


to act as a carbon sink requires interfacing abiotic fea-

tures and competition between trees with different traits,

such as nitrogen fixation (Farrior et al. 2013). Under-

standing emergent infectious diseases requires interfacing

processes over scales ranging from animal population

dynamics, reservoir epizootiology, and human epidemiol-

ogy (Plowright et al. 2017). Ecological theory requires

interfacing phenomena across scales believed to be

important, and continually updating our beliefs about

which scales are important to interface.

A scale of particular interest in community ecology is

the scale at which we group organisms into units: spe-

cies, functional ecological groups, guilds, and more. For

a novel or unfamiliar pattern, such as a change in micro-

bial community composition along environmental gradi-

ents, how can one objectively identify the appropriate

scales for grouping species into units? In macroscopic

systems, a researcher will typically use intuition derived

from natural history knowledge to determine scales of

interest, selecting functional ecological groups based on

processes or traits previously demonstrated to be impor-

tant. Models of how the natural history traits affect the

pattern will be constructed, and the goodness of fit to

the pattern of interest will be used as a metric for the

successful identification of relevant ecological scales.

However, for some patterns and communities, such as

inflammation or fatty acid production associated with

the human gut microbiome, there is limited natural his-

tory knowledge to draw on to assist the decision of the

appropriate scales of interest. Even familiar communities

can be more objectively analyzed and compared with the

help of rules, algorithms, and laws to identify the domi-

nant scales of community ecological units.

All communities exist as a hierarchical assemblage of

entities, many of whose relationships and evolutionary

history can be estimated and organized into a phylogeny.

The estimated phylogeny contains edges along which

mutations occur and new traits arise. When the phylogeny

correctly captures the evolution of discrete, functional

ecological traits underlying a pattern of interest, the phy-

logeny is a natural scaffold for simplification, aggrega-

tion, and scaling in ecological systems (Washburne et al.

2018). Patterns whose functional ecological traits are lat-

erally transferred can still be simplified by constructing a

phylogeny of the laterally transferred genes, such as using

a phylogeny for beta-lactamases (Hall and Barlow 2004)

to understand microbial responses to antibiotics.

Graham et al. (2018) develop the term “phylogenetic

scale” to refer to the depth of the tree over which we

aggregate information from a clade, but functional eco-

logical traits often arise at different depths of the tree

and thus many ecological phenomena are driven by traits

not properly aggregated by mowing the phylogeny along

a constant depth. Instead, there may be multiple phyloge-

netic scales, or grains, underlying an ecological pattern of

interest, and such scales need to be partitioned from one

another while avoiding the obvious nested dependence

caused by clades within clades. For example, the patterns

of vertebrate abundances on land and water are simpli-

fied by nested clades—Tetrapods, Cetaceans, Pinnipeds,

etc.—and ancestors immediately before an affected clade,

say the ancestors before Tetrapods, are prone to misclas-

sification due to the nestedness of a clade with a strong

effect. For more complicated community ecological data,

such as breeding bird surveys or microbiome data sets,

there is a need for general statistical methods to partition

the phylogeny into the grains with significantly different

associations with or contributions to ecological patterns

of interest. Such a method can objectively identify the

phylogenetic scales underlying an ecological pattern of

interest and assist community ecological theory in both

familiar and unfamiliar systems.

Phylofactorization (Washburne et al. 2017) was devel-

oped to identify the phylogenetic scales in compositional

(relative abundance) data by iteratively constructing

variables corresponding to edges in the phylogeny sepa-

rating species with different patterns of abundance. The

variables used to identify phylogenetic scales were a

common transform from compositional data analysis

(Aitchison 1982), referred to as the isometric log-ratio

transform (Egozcue et al. 2003, Egozcue and Paw-

lowsky-Glahn 2005), which contrast the relative abun-

dances of species separated by an edge in the phylogeny.

A coordinate in an isometric log-ratio transform aggre-

gates relative abundances within clades by a geometric

mean and contrasts clades through log-ratios of the

clades’ geometric mean relative abundances. The isomet-

ric log-ratio transform also allows the construction of

non-overlapping contrasts, thereby reducing an obvious

source of nested dependence in phylogenetic variables.

The isometric log-ratio transform is used to identify phy-

logenetic scales, capture large blocks of variation in rela-

tive-abundance data and construct coordinates that

correspond to edges along which hypothesized func-

tional ecological traits arose.

However, many ecological data are not appropriately

analyzed as compositions. For example, the presence/

absence of bird species across continents are best mod-

eled as Bernoulli random variables, not compositions.

There is a need to generalize phylofactorization to iden-

tify phylogenetic scales in any data type. In this paper,

we extend phylofactorization to broader classes of data

types by generalizing the logic of phylofactorization to

three operations: aggregation, contrast, and an objective

function defined by the pattern of interest. The nested

dependence of clades within clades is avoided by defin-

ing phylofactorization as a graph-partitioning algorithm

that contrasts species separated by edges and iteratively

partition the phylogeny along edges that best differenti-

ate species by maximizing the objective function. After

defining phylofactorization as a graph-partitioning algo-

rithm, we illustrate the generality of the algorithm

through several examples.

First, we show that two-sample tests, such as t tests

and Fisher’s exact test, provide natural operations for

phylofactorization. Two-sample tests aggregate data
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from two groups through means or proportions, contrast

the aggregates via a difference of means or proportions,

and have natural objective functions defined by their test

statistics. We illustrate the use of two-sample tests by

performing phylofactorization of a data set of mam-

malian body mass.

Then, we show how the phylogeny serves as a scaffold

for changing variables in biological data through a con-

trast basis. The same basis used in the isometric log-ratio

transform can be used to identify the phylogenetic scales

providing low-rank, phylogenetically-interpretable factor-

izations of matrices. The contrast basis allows us to intro-

duce a phylogenetic analog of principal components

analysis, phylogenetic components analysis, which identi-

fies the dominant, phylogenetic scales capturing variance

in a data set. Phylogenetic components analysis of the

American gut microbiome data set (McDonald et al.

2018) reveals that some of the dominant clades explaining

variation in the American gut correspond to clades within

Bacteroides and Firmicutes, thereby providing finer phy-

logenetic resolution of the taxonomic-based Bacteroides/

Firmicutes ratios found to be associated with obesity

(Turnbaugh et al. 2006), age (Mariat et al. 2009), and

more. Another phylogenetic factor of variance in the

American gut is a clade of Gammaproteobacteria strongly

associated with inflammatory bowel disease (IBD), cor-

roborating a recent study’s use of phylofactorization to

diagnose patients with IBD (V�azquez-Baeza et al. 2017).

The contrast basis can also be used for regression-based

analyses if the data are assumed to be approximately nor-

mal or related to the normal distribution through a mono-

tonic transformation such as a logarithm. We illustrate

regression-phylofactorization through a generalized addi-

tive model analysis of how microbial abundances change

across a range of pH, nitrogen, and carbon concentrations

in soils. The resulting contrast basis and its fitted values

from generalized additive modeling yield a low-rank rep-

resentation of biological big data and translates to clear

biological hypotheses aiming to identify the traits driving

observed non-linear patterns of abundance across environ-

mental gradients (Ramirez et al. 2014).

Data sets comprised of non-Gaussian, exponential

family random variables can also be formally analyzed

through regression-phylofactorization. We present and

compare four algorithms using reduced-rank and

shared-coefficient models for generalized regression-phy-

lofactorization of exponential family data. We discuss

the relation of the presented algorithms to the contrast

basis and graph partitioning algorithm and we finish

with a discussion of the challenges and opportunities for

future development of phylofactorization.

All analyses and the R package phylofactor are avail-

able online; see Data Availability.

CONCEPTUAL OVERVIEW

We first motivate the need for phylofactorization and

introduce the graph-partitioning algorithm built on

contrasting species separated by edges. In the context of

the graph-partitioning algorithm, we consider two exam-

ples. The first, simple example of phylofactorization is the

use of two-sample tests as a measure of contrast. The sec-

ond example is the use of the contrast basis, a linear

change of variables which facilitates phylogenetically

interpretable, low-rank approximations of data matrices,

connecting phylofactorization to everything from princi-

pal components analysis to regression-based approxima-

tions of data matrices. We extend regression-based

phylofactorizatzion to exponential family random vari-

ables via generalized linear models. Four algorithms that

can embed phylofactorization in generalized linear mod-

els are presented and compared. Finally, we discuss how

the regression-phylofactorization methods introduced

above can be incorporated into spatially and temporally

explicit data analyses. In an effort to promote honest

development of phylofactorization as an inferential tool,

we examine several statistical challenges of phylofactor-

ization that we are aware of.

Why phylofactorization?

Which vertebrates live on land and which vertebrates

live in the sea (Fig. 1A)? Most children have enough nat-

ural history knowledge to say “fish live in the sea,” thus

correctly identifying one of the most important phyloge-

netic factors of land/sea associations in vertebrates. The

statement “fish live in the sea” can be mathematically for-

malized by noting that one edge in the vertebrate phy-

logeny separates sea-dwelling “fish” from predominantly

land-dwelling “non-fish” (Fig. 1B). Partitioning the phy-

logeny along the edge basal to tetrapods separates verte-

brates fairly well into groups with different land/sea

associations. An algorithm identifying the edge basal to

tetrapods using only land/sea associations would correctly

identify the edge along which important, functional eco-

logical traits arose: comparisons of fish/non-fish would

reveal clear morphological and physiological adaptations

to sea/land. There are a few more phylogenetic factors of

land/sea associations in vertebrates. Controlling for the

previously identified edge, one might be able to later iden-

tify the edges basal to Cetaceans, Pinnipeds, and other

tetrapods that live in the sea (Fig. 1B). Using such an

algorithm, a few edges can capture most of the variation

in land/sea associations across thousands of vertebrate

species.

Ancestral state reconstruction of habitat association is

a well-known means of making inferences about trait

differences arising along edges. However, some traits

and ecological patterns of interest are more complicated

and their ancestral state reconstruction dubious. For

instance, how can we identify the phylogenetic scales of

microbial community composition changes along a pH

gradient, allowing possible nonlinear associations that

could be detected through generalized additive modeling

(Fig. 1C)? Answering such a question through ancestral

state reconstruction requires conceiving and analyzing
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an evolutionary model of how generalized additive mod-

els evolve along a tree.

Phylofactorization is a graph-partitioning algorithm,

generalizing the phylogenetic logic used above to sim-

plify land/sea associations by iteratively identifying

edges in the phylogeny along which meaningful differ-

ences arise. With data-driven definitions of “meaningful

differences” between groups of species, phylofactoriza-

tion can identify phylogenetic scales underlying more

complicated ecological patterns, patterns for which

ancestral state reconstruction would be dubious.

GRAPH-PARTITIONING ALGORITHM

Phylofactorization requires a phylogeny spanning the

set of species considered in the data. All phylogenies are

rooted or unrooted graphs with no cycles, containing

and connecting the units of interest in our data (the units

FIG. 1. Phylofactorization generalizes the logic of how to simplify phylogenetically structured data sets. (A) Vertebrate land/wa-
ter associations can be simplified by partitioning the tree into the edges along which major traits arose. (B) The first phylogenetic
factor of vertebrate land/water associations is the edge along which tetrapods arose, an edge along which lungs and limbs evolved
that allowed colonization of land. Downstream factors can refine the original partitioning to identify the Cetaceans, Pinnipeds, and
other aquatic tetrapods. (C) Phylogenetic factorization uses the operations of aggregation and contrast to generalize this same logic
for phylogenetically structured data in which traits might not be known or their evolution easily modeled, including traits like a
nonlinear relationship between abundance and an environmental gradient. Pure aggregations (blue) sum data within a clade,
whereas contrasts (green/red) are differences between two clades. Low-rank, phylogenetically interpretable predictions of our data
can be obtained through a mixed basis containing a series of aggregations and contrasts, or a “contrast basis” containing a global
aggregate partitioned with subsequent contrasts.
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Box 1. Table of mathematical notation.

Terms Description

A(.) Aggregation operator

C(., .) Contrast operator

FðhÞ Distribution parameterized by h

Fe F statistic for edge e

Kt Number of edges considered in iteration t of phylofactorization

N Size of a binomial random variable

Q A group Q = R ∪ S aggregated at a current or previous iteration

R, S Two groups contrasted containing r and s species, respectively

P Partitioning variables for phylofactorization

T Phylogenetic tree

B m 9 p coefficient matrix

W Matrix of component scores corresponding to V

V m matrix of contrast basis elements

X m 9 n data matrix used for phylofactorization

Y K 9 n matrix of component scores, one for each edge considered

Z n 9 p matrix of meta-data used in regression-phylofactorization

a Coefficient in aggregation vector

b, c Coefficients in a contrast vector

ek Edge k

e* Winning edge

e�t Winning edge at iteration t

f(.) Transformation in generalized f mean

i, j, k, l Indexes. Often, i is the index for species and j for samples

m Number of species

n Number of samples

p Number of meta data types for each sample

phylo Categorical variable indicating which side of an edge a species is found

q Number of pure aggregates in a basis for Rm

r, s Numbers of species in groups R, S respectively

s(.) Smoothing spline notation for term in generalized additive model

t Iteration of phylofactorization

xi,j The i, jth element of data matrix X

xR,j Aggregate, AðxjÞ of group R for sample j, if j is missing then sample is arbitrary

xS,j See xR,j
xi A random variable (assumed to be a single species i for arbitrary sample)

[x]i,j i, jth entry of data matrix, X

zi Column of meta data matrix, Z

vQ;i ith element of aggregation basis element for set Q

vCRjS
Contrast vector splitting groups R and S

vCe
Contrast vector for edge e (which splits sub-tree into two disjoint groups)

xR;j r vector containing only the species in group R for sample j

xS;j See xR;j

x m vector of species’ data for an arbitrary sample

�x Sample mean of vector x

ye n vector of component scores for edge e

zk Vector of meta data of type k

bi Coefficients for linear model

g Natural parameter for exponential-family random variable

j Scale parameter for Gamma distribution

p Number of failures parameter for Negative Binomial distribution

q Probability of success for Bernoulli, Binomial, Negative Binomial distributions

r Standard deviation for Gaussian random variable

h Arbitrary parameters for probability distribution

May 2019 GENERALIZED PHYLOFACTORIZATION Article e01353; page 5

 1
5

5
7

7
0

1
5

, 2
0

1
9

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://esajo
u

rn
als.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/ecm
.1

3
5

3
 b

y
 C

o
rn

ell U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

9
/0

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



can be species, genes, or other evolving units of interest;

we use “species” from here on). Phylofactorization can

be implemented with disjoint phylogenies, such as viral

phylogenies for which there are not clear common ances-

tors, and the sub-phylogenies can either be kept separate

or joined at a polytomous root. The phylogeny may have

an arbitrary number and degree of polytomies. Defini-

tions of mathematical terms can be found in Box 1.

Let X be the data matrix of interest for phylofactoriza-

tion whose rows are species and columns are samples, with

xi;j being the data for species i ¼ 1; . . .;m in sample

j ¼ 1; . . .; n. Let XR be the sub-matrix of X containing only

a subset of species, R, and let xR;j be the jth column of XR.

Let Z be the n� p matrix containing p additional meta

data variables for each sample. Let T be the phylogenetic

tree, T sf g a set of sub-trees whose tips span all species, and

let edge e in the phylogeny separate the disjoint groups R

and S. Phylofactorization requires (1) an aggregation func-

tion, A XR; T ; eð Þ 2 R which aggregates any subset, R, of

species within samples, possibly using information from the

tree, T and species’ proximity to the edge, e; (2) a contrast

function, C A XR; T ; eð Þ;A XS; T ; eð Þ;Z; T ; eð Þ 2 R which

contrasts the aggregates of two disjoint subsets of species,

R and S, spanning the species in T , possibly using meta

data, Z, and edge, e; and (3) an objective function, xðCÞ.
With these operations, phylofactorization is defined

iteratively as a special case of a graph partitioning

algorithm (Fig. 2). The steps of phylofactorization are

as follows:

1) For each edge, e, in T sf g separating disjoint groups

of species Re and Se within the sub-tree T e

FIG. 2. Phylofactorization is a graph-partitioning algorithm. An objective function, x, of a contrast of species separated by an
edge allows one to iteratively partition the phylogeny along edges maximizing the objective function (first iteration). After partition-
ing the phylogeny, the objective functions are recomputed to contrast species in the same sub-tree separated by an edge. Edge B in
the first iteration contrasted mammals from non-mammals, but in the second iteration, it contrasts mammals from non-mammals,
excluding raptors (partitioned in the first iteration). The result of k iterations of phylofactorization is a set of k þ 1 bins of species.
Regression-phylofactorization defines an objective function through regression. Regression-phylofactorization can identify clades
with similar patterns of association with environmental meta data and obtain low-rank, phylogenetically interpretable representa-
tions of a data matrix.

Article e01353; page 6 ALEX D. WASHBURNE ET AL. Ecological Monographs
Vol. 89, No. 2

 1
5

5
7

7
0

1
5

, 2
0

1
9

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://esajo
u

rn
als.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/ecm
.1

3
5

3
 b

y
 C

o
rn

ell U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

9
/0

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



containing e, compute Ce ¼ C A XRe
; T e; eð Þ;ð

A XSe
; T e; eð Þ;Z; T e; eÞ

2) Compute edge objective xe ¼ xðCeÞ for each edge, e

3) Select winning edge e� ¼ argmaxe xeð Þ
4) Update T sf g by removing T e and adding the two

sub-trees formed by partitioning T e along e�.

5) Repeat 1–5 until a stopping criterion is met.

Unlike more general graph-partitioning algorithms,

phylofactorization does not impose a balance constraint

that would require the partitions have a similar size or

weight. Furthermore, phylofactorization is the particular

application of graph partitioning in which the graph is a

phylogeny capturing the evolutionary relationships

between organisms, thereby allowing an evolutionary

and ecological interpretation of the partitions.

Aggregation and contrast operations used are the prin-

ciple operations for defining scales and units of ecological

organization, and by working with phylogenies the units

aggregated will have many shared traits and the units con-

trasted will have traits or evolutionary histories that sepa-

rate them. Phylofactorization is limited to contrasts of

non-overlapping groups. The constraint of contrasting

aggregates forces researchers to define a priori the method

of aggregating data from groups of species partitioned by

phylofactorization, thereby ensuring data from groups of

species are subsequently summarized with the same

method by which they were discovered to be different

from data from other groups of species. The incorpora-

tion of the tree, T , in the contrast function encompasses a

class of ancestral state reconstruction reconstruction

methods. Ancestral state reconstruction with non-over-

lapping contrasts can be done with time-reversible models

of evolution; in this case, phylofactorization contrasts the

root ancestral states obtained in which the two nodes

adjacent an edge are considered roots of the subtrees sep-

arated by that edge. Finally, as we discuss in detail in the

section The Contrast Basis, the use of aggregation and

contrast as the central operations in phylofactorization

connect the graph partitioning algorithm with a method

for constructing a basis that can be used for matrix factor-

ization and low-rank approximations of data sets.

We use the term “phylogenetic factor” to refer to the

results from a particular iteration of the algorithm. “Fac-

tors” have two groups, Re and Se, separated by an edge

or link of edges, e, and thus the term “factor”, as

opposed to “iteration”, is chosen to allude to latent vari-

ables (traits, evolutionary regimes, etc.) sensu factor ana-

lysis and the basis elements used for matrix factorization

(Washburne et al. 2017). It’s possible to define objective

functions through pure aggregation, such as AðXR; T ; eÞ,
but we limit our focus to contrast-based phylofactoriza-

tions which identify edges along which meaningful dif-

ferences arose due to the non-orthogonality of nested

aggregates and the orthogonality of contrasts, discussed

in greater detail in The Contrast Basis section.

The result of phylofactorization after t iterations is a

set of t inferences on edges or links of edges. Links of

edges occur following a previous partition, when two

adjoining edges separate the same two groups in the

resultant sub-tree. Partitioning the phylogeny along t

edges results in tþ 1 bins of species, referred to as

“binned phylogenetic units” (BPUs). In general, the

problem of maximizing some global objective function,

xðe�1; . . .; e
�
t Þ, for a set of t edges, fe�1; . . .; e

�
t g, is NP hard

(Buluc� et al. 2016). However, stochastic searches of the

space of possible partitions, via a stochastic computa-

tion of xe in step 2 or a weighted draw of e� in step 3,

may yield better approximations of a global maximum

(Metropolis et al. 1953, Hastings 1970, Jerrum and Sor-

kin 1998).

Aggregation, contrast, and objective functions are

decision points to define and interpret meaningful quan-

tities and outcomes from data analysis. Explicit deci-

sions about aggregation formalize how a researcher

would summarize data from an arbitrary set of species.

Explicit decisions about contrasts formalize how a

researcher differentiates two arbitrary, disjoint groups of

species. The operations of aggregation and contrast

operationalize the concept of phylogenetic scales. Many

mathematical operations can be aggregations, including

but not limited to addition, multiplication, generalized

means, and maximum likelihood estimation of ancestral

states under models of trait diffusion away from the

focal node. Likewise, contrasts can be differences, ratios,

two-sample tests, and more complicated metrics of dis-

similarity such as the deviance of a factor contrast in a

generalized additive model. Researchers must decide

how best to aggregate information in groups of species,

contrast two groups, and decide which group maximizes

the objective for a research goal pertaining to a particu-

lar ecological pattern. Doing so allows objective, a priori

definitions of what makes an informative phylogenetic

scale.

Below, we show examples of the algorithm along with

results from phylofactorization of real data. These examples

were run using the R package phylofactor, using relevant

functions for analyzing and visualizing phylogenies from the

R packages ape (Paradis et al. 2004), phangorn (Schliep

2011), phytools (Revell 2012), and ggtree (Yu et al. 2017).

Two-sample tests

If the data are a single vector of observations, x, such

as average body mass estimated for a set of m species,

phylofactorization can be implemented through stan-

dard tests for differences of means or rate parameters in

the two sets of species, R and S.

To illustrate, we phylofactorize a data set of mam-

malian body mass from PanTHERIA (Jones et al. 2009)

and the open tree of life using the R package rotl

(Michonneau et al. 2016). A single vector of data

assumed to be log-normal can be factored based on a

two-sample t test (Fig. 3). In this case, our aggregation

function AðxRÞ ¼ logðxRÞ is the arithmetic mean of the

log body mass; our contrast function
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C ¼
AðxRÞ � AðxSÞ

ffiffiffiffiffiffiffiffiffiffi

1
r
þ 1

s

q (1)

is a standardized difference of means, and the objective

function xe ¼ jCej. With these operations, our objective

function is the test-statistic for a two-sample t test with

the assumption of constant variance. Maximization of

the objective function yields edges separating mammals

with the most significant difference in body mass.

The first five phylogenetic factors of mammalian body

mass in these data are Euungulata, Ferae, Laurasiatheria

(excluding Euungulata and Ferae), a clade of rodent sub-

orders Myodonta, Anomaluromorpha, and Castorimor-

pha, and the simian parvorder Catarrhini. Five factors

produce six binned phylogenetic units of species with dif-

ferent average body mass (Fig. 3). The most significant

phylogenetic partition of mammalian body mass occurs

along the edge basal to Euungulata, identifying a clade of

296 species with significantly larger body mass than other

mammals. The second partition corresponds to Ferae,

containing 242 species which have body masses larger than

other mammals, excluding Euungulata. The third parti-

tion corresponds to 864 remaining species in Laurasiathe-

ria, excluding Euungulata and Ferae, which contains

Chiroptera, Erinaceomorpha, and Soricomorpha. These

mammals have lower body mass than non-Laurasiather-

ian mammals. The fourth partition identifies three rodent

sub-orders comprising 926 species with lower body mass

than non-Laurasiatherian mammals. Finally, 106 species

comprising the Simian parvorder Catarrhini are factored

as having higher body mass than the remaining mammals.

These factors are fairly robust: 3,000 replicates of stochas-

tic Metropolis-Hasting phylofactorization, drawing edges

in proportion to Ck with k ¼ 6 (producing a 1/4

probability of drawing the most dominant edge at the first

iteration) could not improve upon these five factors.

The first two phylogenetic factors of mammalian body

size partition the mammalian tree at deep edges with

ancestors near the K-Pg extinction event, corroborating

evidence of ecological release (Alroy 1998, 1999) and the

exponential growth of maximum body sizes following the

K-Pg extinction event (Smith and Lyons 2011) for these

two dominant clades. The crown group of modern Euun-

gulata are thought to have originated in the late Creta-

ceous (Zhou et al. 2011) and its representatives may have

expanded into previously dinosaur-occupied niches dur-

ing the rapid evolution of body size in mammals immedi-

ately after the K-Pg extinction event at the Cretaceous/

Paleogene boundary (Smith et al. 2010). Cope’s rule

posits that lineages tend to increase in body size over

time, and a recent study (Baker et al. 2015) confirms

Cope’s rule and found that mammals have, along all

branch lengths in their phylogeny, tended to increase in

size. The phylogenetic factors of mammalian body size

discovered here illustrate an important feature of phylo-

factorization: correlated evolution within a clade, such as

a consistent directional evolution among lineages in a

clade, can cause the edge basal to a clade to be an impor-

tant partition for capturing variance in a trait. A more

robust phylofactorization may be done through iterative

ancestral-state reconstruction of the roots of subtrees par-

titioned by each edge (where the subtrees are re-rooted at

the nodes adjacent the edge), but this unsupervised phylo-

genetic factorization body masses in 3,374 mammals

takes 15 s on a laptop and yields partitions which sim-

plify the story of mammalian body-mass variation to a

set of five edges forming six binned phylogenetic units.

Two-sample tests can be used for phylogenetic factor-

ization of any vector of trait data. For another example,

FIG. 3. Two-sample tests, such as t tests, can be used as objective functions for phylofactorization of vectors of data. Using a t
test of equal variance, five iterations of phylofactorization on a data set of mammalian log body mass yields five clades with very
different body masses. These t statistics are identical to projections of the data onto contrast basis elements discussed in the section
The Contrast Basis.
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Bernoulli trait data, such as presence/absence of a trait,

can be factored using Fisher’s exact test that there is the

same proportion of presences in two groups, R and S. In

this case, the aggregation operation AðxRÞ ¼
P

i2R xi
counts the number of successes in group R, the contrast

function, C, is the P value of Fisher’s exact test with the

contingency table shown in Table 1.

An objective function can be defined as the inverse of

the P value from Fisher’s exact test, xe ¼ C�1
e . The

phylofactorization of vertebrates by land/water associa-

tion in Fig. 1, using an ad-hoc selection of vertebrates

for illustration, was performed using Fisher’s exact test,

and the factors obtained correspond to Tetrapods, Ceta-

ceans, and Pinnipeds. Unlike the phylofactorization of

mammalian body mass, all three factors obtained from

phylofactorization of vertebrate land/water association

correspond to a set of traits. Tetrapods evolved lungs

and limbs which allowed them to live on land. Cetaceans

evolved fins and blowholes, and Pinnipeds evolved fins,

all traits adaptive to life in the water.

Two-sample tests are used when partitioning a vector

of traits and not controlling for additional meta data

such as sampling effort or other confounding effects.

Phylofactorization of body mass and land/water associa-

tions illustrate two potential evolutionary models under

which edges are important: correlated evolution of mem-

bers of a clade caused by different evolutionary regimes

(e.g., ecological release, niche partitioning or geographic

separation) and punctuated equilibria in which func-

tional traits of large importance arise infrequently. More

complicated methods of phylofactorization will yield

similar evolutionary interpretations: factors may corre-

spond to traits or evolutionary regimes shared among

extant members of a clade and/or their ancestors.

THE CONTRAST BASIS

How can we identify the phylogenetic scales in an

arbitrary matrix of data, X, such as the data obtained

when measuring abundances or traits of species across a

range of environments? Low-rank approximations of

matrices are useful tools for simplifying big data, and

often rely on choosing a small set of vectors fvig
K
i¼1 and

their coordinates fwig
K
i¼1 to minimize the distance

between the matrix, X, and some low-rank matrix VW.

In this section, we introduce the contrast basis, a set

of vectors that connect phylofactorization’s graph-parti-

tioning algorithm to various methods for low-rank

approximations of data matrices. We then use the con-

trast basis for a phylogenetic analog of principal compo-

nents analysis to analyze gut microbiomes across

hundreds of patients, and for regression-based dimen-

sionality reduction to identify the phylogenetic scales of

community compositional changes in central park soils.

The phylogeny provides a natural scaffold for low-

rank, phylogenetically interpretable approximations of

the data. As a sphere defines a natural set of coordinates

for GPS data, the phylogeny defines a natural set of

coordinates for community ecological data (Washburne

et al. 2018). One example of a natural coordinate in the

phylogeny is an aggregation; the total abundance of spe-

cies within a clade is obtained by projecting the data

onto a vector containing 1 for all elements corresponding

to species in that clade and 0 for all other elements.

Another example of a natural coordinate in the phy-

logeny is a contrast; the difference of total abundance

between two clades is obtained by projecting the data

onto a vector containing 1 for all elements in one clade

and �1 for all elements in the other clade. These opera-

tions allow one to construct natural coordinates for

more sophisticated analyses of phylogenetically struc-

tured ecological data.

Phylogenetically interpretable, low-rank approxima-

tions of data can be obtained by constructing basis ele-

ments through aggregation and contrast vectors

(Fig. 1C). If two groups, R and S, are separated by an

edge of interest for phylofactorization, an aggregation

basis element for the group Q ¼ R [ S can be con-

structed through a vector, vAQ
; whose ith element is

vAQ ;i ¼
a i 2 Q

0 otherwise.

n

(2)

If, for example, there are 10 species in Q, projecting

the data onto vAQ
with a ¼ 1=10 is equivalent to taking

the mean of those 10 species, whereas if a ¼ 1 then pro-

jection onto vAQ ;i is equivalent to summing the data of

those 10 species. A natural complement to an aggrega-

tion vector is a vector contrasting the groups R and S

whose ith element is

vCRjS ;i ¼
b i 2 R

�c i 2 S

0 otherwise

(

(3)

where b[ 0 and c[ 0. By meeting the criteria

rb� sc ¼ 0 (4)

rb2 þ sc2 ¼ 1 (5)

one can ensure that the aggregation vector, vAQ
, and the

contrast vector of the two disjoint sets comprising Q,

vCRjS
, are orthogonal to one another (Eq. 4) and have

unit norm (Eq. 5). Solving Eqs. 4 and 5 yields a choice

of b and c for contrast basis elements:

TABLE 1. Fisher’s Exact test for two-sample phylofactorization
of Bernoulli trait data.

Successes Failures Total

AðxRÞ r� AðxrÞ r

AðxSÞ s� AðxSÞ s

AðxRÞ þ AðxSÞ rþ s� ðAðxrÞ þ AðxSÞÞ r + s

Note: Variables are defined in Box 1.
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b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s

rðrþ sÞ

r

(6)

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

sðrþ sÞ

r

: (7)

Phylogenetic scales of interest in data matrices can be

identified through analysis of data projected onto aggre-

gation and contrast vectors. In the language of phylofac-

torization’s graph partitioning algorithm, projecting

data from sample j, xj , onto the contrast vector vCRjS
is

equivalent to defining the sample-wise aggregation and

contrast operations as

AðxR; jÞ ¼ �xR; j

C AðxR; jÞ;AðxS; jÞ
� �

¼

ffiffiffiffiffiffiffiffiffiffi

rs

rþ s

r

�xR; j � �xS; j
� �

(8)

where �xR; j is the sample mean of species in group R and

sample j. Projecting an entire data set, X, onto vCRjS

yields coordinates, one for each sample, which are a

standardized difference of means identical to Eq. 1.

Since the contrast vector is comprised of two sub-aggre-

gations of opposite sign, one for group R and the other

for group S, it will be orthogonal to a subsequent a con-

trast vector partitioning either R or S into two disjoint

groups. Thus, the non-overlapping contrasts produced

by phylofactorization’s graph-partitioning coupled with

the criterion in Eq. 4 allow one to construct an ortho-

gonal contrast basis during phylofactorization. The

orthonormal contrast basis can be used to make low

rank approximations of X ¼ VWþ e where the low-

rank matrix VW corresponds to important phylogenetic

scales in the data.

One can construct a complete basis using only aggrega-

tion and their contrast vectors. By disallowing overlapping

aggregations (e.g., aggregations of nested clades) while

maintaining the criteria in Eqs. 4 and 5 for contrast basis

elements, one can ensure the basis is orthonormal. With m

species, first define a set of q�m orthogonal aggregation

vectors aggregating disjoint sets of species Ql such that the

entire set of aggregations,
Sl¼q

l¼1 Ql ¼ f1; . . .;mg, covers

the entire set of m species. Then, m� q contrast vectors

partitioning the aggregations and all multi-species sub-

aggregations within contrast vectors can complete the

basis (Fig. 1C). It’s worth noting that the span of any

aggregate and its contrast is equal to the span of the con-

trasts’ sub-aggregates, i.e., for R [ S ¼ Q

span vAQ
; vCRjS

� �

¼ span vAR
; vAS

ð Þ (9)

(Fig. 1C). Thus, these two natural pairs of basis ele-

ments, an aggregate of species and its orthogonal con-

trast (grouping species and partitioning the group) or

two orthogonal aggregates (two disjoint groups of spe-

cies), are rotations of one another.

Aggregation vectors as defined in Eq. 2 can be defined

a priori based on non-overlapping traits or clades of spe-

cies thought to be important for the question at hand

(e.g., aggregate “terrestrial” and “aquatic” animals), or

they can be learned through clustering algorithms or

even phylofactorization based purely on aggregation by

converting steps 1 and 2 in the phylofactorization algo-

rithm into a single step: maximizing an objective function

of the aggregate of a clade. A special case occurs when

data are compositional (Aitchison 1982), in which case

the sum of the data for all species in the community will

equal 1 and thus the data are constrained by an aggrega-

tion element: the aggregate of all species. Consequently,

changes in compositional data are always orthogonal to

the 1 vector, and, for compositional data, variation is

best described through contrast basis elements. For this

reason, phylofactorization via contrasts of log-relative

abundance data allows one to construct an isometric log-

ratio transform, a commonly used and well-behaved

transform for the analysis of compositional data (Egoz-

cue et al. 2003, Egozcue and Pawlowsky-Glahn 2005, Sil-

verman et al. 2017). For non-compositional data, since

the span of an aggregate and its contrast is equal to the

span of the contrasts’ two aggregates (Eq. 9), we simplify

the identification of phylogenetic scales and the construc-

tion of a phylogenetic basis by considering, from here on

out, only the “contrast basis” similar to that used in com-

positional data whereby an initial aggregate of all species

is partitioned with a series of contrasts.

Phylogenetic components analysis

Principal components analysis obtains a set of orthog-

onal directions, called loadings, which sequentially maxi-

mize the variance of the data projected onto the

loadings. Similarly, orthogonal contrast vectors allow

researchers to partition the variance in a community

ecological data set along each of a set of orthogonal

directions corresponding to discrete, interpretable fea-

tures in the phylogeny.

An edge, e, separating groups of species R and S has a

corresponding candidate basis element, vCRjS
, that we

will refer to as vCe
. Projecting the data matrix onto the

contrast basis element yield what we’ll call component

scores ye ¼ vTCe
X. The component scores can be used to

identify phylogenetically interpretable directions captur-

ing variance in the data through the objective function

xe ¼ Var ye½ �: (10)

Phylofactorization via the objective function in Eq. 10

yields a phylogenetic decomposition of variance we call

“phylogenetic components analysis” or PhyCA. PhyCA

is a constrained version of principal components analy-

sis, allowing researchers to identify the dominant axes of

variation corresponding to contrasts of species separated

by an edge.
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The component score for sample j, ye;j , can be written

as

ye; j ¼

ffiffiffiffiffiffiffiffiffiffi

rs

rþ s

r

�xR; j � �xS; j
� �

(11)

where �xR; j is the sample mean of xi; j for i 2 R and �xS; j is

the sample mean of xi:j for i 2 S. Consequently, the vari-

ance of the component score is

Var½ye� ¼
rs

rþ s
Var �xR½ � þ Var �xS½ � � 2Cov �xR; �xS½ �ð Þ:

(12)

The variance of ye increases through a combination of

variances of the aggregations of groups R and S across

samples (�xR and �xS, respectively) and a high negative

covariance between aggregations for groups R and S

across samples. Negative covariance may be caused by

competitive exclusion, different habitat associations

across the samples, and more - such ecological phenom-

ena can be identified through PhyCA.

We use PhyCA to identify 10 factors from a sub-sam-

ple of the American gut data set (McDonald et al. 2018)

and the greengenes phylogeny (DeSantis et al. 2006)

containing m = 1,991 species and n = 788 samples from

human feces (Fig. 4). The American gut data set was fil-

tered to fecal samples with over 50,000 sequence counts

and, among those samples, operational taxonomic units

(OTUs) with an average sequence per sample greater

than 1. After performing PhyCA, possible ecological

explanations of variance were explored via least squares

regression predicting the winning component score, ye� ,

using seven explanatory variables: types_of_plants

(a question asking participants how many types of

plants they’ve eaten in the past week), age, bmi, alcohol

consumption frequency, sex, antibiotic use (ABX), and

inflammatory bowel disease (subset_ibd) (Fig. 4). The

raw P values from t tests of the coefficients are presented

below; the P value threshold for a 5% family-wise error

rate, given the 70 tests run, is 7.1 9 10�4.

The first factor splits 1,229 Firmicutes OTUs from the

remaining 782 OTUs. The component score for the first

factor, ye�
1
, is strongly associated with antibiotic use

(P = 3.6 9 10�4), showing dramatic decreases in relative

abundance in patients who have taken antibiotics in the

past week or month. The second factor identifies 217

species of several genera of Lachnospiraceae, a clade con-

tained within the Firmicutes of factor 1. These Lach-

nospiraceae are contrasted from the remaining Firmicutes

by a strong association with age (P = 1.2 9 10�15), bmi

(P = 3.2 9 10�6), and alcohol (P = 6.4 9 10�3). The third

FIG. 4. Maximizing the variance of component scores, ye, of log-relative abundance data produces a “phylogenetic components
analysis” (PhyCA) of the American gut data set. The most variable clades cover a range of phylogenetic scales. Downstream analy-
sis of component scores are tested for associations with biologically relevant meta data. Plotted are linear predictors against relevant
meta data for one exception: the plot of Lachnospiraceae includes the raw data as black dots.
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factor is a clade of 81 Bacteroides most strongly associated

with types_of_plants (P = 2 9 10�9). By identifying clades

of Firmicutes and Bacteroides as major axes of variation,

factors 1 and 3 refine the Firmicutes to Bacteroidetes ratio

commonly used to describe variation in the gut microbiome

and found associated with obesity and other disease states

(Ley et al. 2006, Clemente et al. 2012). It’s been found that

the Firmicutes/Bacteroidetes ratio changes with age (Mariat

et al. 2009), but the picture from phylofactorization is more

nuanced: the large clade of Firmicutes in the first factor

does not change with age relative to the complement set of

all species, but the Lachnospiraceae within that clade

decrease strongly with age relative to the remaining Firmi-

cutes, while the Bacteroides show only a moderate decrease

with age. The strong decrease with age in Lachnospiraceae

is found in a few other clades within the Firmicutes: the

fourth factor identified a clade of Firmicutes of the family

Ruminococcaceae strongly associated with types of plants

(P = 3.6 9 10�5), sex (P = 5.9 9 10�4) and decreasing

with age (P = 9.2 9 10�4), and the fifth factor identified a

group of Firmicutes of the family Tissierellaceae that

decrease strongly with age (P = 1.9 9 10�5).

The sixth factor partitions small group of five OTUs

of Prevotella copri associated with types_of_plants

(P = 2.8 9 10�4) and weakly associated with inflamma-

tory bowel disease (P = 2.5 9 10�3). Previous studies

have found that Prevotella copri abundances are corre-

lated with rheumatoid arthritis in humans and inocula-

tion of Prevotella copri exacerbates colitis in mice.

Consequently, Prevotella copri is hypothesized to

increase inflammation in the mammalian gut (Scher

et al. 2013), and the discovery of Prevotella copri as one

of the dominant phylogenetic factors of the American

gut, as well as the discovery of its association with IBD,

corroborates the hypothesized relationship between Pre-

votella copri and inflammation. Likewise, the seventh

factor is a clade of 41 Gammaproteobacteria of the

order Enterobacteriales also associated with types_of_-

plants (P = 6.7 9 10�8) and weakly associated with

inflammatory bowel disease (P = 0.022). Gammapro-

teobacteria were used as biomarkers of Crohn’s disease

in a recent study (V�azquez-Baeza et al. 2017) and their

associations with IBD in the American gut project cor-

roborates the use of Gammaproteobacterial abundances

for diagnosis of IBD from stool samples.

Gaussian-based regression-phylofactorization

When the data are assumed to be Gaussian or easily

mapped to Gaussian with a monotonic function, such as

logistic-normal compositional data or log-normal data,

objective functions can be defined directly from regres-

sion on component scores. While ye can be used as either

an independent or dependent variable, the transformed-

Gaussian assumption of the data is particularly impor-

tant when ye are used as dependent variables.

Maximizing the explained variance from regression

identifies clades through the product of a high contrast

variance from Eq. 10 and a high percentage of

explained-variance from regression – such clades can

capture large blocks of explained variance in the data

set. Maximizing the deviance or F statistic from regres-

sion identifies clades with more predictable responses:

such clades can be seen as bioindicators or particularly

sensitive clades, even if they are not particularly large or

variable clades. Regression-phylofactorization uses the

component scores as a response or explanatory variable,

the latter being used in the phylofactorization-based

classification of Crohn’s disease (V�azquez-Baeza et al.

2017). For multiple regression, one can define objective

functions based on the explanatory power of the entire

model or the explanatory power of a subset of the

model. More complicated regression models can be con-

sidered, including generalized additive models, regular-

ized regression, and more.

To identify phylogenetic scales corresponding to non-

linear patterns of abundance-habitat associations, we

perform a generalized additive model analysis of the

Central Park soils data set (Ramirez et al. 2014) previ-

ously analyzed with least squares. To identify non-linear

associations between clades and pH, carbon, and nitro-

gen, we perform a generalized additive model of the form

ye � sðpHÞ þ sðcarbonÞ þ sðnitrogenÞ (13)

where sðÞ indicates a smoothing spline. Our objective

function was the explained variance of the entire model.

The resultant phylofactorization (Fig. 5) identified the

same four factors as the least squares model and nonlin-

ear patterns of community compositional changes along

environmental gradients. The four factors partition over

3,000 species into five binned phylogenetic units; aggre-

gating abundances within BPUs while sorting the data

along pH (the dominant explanatory variable for all four

factors) allows clear, phylogenetically interpretable, low-

rank visualization of otherwise complex behavior of how

a community of several thousand microbes changes

across several hundred soil samples. Phylofactorization

through generalized additive modeling identifies a clade

of Acidobacteria, the Chloracidobacteria, which have

their highest relative abundances in neutral pH soils.

GENERALIZED PHYLOFACTORIZATION

Many ecological data are not Gaussian. Presence–ab-

sence data or count data with many zeros cannot be

easily transformed to yield approximately Gaussian ran-

dom variables. Data assumed to be exponential family

random variables can be analyzed with regression-phylo-

factorization by adapting concepts used in generalized

linear models for aggregation & contrast of species sepa-

rated by edges.

For an example of why this is important, consider a

data matrix, X, whose entries are either 0 or 1 (i.e. pres-

ence–absence data). Projecting these data onto vCe
will

yield component scores, ye, which are discrete and for
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which least squares regression is not appropriate; among

other things, the regression model could predict values

of ye beyond what is possible given the number of species

in R and S. As one would use logistic regression in gen-

eralized linear models to analyze patterns in the pres-

ence/absence of a single species, we present algorithms

to use generalized linear models for regression-phylofac-

torization of such non-Gaussian, exponential family

random variables.

We present four algorithms to identify edges separating

groups of species with high within-group similarity and

high between-group differences in regression coefficients

estimated through generalized linear modeling. The algo-

rithms either explicitly use the contrast basis to approxi-

mate the regression coefficient matrix or implicitly use an

analog of the contrast basis in the likelihood function via

categorical factor contrasts in a shared coefficients model.

The algorithms we propose are (1) coefficient contrast,

which uses the contrast basis to identify sets of species

with significantly different regression coefficients; (2)

phylo factor contrasts, which uses surrogate categori-

cal variables, phylo, to contrast regression coefficients;

(3) marginally stable aggregation, which aggregates data

to marginally stable distributions, then use of phylo
factor contrasts; and (4) mixed, which uses algorithm 1

(the fastest) to identify a subset of edges as candidates for

algorithm 2 (the slowest but most accurate).

At the end of this section, we compare the computa-

tional costs and scaling of these algorithms. The broader

use of phylofactorization through generalized linear mod-

elling is referred to as “generalized phylofactorization”.

Algorithm 1: Coefficient contrast

Matrix factorization, X ¼ VWþ e, can be used for

low-rank approximations of the coefficient matrix. The

first algorithm, related to reduced rank regression for

vector generalized linear models (Yee and Hastie 2003),

uses the contrast basis to provide a reduced-rank

approximation of the coefficient matrix from multivari-

ate generalized linear models. Multivariate (vector) gen-

eralized linear models assume the data X are drawn

from an exponential family distribution with canonical

parameters for each species, g 2 R
m, related to the meta

data Z through a linear model

g�BZ (14)

where B 2 R
m�p is the coefficient matrix and Z 2 R

p�n is

the matrix of meta data. Instead of usingm� p coefficients,

one can approximate the coefficient matrix B through con-

trast basis elements and their component scores

B ¼ 1wT
0 þ VWþ e (15)

where 1 2 R
m is the one vector, w0 2 R

p contains the

mean of the regression coefficients for each of the p pre-

dictors, V 2 R
m�t is a matrix whose columns are contrast

FIG. 5. Projecting the data onto contrast basis elements permits a broad range of analyses. Here, the component scores ye
from projections of log-relative abundances are analyzed to find phylogenetic factors of changing community composition in Cen-
tral Park soils. The model ye � s(log (carbon)) + s(log (nitrogen)) + s(pH), where s() indicates a smoothing spline, was combined
with the objective of maximizing the explained variance. The relative importance of pH in the generalized additive models, and
the exact clades with a high amount of variance explained by pH, allows a projection of 3,000 species into 5 binned phylogenetic
units (BPUs) for clear visualization and prediction of nonlinear community compositional changes along a key environmental
gradient.
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basis elements obtained from t iterations of phylofactor-

ization and W 2 R
t�p is a matrix whose rows are the

component scores for each contrast basis element and

whose columns are the set of component scores for each

of the p predictors. If one is interested in partitioning spe-

cies based on a subset, P, of the explanatory variables,

one can implement Eq. 15 for the matrix BP containing

only the partitioning variables for phylofactorization.

The approximation of B in Eq. 15 is best done by

directly testing differences in the standardized regression

coefficients obtained by dividing regression coefficients,

bi;j , by their standard error. We refer to the matrix of

such standard coefficients for partitioning variables as

the “standardized coefficient matrix,” ~BP.

The Euclidean norm of the projection of the standard-

ized coefficient matrix onto contrast basis elements can

serve as an objective function

xe ¼ kvTCe

~BPk (16)

capturing the extent to which coefficients in ~BP differ

between the sets of species partitioned by the edge e. Com-

bined with the asymptotic normality of regression coeffi-

cients in generalized linear models and assuming

independence of bi;j across meta data j, a given objective

function xe is a chi-squared statistic with p degrees of free-

dom. Coefficient contrasts are fast and easy to compute,

but the algorithm described here minimizes the distance

between VW and ~BP and do not necessarily maximize the

likelihood of the reduced-rank regression. Other algo-

rithms described below construct reduced-rank approxi-

mations which maximize the likelihood of the data under

an explicit model of within-group shared coefficients.

Algorithm 2: Stepwise phylo factor contrasts

A surrogate variable phylo 2 fR;Sg, indicating

which group a species is in, can be used to explicitly

model shared coefficients within-groups andcontrast the

coefficients between-groups, all while finding the maxi-

mum-likelihood estimates of the shared coefficients.

Stepwise, maximum-likelihood selection of phylo fac-

tor contrasts are a more accurate yet computationally

intensive algorithm for generalized phylofactorization.

To see how phylo factors are constructed, a data

frame contrasting how the counts of “birds” and “non-

birds” are associated with meta data z2 while controlling

for z1 can be constructed as shown in Table 2. The mono-

phyletic group of birds is always takes the value R for the

variable phylo, whereas non-birds always take on the

value S. Phylofactorization can be implemented through

a generalized linear model for a count family (e.g., Pois-

son, binomial, or negative binomial) using the formula

Abundance� z1 þ phylo� z2: (17)

The phylo factor contrasts groups separated by an

edge; using its deviance as the objective function will find

the edge e� whose phylo factor maximizes the likeli-

hood of the data under a model of shared coefficients.

In phylo factor contrasts, aggregation occurs

within the likelihood function. The likelihood Lðxj ; gÞ
for a vector of binomial random variables xj 2 R

m can

be written in exponential family form

Lðxj ; gÞ ¼ hðxjÞ exp g
0x�AðgÞf g : (18)

A two-factor model, such as x� phylo, will reduce the

likelihood function from m parameters in g to two

parameters, gi 2 ðgR;gSÞ, yielding

Lðxj ;phyloÞ¼ hðxjÞexp gR

X

i2R

xi; j þgS

X

i2S

xi; j �AðgÞ

( )

:

Aggregation within the likelihood function above is

summation of data within-groups; more generally, aggre-

gation is given by the sufficient statistic, TðxÞ, in the

exponential family random variable’s likelihood func-

tion (e.g., TðxÞ ¼
P

i logðxiÞ for the Pareto and chi-

squared distributions). With the maximum likelihood

estimates, ĝR and ĝS, a contrast function can be defined

as a difference of gR and gS, or the test-statistic from a

hypothesis test that gR ¼ gS.

Stepwise selection of maximum-likelihood phylo
factor contrasts, constructed for non-overlapping sets of

species via the graph partitioning in phylofactorization,

is an accurate yet extremely computationally intensive

method for regression-phylofactorization of exponential

family random variables. A faster yet less accurate algo-

rithm, which still performs maximum-likelihood estima-

tion of phylo factor contrasts, is the use of marginally

stable aggregation (Fig. 6).

Algorithm 3: Marginally stable (mStable) aggregation

Another option, aimed to reduce the computational

costs of explicit maximum-likelihood estimation of

phylo factors, is to aggregate the raw data X prior to

TABLE 2. Constructing phylo factor corresponding to edge
separating birds from non-birds.

Site Species Abundance z1 z2 phylo

1 Pigeon 10 1 0.5 R

1 Dove 8 1 0.5 R

1 Lizard 1 1 0.5 S

1 Mouse 3 1 0.5 S

1 Cat 1 1 0.5 S

2 Pigeon 2 0 �2 R

2 Dove 1 0 �2 R

2 Lizard 10 0 �2 S

2 Mouse 4 0 �2 S

2 Cat 3 0 �2 S

. . . . . . . . . . . . . . . . . .

Note: Variables are defined in Box 1.
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evaluating the generalized linear model. The method we

present is to assume within-group homogeneity and

aggregate exponential family random variables to a

“marginally stable” exponential family random variable

that can be used for downstream analysis. Marginal sta-

bility, to the best of our knowledge, has not been explic-

itly defined elsewhere, and thus we introduce the term

here by loosening the definition of stable distributions

(Sato 1999). Given a non-trivial aggregation operator

A:Xm 7!X defined for any natural number m, a distribu-

tion with parameters {h1; h2}, Fðh1; h2Þ, defined over X,

is said to be marginally stable on h1 with respect to A if

for all x 2 Xm with independent elements xi � Fðh1; h2;iÞ
for i ¼ 1; :::;m;AðxÞ�Fðh1; h2;mþ1Þ conditioned on h1
being fixed.

The Gaussian distribution is stable: the sum of two

Gaussian random variables is also Gaussian. Meanwhile,

binomial random variables are marginally stable on the

probability of success; random variables xi �Binomðq;Ni)

can be summed to yield AðxÞ�Binomðq;
P

NiÞ. Mar-

ginal stability opens up more distributions to stable aggre-

gation. Presence absence data, for instance, can be

assumed to be Bernoulli random variables. The assump-

tion of within-group homogeneity for the probability of

presence, q, allows addition of Bernoulli random variables

within each group, R and S, to yield a respective binomial

random variable, xR and xS. Likewise, the addition of a set

of binomial random variables with the same probability of

success, q, yields an aggregate binomial random variable.

A set of exponential random variables with the same rate

parameter, k, can be added to form a gamma random vari-

able. Gamma random variables, xi �Gammaðji; hÞ,
parameterized by their shape, ji, and scale, h, are margin-

ally stable on h. Addition of geometric random variables

with the same rate parameter forms a negative binomial,

and the addition of a set of negative binomial random

variables, xi �NBðpi; qÞ, with the same probability of suc-

cess q but different numbers of failures, pi, can be aggre-

gated into xR ¼
P

i2R xi where xR �NB
P

i2R pi; q
� �

. All

of these distributions are not stable, but they are marginally

stable. Marginal stability, for the purposes of phylofactor-

ization, must be on the parameter of interest in generalized

linear modeling.

Marginal stability can also be used with transforma-

tions connecting the assumed distribution of the data to

a marginally stable distribution. Log-normal random

variables can be converted to Gaussians through expo-

nentiation; chi random variables can be converted to

chi-squared through squaring; random variables from

many distributions may be analyzed by transformation

to a stable or marginally stable family of distributions.

Such transformation-based analyses implicitly define

aggregation through a generalized f -mean

Af ðxRÞ ¼ f �1
X

i2R

f ðxiÞ

 !

(19)

where f ðxÞ ¼ logðxÞ for log-normal random variables,

f ðxÞ ¼ x2 for chi random variables, etc. The goal of

such aggregation, whether through exploiting marginal

stability or generalized f -means or other algebraic-

group operations in the exponential family, is to pro-

duce summary statistics for each group of species, R

and S, in a manner that permits generalized linear

modeling of the summary statistics. By ensuring sum-

mary statistics are also exponential-family random

variables, one can perform a factor-contrast style analy-

sis as described above using only two summary statis-

tics and not all rþ s species. Doing so can greatly

reduce the computational load of phylofactorizing large

data sets and can increase the power of edge

FIG. 6. Exponential family random variables can be explicitly analyzed in regression-phylofactorization either directly through
phylo factor contrasts or through marginally stable aggregation. Aggregating data to a marginally stable distribution, such as
addition of Bernoulli random variables with the same probability of success to a binomial random variable, can dramatically reduce
computational costs while allowing maximum-likelihood estimation of regression coefficients under assumptions of within-group
homogeneity. A comparison of the two methods’ accuracy is provided in the Appendix (see Appendix S1).
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identification even when the within-group homogeneity

assumption does not hold (see Appendix S1).

Marginally stable aggregation can be made efficient

by matrix multiplication onto one-vectors 1R and 1S
whose ith entries are 1 for all i 2 R;S, respectively, and 0

otherwise. Assuming a Poisson or negative binomial

count model for the bird/non-bird data frame above, the

data frame is reduced to Table 3 and the same equa-

tion (Eq. 17) can be used for phylofactorization through

phylo factor-contrasts. Thus, marginally stable aggre-

gation and phylo factor contrasts present two options

for generalizing regression-phylofactorization to data

from the exponential family (Fig. 6).

Algorithm 4: Mixed algorithm

Coefficient contrasts are computationally easy yet less

accurate for edge identification, whereas stepwise

phylo factor selection (without marginally stable

aggregation) is accurate yet computationally demanding

(Fig. 7). It’s possible to develop mixed algorithms with

accuracy similar to stepwise phylo factor selection

and reduced computational costs more similar to coeffi-

cient contrasts or marginally stable aggregation. For

each iteration, coefficient contrasts (Eq. 16) can be used

to narrow down the set of possible edges, fegtop, to a set

of edges with high objective functions from standardized

coefficient contrasts. We use the top 20% of edges based

on xe in Eq. 16, resulting in an approximately 80%

speed-up compared to the brute-force phylo factor

contrast algorithm. For only these edges, phylo fac-

tors are considered and the winning edge is the top-

quantile edge which maximizes the deviance of its

phylo factor contrast.

Algorithm comparison

We compare the performance of the four algorithms

listed above. The algorithms are compared on how well

FIG. 7. Accuracy, computation time, and scaling of four algorithms for generalized phylofactorization. Algorithms are com-
pared by the baseline time for two factors with m = 50 species, the scaling coefficient c in time / mc, and percent of correctly iden-
tified edges in simulated data with m = 50 species and two affected clades. Stepwise phylo factor contrasts have high accuracy
but are computationally costly and scale quadratically with the number of species. Marginally stable (mStable) aggregation scales
linearly with m but only performs well when b0 = 0. Computation time can be reduced and accuracy preserved if coefficient con-
trasts in Eq. 16 are used to narrow the set of edges considered for rigorous phylo factor contrasts.

TABLE 3. Marginally stable aggregation and phylo factor
construction for edge separating birds from non-birds.

Site Species Abundance z1 z2 phylo

1 Bird 18 1 0.5 R

1 Non-Bird 5 1 0.5 S

2 Bird 3 0 �2 R

2 Non-Bird 17 0 �2 S

. . . . . . . . . . . . . . . . . .

Note: Variables are defined in Box 1.
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they can correctly identify two edges with a known

effect, fe�1; e
�
2g, and how long they take to extract a vari-

able number of factors across a range of species, m, in

the data set.

To compare edge-identification accuracy, presence/ab-

sence data were simulated for a set of m ¼ 50 species and

n ¼ 40 samples. The logit probabilities of null species i

being present were

gi � bi;0 þ 0:1z1 þ 0:1z2 (20)

where either b0 ¼ 0 for all species or bi;0 �
i:i:d:

Nð0; 1Þ to

violate the within-group homogeneity in mean probabil-

ity of presence/absence. The other two explanatory

variables, z1 and z2, were the partitioning variables dif-

ferentiating species separated by edges. Two non-nested

clades, one containing 21 species and the other contain-

ing five species, had a different association with the

meta-data:

gi � z0;i � 0:2z1 þ 0:6z2

for species i in either of the two affected clades. To add

an additional level of complexity, the two meta-data

variables were given multicolinearity by simulating

z1 �Gsnð0; 1Þ and z2 �Gsnðz1; 1Þ. The algorithms were

run for two factors and the number of correctly identi-

fied edges (out of two) was tallied across 1,000 replicates

(e.g., an algorithm that was 80% correct identified 1,600

correct edges over 1,000 replicates).

The time it took for each of these algorithms to com-

pute two factors above was also recorded. To compare

the scaling of the algorithms with increasing number of

species, null data were simulated across a range of spe-

cies richness m 2 f50; 100; 150; 200; 250; 300g and across

a range of factors t 2 f1; 2; 3g.
Deviance-maximization in the stepwise phylo fac-

tor contrasts had the greatest accuracy but also the slow-

est computation time (Fig. 7). The time required to

compute phylo factor contrasts scale quadratically

with the number species whereas coefficient contrasts

and marginally stable (mStable) aggregation scale lin-

early. Marginally stable aggregation only performs well

when bi;0 ¼ 0 for all species, i, and when the within-

group heterogeneity is small. The accuracy of phylo
factor contrasts can be preserved and the computation

time reduced by selecting the top 20% of edges based on

coefficient contrasts.

Summary of generalized phylofactorization

We have presented algorithms to perform regression-

phylofactorization for non-Gaussian data. The stepwise

selection of phylo factor contrasts is best able to cor-

rectly identify edges but is computationally costly for

large data sets. The computation time of stepwise

phylo factor contrasts can be reduced by narrowing

the set of considered edges to those with high coefficient

contrasts. Marginally stable aggregation may be a

promising alternative for faster algorithms as it scales

linearly with the number of species, but marginally stable

aggregation only performs well when there is little differ-

ence in the mean, bi;0, across species, i.

These algorithms are intimately related to reduced

rank regression and generalized linear modeling with

shared coefficients. Reduced-rank regression uses gradi-

ent ascent over a compact set of possible basis vectors to

find maximum-likelihood estimates. The constrained,

countable set of contrasts defined by the phylogeny pre-

cludes gradient ascent and produces problems directly

analogous to those in phylogenetic components analysis.

Consequently, we have focused on explicit testing of all

possible allowable contrasts in the phylogeny or, in the

case of the mixed algorithm, testing a subset of contrasts

believed to contain the winning edge, e�. These methods

can extend to generalized additive models and, as we dis-

cuss below, spatial and time-series data as well.

PHYLOGENETIC FACTORS OF SPACE AND TIME

Phylofactorization can be used in explicit analyses of

spatial and temporal patterns. For Gaussian data, or for

data used as an explanatory variable, samples of a com-

munity over space and time can be projected onto con-

trast basis elements or other contrast functions and the

resulting component scores analyzed directly using stan-

dard spatial or temporal methods. Similarly, phylo
factor contrasts can be used in spatially explicit analyses.

Multivariate Autoregressive Integrated Moving Average

(ARIMA) models can be constructed either as ARIMA

models of the component scores, ye, or as multivariate

ARIMA models with phylo factor contrasts, to iden-

tify phylogenetic partitions based on differences in drift,

volatility, and other time-series features of interest. Coef-

ficient matrices, including spatial and temporal autocor-

relation matrices or coefficients of association with

extrinsic meta-data Z, can be approximated with phylo-

genetic contrast-bases as in Eq. 15.

Marginally stable aggregation in spatial and temporal

data requires a brief consideration of the marginal stabil-

ity of spatially explicit random variables and stochastic

processes. “Stability,” for spatially and temporally expli-

cit random variables, must preserve the underlying

model for the spatial or temporal process assumed to

produce the data. An example of a less obvious margin-

ally stable aggregation of time-series data is the stability

of neutral drift (sensu Hubbell 2001) to grouping.

Neutral communities fluctuate, and those fluctuations

have a drift and volatility unique to neutral drift. Neu-

tral drift can also be defined either by discrete, finite-

community-size urn processes or stochastic differential

equations serving as continuous approximations of large

communities’ neutral drift. Washburne et al. (2016)

articulated the importance of a mathematical property

of neutral drift which enables time-series neutrality tests:

its invariance to grouping of species. If a stochastic
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process of relative abundances, Xt, obeys the probability

law defined by neutral drift, then any disjoint groupings

of all species in Xt also obeys the probability law for a

lower-dimensional neutral drift. Thus, neutral processes

are stable to aggregation by summation of relative abun-

dances. Collapsing all species into two disjoint groups, R

and S, yields a two-dimensional neutral drift with a well-

defined neutrality test for time-series data. Specifically, if

Xt is a Wright Fisher process and R and S are disjoint

groups whose union covers the entire community, the

quantity

mt ¼ arcsin
X

i2R

Xi;t

 !

�
X

j2S

Xj;t

 ! !

(21)

has a constant volatility whose constancy can be tested

in order to test neutrality.

Phylofactorization can use these process-specific oper-

ations for marginally stable aggregation and contrast of

neutral drift to partition edges across which the dynam-

ics appear to be the least neutral. For the test developed

by Washburne et al., the aggregation operation is the L1

norm and the contrast operation is the arcsine of the dif-

ferences of groups:

AðxRÞ ¼ jxRj

CðAðxRÞ;AðxSÞÞ ¼ arcsin AðxRÞ � AðxSÞð Þ
: (22)

An objective function, x, for edge e can be the test statis-

tic of a homoskedasticity test of Ce: Neutrality is a relative

measure, biological units are neutral relative to one-

another, and thus the use of aggregation of species into a

unit and a contrast of two units is a natural connection

between the theory and operations of phylofactorization

and the biologically important null model of neutrality.

STATISTICAL CHALLENGES

There are many statistical connections and challenges

which illuminate phylofactorization as a statistical tool.

Phylofactorization is formally defined as a graph-parti-

tioning algorithm, but maximizing the variance of the

data projected onto contrast basis elements is a con-

strained principal components analysis. The use of

regression-based objective functions and the iterative

construction of a low-rank approximation of a data

matrix is similar to factor analysis. The selection of a

sequence of orthogonal factor contrasts in generalized

linear models is a form of stepwise/hierarchical regres-

sion, and the factorization of a coefficient matrix B is a

method for reduced-rank regression. The maximization

of the objective function at each iteration is a greedy

algorithm. Each connection between phylofactorization

and other classes of methods produces a body of related

literature which could inform phylofactorization and

facilitate development of exploratory phylofactorization

into a robust, inferential tool.

In this section, we enumerate some of the statistical

challenges and discuss work that has been done so far.

First, as with any method using the phylogeny as a scaf-

fold for creating variables or making inferences, the uncer-

tainty of the phylogeny and the common use of multiple

equally likely phylogenies warrant consideration and fur-

ther method development (Washburne et al. 2018). Other

challenges discussed here are: the propagation of error;

the use of Metropolis algorithms to better arrive at global

maxima; the appropriateness and error rates of phylofac-

torization under various evolutionary models underlying

the data; the graph-topological biases and confidence

regions; cross-validation of partitions and inferences from

phylofactorization across communities with different spe-

cies; the appropriate number of factors and stopping crite-

ria to stop a running phylofactorization algorithm; and

the null distribution of test statistics when objective func-

tions being maximized are themselves test-statistics from

a well characterized distribution. Any exploratory data

analysis tool can be made into an inferential tool with

appropriate understanding of its behavior under a null

hypothesis, and the connections of phylofactorization to

related methods can accelerate the development of well

calibrated statistical tests for phylogenetic factors.

Phylogenetic inference.—So far we have assumed that

the phylogeny is known and error free, but the true evo-

lutionary history is not known, it is estimated. Conse-

quently, phylofactorization makes inferences on an

uncertain scaffold; all else being equal, the more certain

the scaffold, the more certain our inferences about a

clade. Two challenges remain for dealing with phylofac-

torization on an uncertain phylogeny.

For a consensus tree, there is the question of what statis-

tics of the consensus tree can yield precise statements of

uncertainty in phylofactorization inferences. Bootstrapped

confidence limits for monophyly (Felsenstein 1985a) are

the most common metric of certainty for a consensus tree,

but there may be others as well. Since phylofactorization

can still be performed on a tree with polytomies and

reducing the number of edges considered at each iteration

can focus statistical effort (and chances of false discovery)

on clades about which the researcher is more certain, trees

containing clades with low bootstrap monophyly can be

collapsed to improve the certainty of phylofactorization

inferences. Different organisms will have different lever-

ages in regression or two-sample test phylofactorization,

and thus monophyly is only part of the picture: leverage

and other statistics will also determine the stability of an

inference to changing tree topology. Last, for a set of

equally likely bootstrapped trees, there is a need to inte-

grate phylofactorization across trees. Phylofactorization of

sets of equally likely phylogenies has not yet been done,

but is a fruitful avenue for future research.

Propagation of error.—Phylofactorization is a greedy

algorithm. Like any greedy algorithm, its deterministic

application is non-recoverable. Choosing the incorrect
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edge at one iteration can cause errors to propagate,

potentially leading to decreased reliability of down-

stream edges. Little research has been done toward

managing the propagation of error in phylofactoriza-

tion, but recognizing the method as a greedy algorithm

suggests options for improving performance. Stochastic-

optimization schemes, such as replicate phylofactoriza-

tions using Metropolis algorithms and stochastic

sampling as implemented in the mammalian tree phylo-

factorization (sampling of edges with probabilities

increasing monotonically with xe and picking the phylo-

factor object which maximizes a global objective func-

tion), may reduce the risk of error cascades in the final,

resulting phylofactorization (Hastings 1970).

Behavior under various evolutionary models.—Phylofac-

torization is hypothesized to work well under a punctu-

ated-equilibrium model of evolution or jump-diffusion

processes (Gould 1972, Landis et al. 2012) in which

jumps are infrequent and large, such as the evolution of

vertebrates to land or water. Phylofactorization may also

work well when infrequent life-history traits arise or evo-

lutionary events occur along edges which cause corre-

lated, directional evolution among descendants.

Phylofactorization of mammalian body sizes yielded an

example of the second category of evolutionary scenar-

ios under which phylofactorization works well. Both

aggregation and contrast functions can incorporate phy-

logenetic structure and edge lengths to partition the tree

based on likelihoods of such evolutionary models. The

sensitivity of phylofactorization to alternative models,

such as continuous Brownian motion and Ornstein-

Uhlenbeck models commonly used in phylogenetic com-

parative methods (Felsenstein 1985b, Hansen 1997),

remains to be tested and will likely vary depending on

the particular method used.

Basal/distal biases.—Researchers may be interested in

the graph topological distribution of factored edges in

the tree. If a microbial community is exposed to antibi-

otics and regression-phylofactorization results in many

tips being selected, a researcher suspecting lateral trans-

fer of antibiotic resistance may be interested in quantify-

ing the probability of drawing a certain number of tips

given t iterations of phylofactorization. Alternatively, if

several edges are drawn in close proximity, researchers

may wonder the probability of drawing such clustered

edges under a null model of phylofactorization. For

another example, researchers may ask if an unusually

high/low number of factors appear in a particular histor-

ical time window due to some hypothesis of important

evolutionary event or environmental change. All of these

tests require an accurate understanding of the probabil-

ity of drawing edges in different locations of the tree.

All methods described here, save the Fisher exact test,

have a bias for tips in the phylogeny (Fig. 8). Graph-

topological biases affect the calibration of statistical

tests of the location of phylogenetic factors, such as a

FIG. 8. Graph topological bias in null data and the relative size of Voronoi cells of contrast basis elements. The method and the
null distribution of the data determine graph-topological bias of phylofactorization. A random draw of edges does not discriminate
against edges based on the relative sizes of two groups contrasted by the edge, but 16,000 replicate phylofactorizations of null data
reveal that contrast-basis methods are slightly biased toward uneven splits (e.g., tips of the phylogeny). Standard Gaussian null data
were used for PhyCA, F statistics from regression on contrast basis elements (ye � z), and binomial null data was used for general-
ized phylofactorization (GPF) through marginally stable aggregation. Other methods, such as Fisher’s exact test of a vector of Ber-
noulli random variables, have opposite biases. The tip-bias of contrast-basis analysis is amplified for marginally-stable aggregation,
and amplified even more if the null data have residual structure from a Brownian motion diffusion along the phylogeny (Phyl-BM).
The common bias when using contrast bases across a range of objective functions is related to the uneven relative sizes of Voronoi
cells produced by the bases, simulated here by Eq. 24.
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test of whether/not there is an unusually large number of

differentiating edges in mammalian body mass during or

after the K-Pg extinction event.

Phylofactorization using the contrast basis is biased

towards the tips of the tree. Some progress can be made

towards understanding the source of basal/distal biases

in phylofactorization by examining the contrast basis.

The biases from analyses of contrast basis coordinates,

ye, stem from a common feature of the set of Kt candi-

date basis elements fvCe
gKt

e¼1 considered at iteration t of

phylofactorization. In the t test phylofactorization of a

vector of data, x, the winning edge e� is

e� ¼ argmax
e

jvTCe
xj (23)

and thus the objective function is monotonically related

to the angular distance between the vector of data and

the contrast basis elements.

Since the basis elements have unit norm, each basis

element corresponds to a point on an m-dimensional

unit hypersphere. If the data, x, are drawn at random,

such that no direction is favored over another, the proba-

bility that a particular edge e is the winning edge is pro-

portional to the relative size of its Voronoi cell on the

surface of the unit m hypersphere. Thus, the basal/distal

biases for contrast-basis analyses with null data assumed

to be drawn from a random direction can be boiled

down to calculating the relative sizes of Voronoi cells.

For our simulations reported in Fig. 8, the size of Voro-

noi cells was estimated through matrix multiplication

Ynull ¼ VTXnull (24)

were V is a matrix whose columns j is the contrast basis

elements for edge ej being considered and Xnull is a null

dataset whose entries are standard Gaussian random

variables. Each column of Ynull contains the projections

of a single random vector and the element of each col-

umn with the largest absolute value is the edge closest to

that random vector.

Graph-topology and confidence regions.—As a graph-par-

titioning algorithm, phylofactorization invites a novel

description of confidence regions over the phylogeny. The

graph-topology of our inferred, edges, and their proximity

to other edges, both on the phylogeny and in the m-dimen-

sional hypersphere discussed above, can be used to refine

our statements of uncertainty. 95% Confidence intervals for

an estimate of a real-valued quantity give bounds within

which the true value is likely to fall 95% of the time in ran-

dom draws of the estimate. Confidence regions are multi-

dimensional extensions of confidence intervals. Conceptu-

ally, it’s possible to make similar statements about phyloge-

netic factors, confidence regions on a graph indicating the

regions in which the true, differentiating edge is likely to be.

Extending the concept of confidence regions to the

graph-topological inferences from phylofactorization

requires useful notions of distance and “regions” in

graphs. One example of such a distance between two

edges is a walking distance: the number of nodes one

crosses along the geodesic path between two edges.

Alternatively, one could define regions in terms of years

or branch lengths. For phylofactorization using the con-

trast basis, confidence regions may be well-characterized

by angular distances to nearby contrast basis elements

and their Voronoi cells.

Defining confidence regions in any phylofactorization

must combine the uneven Voronoi cell sizes and the

proximity of contrast basis elements to one another. For

low effect sizes, graph-topological confidence regions

extend to distant edges on the graph whose contrast

basis element have a large relative Voronoi cell size (e.g.,

the tips). As the effect sizes increase, confidence regions

over the graph are better described in terms of angular

distances between the contrast basis elements and that

of the winning edge, e� (Fig. 9).

Cross-validation.—How do we compare phylofactoriza-

tion across data sets to cross-validate our results? If a

researcher observes a pattern in the ratio of squamates

to mammalian abundances in North America, say a

decrease in the ratio of lizard and snake to mammal

abundance with increasing altitude, they may wish to

cross-validate their findings in other regions, including

regions with few or none of the same species found in

the original study. Researchers replicating the study in

Australia and New Zealand would have to grapple with

whether or not to include monotremes in their grouping

of “mammals” and whether or not to include the tuatara,

a close relative of squamates, in their grouping of “squa-

mates”: such branches were basal to the squamate and

mammalian clades contrasted in the hypothetical North

American study.

Phylofactorization formalizes the issues arising with

such phylogenetic cross-validation (Fig. 10). If all spe-

cies in the training/testing data sets can be located on a

universal phylogeny, phylofactorization of a training

data set identifies edges or links of edges in the training

phylogeny which are guaranteed to correspond to edges

or links of edges in the universal phylogeny. New species

in the testing data set may introduce new edges to the

phylogeny which interrupt the links of edges in the uni-

versal phylogeny along which factors were found in the

training data. In the example above, the tuatara and

monotremes all interrupt the link of edges separating

North American mammals from North American rep-

tiles on the universal phylogeny.

Cross-validating phylofactorization requires addressing

the issues arising from the interruptions of edges produced

by novel species. Interruptions may be ignored or used to

refine the location of a factor on the universal tree by plac-

ing the interrupting clade into one of the two groups con-

trasted at that factor. Returning to the previous example,

one can use the presence of monotremes and tuatara to

refine the definition of North American mammals to
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mean “all mammals” or “all placental and marsupial

mammals”, and likewise one can refine the definition of

“squamates” to the broader “Lepidosauria” clade.

Stopping criteria.—For computational and conceptual

purposes, it’s desirable to obtain a minimal set of parti-

tions to prioritize findings, simplify high-dimensional

data, and focus downstream effort on more certain infer-

ences. Doing so requires a method for stopping phylo-

factorization as the algorithm is running. There are two

broad options for stopping phylofactorization: null sim-

ulations and stopping criteria for a running algorithm.

Null simulations may allow statistical statements stem-

ming from a clear null model, but stopping criteria can

be far more computationally efficient.

Washburne et al. (2017) proposed a stopping criterion

for regression phylofactorization which extends to all

methods of phylofactorization using an objective func-

tion whose null-distribution for a single edge is known.

The original stopping criterion is based on the fact that,

if the null hypothesis is true, the distribution of P values

from multiple hypothesis tests is uniform. Phylofactor-

ization performs multiple hypothesis tests at each itera-

tion. At each iteration, one can perform a one-tailed

Kolmogorov-Smirnov (KS) test on the uniformity of the

distribution of the P values from the test statistics on

each edge; if the KS test is nonsignificant, stop phylofac-

torization. KS test stopping criteria can conservatively

stop simulations at the appropriate number of factors

when there is a discrete subset of edges with effects. Such

a method performs similarly to Horn’s stopping crite-

rion for factor analysis (Horn 1965), whereby one stops

factorization when the scree plot from the data crosses

that expected from null data (Fig. 11). One can also use

a stopping criterion and subsequently run null simula-

tions to understand the likelihood of observed results

under a null model of the researcher’s choice (Fig. 11).

Other stopping criteria may outperform the KS test,

such as using bonferroni cutoffs or sequentially-rejective

cutoffs, stopping the algorithm when the lowest P value

falls above the cutoff for a desired family-wise error rate

or false-discovery rate.

Calibrating statistical tests for xe�.—Often, the objective

function for phylofactorization is a well understood test

statistic. Applying a standard test for the winning test

statistic, however, will lead to a high false-positive rate

and an overestimation of the significance of an effect,

because the winning statistic was drawn as the best of

many. Even when using a test statistic not equal to the

objective function, researchers should be cautious of

dependence between their test statistic and the objective

function as a possible source of high false-positive rates.

Two methods for calibrating statistical tests of xe�are

multiple-comparisons corrections to control a family-

wise error rate or false-discovery rate, and conservative

bounds on the distribution of the maximum of many

independent, identically distributed statistics. For exam-

ple, if each edge of one of the Kt edges considered at iter-

ation t resulted in an independent F statistic, Fe, then

the distribution of the maximum F statistics, Fe� , is

P Fe�[Ff g ¼ P Fe1[F \ Fe2[F \ . . . \ FeKf g

¼ P Fe[Ff gKt :
(25)

Such an approximation may be used to yield conserva-

tive estimates, but the F statistics are not independent

FIG. 9. Graph-topological confidence regions for phylofactorization. Confidence regions around inferred edges must use dis-
tances relevant to the method and graph topology. A tree with 30 species and 10 samples was given a fixed effect about edge e*.
The effects were an association with meta data, z, modeled as xi;j ¼ �d=2ð Þzj þ εi;j where ei,j and zj are i.i.d. standard Gaussian
random variables. A total of 7 9 105 iterations of regression phylofactorization on ye were run and the relative probability of
drawing each edge was visualized through both the color and width of the edge. The relationship between the angular distance of
an edge’s contrast basis element to that of e* and the probability of drawing the edge indicate that for low effects, confidence
regions must incorporate a mix of tip-bias and angular distance, but for larger effect sizes, in which the edge drawn is reliably in
the neighborhood of e*, the angular distance of contrast basis elements capture confidence regions around the location of inferred
phylogenetic factors.
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and thus more nuanced analyses are needed for well cali-

brated statistical tests. Unpublished simulations suggest

that the order statistics of Eq. 25 break down for down-

stream factors. More research is needed to obtain con-

servative bounds on test-statistics in phylofactorization.

Summary of limitations.—Phylofactorization can be a reli-

able statistical tool with a careful understanding of the sta-

tistical challenges inherent in the method and shared with

related methods such as graph partitioning, greedy algo-

rithms, factor analysis, and the use of a constrained basis

for matrix factorization. Phylofactorization is an explora-

tory tool, but all exploratory tools can be made inferential

with suitable understanding of their behavior under an

appropriate null model. For example, principal compo-

nents analysis was and still is primarily an exploratory tool,

but the discovery of the Marcenko-Pastur distribution

(Mar�cenko and Pastur 1967) has improved the calibration

of statistical tests on principal components for standard-

ized, mean-centered data. Improved understanding of how

uncertainties in phylogenetic inference translate to uncer-

tainties in phylofactorization, conservative stopping crite-

ria, null distributions of test statistics for winning edges,

propagation of error, graph-topological biases, and confi-

dence regions on a graph can all improve the reliability of

phylofactorization as an inferential tool.

While phylofactorization was built with an evolution-

ary model of punctuated equilibria in mind, it may also

work well under other evolutionary models such as corre-

lated evolution among descendants of an edge. There are

also many evolutionary models under which phylofactor-

ization does not perform well. For instance the graph-

topological biases of PhyCA are increased under a Brow-

nian motion model of evolution. All statistical tools

operate well under appropriate assumptions, and under-

standing the assumptions, as well as the known limita-

tions, are necessary for responsible and academically

fruitful use of statistical tools like phylofactorization.

Diagnostic tools to visualize and analyze the appropri-

ateness of a phylofactorization, such as those used to test

FIG. 10. Graph-topological considerations with cross-validation. (A) The training community has five species (yellow boxes)
split into two factors. The first factor partitions {t1,t6} from {t2,t4,t7}. The second factor partitions t4 from {t2,t7}. The second
factor does not correspond to a single edge, but instead a chain of two edges. (B) A second, testing community is missing species t6
and t7 and contains novel species t3 and t5 (green boxes). (C) All factors can be mapped to chains of edges on a universal phy-
logeny. Novel species “interrupt” edges in the original tree; cross-validation requires deciding what to do with novel species and
interrupted edges. Species t3 does not interrupt a factored edge, and so t3 can be reliably grouped with t1 in factor 1. However, spe-
cies t5 interrupts one of the edges in the edge-path of factor 2. (D,E) Interruptions can be ignored, or they can be used to refine the
location of important edges (illustrated in Factor 2.1 and Factor 2.2). Another topological and statistical question is whether/not to
control for factor order. For instance, controlling for factor order with Factor 2.2 would partition t4 from {t2,t5}. Not controlling
for factor order would partition t4 from {t1,t2,t3,t5}.
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heteroskedasticity and leverage in generalized linear

models, can greatly improve the robustness of analyses.

DISCUSSION

Early physicists studying patterns of projectile motion

were not plagued with challenges of how to group matter

to define a bowling ball. Community ecologists, however,

must grapple with the challenge of how to group organ-

isms into units for experiments, modeling, analysis, and

management. As a starting point, it’s often used to group

organisms based on some measure of high within-group

similarity and between-group differences. Ecological pat-

terns are determined by organisms’ interactions with the

biotic and abiotic conditions of their environment; such

interactions are determined by traits. Functional ecologi-

cal traits thus underlie many observed patterns in ecology

and, where an ecological pattern of interest is associated

with heritable traits, the phylogeny provides a scaffold

for functional groupings of organisms with a common

role in the ecological pattern of interest.

Traits arise along edges in the phylogeny. Contrasting

taxa on opposing sides of an edge allows one to uncover

sets of species that are meaningfully different and whose

differences may be due to heritable traits. By noting that

each edge partitions the phylogeny into two disjoint sets

of species, by generalizing the operations of aggregation

and contrast, and by defining the objective function of

interest, we have developed a universal method for iden-

tifying the relevant phylogenetic scales underlying eco-

logical patterns in community ecological data sets.

Phylofactorization is a graph-partitioning algorithm

which can use community ecological data to separate the

phylogeny into binned phylogenetic units with high

within-group similarity and high between-group differ-

ences. For a vector of data, two-sample tests are a natural

method for making such partitions. The quantities used

in two-sample tests can be extended to larger, real-valued

data sets by analyzing a contrast basis. Objective func-

tions for choosing the appropriate contrast basis include

maximizing variance, a phylogenetic analog of principal

components analysis, maximizing explained variance

from regression, maximizing F statistics from regression,

and more. For regression on community ecological data

assumed to be exponential family random variables,

phylofactorization can be extended to generalized linear

models, generalized additive models, and analyses of spa-

tial and temporal patterns in ecological data by use of

phylo factor contrasts and marginally stable aggrega-

tion within the exponential family. All algorithms

FIG. 11. Null simulations and stopping criteria. A challenge of phylofactorization is determining the number of factors to
include in an analysis. Null simulations allow quantile-based cutoffs such as those in Horn’s parallel analysis from factor analy-
sis. Stopping criteria use features available during phylofactorization to stop a running algorithm. Abundances of m = 32 species
across n = 10 samples were simulated as i.i.d. standard Gaussian random variables. A set of u clades were associated with envi-
ronmental meta data, z, where zj �

i:i:d:
Gsnð0; 1Þ. Regression-phylofactorization on the contrast-basis scores ye was performed on

300 data sets for each u 2 {2, 4, 8, 16} and on data with and without effects. The objective function was the total variance
explained by regression ye � z. The top row shows the percentage of the variance in the data set explained at each factor (EV)
decreases with factor, t, and the mean EV curve for data with u affected clades intersects the mean EV curve for null data near
t = u, motivating a stopping criterion (Horn) based on phylofactorization of null data sets. The bottom rows shows that the two
algorithms did not have extremely different rates of over-factorization. Both criteria can be modified to be made more conserva-
tive. The KS stopping criterion is far less computationally intensive for large data sets as it requires running phylofactorization
only once. Null simulations, however, can allow inferential statistical statements regarding the null distribution of test statistics in
phylofactorization.
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discussed here can be extended to analysis of spatially

and temporally explicit ecological patterns.

We’ve illustrated that two-sample tests can partition

a data set of mammalian body mass into groups with

very different average body masses. Maximizing the

variance of data projected onto contrast basis elements

can identify major clades of bacteria in human feces

known at a coarser resolution to be highly variable.

Additionally, one of the top phylogenetic factors in the

American gut data set is a clade of Gammaproteobac-

teria associated with inflammatory bowel disease

(IBD) used recently in an effort to diagnose patients

with Crohn’s disease. We’ve shown that analyses of

contrast bases can use nonlinear regression, sorting

3,000 species into five binned phylogenetic units pro-

ducing a simplified story of nonlinear community com-

positional changes in Central Park soils across a

gradient of pH, carbon concentrations, and nitrogen

concentrations.

One can also perform phylofactorization when doing

maximum-likelihood regression of exponential family

random variables. The coefficient matrix can be approxi-

mated using the contrast basis, resulting in a phylogeneti-

cally interpretable reduced-rank regression. Alternatively,

phylo factor contrasts specify a shared-coefficients

model and which can be used to select edges based explic-

itly on likelihood maximization of a shared coefficients

model. One can perform the factor contrasts on the raw

data, or, for many exponential family random variables,

aggregate the data within each group to a marginally

stable distribution for more computationally efficient fac-

tor contrasts. All methods discussed here can be imple-

mented with the R package phylofactor, and scripts for

running all analyses in this paper are available on Zenodo

(see Data Availability).

As with any method, there are limitations to be aware

of. First, the general problem of separating species into

k bins that maximize a global objective function is NP

hard. Second, like any greedy algorithm, phylofactoriza-

tion may fall into ruts and errors in one step that might

propagate into downstream inferences. Third, the null

distribution of test-statistics resulting from phylofactor-

ization is not known; the resultant test statistics are

biased towards extreme values. Null simulations, conser-

vative stopping functions, and/or extremely stringent

multiple comparisons corrections can be used to make

inferences through phylofactorization while maintaining

conservative bounds in family-wise error rates or false-

discovery rates. When the objective function being maxi-

mized has a well-characterized null distribution for a sin-

gle edge, one-sided KS-tests of the P values of the test

statistic can serve as a computationally efficient and con-

servative stopping function. Fourth, common objective

functions using the contrast basis will be biased due to

the unequal relative sizes of the Voronoi cells of the con-

trast basis elements in the unit hypersphere in which they

lie; contrast basis elements corresponding to tips of the

phylogeny tend to have larger relative Voronoi cell size

than contrast basis elements corresponding to interior

edges. Understanding the graph-topology of errors can

assist the description of graph-topological confidence

regions for each inference. Finally, phylofactorization

formalizes the logic and challenges of cross-validating

ecological comparisons even when the training and test-

ing sets of species are completely disjoint. Many of these

limitations may be resolved with future work, allowing

the exploratory algorithm to become a fast, well-cali-

brated inferential tool.

Phylofactorization can objectively identify phyloge-

netic scales for ecological data and produce avenues for

future natural history research. By iteratively identifying

clades, phylofactorization provides a sequence of low-

rank approximations of a data set that correspond to

groups of species with a shared evolutionary history.

What traits characterize the Chloracidobacteria which

don’t like acidic soils? What traits characterize the

monophyletic clade of Gammaproteobacteria associated

with IBD? What ecological or immunological mecha-

nisms underlie the Prevotella species’ variability in the

American gut? The low-rank approximations of ecologi-

cal data obtained by phylofactorization motivate subse-

quent questions best answered by life history

comparisons, comparative genomics, physiological stud-

ies, and other avenues of future research contrasting the

species partitioned.

Relation to other phylogenetic methods.—Phylofactoriza-

tion is proposed during an explosion of literature in phy-

logenetic comparative methods and various other

phylogenetic methods for analyzing ecological data sets

(Lozupone and Knight 2005, Purdom 2011, Garamszegi

2014), and some careful thinking is beneficial to clarify

the distinctions between phylofactorization and other

methods.

Phylogenetic generalized least squares (Grafen 1989)

aims to control for residual structure in the response

variable expected under a model of trait evolution, and

is thus used when performing regression on a trait,

whereas phylofactorization aims to partition observed

trait values or abundances into groups, separated by

edges, with different means or associations with meta

data. Thus, while methods of phylogenetic signal, such

as Pagel’s k (Pagel 1999) or Blomberg’s j (Blomberg

et al. 2003), summarize global patterns of phylogenetic

signal by parameterizing the extent to which a particu-

lar model of evolution can be assumed to underlie the

residual structure of observed traits (often for down-

stream use in PGLS), phylofactorization iteratively

identifies precise locations of putative changes and

precise locations partitioning phylogenetic signal or

structure.

Phylofactorization can be implemented by a contrast

of ancestral state reconstructions of nodes separated by

edges, for example by looking for edges with nodes

whose reconstructed ancestral states are most different,

but is limited by disallowing the descendant clade of an
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edge to impact the ancestral state of the edge’s basal

node; a proper non-overlapping contrast would separate

the groups of species being used to reconstruct each

node, and thus phylofactorization can be implemented

with ancestral state reconstruction under the assumption

of time-reversible evolutionary models.

Phylogenetically independent contrasts (PIC; Felsen-

stein 1985b) produces variables corresponding to contrasts

of descendants from each node, whereas phylofactoriza-

tion uses contrasts of species separated by an edge, picks

out the best edge, splits the tree, and repeats. The contrasts

used in PIC for comparison of sister clades (standardized

differences of means) can be used as the contrast function

for phylofactorization to identify edges with standardized

differences of means that maximize some objective func-

tion. While the contrast basis proposed here is fixed

regardless the observed data across samples, PIC divides

the difference of group means by empirically observed

standard deviations for each sample. Consequently, the

contrasts from PIC can be used as a contrast function but

can’t be interpreted as a projection of the data onto a

fixed basis.

Phylofactorization develops a set of variables and an

orthonormal basis to describe ecological data, but limits

itself to bases interpretable as non-overlapping contrasts

along edges; eigenvectors of phylogenetic distances

matrices or covariance matrices under diffusion models

of traits (Pagel 1999), are not encompassed in phylofac-

torization as they do not construct non-overlapping con-

trasts along edges. Such eigenvector methods construct

quantities whose evolutionary and functional ecological

interpretation is less clear. Unlike many modern methods

for redefining distances, such as UniFrac distances

(Lozupone and Knight 2005) or phylogenetically defined

inner products (Purdom 2011), phylofactorization is

principally about discovering phylogenetically inter-

pretable directions: contrast basis vectors that character-

ize primary axes of variation in the community or a basis

made of aggregations of the binned phylogenetic units.

R package: phylofactor.—An R package is in develop-

ment and publicly available (see Data Availability). The

R package contains detailed help functions and supports

flexible definition of two-sample tests (the function

twoSampleFactor), contrast-basis analyses with
the function PhyloFactor, and generalized phylo-

factorization with the function gpf. Phylofactorization
is highly parallelizable, and the R package functions

have built-in parallelization. The R package also works

with phylogenies containing polytomies, allowing

researchers to collapse clades with low bootstrap sup-

port to make more robust inferences. The output from

phylofactorization is a “phylofactor” object containing

the contrast basis and other useful features, allowing

one to input the object into various functions which

summarize, plot, cross-validate and do other tricks to

parse out the information from phylofactorization.

Researchers are invited to beta-test the package and

contact the first author Alex Washburne for assistance

with the package, including how to produce their own

customized phylofactorizations. Such feedback will be

invaluable for a user-friendly stable release to CRAN.

Until then, the Supporting Information contains the

data and scripts used for all analyses done in this manu-

script along with a tutorial for the R package in an effort

to accelerate method development in this field.

Everything makes sense in light of evolution.—Phyloge-

netic factorization is a new paradigm for analyzing a

large class of biological data. Ecological data, as Tho-

mas Dhobzansky noted about biology in general, makes

sense “in light of evolution.” Phylofactorization connects

a broad set of data analyses—two sample tests, general-

ized linear modeling, factor analysis and PCA, and anal-

ysis of spatial and temporal patterns—to a natural set of

variables and operations defined by the phylogeny.

Phylofactorization localizes inferences to particular

edges or chains of edges on the phylogeny and, in so

doing, accelerates our understanding of the phylogenetic

scales underlying ecological patterns of interest. The

problem of pattern and scale is central to biology, and

phylofactorization uses flexible definitions of patterns to

objectively uncover the relevant phylogenetic scales in

ecological data sets.
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