
The data-driven prediction of time series is of recent inter-
est in the control and machine learning communities. 
RNNs are particularly useful for such predictions. For 
example, an ESN [12] can model chaotic systems effectively 
[13], [14]. The prediction of dockless e-scooter mobility is 
an important problem in micromobility that can benefit 
from the utilization of such techniques. This article uses 
an ESN with an EnKF to predict e-scooter trip origin vol-
umes in a city. The destination prediction is treated in the 
next section. 

An ESN is composed of three principal components: a 
linear input layer u with m input nodes, a recurrent nonlin-
ear reservoir network r with n neurons, and a linear output 
layer y with p output nodes. The reservoir network evolves 
with the following dynamics [18]:

	 ( ) ( ) ( ) ( ( ) ( )),t t t W t W t1r r r uinT a a}+ = - + + � (1)

where W is the n × n reservoir weight matrix, Win  is the n × 
m input weight matrix, u is the m-dimensional input signal, 
and y is the p-dimensional output signal. The time step tT  
is chosen according to the sampling interval of the train-
ing data. The parameter ( , ]0 1!a  is called the leakage rate, 
which forces the reservoir to evolve more slowly as .0"a  
The activation function }  is usually a sigmoid function, for 
example, (·)tanh  or a logistic function. The output is taken 
as a linear combination of the reservoir states [18], that is,

	 ( ) ( ),t W ty rout= � (2)

where Wout  is the p × n output weight matrix. The input Win  
and reservoir W weights are initially randomly drawn and 
then held fixed. The weight Wout  is adjusted during the train-
ing process. The reservoir weight matrix W is usually kept 
sparse for computational efficiency. See “Echo-State Network” 
for more information on ESNs. The predictive skill of the ESN 

Owing to their small size, 

e-scooters can significantly reduce 

traffic congestion and may alleviate 

the ever-worsening problem of 

urban air pollution.
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Echo-State Network

Echo-state networks (ESNs) are a special kind of fixed recur-

rent neural network (RNN) in which a large, random, and 

fixed RNN is driven by the input signal. The nonlinear response 

signals thus induced in the neurons are then linearly combined 

to match a desired output signal. The random, fixed network is 

called a reservoir, and the technique is also known as reservoir 

computing [18]. An ESN consists of a linear input layer u with 

m input nodes, a recurrent nonlinear reservoir network r with n 

neurons, and a linear output layer y with p output nodes. The 

reservoir network evolves in a nonlinear fashion [18]:

	 ( ) ( ) ( ) ( ( ) ( )),r r r ut t t W t W t1 ina a}D+ = - + + � (S1)

where W Rn n! #  is the reservoir weight matrix, W Rin
n m! #  is 

the input weight matrix, u is the m-dimensional input signal, 

and y is the p-dimensional output signal. The time step tD  

denotes the sampling interval of the time series data. The leak-

age rate ( , ]0 1!a  forces the reservoir to evolve more slowly as 

.0"a  The activation function that incorporates the nonlinear-

ity }  is usually a sigmoid function, for example, tanh( ∙ ) or a 

logistic function. The network output is a linear combination of 

the reservoir states [18]; that is,

	 ( ) ( ),y rt W tout= � (S2)

where Wout is the p × n output weight matrix. The weights Win 

and W are initially randomly drawn and then held fixed. The 

weight Wout is adjusted during the training process. The res-

ervoir weight matrix W is usually kept sparse for computational 

efficiency. During the training phase, the ESN is driven by an 

input sequence { ( ), , ( )}u ut tN1 f  that yields a sequence of res-

ervoir states {r( ), , ( )}rt tN1 f . The reservoir states are stored in a 

matrix [r ( ), , ( )]R rt tN1 f= . The correct outputs { ( ), , ( )},y yt tN1 f  

which are part of the training data, are also arranged in a ma-

trix [ ( ), , ( )]Y y yt tN1 f= . The training is implemented by a linear 

regression with Tikhonov regularization as [12]

	 ( ) ,RR I RYWout
T 1b= + - � (S3)

where 02b  is a regularization parameter that ensures non-

singularity. For an ESN to be a universal approximator (that 

is, to realize every nonlinear operator with bounded memory 

arbitrarily accurately), it must satisfy the echo-state property 

(ESP) [12], which states that the reservoir will asymptotically 

wash out any information from the initial conditions. For the 

tanh( ∙ ) activation function, it is empirically observed that the 

ESP holds for any input if the spectral radius of W is smaller 

than unity [12]. To ensure this condition is met, the randomly 

generated W is normalized by its spectral radius. 

An ESN is advantageous over other kinds of RNNs when a 

cheap, fast, and adaptive training is required since its training 

does not require backpropagation through time. An ESN can 

be trained to predict a time series { : }x iR Nt
d

i ! !  generated 

by a dynamical system by setting ( )u t  and ( )y t  as the current 

and next state values (that is, xtk  and xtk 1+ ), respectively. The 

network is trained for a certain training length N of the time 

series data { , , , }x i N1ti f=  and then can run freely by feeding 

the output ytk  back to the input utk 1+  of the reservoir. In this 

case, both u and y have the same dimension d as that of the 

time series data. This setup is shown in Figure S1(b), where a 

trained ESN is used to predict the next states of a dynamical 

time series starting from an initial condition.

FIGURE S1 The architecture of an echo-state network (ESN) as a time series predictor: (a) the basic ESN and (b) a free-running 
ESN for time series prediction.
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is refined by assimilating any available sparse and/or noisy 
measurements after the conclusion of the training phase using 
an EnKF [19], as shown in Figure 1. The EnKF block takes 
sparse observations and uses the state forecast from the res-
ervoir output to generate a state estimate for feedback to the 
reservoir input [15]. 

The EnKF is realized as follows. For time step k = 0, 
an ensemble [ , , ]X x x( ) ( )

t t t
M1

0 0 0f=  is chosen from a Gaussian 
distribution with an ensemble covariance .Rx  Then, for 

, , ,k 0 1 f=  the following steps are computed:
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These steps carry out the motion update for the ensemble 
using the ESN. The superscript (i) denotes the ith ensem-
ble member. The forecast ensemble is collected in the Xt

f
k 1+  

matrix. Next, the observations are assimilated through an 
EnKF as
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(4)

where [ , , ]Y y yt t tk k k1 1 1f=+ + +  is a matrix constructed by stack-
ing M copies of the true observation. ( )P txy k 1+  denotes the 
sample cross covariance between the states and the obser-
vation, whereas ( )P tyy k 1+  denotes the sample observation 
covariance for the ensemble. The sample mean is taken as 
the state estimate .xtk 1+

t  For more information on EnKFs, see 
“Ensemble Kalman Filter.”

Markov Operator Approximation Using Constrained 
Ulam Dynamic Mode Decomposition
This article constructs a finite-dimensional approximation 
of the PF transfer operator to analyze e-scooter mobility 
in a city. This model predicts future movement patterns 
based on training data. The transfer-operator approxi-
mation is a finite-dimensional matrix that characterizes 
the dynamics of a complex system using a data-driven 
approach [17]. Assume the movement of each scooter in a 
population is a stochastic dynamical system that permits 
modeling the evolution of its probability density in a linear 
Markov fashion. The PF operator is utilized to character-
ize the mobility patterns by treating them as the density 
of states in a dynamical system. However, the PF operator 
operates on the space of L1  densities and must be approxi-
mated on a finite-dimensional basis. This approximation 

generates a Markov state transition matrix with the spa-
tial partitions as its states. The approximation is carried 
out in a data-driven fashion using CU-DMD [17]. CU-
DMD combines the data-driven extended dynamic mode 
decomposition [20], [21] (see “Extended Dynamic Mode 
Decomposition”) algorithm with Ulam’s method to better 
approximate the PF operator through a constrained least-
squares optimization.

CU-DMD provides an improvement over Ulam’s 
method [16] for the computation of the Markov state transi-
tion matrix. Ulam’s method uses a one-pass Monte Carlo 
approach to numerically estimate the Markov state transi-
tion matrix .Px  Within each partition Bi  of the state space, a 
set of N initial points , ,x x, ,i i N1 f  is defined and propagated 
using the system dynamics to obtain ( , ), , , ,x k n1,f i k fz x =  
that is, their final positions. The estimated Px  is [16]

	
#{ : , ( , ) }

.P N
k x B x B

,
, ,

ij
i k i f i k j

.
! !z x

x � (5)

The choice of x  is important and depends on the resolu-
tion of the partition , , ,D B i M1i f= =  in this method. 
If the resolution is coarse [that is, there are too few grid 
cells (M is small), and x  is also small], then many of the 
test points will not leave their original grid cell ,Bi  and the 
estimated Px  will be close to the identity matrix. In the con-
text of e-scooter mobility, the census block groups or other 
regional blocks define the partition D, and x  is defined by 
the time step of the users’ location data. 

CU-DMD improves the accuracy of Ulam’s method 
using data for multiple time intervals, starting from N ini-
tial points within each partition ,Bi  , .i M1f=  Let p Rk

M!  
denote the vector of the particle volumes in M partitions in 
the kth time interval and { , , }p pn0 1f +  be the particle vol-
umes for n + 2 subsequent time intervals. The linearity of 
the PF operator yields .Pp pk k1 = x+  Define

	 [ , , ] , [ , , ] .p p p pT
n
T T T

n
T T

0 0 1 1 1f fW W= = + � (6)
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FIGURE 1 The architecture of an echo-state network with an ensemble 
Kalman filter.
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Therefore, from the Markov relation ( ),P1 0W W= x

	 .P 1 0. W W@
x � (7)

Since Px  must satisfy the positivity and stochastic proper-
ties of a Markov operator, the unconstrained least-squares 
solution is modified to a constrained least-squares formu-
lation [17]:
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x

/
�

(8)

Because this formulation is a convex quadratic pro-
gramming problem, it yields a unique minimum and 
can be solved using gradient-descent or interior-point 
methods [22].

PREDICTION OF E-SCOOTER TRIPS
This section describes the proposed data-driven method 
for the prediction of e-scooter trip volumes in a city using 
the neural network and Markov operator theory described 
previously.

Trip Origin Prediction Using Echo-State Network  
With Ensemble Kalman Filter
Consider a data set of scooter trips in which each trip is 
identified by its start time, origin and destination coor-
dinates, and duration. These data are preprocessed into 
a series of origin–destination tables, where each entry 
denotes the number of trips made from one geographi-
cal region to another during a specific time interval.  
The geographical regions and time intervals may be cho-
sen according to the desired spatial and temporal reso-
lution. This article uses census tracts or block groups 
to partition a city into regions and 24-h time intervals. 

Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is a Monte Carlo im-

plementation of the traditional Kalman filter where the 

covariance matrix is replaced with the sample covariance 

of an ensemble realization of the state. It can be read-

ily extended to nonlinear dynamical systems with a large 

number of states and/or complex state equations where 

an extended Kalman filter (EKF) becomes infeasible. 

An EKF uses an ensemble of state vector realizations at  

time tk,

	 [ , , ],X x x( ) ( )
t t t

M1
k k kf=

which is then used as the samples of the prior distribution at 

time tk. However, the ensemble members are not, in general, 

independent except in the initial ensemble since every EnKF 

step ties them together. They are deemed to be approximately 

independent, and all calculations proceed as though they actu-

ally are independent. Let the dynamics be

	
( )

( ) ,

x x w

y x v

f

h
t t k

t t k

k k

k k

1 = +

= +

+

� (S4) 

where wk  and vk  are independent zero-mean Gaussian noise. 

For k = 0, an ensemble realization [ , , ]X x x( ) ( )
t t t

M1
0 0 0f=  is chosen 

from a Gaussian distribution with an ensemble covariance Rx. 

For each time step, the forecast step is computed as
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Next, the measurement is assimilated using the sample 

covariances Pxy and Pyy as
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where [ , , ]Y y yt t tk k k1 1 1f=+ + +  is a matrix constructed by stacking 

M copies of the true observation. EnKF relies on the Gaussian 

assumption, although in practice it is used for nonlinear prob-

lems where the Gaussian assumption may not be satisfied. 

Related filters attempting to relax the Gaussian assumption in 

EnKF while preserving its advantages include filters that fit the 

state probability density function (PDF) with multiple Gaussian 

kernels [S1], filters that approximate the state PDF by Gauss-

ian mixtures [S2], [S3], a variant of the particle filter with the 

computation of particle weights by density estimation, and a 

variant of the particle filter with a thick-tailed data PDF to allevi-

ate particle filter degeneracy [S4].
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Extended Dynamic Mode Decomposition

Extended dynamic mode decomposition (EDMD) [21] is 

a method to extract the modes of a complex dynamical 

system by solving a least-squares problem. Consider the au-

tonomous time-invariant ordinary differential equation (ODE)

	 ( ) .x f x=o � (S6)

Let : X XRf "#z  be the flow map of the ODE (S6); that is, 

( , )t xf 0z  is a solution of the ODE (S6) with the initial condi-

tion ( ) .x x0 0=  EDMD estimates the eigenvalues and ei-

genfunctions of the Koopman operator [S5], the dual of the  

Perron–Frobenius (PF) operator, which operates on the space 

of L3  observables. The Koopman semigroup of operator 

: ( ) ( )K L LX Xt "3 3  is defined as

	 , .K tf
t $ $&{ { z=^ ^ ^h h h � (S7)

If the time step t x=  is fixed, then the ODE (S6) becomes an 

iterative map (( ) ) ( , ( )),x k x k1 fx z x x+ =  and x can be dropped 

and ( , ) ( )x F xf _z x  defined. The discrete-time dynamics are

	 ( ) .x F xk k1 =+ � (S8)

The time-discretized version of the Koopman operator is 

.( ) ( )K Ft $ $&{ {=^ h  In EDMD, just like Ulam’s method, the 

infinite-dimensional operator Kx  is projected onto a finite-

dimensional basis in ( )L X3  to represent it as a matrix K. Let 

{ , , }M1 f} }  be the basis functions, and, as in Ulam’s method, 

define : ( ) sp{ , },L XM i M" fr } }3  to project {  onto the span of 

these basis functions. Then,

	 ( ) ( )x a xi
i

M

i
1

{ }=
=

/ � (S9)

	 ( ) ( ) ,K x b x ri
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M

i
1

{ }= +x

=
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with residue r. Now, observe { , , }x xn0 1f +  for any n > 0, where 

xi are from the discretized dynamics (S8). The matrix K can be 

estimated by the least-squares formulation

	 ,K x x0 1W W= @ � (S11)

where ( )x,x ij i j0 }W =  and ( ), , , ,x i M1,X ij i j 11 f}W = =+  and 

, , .j n0 f=

In the same light, the weak approximation of the PF op-

erator can be thought of as projecting onto the basis function 

( ) ,m B1 ii Bi} |=  where

	 ( )
,
,

 if 
 otherwise 

x
x B1

0B
i

i

!
| = '

for partition Bi. Since the basis functions are related to the den-

sity of states and cannot be readily observed, the origin–desti-

nation data approximate them.
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If the city is divided into M geographical regions, let 
( )tx Ro k

M!  denote the number of trips originating from 
M regions on the kth day. The ESN-EnKF is trained on 
the prior data available to predict the trip origin vol-
umes. The prediction can be carried out in two specific 
ways. A prediction can be made with a free-running 
ESN without any Kalman filter, or the multiday predic-
tion accuracy can be improved by observing some of 
the regions during the testing/prediction phase and 
using them as observations in the EnKF module.

Trip Destination Prediction Using Markov  
Operator Theory
A finite-dimensional approximation of the PF operator 
computed by CU-DMD is used to predict the trip destination 

Parameter Name Symbol Value 

Leaking rate a 0.8 

Activation ( )$} . ( ( ))tanh0 5 1 $+

Reservoir size n 2000 

Regularization factor b 10 5-

Initial ensemble covariance 
0
2v  100 

Measurement noise 
covariance

2v  100 

TABLE 1  The echo-state network with ensemble Kalman 
filter parameters for the e-scooter case studies.
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FIGURE 3 The prediction of e-scooter trips in Austin, Texas: the (a) trip origination and (b) trip destination volume prediction for three 
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volumes. The transfer-operator approximation is a finite-
dimensional matrix that characterizes the dynamics of a 
complex system using a data-driven approach [17]. The 
dimensions of the matrix approximation are determined 
by the number of starting/ending regions. By counting 
the number of trips that transition from one region to 
another for all pairs of start/end regions and applying the 
constraint that every trip must end in one of the regions 
(including possibly the starting one), construct a map Px  
that, once normalized, can be used to predict the future 
mobility over time span .x  Specifically, Px  operating on 
an initial distribution ( )txo k  of trips origins at time tk  gen-
erates a future distribution ( )txd k  of trip destinations. 

The origin–destination tables described in the pre-
vious section are used to generate the Markov operator, 
assuming the movement of each individual in a popu-

lation is a stochastic dynamical system that permits 
modeling the evolution of its probability density in a 
linear Markov fashion. The PF operator characterizes 
the city-level mobility patterns by treating them as the 
density of states in a dynamical system. To facilitate 
the use of CU-DMD, the origin–destination trip vol-
ume data are preprocessed and sorted into a table for 
each day. The CU-DMD algorithm is then used to find 
the Markov state transition matrix Px  for time inter-
val .x  In the context of e-scooter mobility, the regional 
blocks define the partition D, and x  is defined by the 
time step of the location data. Let ( )txo k  denote the vec-
tor of the trip origin volume in M regions in the kth 
time instant and ( )txd k  be the trip destination volume 
vector. The Markov assumption on the user mobility 
yields ( ) ( ) .t t Px xd k o k= x  Define
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FIGURE 4 The prediction of e-scooter trips in Louisville, Kentucky: the (a) trip origination and (b) trip destination volume prediction for 
three census block groups, where the trip origination volume for the first block group is measured with added noise; (c) the estimated 
termination volumes on day 14 of the testing phase; and (d) the absolute error in the termination volume estimation. The three focal 
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[ ( ) , , ( ) ]t tx xo
T

o n
T T

0 1 fW =

and

[ ( ) , , [ ( ) ] .t tx xd
T

d n
T T

1 1 fW =

The constrained least-squares problem (8) approximates 
the PF operator Px  that is used to predict the mobility/flow 
of e-scooters at the desired spatial resolution (for example, 
by census tracts or census block groups). A flowchart of the 
proposed method to predict scooter mobility is presented 
in Figure 2.

EXAMPLES: AUSTIN, LOUISVILLE, AND 
MINNEAPOLIS SCOOTER USAGE
The proposed method is illustrated on publicly available 
e-scooter data sets from Austin, Texas; Louisville, Ken-
tucky; and Minneapolis, Minnesota from 2018 to 2019. The 
cities are divided into regional divisions, and the numbers 

of e-scooter trips originating and terminating in each of 
them are organized in a origin–destination table for each 
day. Census tracts are used as the divisions for Austin, 
whereas census block groups are used for Louisville and 
Minneapolis, based on the spatial resolution of the data. 
The parameters used for training the ESN are provided in 
Table 1. Figure 3 shows the ESN-EnKF prediction frame-
work for e-scooter trips in Austin. 

The training data for this example are one year of 
daily trip origins partitioned by census tracts; the test-
ing phase was one month with sparse measurements 
from only 30% of the tracts. The observed tracts are cho-
sen randomly with a uniform probability. The estimated 
volume of trip origins tracks the true volume during 
the 30-day testing phase, even in census tracts without 
observations. Both the temporal and spatial results are 
provided along with the absolute prediction error for a 
time snapshot. 
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FIGURE 5 The prediction of e-scooter trips in Minneapolis, Minnesota: the (a) trip origination and (b) trip destination volume prediction for 
three census block groups, where the trip origination volume for the second block group is measured with added noise; (c) the estimated 
termination volumes on day 3 of the testing phase; and (d) the absolute error in the termination volume estimation. The three focal cen-
sus block groups from figures (a) and (b) are highlighted in red. 
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Figures 4 and 5 show the estimation results for Lou-
isville and Minneapolis with census block groups as the 
regional divisions. Training periods are one year and 130 
days for Louisville and Minneapolis, respectively. Data for 
one entire year from the Minneapolis database were not 
available. The testing phases last for one month and two 
weeks, respectively. The other parameters are the same as 
for the Austin case study. 

The ESN-EnKF method is compared to a reservoir 
observer [13] that uses sparse observations to predict the 
trip volumes without an EnKF. The reservoir observer uses 
the true values of the trip volumes in a day and feeds them 
directly to the ESN to generate a prediction. The results are 
also compared with a standard autoregressive moving-aver-

age (ARMA) regression that does not use any measure-
ment in the testing phase. The Pearson correlation and the 
normalized root-mean-square error (RMSE) between the 
original and predicted time series of the trip origin vol-
umes are computed for both the ESN-EnKF and reservoir-
observer methods with different numbers of observable 
census tracts/block groups. The Pearson correlation coef-
ficient is expressed as
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FIGURE 6 (a) The Pearson correlation between the true and estimated trip origin volumes for the Austin data: the echo-state network 
algorithm with an ensemble Kalman filter (ESN-EnKF) is compared with the reservoir observer and a standard autoregressive moving-
average (ARMA) regression with different percentages of observable census tracts. (b) The same result is shown for the trip destination 
volume with ESN-EnKF only. (The horizontal line shows the Pearson correlation between the estimated and true destination volume 
when the true origin volume is used by the approximate PF operator.) (c) The normalized root-mean-square error (RMSE) for the desti-
nation volume is compared among the ESN-EnKF, reservoir observer, and ARMA regression. PF: Perron–Frobenius. 
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where x ,i t  and x ,i tt  denote the true and estimated scooter 
traffic volume on the tth day in the ith census tract/block 
group, respectively. The normalized RMSE is

	 ( , ) .RMSE x x
x

x x

,
,

, ,
,

i t
i t

i t i t
i t

2

2

=

-

t

t^ h

/
/

� (10)

The correlation coefficient and the normalized RMSE are 
also computed for the ARMA regression. True values of 
the trip origin volumes can be obtained from the observ-
able census tracts/block groups. A comparison of the 

mean correlation coefficient computed for more than 50 
Monte Carlo runs with randomized initialization of the 
ESN reservoir for the Austin data is shown in Figure 6(a).  
It is evident that the ESN performs better with the EnKF. 
The performance does not significantly change after 35% 
of the census tracts become observable. The same corre-
lation is computed between the true and predicted trip 
destination volume time series, and the results are shown 
in Figure 6(b), where the trip destination volumes are 
predicted using the approximate PF operator from the 
predicted trip origin volumes. The average normal-
ized RMSEs between the true and predicted destination 
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FIGURE 7 (a) The Pearson correlation between the true and estimated trip origin volumes for the Louisville data: The echo-state network 
algorithm with an ensemble Kalman filter (ESN-EnKF) is compared with the reservoir observer and a standard autoregressive moving-
average (ARMA) regression with different percentages of observable census block groups. (b) The same result is shown for the trip 
destination volume with ESN-EnKF only. (The horizontal line shows the Pearson correlation between the estimated and true destination 
volume when the true origin volume is used by the approximate PF operator.) (c) The normalized root-mean-square error (RMSE) for the 
destination volume is compared among the ESN-EnKF, reservoir observer, and ARMA regression. PF: Perron–Frobenius. 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 09,2023 at 19:55:04 UTC from IEEE Xplore.  Restrictions apply. 



OCTOBER 2022 «  IEEE CONTROL SYSTEMS  29

volume series computed for more than 50 Monte Carlo 
runs are shown in Figure 6(c). 

The same correlation and normalized RMSE compari-
sons between the true and predicted origin and destination 
data for the Louisville and Minneapolis data sets are pre-
sented in Figures 7 and 8, respectively. The proposed ESN-
EnKF outperforms a standard ARMA regression, in terms of 
both the correlation coefficient and normalized RMSE, after 
20%–25% of the census tracts/block groups become observ-
able. The performance of the ESN-EnKF is significantly bet-
ter than the ARMA regression for the Minneapolis data set 
[Figure 8(c)] in terms of the normalized RMSE, where the lat-
ter has a near 100% prediction error. A comparison of trip 

destination volume predictions using the true and predicted 
trip origin volume data is presented in Figure 9.

CONCLUSION
This article describes a data-driven method to predict 
e-scooter micromobility trends in cities with an ESN and Mar-
kov operator theory. The scooter trip data of a city are pre-
processed and partitioned into different geographical regions 
(census tracts or block groups) according to their origin and 
destination. The resultant time series of trip origin volumes is 
used to train a neural network for future prediction. The trip 
destination volumes are predicted using an approximate 
PF operator, assuming a Markov relationship between the 
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FIGURE 8 (a) The Pearson correlation between the true and estimated trip origin volumes for the Minneapolis data: the echo-state 
network algorithm with an ensemble Kalman filter (ESN-EnKF) is compared against the reservoir observer and a standard autore-
gressive moving-average (ARMA) regression with different percentages of observable census block groups. (b) The same result is 
shown for the trip destination volume with ESN-EnKF only. (The horizontal line shows the Pearson correlation between the estimated 
and true destination volume when the true origin volume is used by the approximate PF operator.) (c) The normalized root-mean-
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trip origin and destination. The proposed method is dem-
onstrated over e-scooter data sets from three cities: Austin, 
Louisville, and Minneapolis. The method is also compared 
against the reservoir-observer method using the normalized 
RMSE and Pearson correlation as metrics. 

The predicted usage data are useful in determining the 
optimal distribution of the shared mobility resources. They 
also may be used to quantify the equity and accessibility 
of personal mobility options in various neighborhoods of a 
city. The trip origin–destination prediction framework is not 
specific to e-scooters and could be applied to other data sets 
(for example, cell phone location data to predict population 
movement during pandemic-related travel restrictions).
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