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This paper proposes a supervised multinomial Bayesian learning algorithm for breast cancer detection using
terahertz (THz) imaging of freshly excised murine tumors. The proposed algorithm utilizes a multinomial
Bayesian probit regression approach, which establishes the link between THz data and classification results by
using two different models, a polynomial regression model and a kernel regression model. Such a model-based
learning approach employs only a small number of model parameters, thus it requires much less training data
when compared with alternative deep learning methods. The training phase of the algorithm is performed by
using the histopathology results of formalin-fixed, paraffin embedded (FFPE) samples as ground truth. There is
usually a considerable shape mismatch between the freshly excised sample and its FFPE counterpart due to
sample dehydration, and such mismatch negatively impacts the quality of the training data. We propose to
address this challenge by using an innovative reliability-based training data selection method, where the reli-
ability of the training data is quantified and estimated by using an unsupervised expectation maximization (EM)
classification algorithm with soft probabilistic output. Experiment results demonstrate that the proposed
multinomial Bayesian probit regression models with reliability-based training data selection achieve better
performance than existing methods. Overall, these results demonstrate that the proposed supervised segmen-
tation models represent a promising technique for the region detection with THz imaging of freshly excised
breast cancer samples.

assessment process of the mass such that it can be performed in the
operating room without sacrificing the overall cancer detection accu-
racy. This necessitates the development of a computational-based im-

1. Introduction

Breast cancer is one of the most common forms of cancer in women

across the U.S., with approximately 1 in 8 women diagnosed with breast
cancer during their lifetime [1]. In 2021, the expected number of breast
cancer cases is 281,550 with approximately 43,600 projected deaths in
the U.S. alone [1]. Among feasible treatment options for early detected
breast cancer, mastectomy and breast conserving surgery (BCS) are the
customary care approaches. For instance, in BCS the cancerous tumor
surrounded by a small margin of healthy breast tissue is removed. The
evaluation of the margins in the excised sample is performed by a
pathologist, who analyzes its formalin-fixed, paraffin-embedded (FFPE)
representation. Since the histopathology process takes around 10-15
days, the re-excision rates of BCS oscillate between 20-30% [2]. Even
though the pathology analysis of the sample is considered the gold
standard in cancer detection, it is necessary to accelerate the margin
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aging benchmark for the detection of breast cancer within freshly
excised samples, such that the surgeon can evaluate the margins of
freshly excised tissue in the operating room to reduce re-excision rates.

Terahertz (THz) imaging has shown great potential for material
characterization in a vast variety of applications, such as integrated
circuit inspection [3], security screening [4], food inspection [5], and
biomedical applications [6-12]. The common objective across these
studies is the classification of the reflected THz pulse into a fixed number
of categories, but with different segmentation techniques based on un-
supervised or supervised learning methods. In general, unsupervised
learning algorithms, such as mixture models [13,6], and Fuzzy C-means
[10], make inferences on patterns among the input observations without
utilizing a training stage. These techniques are useful for initial data
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exploration, but could be limited by their model definition and the lack
of prior information. On the other hand, supervised learning algorithms
utilize a fraction of the ground truth information to capture intrinsic
links among the predictors and responses, which can be exploited during
the segmentation process. Some commonly used supervised segmenta-
tion techniques in medical imaging segmentation include support vector
machine (SVM) [8,14,15], partial least squares-discriminant analysis
(PLS-DA) [16,15], K-nearest neighbors [8,14,15], random forest [8,17],
and convolutional neural networks (CNN) [3,4,18,5]. Although super-
vised learning algorithms have achieved favorable results in segmenta-
tion tasks for biomedical applications, the requirement of a large
amount of training observations represents one of the main challenges
for their implementations.

The requirement of large amount of training data is mainly due to
high model complexity in most supervised learning methods. In THz
imaging, each pixel corresponds to a high-dimensional THz pulse, which
contains valuable information about the characterization of the material
in its corresponding location. Direct processing of the high-dimensional
THz pulse will result in a high model complexity. Hence, it is essential to
identify the most relevant features embedded in the THz waveforms to
achieve good segmentation performance while maintaining lower model
complexity to reduce the amount of training data. To tackle this prob-
lem, the absorption coefficient and refractive index spectra per pixel are
used by [9] as their most significant features for the region segmentation
within human gastric tissues. As an alternative to pre-defined charac-
teristics, it is possible to automatically identify the critical information-
bearing features through dimension reduction approaches, such as
principal component analysis (PCA) [19,20,15], and the low-
dimensional ordered orthogonal projection (LOOP) [6,7] algorithm.
Once the most relevant features are identified, the segmentation algo-
rithm utilizes these attributes to perform inferences on the parameters of
their discriminating models.

This paper introduces a novel supervised image segmentation algo-
rithm for the detection of breast cancer in THz imaging of BCS samples.
The proposed method is developed by using a multinomial Bayesian
ordinal probit regression model with a reliability-based training data
selection method. This proposed method differs from conventional
probit regression algorithms with linear regression models [21,7] or
binary classifications [22]. Two non-linear regression models, poly-
nomial regression and kernel regression with random Fourier features
(RFF) [23], are employed in the proposed method to establish the link
between THz data and classification latent variables. Since the Bayesian
regression algorithm relies on the estimation of a small number of model
parameters, the size of the training set required for this task is consid-
erably smaller than alternative machine learning approaches, such as
CNN and random forest. This fact is particularly important for our
analysis because the procurement of biomedical samples corresponds to
a laborious process that involves clinical protocols, and multi-
disciplinary collaborations. As a result, this type of research usually
presents a limited number of specimens, which should be strategically
employed to validate the study’s findings. Hence, one of the main ad-
vantages of the proposed algorithm is the reduced number of training
observations required for its model estimation, which is much less than
deep learning approaches.

Unlike alternative studies that use FFPE homogeneous breast cancer
samples [8,24], this paper employs freshly excised murine-derived
heterogeneous samples, i.e. tumors that contain different regions, such
as cancer, fibro, fat, etc. For training purposes, the ground truth infor-
mation is collected from the histopathology analysis of the sample,
which represents the gold standard of cancer detection and is obtained
after the histopathology process of the tissue. Due to dehydration during
the histopathology process, there is a significant shape mismatch be-
tween the fresh sample and its FFPE counterpart. The proposed method
tackles this problem by utilizing a mesh morphing algorithm that re-
shapes the contour of the pathology results into the shape of the fresh
sample [25]. To account for possible errors during the morphing
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process, we propose a new reliability-based training data selection
method, which measures the reliability of training data by using the
probabilistic output of an unsupervised expectation maximization (EM)
method with Gaussian mixture models (GMM). Only data with reli-
ability exceeding a certain threshold will be included in the training data
set to ensure the quality of model training.

The rest of the article is organized as follows. Section 2 introduces
the THz system and the procedure to collect the images. Section 3 pre-
sents the proposed regression model, and its training and testing pro-
cedures. Section 4 shows the experimental results. Section 5 concludes
this study.

2. Materials and methods

This section describes the methodology to inject tumors in C57BL/6
black laboratory xenograft mice and the procedure to perform imaging
using the THz system. The mice were kept on a high-fat diet until
reaching a target weight of 35 g. At this point, the mice were injected
with E0771 murine-derived breast adenocarcinoma cells to develop the
tumors. Once the tumors reached a 1 cm diameter, they were excised
under anesthesia [26]. The excised tumors were immersed in phosphate-
buffered saline (PBS) solution to be transferred from the excision site to
the THz lab for imaging using the THz system.

The TPS Spectra 3000 THz pulse reflection imaging system (Tera-
View, Ltd., UK) at the University of Arkansas was used [26]. The system
uses a 780 nm Ti: Sapphire laser signal directed onto the THz antennas to
generate the THz pulse. The samples handled in this work are measured
in reflection mode, where the reflected signal was collected at every
200 um size pixel on the tumor. This was achieved by placing the tumor
onto the THz system scanner, which was set to increment at every 200
um step size using stepper motors. The system was purged with dry ni-
trogen gas for 30 min prior to imaging to remove any water vapors in the
core chamber.

The tumors to be imaged were prepared by drying any excessive fluid
flowing out using filter paper, as shown in Fig. 1a. Then the tumor was
placed between two polystyrene plates with a gentle pressure from the
top to keep the imaging surface as flat as possible, as shown in Fig. 1b.
This tumor arrangement is then placed on the scanning window for the
imaging process, as shown in Fig. 1c [27]. After the imaging process, the
tumors were immersed in formalin and sent to the Oklahoma Animal
Disease Diagnostic Laboratory (OADDL) for the histopathology process.

All animals received care according to the Guide for the Care and Use
of Laboratory Animals. In addition, the experimental process followed in
this study was approved by the Institutional Animal Care and Use
Committee (IACUC) of the University of Arkansas.

3. Theory and algorithm
3.1. Data pre-processing

This section describes the data pre-processing step, which is applied
to the data prior to the training and testing procedures. The THz image
can be represented by a third order tensor V e %2V *N2*F  with the first
two dimensions representing the location of the pixel along the x and y
axes with size N; and Ny, respectively, and the third dimension repre-
senting the frequency domain with size F. After unfolding, the THz in-
formation can be arranged in terms of a matrix v = [vq,...c, vy,], where
v, € %" represents the amplitude of the frequency domain spectrum of
the reflected waveform in the n-th pixel, and n = {1, ...c, N;} with Ny =
N1 N; corresponding to the total number of pixels in the THz image. The
frequency domain response per pixel is a high-dimensional waveform of
length F = 106 samples, which covers the system’s operation range from
0.1 to 4 THz.

Before performing the image segmentation algorithm, we apply the
LOOP algorithm [6] to the data to achieve dimension reduction.This
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Fig. 1. Sample preparation for THz imaging. (a) Tumor placed on filter paper for drying excess fluid, (b) Tumor placed between two polystyrene plates, (c) Scanning
window on the scanner stage upon which the tumor arrangement in (b) is positioned.

method projects the F-dimension signal per pixel into a lower-
dimensional subspace of size L < F, which contains the most relevant
features embedded in THz imaging waveforms.

The lower dimensional data at the output of the LOOP algorithm is
then normalized, such that the features are scaled to zero mean and unit
standard deviation. This procedure is repeated for all the samples in the
data set. The normalized lower dimension data vector is represented by
a row vector x, € . #**!, where n = {1,...c,N} and N corresponds to the
total number of training observations. It is important to highlight that
the training stage selects an equal number of observations per region to
avoid bias in the trained model. Details about how the training samples
are selected within the training data set are given in Section 3.3.

3.2. Multinomial Bayesian learning with probit regression

This section develops multinomial Bayesian ordinal probit regression
models of the data, which are used to classify each pixel in the THz
image to a certain region. Conventional probit regression models are
commonly used in binary classification problems. We introduce a multi-
class extension of this method that employs a continuous latent variable,
z € R, for non-binary partitions of the data set [21].

Given the estimated value of the latent variable, and a set of esti-
mated thresholds, @« = {ao, a1, ...c, ax}, the region label per pixel is
determined based on the range where the latent variable is located
within @, e.g. the n-th pixel corresponds to the k-th region if
ar—1 < Zp < Ak.

Two non-linear regression models are employed for the multinomial
probit regression modeling of the data, and they are polynomial
regression and kernel regression. We will introduce both models in this
section, and compare the performance between the two different models
in the section of experiment results.

3.2.1. Polynomial regression

In the polynomial regression model, the latent variables, {z,}N_,, are
modeled as independent but non-identically distributed Gaussian
random variables with variance ¢2. The mean of z, is modeled as a Q-
order polynomial regression of the L-dimensional data x,. The poly-
nomial regression model can be represented as

ind .
Zn'l's’ 4 (wnﬂ7 62)7 (@]
where w, = [Lx,,,xﬁ,z), ,..c,xﬁlQ)] e V@A) with xﬁ,k) representing the
element-wise k-th exponent of xn,f = [y, /1, ---C, ﬂQL]T is the regression
parameter vector, and L is the dimension of the row vector x,. In this
paper, we consider a fixed variance ¢ = 1 in the polynomial regression

model. The regression parameter § can be obtained through training,
with details described in the next section.

3.2.2. Kernel regression
In the kernel regression model, the data vector of each pixel is

mapped onto a higher, or even infinite, dimensional space as h(xn),
where h: x, € %' >h(x,) € %Y represents the feature mapping, with
U > L. With the kernel trick in the dual problem definition of the kernel
regression model, it is not necessary to explicitly define the mapping
function h(x,) or the high-dimensional mapping space. Instead, the in-
formation per pixel is implicitly mapped by using a kernel function that
represents the inner product between the two mapped vectors as

T (X, Xn) = h(xm)h(xn)T.

In this paper, the squared exponential kernel is used to model the
inner product in the higher-dimensional mapping space as

T (o ) = el @

where v is the kernel parameter.

The complexity of the kernel regression model increases with the size
of the training data set. The number of training samples used in this
study is in general much smaller than other supervised learning algo-
rithms such as deep learning. However, there is still a large number of
pixels within each case that can negatively impact the model
complexity. We propose to further reduce model complexity by using a
random Fourier features (RFF) approximation [23], which can reduce
the number of parameters that need to be estimated during the training
process. The RFF method explicitly projects the vectors per pixel into a
lower dimensional approximation of the kernel’s feature space as
hgrr(xn), where hger : X, € .’fIZL—>h(xn) e %V with V < U and

'%(mexn) ~ hRFF(Xm)hRFF(Xn)T- (€))
In order to obtain hygr, we can express the shift-invariant kernel
functions by following Bochner’s theorem as

T Xy — Xy) = / €970 %) P()dw 4)
v%l.

where P(w) corresponds to the Fourier transform of the kernel, and @ €
#"1 is the vector corresponding to the frequency domain variable.
Since it is not possible to directly compute (4), we employ a Monte Carlo
approach by assuming that P(w) takes the form of a probability distri-
bution, with @ following a multivariate Gaussian distribution of the
form P(w) = ./°(0y,2u1;). By following the Monte Carlo approach, the
kernel function in (4) can be approximated by

cos(w:xm) cos(a):xn)

1 [
T (X — X,) &~ — ,
( ) o ; sin(wam) Sin(wan)

where a)qid P(w), and Q is the total number of Monte Carlo iterations
[23]. Through this expression, the feature space defined by RFF can then
be expressed as
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_ 1 Tcos(Q'x) 20x1
hge (X) = Vo {sin(QTx)} e #* )

where Q = [1,...,0q] € %#**? In (5), the L-dimension data vector x is
projected onto a feature space of dimension V = 2Q. The number of
Monte Carlo iterations can be set according to a fixed error per entry, +¢,
where Q = log(N)/¢?, or in general as, Q = v/Nlog(N) [23].

The latent variable for the n-th pixel can be modeled as

Zn ~ Z(W”ﬁ ’ 0-2) ) (6)

where w, = thp(xn)T e #1722 52 =1, and the vector f € #*¥! con-
tains the regression coefficients to be estimated through the training
process.

3.3. Training process

This section describes the newly proposed reliability-based training
data selection method, and the training process of the model parameters,
« and g, with a Markov chain Monte Carlo (MCMC) method.

3.3.1. Reliability-based training data selection

The training step utilizes 6 murine fresh samples with the same
number of regions, including cancer, fibro or muscle, and fat. The re-
gions in the THz images are labeled by using pathology results. Since the
fresh tissue goes through a dehydration process during the pathological
analysis, there is a considerable mismatch between the region alloca-
tions of fresh tissues and the corresponding pathology image. To correct
this mismatch, we utilize a mesh morphing algorithm to reshape the
contour of the pathology results into the shape of the THz image taken
from the freshly excised sample [25]. The mesh morphing algorithm
matches the pathology and THz images by using control points on the
contour of the tissue, thus it is possible that there is still internal
mismatch between the two images after morphing. As a result, some of
the pixels in the training THz images might be erroneously labeled due
to the residual mismatch with the pathology image. Therefore, it is
important to quantify the reliability of the ground truth information to
avoid the usage of erroneously labeled pixels as training observations.

We propose to measure the reliability of the ground truth informa-
tion for each pixel by using the results obtained through an unsupervised
Bayesian learning approach with GMM and EM [6]. The output of the
unsupervised EM algorithm contains the probability that each pixel
belongs to a certain region. A pixel will be selected for the training data
set only if the probability exceeds a certain threshold, and the corre-
sponding region matches the pathology results. In this article, the
probability threshold selected for this procedure was 60%. Thus the
unsupervised results serve as a reliability indicator for the morphed
pathology image, which reduces error in the training procedure.

3.3.2. Parameter initialization

Before starting the iterative MCMC training process, we need to
obtain the initial values of the model parameters a and g.

To ensure that the @ parameter covers the entire latent variable
domain, .%, certain elements within this parameter are manually fixed
asay = —oo,a; = 0, and, ag = oo [21]. Thus the probability that the n-
th pixel belongs to the first region is as follows,

Pr()’ﬂ = 1) = (D(al - wnﬁ) - (D(aﬂ - Wnﬂ) = (D( - Wnﬂ)-,

or equivalently

~w.f = @' [P(y, = 1)],

where ®~! corresponds to the inverse of the cumulative standard

Gaussian distribution, and Pr(y, = 1) is from the pathology results. It is
possible to further rewrite this expression by utilizing its vector repre-
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sentation,
q=—-Wg, )

where W=[wl wl . wl . q=1[q,....qn]" € 2"
O (Pr(y, = 1)).

The parameter g can then be initialized by using the least squares
(LS) estimate as

with ¢, =

B=—(W'W)'Wigq. ©)

In the ground truth data obtained from the pathology results, Pr(y, =
1) can take two values, O or 1, based on the pathology label. However,
we cannot directly use these exact results in (8) because ®* (0) =-—
and ® (1) = oo. To address this problem, we assign Pr(y, = 1) = 1 —€if
the n-th pixel belongs to the first class in the pathology results, and
Pr(y, = 1) = € otherwise, with € being a small number. In this paper we
choose € = 0.0013.

Similar to the initialization process of the  parameter, we utilize the
fixed elements within the a parameter to estimate the remaining un-
known elements within this vector, {aa, ...c, ax_1}. For this purpose,
consider the following expression:

= q)(aK - wnﬂ) - <I)(aKfl - wnﬁ)
=1- tl)(aK,] — Wnﬂ)

Pr(Yn = K)

Thus
ak1 = w,p+ @ '[1 —Pr(y, = K)).

The value of ax ; can then be estimated by using the N training
observations as,

1 < »
a1 =5 ;{wnﬂJrcD [1 —Pr(y, = K)]}. 9)
Since this paper explores the implementation of the probit regression
approach for the segmentation of THz images with K = 3 regions, it was
only necessary to find the element a, within these models. Alternatively,
if K > 3, this process can be repeated to estimate the remaining un-
known elements within the a parameter by utilizing ax_;.

3.3.3. Training with MCMC

Once the training set is selected and the parameters are initialized,
we proceed to estimate the regression parameters, & and f, through an
MCMC process. The prior distributions of the model parameters a, and f
are defined as:

K
nla) = [[_ U >a),
n(B) = A (Bo, Xo),
with f, and X, representing the hyper-parameters of this approach. In
this paper, we consider f, = 0, and £, = 10* x L.

The estimation stage utilizes an MCMC process with the following
posterior distributions [21]:

e Posterior distribution of z,

iy, =k~
0 Zn S
2
Wip,07,2,
o _wqbé 4 Za) —wp Ay < Zp < O 10
o(4=12) —o(2-22)
o c
0 Zu 20

where ¢(u, 6%; x) represents the Gaussian probability density func-
tion (pdf) with mean y and variance 62 evaluated in x; and ®(x) is the
cumulative distribution function (CDF) of a standard Gaussian
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variable with 0 mean and unit variance.
Posterior distribution of g,

Blz ~ A (uy, Zp), (€8]
where 3 = [(WIW + 62%,1) Jo? ] _1, and Hy =
Z5[(Wz + 62251 8,) /02 ].

e Posterior distribution of «,
alz,y,aiu ~ #(a,b), 12)

where 7/ represents a uniform distribution with parameters a =
max(max{2, : Yo =k}, ax_1), and b = min(min{z, :y, =k+1},

ak+l) .

Overall, the training procedure is summarized in Algorithm 1, where
mod represents the modulo operator and M corresponds to the total
number of MCMC iterations to be considered in the testing process. It is
important to mention that the MCMC algorithm runs for a total of 10M
iterations, where the first half are discarded during the burn-in period,
and the regression parameters are stored every 5 iterations after this
period. This operation leaves a total of M samples from the posterior
distributions of the regression parameters, which are used during the
testing procedure. In this paper, the results were produced by consid-
ering that M = 4, 000, which results in a total of 40,000 MCMC
iterations.

Algorithm 1: Training procedure.

Input: Data W, labels y, hyperparameters g, Zo, 6>
Initialization: Estimate § and the unknown elements within & using (8) and (9),
respectively
forj=1,...c,10M do
Draw Z% from (10) using g/ a0V, and y.
Draw g% from (11) using Z9).
Draw the unknown elements within a') from (12) using ZY), and y.
if j > 5M and jmod5 = 0 then
Store ) and al).
end if
end for

. M
Output: Regression parameters [V, a?]. ;.

3.4. Testing process

This section presents the testing procedure of the proposed multi-
nomial probit regression algorithm. The algorithm is tested by using the
THz images from samples not used during the training process. Similar
to the training data, the data used for testing goes under the same pre-
processing procedures, which include obtaining the frequency
response of the pulse per pixel and dimension reduction.

Once the corresponding model parameters are obtained during the
training phase, as described in Section 3.3, the region assignment is
performed by using the following soft clustering scheme. Denote the
parameters obtained through training in the i-th MCMC iteration as

{a;f) }Ik(zo and 9. With the multi-class probit regression algorithm, the
latent variable of the n-th pixel in the testing data can be modeled by
applying the model parameters from the i-th iteration of the MCMC
training as

z,(,i) ~ .,/Zf'”(wnﬂ@, 6?), fori=1,...M (13)
Thus
. ) . (0 _ (i) @ _ (i)
Pr(ay, < z<af,) = @(“k anﬂ ) fcb(“"*‘ anﬂ ) (14)

where ®(-) is the standard Gaussian cumulative distribution function.
The probability that the n-th pixel belongs to the k-th category can
then be calculated as
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M

1 i i i
Pr(m = k) = 37 >_[Pria, < z)<al,)] as)

i=1

where M is the total number of stored MCMC iterations. With (15), we
evaluate the likelihood of each pixel from the testing data with respect to
every region in the tissue.

4. Experimental results

The experimental results are obtained by applying the proposed
multinomial probit regression algorithm on the testing data. The
training and testing data are obtained from freshly excised xenograft
murine samples with 3 regions each, such as cancer, muscle or fibro, and
fat. The samples correspond to mice 6B, 8B, 9A, 9B, 10A, 10B, and 13A.
Samples 9B, 10B, and 13A are used for testing, and all remaining sam-
ples (6B, 8B, 9A, and 10A) are used for training exclusively. It is
important to mention that each testing sample is also utilized for the
training procedure of a different testing sample. For example, when
testing sample 9B, we utilized the 6 remaining samples, 10B, 13A, 6B,
8B, 9A, and 10A to train its model. While the training and testing pro-
cesses employ 6 and 3 samples, respectively, the overall amount of
training pixels is smaller than its testing counterpart. As an example,
mouse 9B utilized 3,192 pixels for training, and 4,797 pixels for testing.
The number of training pixels is reduced due to the application of the
reliability-based training selection process. Although some pixels are
discarded, this step is crucial to avoid the utilization of mistakenly
assigned ground truth pixels. In addition, some regions, such as muscle
and fibro, are commonly smaller than the rest of the regions in a murine
tumor sample. To avoid the introduction of bias in our model, the al-
gorithm selects the same amount of pixels per region, which further
reduces the total amount of training observations.

The results obtained from the proposed algorithms are compared
with two previously published unsupervised learning approaches based
on GMM, which are 1-dimensional (1D) MCMC [26] and 2-dimensional
(2D) EM [6]. Source codes for the multinomial probit regression algo-
rithm can be found in [28]. The quantitative analysis of the segmenta-
tion model is summarized through ROC curves, which identify the true
vs. false positive detection rates per region. Since the proposed algo-
rithms utilize a soft-clustering segmentation approach, the ROC curves
represent the potential detection results that can be obtained by the
selection of a suitable classification threshold. Details on the generation
of the ROC curves can be found in Appendix A.

4.1. Data exploration

We first implemented a univariate t-Test to verify that there is a
significant difference between the mean of cancerous vs. the mean of
non-cancerous pixels within each testing sample. The test is performed
by using the first component of the low-dimension vector per pixel at the
output of the LOOP algorithm. The null hypothesis of the test is that the
LOOP outputs of cancerous and non-cancerous pixels will have the same

Table 1
Paired-sample t-Test results with 0.05 significance level.
Sample Test Degrees of  Standard Confidence p-value
statistic freedom deviation interval
Mouse 19.0007 198 0.6702 [1.6139, 1.6625 x
9B 1.9877] 1046
Fresh
Mouse 18.4410 198 0.7535 [1.7550, 7.3819 x
10B 2.1753] 1045
Fresh
Mouse 31.4908 198 0.4205 [1.7555, 4.9522 x
13A 1.9900] 1079
Fresh
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mean. The results of the t-Test are summarized in Table 1, where we can
observe that the p-value is close to zero for all the testing samples. Such
results reject the null hypothesis, therefore it is demonstrated through
the t-Test results that there are significant differences between the mean
of the LOOP outputs of cancerous and that of non-cancerous pixels.

Given the promising results of the t-Test and considering that the
data is a 2 or 3 dimensional vector, we performed additional in-depth
analysis by implementing a Hotelling T-squared test. Unlike the uni-
variate case, this test utilized the full vector per pixel at the output of the
LOOP algorithm. The test hypothesis is the same as the t-Test. The re-
sults of this technique are summarized in Table 2, where we can observe
that the p-value is close to zero for all the testing samples. Such results
reject the null hypothesis for the multivariate case.

To further illustrate the results of these tests, we have plotted the
empirical marginal probability density function (PDF) of one sample,
Mouse 9B fresh, as shown in Fig. 2. Features 1 and 2 correspond to the
first 2 components of the low-dimension vector per pixel obtained
through the dimension reduction algorithm, LOOP. It is important to
clarify that these features do not correspond to a specific physical
feature within the THz waveform, instead they represent a combination
of intrinsic key characteristics within the waveform that are automati-
cally found by the dimension reduction technique. From this plot, we
can observe that the distribution of the cancerous region (the red plot) is
different from those of the non-cancerous regions (green and blue plots)
in at least one dimension. In particular, the fat region is significantly
different than the cancer region, while muscle presents some minimal
vicinity to the cancer mean. These plots also verify that the overall PDF
of the data resembles a Gaussian distribution.

4.2. Mouse 9B fresh

The first sample is mouse 9B fresh, which contains 3 regions: cancer,
muscle, and fat. The THz image of this sample is shown in Fig. 3a, which
was procured while the tissue was still fresh. This figure utilizes the
power spectra of the reflected THz waveform as the summarization
feature per pixel. It can be observed here that the cancer region (red
color) in the sample shows higher reflection than the surrounding fat
tissue (blue color). However, the differentiation between the muscle and
cancer regions is not so obvious. This could be because the electrical
properties of muscle and cancer are identical in the THz range [26].
Fig. 3b represents the pathology analysis of this sample, which clearly
indicates the location and the extent of the regions within the tissue.
Fig. 3c shows the morphed pathology results obtained from the mesh
morphing algorithm [25]. Figs. 3d and e correspond to the 1D MCMC
[26] and 2D EM [6] segmentation results, respectively. Finally, Figs. 3f
and g represent the multinomial probit segmentation results obtained by
using the 3D polynomial and kernel regression models, respectively. It is
important to mention that these models’ results were obtained by uti-
lizing the optimal segmentation thresholds of each ROC curve, which
prioritized the detection of cancer among all regions followed by muscle
or fibro. For the supervised regression models, the algorithm utilizes 6
murine fresh samples within its training information, which correspond
to mice 6B, 8B, 9A, 10A, 10B, and, 13A. In addition, the polynomial

Table 2
Hotelling T-squared test with 0.05 significance level.
Sample Hotelling’s T- Degrees of Approximation p-
Squared statistic freedom statistic test (y?) value
Mouse 9B 661.6546 3 661.6546 0.0000
Fresh
Mouse 401.8756 3 401.8756 0.0000
10B
Fresh
Mouse 1189.6145 2 1189.6145 0.0000
13A
Fresh
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regression model employs a fifth order polynomial definition, and the
kernel regression model uses v = 0.3 and RFFs with Q = 20.

By visually inspecting the images, we can observe that there is a good
correlation between the detection results and the morphed pathology
results regarding the regions of cancer and fat. There is misclassification
in the muscle area for all three algorithms, and the 1D MCMC model
presents the largest misclassification of this region.

To quantitatively evaluate these results, we introduce the ROC
curves of all the segmentation models in Fig. 4. The ROC curves show the
true detection rate as a function of false detection rate. Regarding cancer
and fat, all multivariate detection approaches, that is, 2D EM (unsu-
pervised), 3D polynomial regression (supervised), and 3D kernel
regression (supervised), achieve similar performance, regardless
whether they are supervised or unsupervised approaches. The perfor-
mance of the 1D MCMC algorithm is worse than its multivariate coun-
terparts for both the cancer and fat regions. The advantage of the
supervised approach is demonstrated in the ROC curve for the muscle
region, where it is observed that the two proposed probit algorithms (3D
polynomial regression and 3D kernel regression) achieve significant
performance gain over the two unsupervised algorithms.

This performance gain can be quantified by analyzing the areas
under the ROC curves, which are shown in Table 3. An ideal classifier
with O false detection rate and 100% sensitivity (true detection rate)
achieves a 100% area under its ROC curve. In this table, we can observe
that the supervised regression models proposed in this paper obtain the
largest areas under the ROC curves for all regions, with muscle repre-
senting the highest performance gain from 71.35% to 86.80%.

4.3. Mouse 13A fresh

The second sample is mouse 13A fresh, which contains 4 regions:
cancer, fibro, fat, and a lymph node. Since the lymph node in this sample
shows signs of metastasis, we consider its area as part of the cancer re-
gion in the morphed pathology image. Therefore, the total number of
regions considered for the segmentation task of this sample is 3: cancer,
fibro, and fat. Fig. 5a represents the THz image that was collected while
the tissue was fresh. Similar to the previous sample, we observe that
cancer (red color) shows higher reflection than fat (blue color). Figs. 5b
and c correspond to the histopathology analysis of the tissue and its
corresponding morphed mask, respectively. Figs. 5d and e represent the
results obtained through the unsupervised Gaussian mixture models.
The linear and kernel regression models are represented in Figs. 5fand g,
respectively. For the analysis of this sample, the supervised learning
techniques utilize 6 murine fresh samples for its training step, which
correspond to: 6B, 8B, 9A, 9B, 10A, and 10B. Furthermore, the poly-
nomial regression utilizes a first order polynomial representation, and
the kernel regression model uses v = 0.1 and RFFs with Q = 20.

The ROC curves of the classifiers are shown in Fig. 6, where we can
observe that the cancer and muscle detection performance improves by
using the 2D supervised linear regression model. This can be further
confirmed in Table 3, where we can observe that the area under the
cancer ROC curve improves from 86.38% to 93.23% by using the su-
pervised linear regression algorithm. Similarly, the area under the fibro
ROC curve increases from 72.63% to 78.10%.

4.4. Mouse 10B fresh

Finally, the third sample is mouse 10B fresh, which contains 3 re-
gions: cancer, muscle, and fat. Fig. 7a represents the THz image of this
sample. Figs. 7b and c correspond to the pathology analysis and its
morphed representation, respectively. A wide gap between the cancer
region as seen in the pathology image is due to the lumens in the cancer.
When fresh, these lumens were filled with fluid secretions. Hence, it can
be observed that the lumens in cancer show higher reflection than the
rest of the region, which are presented in dark red within Fig. 7a.
Figs. 7d and e represent the unsupervised classification results obtained
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through the 1D MCMC and 2D EM approaches, respectively. Figs. 7f and
g illustrate the segmentation results obtained through the supervised
linear and kernel regression models, respectively. For the supervised
regression models, the algorithm utilizes 6 murine fresh samples for its
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training step, which correspond to mice 6B, 8B, 9A, 9B, 10A, and, 13A.
Additionally, the polynomial regression approach employs a first order
polynomial definition, and the kernel regression model uses v = 0.64
and RFFs with Q = Nlog(N) = 442.
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Table 3

Areas under the ROC curves.

Biomedical Signal Processing and Control 70 (2021) 102949

Mouse 9B Fresh
Region 1D MCMC | 2D unsupervised EM 3D supervised polynomial regression | 3D supervised kernel regression
Cancer 0.8647 0.9068 0.9271 0.9263
Muscle 0.7707 0.7135 0.8618 0.8680
Fat 0.7874 0.9066 0.9144 0.9158
Mouse 13A Fresh
Region 1D MCMC | 2D unsupervised EM 2D supervised linear regression 2D supervised kernel regression
Cancer 0.8587 0.8638 0.9323 0.8909
Fibro 0.6637 0.7263 0.7810 0.7503
Fat 0.8626 0.9159 0.9288 0.8840
Mouse 10B Fresh
Region 1D MCMC | 2D unsupervised EM 2D supervised linear regression 3D supervised kernel regression
Cancer 0.7340 0.7894 0.8167 0.7732
Fibro 0.5539 0.6970 0.7525 0.7000
Fat 0.8970 0.9363 0.9468 0.9096
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Fig. 5. Sample Mouse 13A Fresh. (a) THz image [25]. (b) Pathology image [25]. (c) Morphed Pathology [25]. (d) 1D MCMC model [25]. (e) 2D unsupervised EM
model. (f) 2D supervised linear regression model (this work). (g) 2D supervised RFF kernel mo.del (this work).

The quantitative evaluation of the results are shown in Fig. 8 in the
form of ROC curves. Similar to the previous samples, the ROC curves of
the supervised models achieve better classification results. In particular,
the 2D supervised linear regression model presents the best overall
classification results among the tested classifiers. This can be further
confirmed in Table 3, where we can observe that the areas under the
cancer and muscle ROC curves increases from 78.94% to 81.67%, and
69.70% to 75.25%, respectively, when employing the proposed super-
vised segmentation model.

4.5. Comparison to SVM

To verify that the proposed algorithm significantly reduces the
computational complexity of the training procedure, we compare the
results of the proposed classifiers with respect to SVM. For fairness of

comparison, we do not implement any dimension reduction or
reliability-based training selection processes for the SVM classifier. As
shown in Table 4, the computational time for the training procedure of
the proposed classifier is lower than SVM, with SVM taking 30-36 min
and the probit regression approach taking 1 min for most cases. It is
important to clarify that the kernel regression implemented for Mouse
10B takes approximately 37 min due to the large amount of parameters
that were estimated, where Q = 442. Hence, the proposed classifier can
potentially reduce the training time as long as the number of parameters
is set to a smaller amount, as is the case for Q = 20.

The segmentation results of the SVM model are further compared to
the proposed kernel regression classifier in Fig. 9. In particular, we can
observe that while the SVM approach can potentially detect the cancer
and fat regions, it fails to detect the muscle region completely in Fig. 9b.
Additionally, the quantitative segmentation results of the SVM classifier
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are summarized in Fig. 10. Since an SVM classifier is a hard-clustering
technique, the performance of this classifier is represented as single
points within the ROC curves. These results further confirm that the
proposed classifiers present better segmentation results than a well-
known technique such as SVM.

5. Conclusions

We have proposed a supervised multinomial Bayesian learning
method for cancer detection using THz imaging of freshly excised
samples. This algorithm utilizes multinomial Bayesian ordinal probit
regression models to perform region classifications in THz images. Two
probit regression models, a polynomial regression model and a kernel
regression model, are adopted to represent the link between the THz
features and their corresponding classification results. The proposed
supervised learning approach requires considerably less amount of
training data than other supervised learning approaches, such as CNN.
During the training phase, in order to account for the mismatch between

THz image and pathology results caused by deformation of the tissue
during its histopathology process, we have proposed a reliability-based
training data selection method, and only data that exceed a certain
reliability threshold are used for training. Experimental results demon-
strated that the proposed supervised regression models outperform
existing algorithms, such as 1D MCMC and 2D EM, for all regions of
interests. For instance, the areas under the cancer and muscle ROC
curves in Mouse 9B fresh increases from 90.68% to 92.71%, and 71.35%
to 86.18%, respectively, when utilizing the supervised polynomial
regression approach.

In general, the supervised polynomial regression model obtained the
highest areas under the ROC curves among all the presented classifiers,
followed by the kernel regression model. In terms of the muscle and fibro
region, we can highlight that the proposed supervised segmentation
models achieve a considerable area increase when compared with their
unsupervised counterparts, from 69.70% —72.63% to 75.25% —86.18%.
These results represent a step forward towards the optimal differentia-
tion between cancer vs. non-cancerous tissue within freshly excised BCS
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Table 4
Comparison of computational time for the training process.

Sample SVM Polynomial regression Kernel regression
Mouse 9B 30.5955 min. 1.1254 min. 1.2918 min.
Mouse 13A 31.8640 min. 0.8458 min. 0.7604 min.
Mouse 10B 35.9760 min. 0.7333 min. 36.8386 min.

samples. In the mean time, it is recognized that achieving the areas
under ROC curves to at least 90% for all regions still remains a chal-
lenge, and we plan to further improve the performance by developing
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An ROC curve illustrates the performance of a binary classifier. In a multi-class context, the classifier’s performance is represented by multiple ROC
curves with each of them corresponding to the detection of a given class against all the other classes, i.e. cancer vs. noncancer pixels in the THz image.
Let P(y, = k) denote the probability that the n-th pixel belongs to the k-th region. For a given threshold 5, the n-th pixel is classified as belonging to
the k-th category if P(y, =k)>6. Once § is fixed, we can calculate the true detection rate and false detection rate by comparing the classification results
with the morphed pathology, and this corresponds to one point on the ROC curve. A complete ROC curve can be obtained by varying the threshold
value §. In this paper, the ROC curve is generated by using the MATLAB function perfcurve, which utilizes the morphed pathology results as the ground

truth information.
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