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Cherenkov Maser Amplifier

Paul Argyle , Member, IEEE, and Phillip Sprangle, Life Fellow, IEEE

Abstract— A Cherenkov maser amplifier (CMA) for generating
high-power levels over a wide frequency range is proposed,
analyzed, and numerically simulated. The CMA is a wideband
amplifier consisting of an annular relativistic electron beam in
a cylindrical waveguide, having an inner conductor and outer
layer of dielectric material all enclosed by an outer conductor.
The interaction between the hybrid TEM/TM subluminal mode
of the waveguide and the relativistic electron beam leads to
amplification over a wide range of input frequencies in the
gigahertz regime. The interaction is analyzed and simulated
in the linear and nonlinear regimes. We show that conversion
efficiencies can be enhanced by spatially tapering the dielectric
waveguide. In addition, by premodulating the electron beam,
efficiencies can be further enhanced and saturation distances
reduced. Conversion efficiencies greater than 25% have been
simulated by premodulating the electron beam and/or spatially
tapering the dielectric waveguide over distances of a few meters.
Simulation examples indicate that the ultrawideband CMA
configuration operating in the gigahertz regime can generate
power levels in the gigawatt range, employing electron beams
in the multi-kiloampere and low megaelectronvolt range.

Index Terms— Cherenkov maser, dielectric, wideband
amplifiers.

I. INTRODUCTION

COMPACT, high-power, and wideband amplifiers, oper-

ating in the gigahertz frequency regime, have important

applications, ranging from RF communications with ground

and airborne systems to electronic disruption. To achieve the

necessary waveform diversity and agility, high-power ampli-

fiers are needed for these applications.

This article presents an amplification mechanism capable of

amplifying very wideband radiation in the gigahertz regime,

at power levels in the gigawatt range using the present-day

technology. We propose a Cherenkov maser amplifier (CMA)

in which a high-current, relativistic electron beam is injected

and propagates in a dielectrically lined waveguide [1]. The

CMA analyzed and simulated in this article differs from

conventional Cherenkov amplifiers that utilize the slow TM

waveguide mode [2]–[10]. The CMA considered here interacts
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Fig. 1. Overall schematic of the CMA.

with a slow hybrid TEM waveguide mode [1]. An overall

schematic of the CMA is shown in Fig. 1. The waveguide

is lined with a dielectric material to reduce the phase velocity

of the hybrid TEM/TM mode to equal the injected electron

beam axial velocity. In this way, the injected electron beam can

couple to the hybrid TEM/TM subluminal mode and amplify

the input signal. A pure TE mode has a phase velocity equal

to c and no axial electric field. There is a TM component to

the hybrid mode since the mode has an axial electric field

component. The dielectric liner introduces an axial field and

velocity less than c. The extended frequency interaction region

provides extremely wideband amplification capability.

The dispersion diagram, indicating the interaction between

the hybrid TEM/TM subluminal waveguide mode and the

beam mode, is shown in Fig. 2. The coupling between the

electron beam mode and the slow TEM/TM waveguide mode

takes place over a wide range of frequencies. The operating

frequency is below the TM cutoff frequency. In this interaction,

the ratio of the axial electric field (bunching field) to the trans-

verse field, at resonance, is |Ez|/|Ex | ∼ 1/γ0. The relativistic

factor is in the range γ0 ∼ 2−3, corresponding to electron

beam energies of ∼0.5–1 MeV. Excitation of the hybrid

TEM/TM mode allows for coupling of the output radiation to a

transmitting antenna, by tapering away the dielectric layer, and

converting to a pure TEM mode. The efficiency of converting

kinetic beam energy to radiation can be enhanced by spatially

tapering the dielectric waveguide, i.e., phase velocity of the

interacting wave, and/or by premodulating the beam current

at the signal wavelength.

II. CMA MODEL

In the CMA, the electrons are restricted to move in the

z-direction by application of a large axial magnetic field. The

cross-sectional view of the CMA is shown in Fig. 3. The CMA

is azimuthally symmetric, i.e., ∂/∂ϕ = 0 and the minor radius

of the annular electron beam, 1rB , is much less than the major

radius, rB . Since 1rB/rB � 1, the analysis can be performed

in the Cartesian geometry.
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Fig. 2. Dispersion diagram showing the coupling between subluminal
hybrid TEM/TM and beam mode over a wide frequency range. Wideband
amplification takes place below the cutoff frequency of the TM mode.

Fig. 3. (a) Cross-sectional views of the CMA configuration. The dielectric
layer extends from x = x2 to x = x3 and 1xB � xB . (b) Cross-sectional
view of CMA configuration in the Cartesian geometry.

III. CMA DISPERSION RELATION

The dispersion relation is derived in the thin beam limit

1xB � xB . The waveguide is divided into three regions

consisting of vacuum gaps below and above the electron beam

and the dielectric layer, as shown in Fig. 3(b). The axial

electric field, responsible for modulating the electron beam,

is given by

Ez(x, z, t) = Re
[

Eh(x) exp(i(kz − ωt))
]

(1)

where E is the complex amplitude, h(x) denotes the transverse

profile, k is the complex wavenumber, and ω is the operating

frequency. The wave equation governing the evolution of the

axial field is (∂2/∂x2−c−2∂2/∂ t2)Ez = μ0(∂ J/∂ t+c2∂ρ/∂z).

In the linear regime, the current density and charge density are

J → δ J = iε0ωξB Ez and ρ → δρ = iε0kξB Ez , respectively,

where ξB = (ω2
B/γ 3

0 )(ω − v0k)−2, ωB = (q2nB/mε0)
1/2 is

the beam plasma frequency, nB is the beam density, γ0 =
(1 − v2

0/c2)−1/2 is the relativistic mass factor, and v0 is the

axial electron velocity.

The full dispersion relation is derived in Appendix A by

matching boundary conditions across all the regions shown in

Fig. 3(b) and is given by

n2k⊥ tan(k⊥xG) + k⊥,D tan
(

k⊥,D xD

)

= −ξB G(k, ω)H (k, ω)

(2)

where

G(k, ω) = k⊥1xB sin(k⊥(xB − x1))
cos(k⊥(x2 − xB))

cos(k⊥xG)
(3a)

H (k, ω) = k⊥,D tan
(

k⊥,D xD

)

+ n2k⊥ tan(k⊥(x2 − xB)) (3b)

k⊥ = (ω2/c2 − k2)1/2 is the transverse wavenumber in

regions 1 and 2, k⊥,D = (n2ω2/c2 − k2)1/2 is the transverse

wavenumber in region 3 (dielectric), n = (ε/ε0)
1/2 is the index

of refraction, ε is the dielectric constant of the dielectric liner,

xG = x2 − x1, and xD = x3 − x2. The left-hand side of (2)

represents the dielectric waveguide mode that is coupled to

the beam modes, ω − v0k ≈ 0.

The dispersion relation in (2) can be simplified by approx-

imating both sides in the vicinity of the beam mode, where

k ≈ ω/v0, so that k⊥ ≈ iα⊥ω/c and k⊥,D ≈ α⊥,Dω/c, where

α⊥ = 1/(β0γ0) and α⊥,D = (n2β2
0 − 1)1/2/β0. Expanding

the dielectric waveguide mode to third order in the tangent

arguments and the right-hand side of (2) in the vicinity of the

beam mode the dispersion relation reduces to

(k − kTEM(ω))(k − ω/v0)
2 = −K 3

B(ω) (4)

where

kTEM(ω) =
√

1 + χ(ω)
ω

vTEM

(5a)

χ(ω) =
(

α4
⊥x3

G + α4
⊥,D x3

D/n2
)

3(xG + xD)

ω2

c2
(5b)

vTEM = c

(

xG + xD/n2

xG + xD

)1/2

(5c)

K 3
B(ω) =

ω2
B/c2

2γ 5
0 β3

0

1xB
(

xG + xD/n2
)

×
(

sinh(α⊥(xB − x1)ω/c)

cosh(α⊥xGω/c)

)2
ω

c
. (5d)

The dispersion relation describes the coupling between the

subluminal hybrid TEM/TM mode, ω ≈ vTEMk, and the two

beam modes, ω ≈ v0k. The wavenumber associated with the

subluminal TEM-TM waveguide mode is kTEM(ω) and the

phase velocity of the hybrid TEM-TM wave is vph(ω) =
ω/kTEM(ω) = vTEM/(1 + χ(ω))1/2 < c. Maximum coupling

with the beam occurs when vTEM ≈ v0. At resonance, the
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ratio of the axial electric field to the transverse field is

|Ez|/|Ex | = 1/γ0, where γ0 ≈ 2−3, indicating that a substan-

tial fraction of the electromagnetic energy flux is in the axial

direction.

A further simplification of the dispersion relation can

be made so that the parameter dependence of the growth

rates and wavenumber shifts can be seen explicitly. In the

long-wavelength limit, the trigonometric functions in (2) are

simplified by making a small argument approximation, i.e.,

|k⊥xG| < 1 and |k⊥,D xD| < 1. The dispersion relation in (2)

near resonance, i.e., ω/k = vTEM ≈ v0, reduces to

(k − kTEM)(k − ω/v0)
2 = − f0(ω/c)3 (6)

where

f0 =
ω2

B

2γ 7
0 β5

0

1xB(xB − x1)
2

xG + xD/n2
. (7)

To obtain the spatial growth rate and wavenumber shift at

resonance, i.e., v0 = vTEM, we substitute k = ω/v0 + δk,

where |δk| � ω/v0. The wavenumber shift and the spatial

growth rate are δkR = Re(δk) and 0 = −δk I = −Im(δk),

respectively. It is convenient to introduce the unitless Budker

parameter, νB = (ω2
B/2c2)rB1xB = IB/(ICβ0), where rB is

the radius of the annular beam, IB is the beam current in

units of amperes, and IC = 4πmε0c3/q = 1.7 × 104 A.

In terms of Budker’s parameter, with rB replaced by xB , f0 =
νBγ −7

0 β−5
0 (xB −x1)

2(xB(xG +xD/n2))−1 and the wavenumber

shift and growth rate in the long-wavelength limit are given

by

δkR = (1/2) f
1/3

0 ω/c (8a)

0 =
(√

3/2
)

f
1/3

0 ω/c. (8b)

A. Conversion Efficiency Estimates Using Linear Theory

The conversion efficiency, in the absence of tapering and/or

premodulating the beam, can be estimated using the linear

wavenumber shift in (8a). The conversion efficiency is defined

as

η =
Pout

VB IB

=
1γ

γ0 − 1
(9)

where Pout is the output radiation power at saturation, VB =
(γ0 − 1)mc2/q is the electron beam voltage, and 1γ is

the average change in γ at saturation. The change in γ at

saturation can be estimated by assuming that at saturation,

the average velocity of the trapped electrons is equal to the

phase velocity of the trapping wave, ω/(k + δkR), which is

initially less than the beam velocity v0. The change in average

beam velocity at saturation is therefore 1vsat ≈ v0δkR/k

and the change in γ is 1γ ≈ β0γ
3
0 1vsat/c. The conversion

efficiency, using arguments from the linear theory, is ηL ≈
ftrapβ

2
0γ 3

0 (γ0 −1)−1δkR/k, and with the use of (8a), it is given

by

ηL ≈
ftrap

2

β0γ
3
0

(γ0 − 1)
f 1/3
o (10)

where ftrap is the fraction of electrons trapped, e.g., ftrap ∼ 1.

Fig. 4. Ratio of axial to transverse electric field within the waveguide for
various values of γph .

Fig. 5. Linear spatial growth rate (8b), as a function of frequency from
f = 1−3 GHz. The beam current is IB = 5 kA and the waveguide dimensions
and dielectric constant of the dielectric layer are listed in Table I.

Fig. 4 shows the ratio of the magnitude of the axial field to

the transverse field as a function of transverse distance within

the dielectric loaded waveguide for various values γph = γ0.

The values correspond to electron beam energies, from EB =
(γ0 − 1)mc2 = 0.5–1 MeV. Optimum coupling between the

electron beam and the subliminal hybrid TEM/TM waveguide

mode takes place when γph = γ0. The field ratio scales as

|Ez|/|Ex | ∼ 1/γ0, as pointed out earlier. The electron beam is

located near the dielectric surface, x = x2. The field ratio is

obtained by solving for the fields together with the dispersion

relation as described in Appendix A.

Fig. 5 shows the linear growth rate obtained from (6) for the

parameters given in Table I. The signal e-folding length, 1/0,

ranges from ≈1 m at f = 1 GHz to ≈0.3 m at f = 3 GHz.

B. Estimate of Output Power

The output radiation power at saturation, using the efficiency

in (10), is given by

Pout = ηL VB IB = 2.56 × 105 ftrapβ0γ
3
0 f

1/3
0 IB . (11)
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Fig. 6. Configuration and geometry of a beam segment of length L . The
beam segment consists of N = L/1zB subsegments that enter the dielectric
waveguide at z = 0.

The radiation power scaling in (11) indicates that output

powers in the gigawatt range can be generated by electron

beams having energies and currents in the megaelectronvolt

and multi-kiloampere range.

IV. NONLINEAR FORMULATION

The set of coupled, self-consistent equations for the spatial

evolution of the field amplitude and phase, in terms of averages

over the electron orbits, is described in detail in Appendix B.

In formulating the nonlinear dynamics of the CMA, the system

is assumed to be in the steady state such that the only time

dependence is at the operating frequency ω0. In the steady

state, the injected electron beam can be divided into segments

of length L = 2πv0/ω0. The electrons in each segment

undergo the same trajectory as the corresponding electron in

any other segment, however, displaced in time by integers of

2π/ω0. In the steady state, the fields vary in space, apart from

the carrier frequency ω0.

In the simulations, the number of electrons in a beam

segment is typically N = 100.

The beam segment L is divided into N subdivisions. These

subdivisions are shown in Fig. 6 as rings with radial thickness

1xB and length 1zB . The electrons in a particular subdivision

all undergo identical trajectories if 1zB is sufficiently small.

Therefore, a single electron can be assigned to a subsection

having an enhanced charge equal to the actual number of

electrons. The steady-state, nonlinear formulation is based

on solving the wave equation for Ez consistent with the

appropriate boundary conditions together with the electron

orbit equations. The coupled set of equations is expressed in

terms of the independent variable z.

The wave equation for the axial subluminal TEM/TM field

is

(

∂2/∂x2 + ∂2/∂z2 − c−2∂2/∂ t2
)

E(x, z, t)

= μ0

(

∂ J/∂ t + c2∂ρ/∂z
)

where the charge and current densities are given by sums over

individual electron orbits

ρ(x, z, t) = q1zB1xBnB

N
∑

j=1

g jδ
(

z − z̃ j (t)
)

δ(x −xB) (12a)

J (x, z, t) = q1zB1xBnB

N
∑

j=1

g j ṽ j (t)δ
(

z − z̃ j (t)
)

δ(x − xB).

(12b)

The axial position of the j th electron is z̃ j(z0 j , t) =
z0 j + v0t + δz̃ j (z0 j , t) and ṽ j (z0 j , t) = ∂ z̃ j (z0 j , t)/∂ t =
v0 j + ∂δz̃ j(z0 j , t)/∂ t is the velocity of the j th electron and

N = (2πv0/ω0)/1zB is the number of electrons in a beam

segment. The injected electron beam velocities are assumed to

be the same, i.e., v0 j = v0, cold beam. The modulation factor

g j(z0 j ) denotes the initial distribution of the injected electron

density, e.g., for an unmodulated injected beam g j = 1 and

the average is hg ji = N−1
∑N

j=1 g j = 1.

In the nonlinear formulation, the phase velocity of the trap-

ping wave can be spatially varied by tapering the wavenumber

kTEM(z) associated with the dielectric waveguide. Tapering

of the wavenumber is accomplished by spatially varying

the parameters of the dielectric waveguide. In addition, the

ability to premodulate the injected beam to enhance conversion

efficiency is accomplished by appropriately modifying the

factor g j . Examples of tapering kTEM(z) and premodulating

the beam to enhance efficiency are given in Section V.

The axial field experience by the j th electron is

Ez

(

x, z, z0 j

)

= Re
[

A0(z) exp
(

i9 j

(

z, z0, j

))]

(13)

where A0(z) = E0(0) exp(−
∫ z

0
δk I (z

0))dz0) is the field ampli-

tude and 9 j (z, z0, j ) is the phase with respect to the j th

electron and x = xB . The initial amplitude E0(0) is provided

by the input signal to the CMA. The complex wavenumber

of the field is k(z) = k0 + δkR + iδk I . The phase of the j th

electron is given by

9 j (z) =
∫ z

0

(

k0

(

z0) + ∂θ
(

z 0)/∂z0 −
ω0

V j(z0)

)

dz 0 + 90 j (14)

where V j(z, z0 j ) is the velocity of the j th electron at position

z, which entered the interaction region with initial condi-

tions, (9 j)z=0 = 90 j = −ω0z0 j/v0 and (∂9 j/∂z)z=0 =
k0(0)+ ∂θ(0)/∂z −ω0/v0. Using the relativistic Lorentz force

equation, the phase is shown in Appendix B-A to satisfy a

generalized pendulum equation given by

∂29 j (z)

∂z2
=

∂k0

∂z
+

∂2θ

∂z2
+

(ω0

c

)2
(

1

γ j

c

V j

)3

Ã0(z) cos 9 j(z)

(15)

where Ã0(z) = q A0(z)/(mcω0) is the unitless normalized

amplitude of the axial field.

The wave equation together with the sources in (12a)

and (12b) is solved using Green’s function method, which

considers the boundary conditions across the interfaces in the

dielectric waveguide. The result of this procedure, in Appendix

B, is a set of coupled equations for the axial field amplitude

and phase

2KShS̃(z)iR =

(

k2
0 − k2

TEM + 2k0

∂θ

∂z
+

(

∂θ

∂z

)2
)

Ã0(z)

−
(

02 +
∂0

∂z

)

Ã0(z) (16a)
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TABLE I

PARAMETERS USED IN SIMULATIONS

(

2k00 +
∂k0

∂z
+ 20

∂θ

∂z
+

∂2θ

∂z2

)

Ã0(z)

= −2KShS̃(z)iI (16b)

where 0(z) = −δk I (z) is the growth rate and θ(z) =
∫ z

0
δkR(z0)dz0 is the phase

hS̃(z)iR =
ω2

B

c2
1xBβ0

〈

g j c
2

γ 2
j V 2

j

(

sin 9 j −
γ 2

j

ω0

∂V j

∂z
cos 9 j

)〉

90

(17a)

hS̃(z)iI =
ω2

B

c2
1xBβ0

〈

g j c
2

γ 2
j V 2

j

(

cos 9 j +
γ 2

j

ω0

∂V j

∂z
sin 9 j

)〉

90

(17b)

V j(z) = ω0/(k0 + δkR − ∂9 j/∂z) and h. . .iψ0
=

(1/2π)
∫ 2π

0
(. . .)d90 j .

The set of coupled self-consistent nonlinear equations, (15),

(16a), (16b), (17a), and (17b), is numerically solved.

V. CMA SIMULATIONS

The parameters used in the following simulations are given

in Table I.

The coupled equations are solved in Mathematica. The

implicit differential-algebraic solver, with a residual method

for equation simplification, was used. Twelve-digit accuracy

and precision goals were used for all simulations.

Fig. 7(a) shows the signal power as a function of distance.

The signal frequency is f = 2 GHz and the unmodulated beam

current is IB = 5 kA. The input power was Pin = 10 kW and

the output power was Pout = 0.9 GW at z = 3.2 m. The

corresponding conversion efficiency versus distance is shown

Fig. 7. (a) Radiation power versus distance. Maximum power, Pout =
0.9 GW, is reached at a distance of 3.2 m. The signal frequency is 2 GHz
and the electron beam is unmodulated. The parameters are given in Table I.
(b) Conversion efficiency versus distance for the parameters used in (a).
A maximum efficiency of 23% reached at a distance of 3.2 m. The number
of beam subsegments was N = 100.

Fig. 8. Spatial growth rate and efficiency as a function of frequency over
the range f = 1−3 GHz. The beam current is IB = 5 kA and input power
is Pin = 10 kW. The solid circles • denote the growth rate and the circles ⊕
denote the conversion efficiency. The numbers in brackets give the saturation
distance in meters. The waveguide dimensions and dielectric constant of the
dielectric layer are listed in Table I.

in Fig. 7(b) and reaches a maximum of η = 23%. The number

of electron beam subsegments was N = 100.

Fig. 8 shows the growth rate obtained from simulations

in the linear (small-signal) regime and the corresponding

conversion efficiency over a frequency range of f = 1−3 GHz.
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Fig. 9. (a) Radiation power versus distance. The maximum power of
Pout = 0.75 GW is reached at a distance of 1.2 m. The signal frequency
is 2 GHz and the electron beam is 50% premodulated (sinusoidally) at the
signal wavelength, λ0 = 15 cm (2 GHz). The parameters for this example are
given in Table I. (b) Conversion efficiency versus distance for the parameters
used in Fig. 7(a) and for a 50% premodulation (sinusoidally) beam. Maximum
efficiency of 19% is reached at a distance of z = 1.2 m. The number of beam
subsegments was N = 100.

The numbers in brackets denote the saturation distance in

meters. The parameters used in these simulations are listed

in Table I. The growth rates obtained from the simulations

are approximately equal to the growth rates obtained from the

dispersion relation (6). The small difference is due to the fact

that in the simulations, the linear regime is not well defined.

The e-folding length associated with the field is not much less

than the interaction length, i.e., field saturation takes place

over short distances.

A. Premodulated Beam

In the second example shown in Fig. 9(a) and (b), the

parameters are the same as those used in Fig. 7(a) and (b),

except that the electron beam is premodulated. Fig. 9(a) shows

the radiation power as a function of distance. The signal

frequency is f = 2 GHz and the average premodulated beam

current is IB = 5 kA. The input power is Pin = 10 kW and the

output power is Pout = 0.75 GW at z = 1.2 m. The conversion

efficiency versus distance is shown in Fig. 9(b) and reaches a

maximum of η = 19%.

Fig. 10. Enhanced conversion efficiency versus distance for the parameters
used in Fig. 7(a). The maximum efficiency of 37% is reached at a distance of
z = 3.2 m. In this example, the waveguide wavenumber kTEM is decreased by
5% beginning at z = 2.0 m. The number of beam subsegments was N = 100.

B. Tapered Dielectric Waveguide

Conversion efficiency can be enhanced by decreasing the

phase velocity of the trapped electron just prior to saturation.

This is accomplished by spatially tapering (increasing) the

wavenumber kTEM in (5a). An example of this enhancement

method is shown in Fig. 10.

VI. SUMMARY AND DISCUSSION

The CMA is based on the interaction between the beam

mode and the subluminal hybrid TEM/TM mode of a dielec-

trically lined waveguide. The mode is below the TM cutoff

frequency and allows for amplification of an input signal

over a wide frequency range. Excitation of the subliminal

TEM/TM mode also allows for coupling the output radiation

to a transmitting antenna, by tapering away the dielectric

layer, and converting the mode to a pure TEM mode. In this

interaction, the ratio of the axial electric field to the transverse

field, at resonance, is |Ez|/|Ex | ≈ 1/γ0, where γ0 ∼ 2−3.

The analysis and simulations have been performed in the

linear regime and the nonlinear regimes. We show that con-

version efficiencies can be enhanced by appropriately spatially

tapering the dielectric waveguide and/or by premodulating the

injected electron beam. Further improvement in efficiency can

be achieved by the use of a depressed collector.

To restrict the beam trajectories to the axial direction,

an axial magnetic field is necessary. The requirement on the

magnetic field is that the cyclotron frequency is much greater

than the plasma frequency, i.e., �0 = q B0/(γ0m) � ωB/γ
3/2
0 ,

and this requires that B0 � (m/q)ωB/γ
1/2
0 . For the parameters

used in our examples, this inequality is well satisfied for

magnetic fields of B0 ≥ 1 kG.

Electron beams in the tens of kiloamperes and multi-

megaelectronvolt regime are readily available [11]. These

beams are generated from field emission cathodes and typi-

cally have a pulse duration in the tens of nanosecond regime

and can be rep-rated. For the parameters used in our exam-

ples, the e-folding time, i.e., (0v0)
−1, is typically a few
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nanoseconds. Therefore, the amplified signal will saturate

during a single electron beam pulse duration.

The potential variation due to self-fields across the electron

beam from x = xB ± 1xB introduces an effective velocity

spread (shear). The fractional spread in electron energy due

to self-field effects should be somewhat less than the cold

beam conversion efficiency. The fractional energy spread due

to self-fields is δγ /(γ0 − 1) = νB(1xB/rB)/(γ0 − 1). For

the parameters used in the simulations, δγ /(γ0 − 1) =
νB(1xB/rB)/(γ0 − 1) ≈ 0.02%, which is far less than the

conversion efficiencies.

In the following, some of the issues pertaining to the CMA

based on the interaction between the beam and the subluminal

TEM/TM mode are discussed. Charging of the dielectric by

the beam’s halo is a potential issue. In our examples, the outer

edge of the beam is 1.0 cm from the dielectric. Application

of a sufficiently large axial magnetic field would mitigate

dielectric charging. Power levels on the order of gigawatts

and multi-kiloampere electron beams can, of course, present

challenging breakdown issues. Dielectric breakdown, due to

the large radiation and self-space charge electric fields, must

be avoided. Self-fields on the dielectric can be reduced by

placing the dielectric layer on the inner wall, inside the annular

beam, rather than outside the beam. Low loss ceramics, such

as those in the magnesium–titanium oxide class, could provide

an appropriate dielectric material for the CMA. It is planned

that the 3-D, relativistic PIC code, Neptune [12], developed at

the Naval Research Laboratory, will be used to further evaluate

the CMA.

Typical parameters used in our simulation to generate

gigawatt power levels in the 1–3-GHz range are: beam currents

of ∼5 kA and beam energies of ∼1 MeV. Conversion efficien-

cies approaching 40% have been simulated by premodulating

the electron beam and spatially tapering the waveguide over

distances of a few meters. For input signal powers of 10 kW,

saturation occurs at distances of less than a few meters at

output powers greater than a gigawatt.

APPENDIX A

Here, the linear dispersion relation for the CMA interac-

tion is obtained. The geometry of the CMA is shown in

Fig. 3(a) and (b). The dispersion relation is derived in the limit

of a thin electron beam, i.e., 1xB � xG, xD, where xG =
x2 − x1 and xD = x3 − x1. The procedure involves matching

boundary conditions across regions I–III. The electron beam

density is assumed to be uniform and confined to the region

x ≤ xB ± 1xB/2 by a large axial magnetic field.

The axial electric field in region I (x1 ≤ x ≤ xB − 1xB/2)

is

Ez(x, z, t) = Re
[

A sin(k⊥(x − x1)) exp(iϕ(z, t))
]

. (A.1)

The axial electric field in region II (xB +1xB/2 ≤ x ≤ x2) is

Ez(x, z, t) = Re
[

B sin(k⊥(x − xB)) exp(iϕ(z, t))

+ C cos(k⊥(x − xB)) exp(iϕ(z, t))
]

. (A.2)

The axial electric field in region III (x2 < x < x3) is

Ez(x, z, t) = Re
[

D sin
(

k⊥,D(x − x3)
)

exp(iϕ(z, t))
]

. (A.3a)

In (A1)–(A3), A, B , C , and D are constant coefficients, k2
⊥ =

ω2/c2 − k2, k2
⊥,D = n2ω2/c2 − k2, and ϕ(z, t) = kz − ωt .

The Ex- and By-fields in regions I and II are

Ex = i
k

k2
⊥

∂ Ez

∂x
(A.4a)

By =
iω

c2k2
⊥

∂ Ez

∂x
. (A.4b)

The Ex- and By-fields in region III are

Ex = i
k

k2
⊥,D

∂ Ez

∂x
(A.5a)

By =
iω

c2k2
⊥,D

ε

ε0

∂ Ez

∂x
. (A.5b)

To match the magnetic field boundary condition across the thin

electron beam located at x = xB , the electron beam current

density in terms of the axial electric field is needed. The

perturbed beam current density is δ J = q(δnv0+nBδv), where

δn and δv are the perturbed density and axial velocity to first

order in the Ez field, respectively. The perturbed velocity and

density are given, respectively, by the relativistic Lorentz force

and continuity equation, (∂/∂ t + v0∂/∂z)δv = (q/m)γ −3
0 Ez

and (∂/∂ t + v0∂/∂z)δn+nB∂δv/∂z = 0, where Ez is the axial

electric field given in (A1). The electron beam current density

and the surface charge density are δ J = iε0ωξB Ez and δσ =
qδn1xB = iε0kξB1xB Ez , where ξB = (ω2

B/γ 3
0 )(ω − v0k)−2,

γ0 = (1 − v2
0/c2)−1/2, and ωB = (q2nB/mε0)

1/2 is the beam

plasma frequency.

The tangential component of the magnetic field across the

electron beam is discontinuous by the surface current density.

Equivalently, the normal component of the electric field is

discontinuous across the electron beam by the surface charge

density. Applying either boundary condition gives

B = A(k⊥ξB1xB sin(k⊥(xB − x1)) + cos(k⊥(xB − x1))).

(A.6)

Continuity of the tangential component of electric field across

the beam, at x = xB , and across the vacuum–dielectric

interface, at x = x2, gives, respectively

A sin(k⊥(xB − x1)) = C (A.7a)

B sin(k⊥(x2−xB))+C cos(k⊥(x2 − xB)) = −D sin
(

k⊥,D xD

)

.

(A.7b)

Finally, applying the condition that the tangential component

of magnetic field across the vacuum–dielectric interface is

continuous yields

n2k⊥D cos
(

k⊥,D xD

)

= kD,⊥ B cos(k⊥(x2 − xB))

− kD,⊥C sin(k⊥(x2 − xB)). (A.8)

Eliminating the coefficients, A, B , C , and D in (A6)–(A8)

yield the full dispersion relation in (2).
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APPENDIX B

Here, the nonlinear steady-state formulation of the CMA

is derived. In formulating the dynamics of the CMA, the

system is assumed to be in the steady state such that the time

dependence is at the operating frequency ω0. The steady-state,

nonlinear formulation is based on solving self-consistently, the

wave equation for Ez together with the electron orbit equa-

tions. The coupled set of equations is expressed in terms of

the independent variable z. In the steady state, the fields vary

along the axial position and oscillate at the wave frequency ω0.

The appendix is divided into two parts. In Appendix B-A,

the source term driving the subluminal TEM/TM field, i.e.,

the electron beam’s current density and charge density,

is expressed in terms of the electron’s relativistic nonlinear

trajectories. A generalized pendulum equation is derived,

which describes the nonlinear relativistic electron dynamics.

In Appendix B-B, the nonlinear spatial evolution of the

subluminal TEM/TM field, driven by the current and charge

density, is derived. Here, the nonlinear evolution of the field

amplitude and phase are self-consistently obtained by solving

the wave equation together with the appropriate boundary

conditions across the various interfaces in the dielectrically

lined waveguide. Finally, the results from Appendixes B-A

and B-B are combined to give a set of equations that self-

consistently describe the steady-state spatial evolution of the

fields.

A. Driving Source for the Fields

In formulating the nonlinear dynamics of the CMA, the

system is assumed to be in the steady state such that the only

time dependence is at the operating frequency ω0. In the steady

state, the fields vary along the axial position and oscillate

at the wave frequency ω0. In the steady state, the injected

electron beam can be divided into axial segments of length

L = 2πv0/ω0. The electrons in each segment undergo the

same trajectory as the corresponding electrons in any other

segment, however, displaced in time by integers of the wave

period 2π/ω0. Therefore, it is necessary to keep track of only

those electrons in a beam segment of length L = 2πv0/ω0.

The beam segment L is further divided into N subdivisions

of length 1zB (see Fig. 6). In the thin beam limit, 1xB

is small, and the electrons in a particular subdivision 1zB

all undergo identical trajectories. In the present model, the

injected electron beam velocities are taken to be equal, i.e.,

v0 j = v0, cold beam.

The governing equation for the subluminal TEM/TM field

is the wave equation
(

∂2

∂x2
+

∂2

∂z2
−

1

c2

∂2

∂ t2

)

E(x, z, t) = S(x, z, t) (B1)

where S(x, z, t) = μ0(∂ J/∂ t + c2∂ρ/∂z) and J and ρ are the

current and charge densities induced by E , respectively. The

charge and current density of the electron beam are given by

sums over electron orbits

ρ(x, z, t) = q1zB1xBnB

N
∑

j=1

g jδ
(

z− z̃ j(t)
)

δ(x −xB) (B2a)

J (x, z, t) = q1zB1xBnB

N
∑

j=1

g j ṽ j (t)δ
(

z − z̃ j (t)
)

δ(x − xB)

(B2b)

where z̃ j(z0 j , t) = z0 j + v0t + δz̃ j (z0 j , t) is the axial trajec-

tory of the j th electron in the subluminal TEM/TM mode,

ṽ j (z0 j , t) = v0 + ∂δz̃ j(z0 j , t)/∂ t is the velocity of the j th

electron, N = (2πv0/ω0)1zB is the number of electrons

in a beam segment, and the modulation parameter g j(z0 j )

denotes the initial distribution of the injected electrons, e.g.,

for an unmodulated beam, g j = 1. The average value of

the modulation parameters is unity, i.e., N−1
∑N

j=1 g j = 1.

The average is over electrons within a beam segment and

N = L/1zB = 2πv0/(1zBω0) is the number of electrons

in a beam segment. By premodulating the electron beam, the

conversion efficiency can be significantly enhanced. Efficiency

enhancement can also be achieved by spatially tapering the

phase velocity, ω0/k0(z), of the axial field when electrons

are deeply trapped. The wavenumber k0(z) can be varied

by tapering the dimensions of the waveguide or dielectric

liner. Simulation examples of tapering and premodulating the

electron beam to enhance efficiency are given in Section V.

The source term driving the axial field [see (B1)] is

S(x, z, t) = q1zB1xBnBμ0

N
∑

j=1

g j

×
(

∂

∂ t

(

ṽ j (t)δ
(

z − z̃ j (t)
))

+ c2 ∂

∂z
δ
(

z − z̃ j(t)
)

)

δ(x − xB). (B3)

It is convenient to transform from the independent variable t

to the independent variable z, i.e., steady-state regime. We first

replace δ(z − z̃ j (z0 j , t)), in (B2a) and (B2b), with

δ
(

z − z̃ j

(

z0 j , t
))

=δ
(

t − τ j

(

z, z0 j

))

∣

∣

∣

∣

∂τ j

∂z

∣

∣

∣

∣

=
δ
(

t−τ j

(

z, z0 j

))

|V j

(

z, z0 j

)

|
(B4)

where

τ j

(

z, z0 j

)

=
∫ z

0

dz0

V j

(

z 0, z0 j

) +
z0 j

v0

. (B5)

In (B4), τ j(z, z0 j ) and V j(z, z0 j ) represent the time and veloc-

ity of the j th electron at position z that entered the interaction

region, z = 0 plane, at time t0 j = z0 j/v0, respectively.

Transforming the independent variables in the source term

from t to z gives

S(x, z, t) = q1zB1xBnBμ0

N
∑

j=1

g j

×
(

∂

∂ t
δ
(

t − τ j (z)
)

+ c2 ∂

∂z

×
(

δ
(

t − τ j(z)
)

/|V j(z)|
)

)

δ(x − xB) (B6)

where we used the relations δ(z− z̃ j (t)) = δ(t −τ j (z))/|V j(z)|
and ṽ j (t) = ṽ j (τ j(z)) ≡ V j(z).
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Integrating the source term in (B6) over a wave period

and across the thin electron beam gives hS(z)i =
(ω0/2π)

∫ 2π/ω0

0
dt

∫ xB +1xB /2

xB −1xB /2
dx S(x, z, t) exp(−iφ(z, t)),

where

hS(z)i = q1zB1xB

nB

ε0

ω0

2π

N
∑

j=1

g j

×

(

−i
ω0

c2
exp

(

iω0τ j (z)
)

+
∂

∂z

(

exp
(

iω0τ j(z)
)

|V j(z)|

))

× exp

(

−i

∫ z

0

kR

(

z 0)dz0
)

. (B7)

It is convenient to express the orbit equations in terms of

the phase 9 j(z, z0 j ) = φ(z, τ j (z)) +
∫ z

0
δkR(z0)dz0 of the j th

electron with respect to the axial electric field. The phase of

the j th electron is given by

9 j

(

z, z0 j

)

=
∫ z

0

(

k0

(

z0) + δkR

(

z0) −
ω0

V j

(

z 0, z0 j

)

)

dz 0 + 90 j

(B8)

where the initial conditions are (9 j )z=0 = 90 j = −ω0z0 j/v0

and (∂9 j/∂z)z=0 = k0(0) + δkR(0) − ω0/v0. Writing (B7) in

terms of the phase 9 j gives

hS(z)i =
qnB

ε0

1xBv0

〈

g j

γ 2
j V 2

j

(

iω0 − γ 2
j

∂V j

∂z

)

exp
(

−i9 j

)

〉

90

(B9)

where the sum over individual electrons is replaced with an

average over the phases and h. . .i90
= (1/2π)

∫ 2π

0
(. . .)d90 j .

The equation of motion governing the phase 9 j can

be put into the form of a generalized pendulum equa-

tion. The axial velocity of the j th electron in the

time domain is given by the relativistic orbit equa-

tion, ∂ṽ j (z0 j , t)/∂ t = (q/m)γ̃ −3
j Ez(xB , z̃ j (z0 j , t), t), where

Ez(xB , z, t) = Re[E0(0) exp(i
∫ z

0
δk(z0)dz0) exp(iφ(z, t))],

φ(z, t) =
∫ z

0
k0(z

0)dz0 − ω0t , δk(z) = δkR + iδk I , and

γ̃ j(z) = (1 − (ṽ j/c)2)−1/2. In the steady state, the relativistic

orbit equation is V j∂V j/∂z = (q/m)γ −3
j Ez(xB, z, τ j (z, z0 j )),

where τ j(z, z0 j ) is given by (B5)

Ez

(

xB, z, τ j

)

= Re

[

E0(0) exp

(

i

∫ z

0

k
(

z0)dz0
)

exp
(

−iω0τ j

)

]

= Re
[

A0(z) exp
(

i9 j

(

z, z0, j

))]

and k(z) = k0 +δkR + iδk I . The orbit equation of the j th elec-

tron is V j∂V j/∂z = (q/2m)γ −3
j (z)A0(z) exp(i9 j(z, z0, j ) +

c.c., where A0(z) = E0(0) exp(−
∫ z

0
δk I (z

0))dz0) is the field

amplitude and γ j(z) = (1 − (V j/c)2)−1/2. The orbit equation

can be written in the form of a generalized pendulum equation

∂29 j(z)

∂z2
=

∂k0

∂z
+

∂δkR

∂z
+

q

m

ω0

V 3
j (z)γ

3
j (z)

A0(z) cos 9 j(z)

(B10)

where we used the relations, ∂V j/∂z = V 2
j (∂

29 j/∂z2 −
∂k0/∂z − ∂δkR/∂z)/ω0 and V j (z) = ω0/(k0 + δkR − ∂9 j/∂z).

B. Boundary Conditions

In this section, the evolution of the TEM/TM electric fields

is obtained in terms of the electron trajectories as described

by the generalized pendulum equation in (B10). The following

procedure involves solving the wave equation (B1) together

with the appropriate boundary conditions within the dielectric

waveguide. This is essentially an application of Green’s func-

tion method. This procedure results in a set of self-consistent

equations for the field amplitude and phase in terms of the

electron trajectories.

In the steady state, the CMA operates at a sin-

gle frequency ω0. Multiplying both sides of (B1) by

exp(iω0t) and integrating over a wave period, 0 to 2π/ω0,

give (∂2/∂x2 + ∂2/∂z2 + ω2
0/c2)Ez(x, z) = S0(x, z), where

E(x, z, t) = Re[Ez(x, z) exp(−iω0t)] and

S0(x, z) =
ω0

2π

∫ 2π/ω0

0

dt S(x, z, t) exp(iω0t). (B11)

Taking the Fourier transform in z gives

(∂2/∂x2 + k2
⊥)Êz(x, κ) = Ŝ0(x, κ), where k⊥ = (ω2

0/c2 −
κ2)1/2, Êz(x, κ) = (2π)−1/2

∫ ∞
−∞ Ez(x, z) exp(−iκz)dz,

and Ŝ0(x, κ) = (2π)−1/2
∫ ∞
−∞ S0(x, z) exp(−iκz)dz.

Integrating across the beam, from xB − ε to xB + ε,

gives ∂ Êz/∂x |x=xB +ε − ∂ Êz/∂x |x=xB −ε = Ŝ0(xB, κ),

where ε → 0. In Appendix A, the Fourier representation

of Ez in region I (x1 < x < xB) and region II

(xB < x < x2) is Êz(x, κ) = A sin(k⊥(x − x1)) and

Êz(x, κ) = B sin(k⊥(x − xB)) + C cos(k⊥(x − xB)),

respectively. Using the Ez-field representations in (A1)

and (A2), we find that ∂ Êz/∂x |x=xB +ε − ∂ Êz/∂x |x=xB −ε =
k⊥B − k⊥ A cos(k⊥(xB − x1)). The transformed wave equation

evaluated at the location of the beam x = xB is
(

B

A
− cos(k⊥(xB − x1))

)

k⊥ Êz(xB, κ)

sin(k⊥(xB − x1))
= Ŝ0(xB, κ)

(B12)

where Êz(xB, κ) = A sin(k⊥(xB − x1)). The ratio B/A is

obtained by applying boundary conditions across xB and

x2 [see (A7a), (A7b), and (A8)]. Applying the boundary

conditions and making the small argument, long-wavelength

approximation, we obtain

B

A
= −

n2k2
⊥(xB − x1)

k2
D,⊥xD + n2k2

⊥(x2 − xB)
. (B13)

Substituting (B13) into (B12)
(

κ2 − k2
TEM

)

Êz(xB, κ) = KS Ŝ0(xB, κ) (B14)

where fS = (xB − x1)
2(xG + xD/n2)−1k2

TEM/γ 2
TEM, k2

TEM =
(xD + xG)(xG + xD/n2)ω2

0/c2, and γTEM = n((xG + xD)/(n2 −
1)xD)1/2 ≈ γ0 near resonance. Taking the inverse Fourier

transform of (B14) gives the equation for the spatial evolution

of the field
(

∂2

∂z2
+ k2

TEM

)

Ez(xB, z) = − fS S0(xB , z). (B15)

The axial field is represented by

Ez(xB , z) = Re

[

E0(0) exp

(

i

∫ z

0

k
(

z0)dz0
)]
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= Re

[

A0(z) exp(iθ(z)) exp

(

i

∫ z

0

k0

(

z0)dz 0
)]

(B16)

where A0(z) = E0(0) exp(
∫ z

0
0(z0)dz0) is the amplitude,

0(z) = −δk I (z) is the growth rate, and θ(z) =
∫ z

0
δkR(z 0)dz0

is the phase. Substituting (B16) into (B15) and multiplying

both sides by exp(−i
∫ z

0
(k0 + δkR)dz0) give

2 fShS(z)i

=
(

(k0 + δkR)2 − δk2
I +

∂k I

∂z
− k2

TEM

)

A0(z)

+ i

(

2δk I (k0 + δkR) −
∂(k0 + δkR)

∂z

)

A0(z). (B17)

where hS(z)i =
∫ xB −ε

xB −ε
S0(x, z)dx exp(−i

∫ z

0
(k0 +δkR)dz0) and

k = k0 + δkR + iδk I .

To complete the nonlinear CMA formulation, the source

term hS(z)i in (B9) is substituted into the reduced wave

equation (B17). Equating real and imaginary terms gives the

final set of self-consistent nonlinear equations (16a) and (16b)

together with (17a) and (17b).
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