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Cherenkov Maser Amplifier

Paul Argyle™, Member, IEEE, and Phillip Sprangle, Life Fellow, IEEE

Abstract— A Cherenkov maser amplifier (CMA) for generating
high-power levels over a wide frequency range is proposed,
analyzed, and numerically simulated. The CMA is a wideband
amplifier consisting of an annular relativistic electron beam in
a cylindrical waveguide, having an inner conductor and outer
layer of dielectric material all enclosed by an outer conductor.
The interaction between the hybrid TEM/TM subluminal mode
of the waveguide and the relativistic electron beam leads to
amplification over a wide range of input frequencies in the
gigahertz regime. The interaction is analyzed and simulated
in the linear and nonlinear regimes. We show that conversion
efficiencies can be enhanced by spatially tapering the dielectric
waveguide. In addition, by premodulating the electron beam,
efficiencies can be further enhanced and saturation distances
reduced. Conversion efficiencies greater than 25% have been
simulated by premodulating the electron beam and/or spatially
tapering the dielectric waveguide over distances of a few meters.
Simulation examples indicate that the ultrawideband CMA
configuration operating in the gigahertz regime can generate
power levels in the gigawatt range, employing electron beams
in the multi-kiloampere and low megaelectronvolt range.

Index
amplifiers.

Terms— Cherenkov  maser, dielectric, wideband

I. INTRODUCTION

OMPACT, high-power, and wideband amplifiers, oper-

ating in the gigahertz frequency regime, have important
applications, ranging from RF communications with ground
and airborne systems to electronic disruption. To achieve the
necessary waveform diversity and agility, high-power ampli-
fiers are needed for these applications.

This article presents an amplification mechanism capable of
amplifying very wideband radiation in the gigahertz regime,
at power levels in the gigawatt range using the present-day
technology. We propose a Cherenkov maser amplifier (CMA)
in which a high-current, relativistic electron beam is injected
and propagates in a dielectrically lined waveguide [1]. The
CMA analyzed and simulated in this article differs from
conventional Cherenkov amplifiers that utilize the slow TM
waveguide mode [2]-[10]. The CMA considered here interacts

Manuscript received 16 February 2022; revised 28 April 2022; accepted
29 May 2022. Date of publication 13 June 2022; date of current version
13 July 2022. This work was supported by Multidisciplinary University
Research Initiative (MURI) (Exploration of Fundamental Limits to High
Power Electromagnetic (HPEM) Amplification) through the Air Force Office
of Scientific Research (AFOSR) under Grant FA9550-20-1-0409. The review
of this article was arranged by Senior Editor J. G. Leopold. (Corresponding
author: Paul Argyle.)

Paul Argyle was with the Department of Physics, Brigham Young Uni-
versity, Provo, UT 84602 USA. He is now with the Department of
Physics, University of Maryland, College Park, MD 20742 USA (e-mail:
paulargyle20 @gmail.com).

Phillip Sprangle is with the Institute for Research in Electronics and Applied
Physics, University of Maryland, College Park, MD 20742 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPS.2022.3180634.

Digital Object Identifier 10.1109/TPS.2022.3180634

B=B

relativistic

high-current amslified
premodulated dielectric layer it
rf output signal

—_—

electron beam

ﬁ

waveguide
(hybrid TEM/TM mode)

I

input rf signal
z=0 z

Fig. 1. Overall schematic of the CMA.

with a slow hybrid TEM waveguide mode [1]. An overall
schematic of the CMA is shown in Fig. 1. The waveguide
is lined with a dielectric material to reduce the phase velocity
of the hybrid TEM/TM mode to equal the injected electron
beam axial velocity. In this way, the injected electron beam can
couple to the hybrid TEM/TM subluminal mode and amplify
the input signal. A pure TE mode has a phase velocity equal
to ¢ and no axial electric field. There is a TM component to
the hybrid mode since the mode has an axial electric field
component. The dielectric liner introduces an axial field and
velocity less than c. The extended frequency interaction region
provides extremely wideband amplification capability.

The dispersion diagram, indicating the interaction between
the hybrid TEM/TM subluminal waveguide mode and the
beam mode, is shown in Fig. 2. The coupling between the
electron beam mode and the slow TEM/TM waveguide mode
takes place over a wide range of frequencies. The operating
frequency is below the TM cutoff frequency. In this interaction,
the ratio of the axial electric field (bunching field) to the trans-
verse field, at resonance, is |E,|/|Ey| ~ 1/y. The relativistic
factor is in the range yy, ~ 2—3, corresponding to electron
beam energies of ~0.5-1 MeV. Excitation of the hybrid
TEM/TM mode allows for coupling of the output radiation to a
transmitting antenna, by tapering away the dielectric layer, and
converting to a pure TEM mode. The efficiency of converting
kinetic beam energy to radiation can be enhanced by spatially
tapering the dielectric waveguide, i.e., phase velocity of the
interacting wave, and/or by premodulating the beam current
at the signal wavelength.

II. CMA MODEL

In the CMA, the electrons are restricted to move in the
z-direction by application of a large axial magnetic field. The
cross-sectional view of the CMA is shown in Fig. 3. The CMA
is azimuthally symmetric, i.e., /8¢ = 0 and the minor radius
of the annular electron beam, Arp, is much less than the major
radius, rp. Since Arp/rp < 1, the analysis can be performed
in the Cartesian geometry.

0093-3813 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 09,2023 at 19:57:43 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-1547-5143

2040
@ w=ck
™\ beam mode
O=vk
vy=olk<c
beam - TEM/TM
wide band mode couplying
amplification ~
subluminal hybrid TEM/TM mode
0
Fig. 2. Dispersion diagram showing the coupling between subluminal

hybrid TEM/TM and beam mode over a wide frequency range. Wideband
amplification takes place below the cutoff frequency of the TM mode.
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Fig. 3. (a) Cross-sectional views of the CMA configuration. The dielectric
layer extends from x = x to x = x3 and Axp < xp. (b) Cross-sectional
view of CMA configuration in the Cartesian geometry.

III. CMA DISPERSION RELATION

The dispersion relation is derived in the thin beam limit
Axp < xp. The waveguide is divided into three regions
consisting of vacuum gaps below and above the electron beam
and the dielectric layer, as shown in Fig. 3(b). The axial
electric field, responsible for modulating the electron beam,
is given by

E.(x,z,t) = Re[Eh(x) exp(i (kz — ot))] (1)
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where E is the complex amplitude, /(x) denotes the transverse
profile, k is the complex wavenumber, and o is the operating
frequency. The wave equation governing the evolution of the
axial field is (8% /0x*>—c720%/0t*)E. = uo(dJ /ot +c*dp/dz).
In the linear regime, the current density and charge density are
J — 6J = iggwlpE, and p — Jdp = icoklp E., respectively,
where &5 = (03/70)(@ — vok) 2, w5 = (g°np/meg)/? is
the beam plasma frequency, np is the beam density, yo =
1 - 0(2) /¢ ™12 is the relativistic mass factor, and vg is the
axial electron velocity.

The full dispersion relation is derived in Appendix A by
matching boundary conditions across all the regions shown in
Fig. 3(b) and is given by

n’ky tan(k xg) + ki ptan(ky pxp) = =Gk, 0)H (k, ®)
(2)

where

cos(ky(xa — xp))

3
cos(kixg) (32)
H(k, ) =kip tan(kl,DxD) + n’k, tan(k (x, — xp)) (3b)

Gk, ) = ki Axpsin(k, (x5 — x1))

ki, = (w*/c* — k*»)'/? is the transverse wavenumber in
regions 1 and 2, k) p = (n*w?/c* — k*)'/? is the transverse
wavenumber in region 3 (dielectric), n = (g/e0)'/? is the index
of refraction, ¢ is the dielectric constant of the dielectric liner,
Xg = x» — x1, and xp = x3 — x». The left-hand side of (2)
represents the dielectric waveguide mode that is coupled to
the beam modes, w — vk ~ 0.

The dispersion relation in (2) can be simplified by approx-
imating both sides in the vicinity of the beam mode, where
k=~ w/vg, so that k| ~ia w/c and k| p =~ a pw/c, where
a1 = 1/(Boyo) and a1 p = (n*B3 — 1)'/2/By. Expanding
the dielectric waveguide mode to third order in the tangent
arguments and the right-hand side of (2) in the vicinity of the
beam mode the dispersion relation reduces to

(k — krem (@) (k — @/v9)* = =K 3 (o) )
where
krem(w) = 1+ x(0) — (5a)
UTEM
_ (afxG +at pap/n?) o
1 (@) = 30 + 2p) p=) (5b)
_ (x¢+xp/n’ i
UTEM = C(m) (5¢)
1% (@) = a)%,/c2 Axp
3 =

2y05ﬁ8 (xG +xD/n2)
y (sinh(al(xg — xl)w/c))zw

cosh(a xgm/c) ¢ (5d)

The dispersion relation describes the coupling between the
subluminal hybrid TEM/TM mode, @ ~ vrgmk, and the two
beam modes, o ~ vgk. The wavenumber associated with the
subluminal TEM-TM waveguide mode is ktgm(w) and the
phase velocity of the hybrid TEM-TM wave is vpp(w) =
o/ krem(0) = vrem/(1 + x(@))'/? < ¢. Maximum coupling
with the beam occurs when vtgm ~ vg. At resonance, the
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ratio of the axial electric field to the transverse field is
|E.|/|Ex]| = 1/y0, where yo & 2—3, indicating that a substan-
tial fraction of the electromagnetic energy flux is in the axial
direction.

A further simplification of the dispersion relation can
be made so that the parameter dependence of the growth
rates and wavenumber shifts can be seen explicitly. In the
long-wavelength limit, the trigonometric functions in (2) are
simplified by making a small argument approximation, i.e.,
lkixg| < 1 and |k, pxp| < 1. The dispersion relation in (2)
near resonance, i.e., ®/k = vtpm =~ 09, reduces to

(k — krem) (k — @/v9)* = — fo(w/c)? (©6)

where

w% Axp(xp — x1)2

- 2y07,[)’g xG + xp/n?

To obtain the spatial growth rate and wavenumber shift at
resonance, i.e., b9 = vTgMm, We substitute k = w/vy + Ok,
where |0k] < w/vg. The wavenumber shift and the spatial
growth rate are okg = Re(dk) and I' = —dk; = —Im(dk),
respectively. It is convenient to introduce the unitless Budker
parameter, vy = (w%/Zcz)rB Axpg = Ig/(Icpy), where rp is
the radius of the annular beam, Iz is the beam current in
units of amperes, and Ic = 4zmeoc’/q = 1.7 x 10* A.
In terms of Budker’s parameter, with rp replaced by xp, fo =
vey By (xp—x1)*(xp(xg+xp/n*))~" and the wavenumber
shift and growth rate in the long-wavelength limit are given
by

Jfo )

Skr = (1/2) fy w/c
r = («/§/2) 1w/,

(8a)
(8b)

A. Conversion Efficiency Estimates Using Linear Theory

The conversion efficiency, in the absence of tapering and/or
premodulating the beam, can be estimated using the linear
wavenumber shift in (8a). The conversion efficiency is defined
as

g = Po Ay
VBIB yo—l

©)

where P, is the output radiation power at saturation, Vg =
(yo — 1)mc?/q is the electron beam voltage, and Ay is
the average change in y at saturation. The change in y at
saturation can be estimated by assuming that at saturation,
the average velocity of the trapped electrons is equal to the
phase velocity of the trapping wave, w/(k + Jdkg), which is
initially less than the beam velocity vg. The change in average
beam velocity at saturation is therefore Avg =~ vodkg/k
and the change in y is Ay ~ Byy3 Avsa/c. The conversion
efficiency, using arguments from the linear theory, is . ~
FuapBEvs (yo—1)"15kg /k, and with the use of (8a), it is given
by

~ ftrap ,30]/03
2 (yo— 1

where fi,p is the fraction of electrons trapped, e.g., fiap ~ 1.

£ (10)

nL
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Fig. 5. Linear spatial growth rate (8b), as a function of frequency from

f = 1-3 GHz. The beam current is /p = 5 kA and the waveguide dimensions
and dielectric constant of the dielectric layer are listed in Table I.

Fig. 4 shows the ratio of the magnitude of the axial field to
the transverse field as a function of transverse distance within
the dielectric loaded waveguide for various values y,n = 7o.
The values correspond to electron beam energies, from Ep =
(yo — Dmc? = 0.5-1 MeV. Optimum coupling between the
electron beam and the subliminal hybrid TEM/TM waveguide
mode takes place when yp, = yo. The field ratio scales as
|E.|/|E| ~ 1/y0, as pointed out earlier. The electron beam is
located near the dielectric surface, x = x,. The field ratio is
obtained by solving for the fields together with the dispersion
relation as described in Appendix A.

Fig. 5 shows the linear growth rate obtained from (6) for the
parameters given in Table I. The signal e-folding length, 1/ T,
ranges from ~1 m at f =1 GHz to 0.3 m at f = 3 GHz.

B. Estimate of Output Power
The output radiation power at saturation, using the efficiency
in (10), is given by

Pow = Ve lp = 2.56 x 10° fuwpfovi fo *Iz. (11
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Fig. 6. Configuration and geometry of a beam segment of length L. The
beam segment consists of N = L/Azp subsegments that enter the dielectric
waveguide at z = 0.

The radiation power scaling in (11) indicates that output
powers in the gigawatt range can be generated by electron
beams having energies and currents in the megaelectronvolt
and multi-kiloampere range.

IV. NONLINEAR FORMULATION

The set of coupled, self-consistent equations for the spatial
evolution of the field amplitude and phase, in terms of averages
over the electron orbits, is described in detail in Appendix B.
In formulating the nonlinear dynamics of the CMA, the system
is assumed to be in the steady state such that the only time
dependence is at the operating frequency wy. In the steady
state, the injected electron beam can be divided into segments
of length L = 2mwvg/wy. The electrons in each segment
undergo the same trajectory as the corresponding electron in
any other segment, however, displaced in time by integers of
27 /wyp. In the steady state, the fields vary in space, apart from
the carrier frequency wy.

In the simulations, the number of electrons in a beam
segment is typically N = 100.

The beam segment L is divided into N subdivisions. These
subdivisions are shown in Fig. 6 as rings with radial thickness
Axp and length Azp. The electrons in a particular subdivision
all undergo identical trajectories if Azp is sufficiently small.
Therefore, a single electron can be assigned to a subsection
having an enhanced charge equal to the actual number of
electrons. The steady-state, nonlinear formulation is based
on solving the wave equation for E, consistent with the
appropriate boundary conditions together with the electron
orbit equations. The coupled set of equations is expressed in
terms of the independent variable z.

The wave equation for the axial subluminal TEM/TM field
is
(0%/0x* + 8 /0z* — ¢ 2% Jot*)E(x, 2, 1)

= po(8J /0t + c*0p/0z)
where the charge and current densities are given by sums over

individual electron orbits

N
p(x,z,t) = qAzpAxpnp Zgjé(z - Zj(t))é(x—xg) (12a)
j=1
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N
J(x,z,1) = qAzpAxpng Zg,ﬁ,(r)&(z —Z;(1))d(x — xp).
j=1
(12b)

The axial position of the jth electron is Z;(z0;,f) =
20; + vot + 0Zj(z0j,t) and 0;(z0j,t) = 0Zj(z0j,1)/0t =
voj + 00Zj(z0j,1)/0t is the velocity of the jth electron and
N = (2mog/wo)/Azp is the number of electrons in a beam
segment. The injected electron beam velocities are assumed to
be the same, i.e., vo; = vo, cold beam. The modulation factor
g;(zo;) denotes the initial distribution of the injected electron
density, e.g., for an unmodulated injected beam g; = 1 and
the average is (g;) = N~ Zyzl gji=1

In the nonlinear formulation, the phase velocity of the trap-
ping wave can be spatially varied by tapering the wavenumber
ktem(z) associated with the dielectric waveguide. Tapering
of the wavenumber is accomplished by spatially varying
the parameters of the dielectric waveguide. In addition, the
ability to premodulate the injected beam to enhance conversion
efficiency is accomplished by appropriately modifying the
factor g;. Examples of tapering ktgm(z) and premodulating
the beam to enhance efficiency are given in Section V.

The axial field experience by the jth electron is

E.(x,z,20;) = Re[Ao(z) exp(i'¥;(z, 20,))]

where Ay(z) = Ep(0) exp(— foz ok (z")dz’) is the field ampli-
tude and ¥;(z, zo,;) is the phase with respect to the jth
electron and x = xp. The initial amplitude E((0) is provided
by the input signal to the CMA. The complex wavenumber
of the field is k(z) = ko + dkg + idk;. The phase of the jth
electron is given by

o

¥i(2) =/0 (ko(z/) +00(7) /07 — V@)
J

where V;(z, zo;) is the velocity of the jth electron at position
z, which entered the interaction region with initial condi-
tions, (le)z:O = lP()j = —CO()Z()]‘/D() and (ale/aZ)z:O =
ko(0) 4+ 00(0)/0z — wp/vg. Using the relativistic Lorentz force
equation, the phase is shown in Appendix B-A to satisfy a
generalized pendulum equation given by

529 o 2(1 ¢ 3 ~
+ 6_22 + (7) (y—] vj) Ao(Z) Ccos ‘Pj(Z)
(15)

13)

)dz/woj» (14)

MYi(2) _ oko
0z2 oz

where Ag(z) = qAo(z)/(mcwyp) is the unitless normalized
amplitude of the axial field.

The wave equation together with the sources in (12a)
and (12b) is solved using Green’s function method, which
considers the boundary conditions across the interfaces in the
dielectric waveguide. The result of this procedure, in Appendix
B, is a set of coupled equations for the axial field amplitude
and phase

_ 00 20\ -
2Ks(S@))r = (ké — ke + 2k06_z + (6_1) )AO(Z)
- (r2 + E)Ao(z) (16a)
0z
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TABLE I
PARAMETERS USED IN SIMULATIONS

beam energy E, =0.74MeV (y, =2.5)
average beam current I, =5kA
Budker's parameter v, =0.31
signal frequency f=1-3GHz
signal wavelength A, =30-10cm
input signal power P, =10kW
dielectric constant £=147¢,
inner conductor radius x, =0.05m
beam major radius x; =0.085m
beam minor radius Ax, =0.01m
inner radius of dielectric liner | x, =0.1m
outer radius of dielectric liner | x; =0.15m
oko a0 %0\ -
2keT + —+2I'—+ — )A
( ol + Py + 6z+6z2) 0(2)
= —2K5(8(2)): (16b)
where T'(z) = —0dk;(z) is the growth rate and 6(z) =
Jo 0kg(z')dz' is the phase
2 2 2
(S@)r = w—zBAxBﬁo % sin‘I—‘j—y—J—Jcos‘I—‘j
c “V wy 07
yj J ¥
(17a)
2 2 2
» . P 3 .
(S(2)) = w—ngXBﬁo gzjcz cos‘I—‘j—i-—j—jsm‘I—‘j
c “V: wy 07
yj J ¥
(17b)

VJ'(Z) = wy/(ko + Okr — 0¥;/0z) and (.. ‘>W0 =
(1/27) [77 (.. )d¥o;.

The set of coupled self-consistent nonlinear equations, (15),
(16a), (16b), (17a), and (17b), is numerically solved.

V. CMA SIMULATIONS

The parameters used in the following simulations are given
in Table I.

The coupled equations are solved in Mathematica. The
implicit differential-algebraic solver, with a residual method
for equation simplification, was used. Twelve-digit accuracy
and precision goals were used for all simulations.

Fig. 7(a) shows the signal power as a function of distance.
The signal frequency is f = 2 GHz and the unmodulated beam
current is /g = 5 kA. The input power was P, = 10 kW and
the output power was Py = 0.9 GW at z = 3.2 m. The
corresponding conversion efficiency versus distance is shown
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Fig. 7.  (a) Radiation power versus distance. Maximum power, Py, =

0.9 GW, is reached at a distance of 3.2 m. The signal frequency is 2 GHz
and the electron beam is unmodulated. The parameters are given in Table L.
(b) Conversion efficiency versus distance for the parameters used in (a).
A maximum efficiency of 23% reached at a distance of 3.2 m. The number
of beam subsegments was N = 100.
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Fig. 8. Spatial growth rate and efficiency as a function of frequency over

the range f = 1—3 GHz. The beam current is /g = 5 kA and input power
is P, = 10 kW. The solid circles e denote the growth rate and the circles @
denote the conversion efficiency. The numbers in brackets give the saturation
distance in meters. The waveguide dimensions and dielectric constant of the
dielectric layer are listed in Table I.

in Fig. 7(b) and reaches a maximum of # = 23%. The number
of electron beam subsegments was N = 100.

Fig. 8 shows the growth rate obtained from simulations
in the linear (small-signal) regime and the corresponding
conversion efficiency over a frequency range of f = 1-3 GHz.
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Fig. 9. (a) Radiation power versus distance. The maximum power of

Pyt = 0.75 GW is reached at a distance of 1.2 m. The signal frequency
is 2 GHz and the electron beam is 50% premodulated (sinusoidally) at the
signal wavelength, 1o = 15 cm (2 GHz). The parameters for this example are
given in Table 1. (b) Conversion efficiency versus distance for the parameters
used in Fig. 7(a) and for a 50% premodulation (sinusoidally) beam. Maximum
efficiency of 19% is reached at a distance of z = 1.2 m. The number of beam
subsegments was N = 100.

The numbers in brackets denote the saturation distance in
meters. The parameters used in these simulations are listed
in Table I. The growth rates obtained from the simulations
are approximately equal to the growth rates obtained from the
dispersion relation (6). The small difference is due to the fact
that in the simulations, the linear regime is not well defined.
The e-folding length associated with the field is not much less
than the interaction length, i.e., field saturation takes place
over short distances.

A. Premodulated Beam

In the second example shown in Fig. 9(a) and (b), the
parameters are the same as those used in Fig. 7(a) and (b),
except that the electron beam is premodulated. Fig. 9(a) shows
the radiation power as a function of distance. The signal
frequency is f = 2 GHz and the average premodulated beam
current is Iz = 5 kA. The input power is P, = 10 kW and the
output power is Poye = 0.75 GW at z = 1.2 m. The conversion
efficiency versus distance is shown in Fig. 9(b) and reaches a
maximum of # = 19%.
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Fig. 10. Enhanced conversion efficiency versus distance for the parameters
used in Fig. 7(a). The maximum efficiency of 37% is reached at a distance of
z = 3.2 m. In this example, the waveguide wavenumber ktgm is decreased by
5% beginning at z = 2.0 m. The number of beam subsegments was N = 100.

B. Tapered Dielectric Waveguide

Conversion efficiency can be enhanced by decreasing the
phase velocity of the trapped electron just prior to saturation.
This is accomplished by spatially tapering (increasing) the
wavenumber ktgy in (5a). An example of this enhancement
method is shown in Fig. 10.

VI. SUMMARY AND DISCUSSION

The CMA is based on the interaction between the beam
mode and the subluminal hybrid TEM/TM mode of a dielec-
trically lined waveguide. The mode is below the TM cutoff
frequency and allows for amplification of an input signal
over a wide frequency range. Excitation of the subliminal
TEM/TM mode also allows for coupling the output radiation
to a transmitting antenna, by tapering away the dielectric
layer, and converting the mode to a pure TEM mode. In this
interaction, the ratio of the axial electric field to the transverse
field, at resonance, is |E.|/|E¢| & 1/y0, where yo ~ 2-3.
The analysis and simulations have been performed in the
linear regime and the nonlinear regimes. We show that con-
version efficiencies can be enhanced by appropriately spatially
tapering the dielectric waveguide and/or by premodulating the
injected electron beam. Further improvement in efficiency can
be achieved by the use of a depressed collector.

To restrict the beam trajectories to the axial direction,
an axial magnetic field is necessary. The requirement on the
magnetic field is that the cyclotron frequency is much greater
than the plasma frequency, i.e., Qo = g Bo/(yom) > wB/yS/z,
and this requires that By > (m/q)wg/ yol /2. For the parameters
used in our examples, this inequality is well satisfied for
magnetic fields of By > 1 kG.

Electron beams in the tens of kiloamperes and multi-
megaelectronvolt regime are readily available [11]. These
beams are generated from field emission cathodes and typi-
cally have a pulse duration in the tens of nanosecond regime
and can be rep-rated. For the parameters used in our exam-
ples, the e-folding time, i.e., (I'vg)~', is typically a few
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nanoseconds. Therefore, the amplified signal will saturate
during a single electron beam pulse duration.

The potential variation due to self-fields across the electron
beam from x = xp £ Axp introduces an effective velocity
spread (shear). The fractional spread in electron energy due
to self-field effects should be somewhat less than the cold
beam conversion efficiency. The fractional energy spread due
to self-fields is oy /(yo — 1) = vg(Axp/rp)/(yo — 1). For
the parameters used in the simulations, dy /(yo — 1) =
vg(Axg/rg)/(yo — 1) = 0.02%, which is far less than the
conversion efficiencies.

In the following, some of the issues pertaining to the CMA
based on the interaction between the beam and the subluminal
TEM/TM mode are discussed. Charging of the dielectric by
the beam’s halo is a potential issue. In our examples, the outer
edge of the beam is 1.0 cm from the dielectric. Application
of a sufficiently large axial magnetic field would mitigate
dielectric charging. Power levels on the order of gigawatts
and multi-kiloampere electron beams can, of course, present
challenging breakdown issues. Dielectric breakdown, due to
the large radiation and self-space charge electric fields, must
be avoided. Self-fields on the dielectric can be reduced by
placing the dielectric layer on the inner wall, inside the annular
beam, rather than outside the beam. Low loss ceramics, such
as those in the magnesium—titanium oxide class, could provide
an appropriate dielectric material for the CMA. It is planned
that the 3-D, relativistic PIC code, Neptune [12], developed at
the Naval Research Laboratory, will be used to further evaluate
the CMA.

Typical parameters used in our simulation to generate
gigawatt power levels in the 1-3-GHz range are: beam currents
of ~5 kA and beam energies of ~1 MeV. Conversion efficien-
cies approaching 40% have been simulated by premodulating
the electron beam and spatially tapering the waveguide over
distances of a few meters. For input signal powers of 10 kW,
saturation occurs at distances of less than a few meters at
output powers greater than a gigawatt.

APPENDIX A

Here, the linear dispersion relation for the CMA interac-
tion is obtained. The geometry of the CMA is shown in
Fig. 3(a) and (b). The dispersion relation is derived in the limit
of a thin electron beam, i.e., Axp < x5, xp, where xg =
x» — x1 and xp = x3 — x;. The procedure involves matching
boundary conditions across regions I-IIl. The electron beam
density is assumed to be uniform and confined to the region
x <xp £ Axg/2 by a large axial magnetic field.

The axial electric field in region I (x| < x < xp — Axp/2)
is

E.(x,z,t) = Re[Asin(ky(x — x1)) exp(ip(z, 1))]. (A.1)
The axial electric field in region II (xp + Axp/2 < x < xp) is

E.(x,z,1) = Re[Bsin(k.(x — xp)) exp(ip(z, 1))

+ C cos(ky (x — xp))exp(ip(z,1))]. (A.2)
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The axial electric field in region III (x; < x < x3) is
E.(x,z,1) = Re[Dsin(k.p(x — x3)) exp(io(z,1))]. (A.3a)

In (A1)-(A3), A, B, C, and D are constant coefficients, ki =
w?/c? — k2, kiD =n’w?/c* —k? and ¢(z,t) = kz — wt.
The E,- and B,-fields in regions I and II are

 k OF,
E,=i5— (A.4a)
k1 ox
io OF,
B, = . A.4b
T2 ax (A.4b)
The E,- and B,-fields in region III are
k OE
kip ox
io ¢ 0F;
By = —— . (A.5b)

27,2 P
c kL,D gy OX

To match the magnetic field boundary condition across the thin
electron beam located at x = xp, the electron beam current
density in terms of the axial electric field is needed. The
perturbed beam current density is 6J = g(dnvg+ngov), where
on and dv are the perturbed density and axial velocity to first
order in the E, field, respectively. The perturbed velocity and
density are given, respectively, by the relativistic Lorentz force
and continuity equation, (8/0t + vo8/0z)0v = (q/m)yo_SEZ
and (0/0t + v90/0z)on+ngdov/0z = 0, where E. is the axial
electric field given in (A1). The electron beam current density
and the surface charge density are dJ = igywép E, and do =
gonAxp = icokép AxpE,, where &g = (03/73) (@ — vok) 2,
vo = (1 —03/c?)7V2, and wp = (¢*np/mey)'/? is the beam
plasma frequency.

The tangential component of the magnetic field across the
electron beam is discontinuous by the surface current density.
Equivalently, the normal component of the electric field is
discontinuous across the electron beam by the surface charge
density. Applying either boundary condition gives

B = A(k1¢pAxpsin(ky (xp — x1)) + cos(ky (xp — x1))).
(A.6)

Continuity of the tangential component of electric field across
the beam, at x = xp, and across the vacuum-dielectric
interface, at x = x,, gives, respectively

A sin(kl(xg — )C])) =C (A7a)
B sin(kl(xz—xB))—i-C COS(kl(XQ —xp)) = —D sin(kL,DxD).
(A.7b)

Finally, applying the condition that the tangential component
of magnetic field across the vacuum-—dielectric interface is
continuous yields

I’lzle COS(kL,DXD) = kD,LB COS(kl(XQ — XB))

—kp, 1 Csin(ky(x2 —xp)). (A.8)

Eliminating the coefficients, A, B, C, and D in (A6)—(AS8)
yield the full dispersion relation in (2).
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APPENDIX B

Here, the nonlinear steady-state formulation of the CMA
is derived. In formulating the dynamics of the CMA, the
system is assumed to be in the steady state such that the time
dependence is at the operating frequency wy. The steady-state,
nonlinear formulation is based on solving self-consistently, the
wave equation for E, together with the electron orbit equa-
tions. The coupled set of equations is expressed in terms of
the independent variable z. In the steady state, the fields vary
along the axial position and oscillate at the wave frequency .

The appendix is divided into two parts. In Appendix B-A,
the source term driving the subluminal TEM/TM field, i.e.,
the electron beam’s current density and charge density,
is expressed in terms of the electron’s relativistic nonlinear
trajectories. A generalized pendulum equation is derived,
which describes the nonlinear relativistic electron dynamics.
In Appendix B-B, the nonlinear spatial evolution of the
subluminal TEM/TM field, driven by the current and charge
density, is derived. Here, the nonlinear evolution of the field
amplitude and phase are self-consistently obtained by solving
the wave equation together with the appropriate boundary
conditions across the various interfaces in the dielectrically
lined waveguide. Finally, the results from Appendixes B-A
and B-B are combined to give a set of equations that self-
consistently describe the steady-state spatial evolution of the
fields.

A. Driving Source for the Fields

In formulating the nonlinear dynamics of the CMA, the
system is assumed to be in the steady state such that the only
time dependence is at the operating frequency wy. In the steady
state, the fields vary along the axial position and oscillate
at the wave frequency wp. In the steady state, the injected
electron beam can be divided into axial segments of length
L = 27mvo/wy. The electrons in each segment undergo the
same trajectory as the corresponding electrons in any other
segment, however, displaced in time by integers of the wave
period 27 /awy. Therefore, it is necessary to keep track of only
those electrons in a beam segment of length L = 2z vg/wy.
The beam segment L is further divided into N subdivisions
of length Azp (see Fig. 6). In the thin beam limit, Axp
is small, and the electrons in a particular subdivision Azg
all undergo identical trajectories. In the present model, the
injected electron beam velocities are taken to be equal, i.e.,
vgj = Vg, cold beam.

The governing equation for the subluminal TEM/TM field
is the wave equation

2 2 1 82
(% aa—zz—c—z%)E(x,z,t)zS(x,z,t) (B1)
where S(x, z,1) = uo(8J /0t + c*dp/dz) and J and p are the
current and charge densities induced by E, respectively. The
charge and current density of the electron beam are given by
sums over electron orbits

N
p(x,z,t) = qAzpAxpnp Zgjé(z—zj(t))é(x—xg) (B2a)
j=1

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 50, NO. 7, JULY 2022

N

J()C,Z,[) = C]AZBA)CBI’ZB Zgjﬁj([)é(z —Zj(t))é(x —)CB)
j=1

(B2b)

where Z;(zoj,t) = zoj + vot + 0Zj(20j, ) is the axial trajec-
tory of the jth electron in the subluminal TEM/TM mode,
Dj(zoj,1) = vo + 00Zj(20j,1)/0t is the velocity of the jth
electron, N = (2mvg/wo)Azp is the number of electrons
in a beam segment, and the modulation parameter g;(zo;)
denotes the initial distribution of the injected electrons, e.g.,
for an unmodulated beam, g; = 1. The average value of
the modulation parameters is unity, i.e., N~ Z;V:l g = L
The average is over electrons within a beam segment and
N = L/Azg = 27mvg/(Azpwy) is the number of electrons
in a beam segment. By premodulating the electron beam, the
conversion efficiency can be significantly enhanced. Efficiency
enhancement can also be achieved by spatially tapering the
phase velocity, woy/ko(z), of the axial field when electrons
are deeply trapped. The wavenumber k((z) can be varied
by tapering the dimensions of the waveguide or dielectric
liner. Simulation examples of tapering and premodulating the
electron beam to enhance efficiency are given in Section V.
The source term driving the axial field [see (B1)] is

N

S(x,z,t) = qAZBA.XBnB,UOZgj
Jj=1

x (%(51-0)5(1 —-z;(1))

—}—62%5(1 - Zj(t)))é(x —xp). (B3

It is convenient to transform from the independent variable ¢
to the independent variable z, i.e., steady-state regime. We first
replace d(z — Z;(zo;, 1)), in (B2a) and (B2b), with

i ot o(t—1i(z, z0;
5(Z—Zj(Z0j,l))=5(l—Tj(Z,ZOJ))’a_ZJ :w
> 20
(B4)
where
z dz’ Z0;
(z,z0;) = S B5
7;(z, 205) /ij(z’,ZOj) % (B3)

In (B4), 7;(z, zoj) and V;(z, zo;) represent the time and veloc-
ity of the jth electron at position z that entered the interaction
region, z = 0 plane, at time fy; = 2zo;/vo, respectively.
Transforming the independent variables in the source term
from ¢ to z gives

N
S(x,z,t) = qAzpAxgnpug Zgj
j=1
0 0
—o(t — 7; 27
X(@t (-n@)+es

x (o(r — Tj(Z))/IVj(Z)I))5(x —xp) (B6)

where we used the relations d(z—Z; (1)) = d(r—7;(2))/|V;(2)]
and 7;(1) = 0;(z;(z)) = V;(2).
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Integrating the source term in (B6) over a wave period
and across the thin electron beam gives (S(z)) =

(@o/27) Jo™'™ dt [P0 dxS(x, 2, 1) exp(—id (2, 1)),
where

N
np o
S(z)) = qAzgA ——§ ;
(8(z)) = qAzpAxp e - 8j

. y a . (
x(—l % exp(i@ot;(2))+ a_z(expfl‘f%m))

y exp(—i / sz(z’)dz/).

It is convenient to express the orbit equations in terms of
the phase ¥;(z, z0;) = ¢(z, 7(z)) + fozékR(z/)dz’ of the jth
electron with respect to the axial electric field. The phase of
the jth electron is given by

() - | (ko<z’> + o) — ﬁ)d L,
J H ]

(B3)

(B7)

where the initial conditions are (¥;).—o = Yo; = —woz0;/v0
and (0Y;/0z).=0 = ko(0) + 0kg(0) — wo/vo. Writing (B7) in
terms of the phase ¥; gives

(S) = q—BAvao %(iwo - yjz—J) exp(—i¥;)
€0 yiV; 0z %
(B9)

where the sum over individual electrons is replaced with an
average over the phases and (...)y, = (1/27) fozz (...)d%¥o;.

The equation of motion governing the phase ¥; can
be put into the form of a generalized pendulum equa-
tion. The axial velocity of the jth electron in the
time domain is given by the relativistic orbit equa-
tion, 00;(zo;,1)/0t = (q/m)fj_SEz(xB,Zj(zoj,t),t), where
E.(xg.21) = Re[Eo(0)expli [ ok(z)dz) expligh(z, 1),
Pz, 1) = [, ko(z)dz' — wot, Sk(z) = Jkg + idk;, and
7)) = (1 — (;/c)*) /2. In the steady state, the relativistic
orbit equation is V;0V;/dz = (q/m)yj*SEz(xB,z, 7;(2, 205)),
where 7;(z, zo;) is given by (B5)

Z
Ez(xB, z, rj) = Re[EO(O) exp(i/ k(z/)dz’) exp(—iworj):|
0
= RC[A()(Z) exp(i‘I’j (Z, ZO,j))]
and k(z) = ko+ kg +iodk;. The orbit equation of the jth elec-
tron is V;0V;/0z = (g/2m)y;>(2)Ao(z) exp(i¥;(z, 20.)) +
c.c., where Ag(z) = Eo(0) exp(— fo“ 0k;(z'))dz’) is the field
amplitude and y,(z) = (1 — (V;/c)?)~"/2. The orbit equation

can be written in the form of a generalized pendulum equation

62\PJ(Z) . 6_](0 65kR q (O]

= Ap(z)cos¥(z

07> az o0z mV}(2)y() o2) 1@
(B10)
where we used the relations, dV;/0z = ij(@z‘l—‘j/@zz —

Oko/0z — 00kr/0z)/wy and V;(z) = wo/ (ko + okgr — 0V ;/0z).
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B. Boundary Conditions

In this section, the evolution of the TEM/TM electric fields
is obtained in terms of the electron trajectories as described
by the generalized pendulum equation in (B10). The following
procedure involves solving the wave equation (B1) together
with the appropriate boundary conditions within the dielectric
waveguide. This is essentially an application of Green’s func-
tion method. This procedure results in a set of self-consistent
equations for the field amplitude and phase in terms of the
electron trajectories.

In the steady state, the CMA operates at a sin-
gle frequency wo. Multiplying both sides of (Bl) by
exp(impt) and integrating over a wave period, 0 to 27 /o,
give (0%/0x* 4 02/0z> + 0} /c*)E (x,2) = So(x,z), where
E(x,z,t) = Re[E,(x, z) exp(—iwpt)] and

o 27 [ )
So(x,z2) = E/ dtS(x,z,t)exp(iwot). (B11)
0

Taking the Fourier transform in Z gives
(82/6x2+ki)Ez(x,K) = So(x, k), where k, = (w3 /c? —
V2 Bk = Qr) V2 [ E.(x, 2) exp(—ik2)dz,
and  So(x,x) = Qr) 2 [% So(x,z)exp(—ixz)dz.
Integrating across the beam, from xp — etoxp + e,
gives OF./0x|—gyte — OE:/0xlimy—e = Solxp,x),
where ¢ — 0. In Appendix A, the Fourier representation
of E, in region I (x; < x < xp) and region II
(xg < x < x)is E,(x,x) = Asin(k.(x — x;)) and
E.(x,x) = Bsin(ki(x — xp)) + Ccostki(x — x3)),
respectively. Using the E.-field representations in (Al)
and (A2), we find that 0E./0x|—x,1e — OE./0X|xmry—s =
ki1 B —kjAcos(k; (xg —x1)). The transformed wave equation
evaluated at the location of the beam x = xp is

(g —cos(k (xp — xl))) kLB (xg, )

Sk )

(B12)

where E,(xg,x) = Asin(k,(xg — x1)). The ratio B/A is
obtained by applying boundary conditions across xp and
Xy [see (A7a), (A7b), and (A8)]. Applying the boundary
conditions and making the small argument, long-wavelength
approximation, we obtain

B 212 _
B rhtezx) (B13)
A ki 1 xp +n*ki(x2 — xp)
Substituting (B13) into (B12)
(k2 = K2pn) E- (x5, 1) = K580 (xp, k) (B14)

where fs = (xp — x1)*(x¢ + xp/n*) " kpm/7iems Kiem =
(xp+xg)(xg +xp/n?)f/c*, and yrpm = n((xg +xp)/(n* —
1)xp)'/? A~ yo near resonance. Taking the inverse Fourier
transform of (B14) gives the equation for the spatial evolution
of the field

62
(8_z2 +k%EM)Ez(xB,Z) = —fsSo(xs, 2). (B15)

The axial field is represented by

EZ()CB,Z) = Re|:E0(0) eXp(l' /Zk(z/)dzr):|
0
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4
= Re|:A0(z) exp(if(z)) exp(i/ ko(z')dz/)i|
0
(B16)
where Ag(z) = Ey(0) exp(foZ I'(z)dz") is the amplitude,
I'(z) = —6k;(z) is the growth rate, and 0(z) = [; dkg(z')dz’

is the phase. Substituting (B16) into (B15) and multiplying
both sides by exp(—i [; (ko + dkg)dz') give

2f5(S(2))
= ((ko + 0kg)* — ok] + %kzl - k%EM)AO(Z)
+i(25k1 (ko + okg) — a(k%zékle))Ao(Z) (B17)

where (S(z)) = ["77 So(x, 2)dx exp(—i [ (ko+kg)dz') and

Xp—¢&

k = ko + okg + iok;.

To complete the nonlinear CMA formulation, the source
term (S(z)) in (B9) is substituted into the reduced wave
equation (B17). Equating real and imaginary terms gives the
final set of self-consistent nonlinear equations (16a) and (16b)
together with (17a) and (17b).
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