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Abstract. The problem of pattern and scale is a central challenge in ecology. In community
ecology, an important scale is that at which we aggregate species to define our units of study,
such as aggregation of “nitrogen fixing trees” to understand patterns in carbon sequestration.
With the emergence of massive community ecological data sets, there is a need to objectively
identify the scales for aggregating species to capture well-defined patterns in community ecolog-
ical data. The phylogeny is a scaffold for identifying scales of species-aggregation associated
with macroscopic patterns. Phylofactorization was developed to identify phylogenetic scales
underlying patterns in relative abundance data, but many ecological data, such as presence-
absences and counts, are not relative abundances yet may still have phylogenetic scales captur-
ing patterns of interest. Here, we broaden phylofactorization to a graph-partitioning algorithm
identifying phylogenetic scales in community ecological data. As a graph-partitioning algo-
rithm, phylofactorization connects many tools from data analysis to phylogenetically informed
analyses of community ecological data. Two-sample tests identify five phylogenetic factors of
mammalian body mass which arose during the K-Pg extinction event, consistent with other
analyses of mammalian body mass evolution. Projection of data onto coordinates connecting
the phylogeny and graph-partitioning algorithm yield a phylogenetic principal components
analysis which refines our understanding of the major sources of variation in the human gut
microbiome. These same coordinates allow generalized additive modeling of microbes in Cen-
tral Park soils, confirming that a large clade of Acidobacteria thrive in neutral soils. The graph-
partitioning algorithm extends to generalized linear and additive modeling of exponential fam-
ily random variables by phylogenetically constrained reduced-rank regression or stepwise factor
contrasts. All of these tools can be implemented with the R package phylofactor.
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space, time, and levels of ecological organization ranging

INTRODUCTION e .
from individuals to populations to ecosystems.

The problem of pattern and scale is a central problem
in ecology (Levin 1992). Ecological patterns of observ-
able features across communities, such as regular differ-
ences in carbon sequestration, species abundance
distributions, epidemics, ecosystem services, and more,
are often the result of processes that operate at multiple
scales. The common “scales” of interest in ecology are
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Predicting patterns in spatial variation over different
scales—millimeters, meters, or kilometers-requires incor-
porating different processes driving the patterns. The rel-
evant processes determining patterns in abundance over
the scale of meters may not be the most relevant pro-
cesses determining patterns in abundance over the scale
of kilometers. Similarly for time, predicting climatic and
weather patterns over days, years, or millennia requires
different data, processes, and models. Similarly for levels
of ecological organization, predicting the collective
behavior of a school of fish requires interfacing individ-
ual behavior with interaction networks of those individu-
als (Katz et al. 2011) and predicting the ability of a forest
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to act as a carbon sink requires interfacing abiotic fea-
tures and competition between trees with different traits,
such as nitrogen fixation (Farrior et al. 2013). Under-
standing emergent infectious diseases requires interfacing
processes over scales ranging from animal population
dynamics, reservoir epizootiology, and human epidemiol-
ogy (Plowright et al. 2017). Ecological theory requires
interfacing phenomena across scales believed to be
important, and continually updating our beliefs about
which scales are important to interface.

A scale of particular interest in community ecology is
the scale at which we group organisms into units: spe-
cies, functional ecological groups, guilds, and more. For
a novel or unfamiliar pattern, such as a change in micro-
bial community composition along environmental gradi-
ents, how can one objectively identify the appropriate
scales for grouping species into units? In macroscopic
systems, a researcher will typically use intuition derived
from natural history knowledge to determine scales of
interest, selecting functional ecological groups based on
processes or traits previously demonstrated to be impor-
tant. Models of how the natural history traits affect the
pattern will be constructed, and the goodness of fit to
the pattern of interest will be used as a metric for the
successful identification of relevant ecological scales.
However, for some patterns and communities, such as
inflammation or fatty acid production associated with
the human gut microbiome, there is limited natural his-
tory knowledge to draw on to assist the decision of the
appropriate scales of interest. Even familiar communities
can be more objectively analyzed and compared with the
help of rules, algorithms, and laws to identify the domi-
nant scales of community ecological units.

All communities exist as a hierarchical assemblage of
entities, many of whose relationships and evolutionary
history can be estimated and organized into a phylogeny.
The estimated phylogeny contains edges along which
mutations occur and new traits arise. When the phylogeny
correctly captures the evolution of discrete, functional
ecological traits underlying a pattern of interest, the phy-
logeny is a natural scaffold for simplification, aggrega-
tion, and scaling in ecological systems (Washburne et al.
2018). Patterns whose functional ecological traits are lat-
erally transferred can still be simplified by constructing a
phylogeny of the laterally transferred genes, such as using
a phylogeny for beta-lactamases (Hall and Barlow 2004)
to understand microbial responses to antibiotics.

Graham et al. (2018) develop the term “phylogenetic
scale” to refer to the depth of the tree over which we
aggregate information from a clade, but functional eco-
logical traits often arise at different depths of the tree
and thus many ecological phenomena are driven by traits
not properly aggregated by mowing the phylogeny along
a constant depth. Instead, there may be multiple phyloge-
netic scales, or grains, underlying an ecological pattern of
interest, and such scales need to be partitioned from one
another while avoiding the obvious nested dependence
caused by clades within clades. For example, the patterns
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of vertebrate abundances on land and water are simpli-
fied by nested clades—Tetrapods, Cetaceans, Pinnipeds,
etc.—and ancestors immediately before an affected clade,
say the ancestors before Tetrapods, are prone to misclas-
sification due to the nestedness of a clade with a strong
effect. For more complicated community ecological data,
such as breeding bird surveys or microbiome data sets,
there is a need for general statistical methods to partition
the phylogeny into the grains with significantly different
associations with or contributions to ecological patterns
of interest. Such a method can objectively identify the
phylogenetic scales underlying an ecological pattern of
interest and assist community ecological theory in both
familiar and unfamiliar systems.

Phylofactorization (Washburne et al. 2017) was devel-
oped to identify the phylogenetic scales in compositional
(relative abundance) data by iteratively constructing
variables corresponding to edges in the phylogeny sepa-
rating species with different patterns of abundance. The
variables used to identify phylogenetic scales were a
common transform from compositional data analysis
(Aitchison 1982), referred to as the isometric log-ratio
transform (Egozcue et al. 2003, Egozcue and Paw-
lowsky-Glahn 2005), which contrast the relative abun-
dances of species separated by an edge in the phylogeny.
A coordinate in an isometric log-ratio transform aggre-
gates relative abundances within clades by a geometric
mean and contrasts clades through log-ratios of the
clades’ geometric mean relative abundances. The isomet-
ric log-ratio transform also allows the construction of
non-overlapping contrasts, thereby reducing an obvious
source of nested dependence in phylogenetic variables.
The isometric log-ratio transform is used to identify phy-
logenetic scales, capture large blocks of variation in rela-
tive-abundance data and construct coordinates that
correspond to edges along which hypothesized func-
tional ecological traits arose.

However, many ecological data are not appropriately
analyzed as compositions. For example, the presence/
absence of bird species across continents are best mod-
eled as Bernoulli random variables, not compositions.
There is a need to generalize phylofactorization to iden-
tify phylogenetic scales in any data type. In this paper,
we extend phylofactorization to broader classes of data
types by generalizing the logic of phylofactorization to
three operations: aggregation, contrast, and an objective
function defined by the pattern of interest. The nested
dependence of clades within clades is avoided by defin-
ing phylofactorization as a graph-partitioning algorithm
that contrasts species separated by edges and iteratively
partition the phylogeny along edges that best differenti-
ate species by maximizing the objective function. After
defining phylofactorization as a graph-partitioning algo-
rithm, we illustrate the generality of the algorithm
through several examples.

First, we show that two-sample tests, such as ¢ tests
and Fisher’s exact test, provide natural operations for
phylofactorization. Two-sample tests aggregate data
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from two groups through means or proportions, contrast
the aggregates via a difference of means or proportions,
and have natural objective functions defined by their test
statistics. We illustrate the use of two-sample tests by
performing phylofactorization of a data set of mam-
malian body mass.

Then, we show how the phylogeny serves as a scaffold
for changing variables in biological data through a con-
trast basis. The same basis used in the isometric log-ratio
transform can be used to identify the phylogenetic scales
providing low-rank, phylogenetically-interpretable factor-
izations of matrices. The contrast basis allows us to intro-
duce a phylogenetic analog of principal components
analysis, phylogenetic components analysis, which identi-
fies the dominant, phylogenetic scales capturing variance
in a data set. Phylogenetic components analysis of the
American gut microbiome data set (McDonald et al.
2018) reveals that some of the dominant clades explaining
variation in the American gut correspond to clades within
Bacteroides and Firmicutes, thereby providing finer phy-
logenetic resolution of the taxonomic-based Bacteroides/
Firmicutes ratios found to be associated with obesity
(Turnbaugh et al. 2006), age (Mariat et al. 2009), and
more. Another phylogenetic factor of variance in the
American gut is a clade of Gammaproteobacteria strongly
associated with inflammatory bowel disease (IBD), cor-
roborating a recent study’s use of phylofactorization to
diagnose patients with IBD (Vazquez-Baeza et al. 2017).

The contrast basis can also be used for regression-based
analyses if the data are assumed to be approximately nor-
mal or related to the normal distribution through a mono-
tonic transformation such as a logarithm. We illustrate
regression-phylofactorization through a generalized addi-
tive model analysis of how microbial abundances change
across a range of pH, nitrogen, and carbon concentrations
in soils. The resulting contrast basis and its fitted values
from generalized additive modeling yield a low-rank rep-
resentation of biological big data and translates to clear
biological hypotheses aiming to identify the traits driving
observed non-linear patterns of abundance across environ-
mental gradients (Ramirez et al. 2014).

Data sets comprised of non-Gaussian, exponential
family random variables can also be formally analyzed
through regression-phylofactorization. We present and
compare four algorithms using reduced-rank and
shared-coefficient models for generalized regression-phy-
lofactorization of exponential family data. We discuss
the relation of the presented algorithms to the contrast
basis and graph partitioning algorithm and we finish
with a discussion of the challenges and opportunities for
future development of phylofactorization.

All analyses and the R package phylofactor are avail-
able online; see Data Availability.

CONCEPTUAL OVERVIEW

We first motivate the need for phylofactorization and
introduce the graph-partitioning algorithm built on

GENERALIZED PHYLOFACTORIZATION
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contrasting species separated by edges. In the context of
the graph-partitioning algorithm, we consider two exam-
ples. The first, simple example of phylofactorization is the
use of two-sample tests as a measure of contrast. The sec-
ond example is the use of the contrast basis, a linear
change of variables which facilitates phylogenetically
interpretable, low-rank approximations of data matrices,
connecting phylofactorization to everything from princi-
pal components analysis to regression-based approxima-
tions of data matrices. We extend regression-based
phylofactorizatzion to exponential family random vari-
ables via generalized linear models. Four algorithms that
can embed phylofactorization in generalized linear mod-
els are presented and compared. Finally, we discuss how
the regression-phylofactorization methods introduced
above can be incorporated into spatially and temporally
explicit data analyses. In an effort to promote honest
development of phylofactorization as an inferential tool,
we examine several statistical challenges of phylofactor-
ization that we are aware of.

Why phylofactorization?

Which vertebrates live on land and which vertebrates
live in the sea (Fig. 1A)? Most children have enough nat-
ural history knowledge to say “fish live in the sea,” thus
correctly identifying one of the most important phyloge-
netic factors of land/sea associations in vertebrates. The
statement “fish live in the sea” can be mathematically for-
malized by noting that one edge in the vertebrate phy-
logeny separates sea-dwelling “fish” from predominantly
land-dwelling “non-fish” (Fig. 1B). Partitioning the phy-
logeny along the edge basal to tetrapods separates verte-
brates fairly well into groups with different land/sea
associations. An algorithm identifying the edge basal to
tetrapods using only land/sea associations would correctly
identify the edge along which important, functional eco-
logical traits arose: comparisons of fish/non-fish would
reveal clear morphological and physiological adaptations
to sea/land. There are a few more phylogenetic factors of
land/sea associations in vertebrates. Controlling for the
previously identified edge, one might be able to later iden-
tify the edges basal to Cetaceans, Pinnipeds, and other
tetrapods that live in the sea (Fig. 1B). Using such an
algorithm, a few edges can capture most of the variation
in land/sea associations across thousands of vertebrate
species.

Ancestral state reconstruction of habitat association is
a well-known means of making inferences about trait
differences arising along edges. However, some traits
and ecological patterns of interest are more complicated
and their ancestral state reconstruction dubious. For
instance, how can we identify the phylogenetic scales of
microbial community composition changes along a pH
gradient, allowing possible nonlinear associations that
could be detected through generalized additive modeling
(Fig. 1C)? Answering such a question through ancestral
state reconstruction requires conceiving and analyzing
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Fic. 1. Phylofactorization generalizes the logic of how to simplify phylogenetically structured data sets. (A) Vertebrate land/wa-
ter associations can be simplified by partitioning the tree into the edges along which major traits arose. (B) The first phylogenetic
factor of vertebrate land/water associations is the edge along which tetrapods arose, an edge along which lungs and limbs evolved
that allowed colonization of land. Downstream factors can refine the original partitioning to identify the Cetaceans, Pinnipeds, and
other aquatic tetrapods. (C) Phylogenetic factorization uses the operations of aggregation and contrast to generalize this same logic
for phylogenetically structured data in which traits might not be known or their evolution easily modeled, including traits like a
nonlinear relationship between abundance and an environmental gradient. Pure aggregations (blue) sum data within a clade,
whereas contrasts (green/red) are differences between two clades. Low-rank, phylogenetically interpretable predictions of our data
can be obtained through a mixed basis containing a series of aggregations and contrasts, or a “contrast basis” containing a global

aggregate partitioned with subsequent contrasts.

an evolutionary model of how generalized additive mod-
els evolve along a tree.

Phylofactorization is a graph-partitioning algorithm,
generalizing the phylogenetic logic used above to sim-
plify land/sea associations by iteratively identifying
edges in the phylogeny along which meaningful differ-
ences arise. With data-driven definitions of “meaningful
differences” between groups of species, phylofactoriza-
tion can identify phylogenetic scales underlying more

complicated ecological patterns, patterns for which
ancestral state reconstruction would be dubious.

GRAPH-PARTITIONING ALGORITHM

Phylofactorization requires a phylogeny spanning the
set of species considered in the data. All phylogenies are
rooted or unrooted graphs with no cycles, containing
and connecting the units of interest in our data (the units
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Box 1. Table of mathematical notation.
Terms Description
A() Aggregation operator
(., .) Contrast operator
F(0) Distribution parameterized by 0

[95)

L VS TANMHMCZEITIQZ A
o

el
(O]
iJj k1
m

XR,j

F statistic for edge e

Number of edges considered in iteration ¢ of phylofactorization

Size of a binomial random variable

A group Q = R U S aggregated at a current or previous iteration

Two groups contrasted containing r and s species, respectively
Partitioning variables for phylofactorization

Phylogenetic tree

m x p coefficient matrix

Matrix of component scores corresponding to V

m matrix of contrast basis elements

m x n data matrix used for phylofactorization

K x n matrix of component scores, one for each edge considered

n x p matrix of meta-data used in regression-phylofactorization
Coefficient in aggregation vector

Coefficients in a contrast vector

Edge k

Winning edge

Winning edge at iteration #

Transformation in generalized f mean

Indexes. Often, i is the index for species and j for samples

Number of species

Number of samples

Number of meta data types for each sample

Categorical variable indicating which side of an edge a species is found
Number of pure aggregates in a basis for R”

Numbers of species in groups R, S respectively

Smoothing spline notation for term in generalized additive model
Iteration of phylofactorization

The i, jth element of data matrix X

Aggregate, A(x;) of group R for sample j, if j is missing then sample is arbitrary
See xp,

A random variable (assumed to be a single species i for arbitrary sample)
i, jth entry of data matrix, X

Column of meta data matrix, Z

ith element of aggregation basis element for set Q

Contrast vector splitting groups Rand S

Contrast vector for edge e (which splits sub-tree into two disjoint groups)
r vector containing only the species in group R for sample j

See xg;

m vector of species’ data for an arbitrary sample

Sample mean of vector x

n vector of component scores for edge ¢

Vector of meta data of type k

Coefficients for linear model

Natural parameter for exponential-family random variable

Scale parameter for Gamma distribution

Number of failures parameter for Negative Binomial distribution
Probability of success for Bernoulli, Binomial, Negative Binomial distributions
Standard deviation for Gaussian random variable

Arbitrary parameters for probability distribution
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Fic. 2. Phylofactorization is a graph-partitioning algorithm. An objective function, ®, of a contrast of species separated by an
edge allows one to iteratively partition the phylogeny along edges maximizing the objective function (first iteration). After partition-
ing the phylogeny, the objective functions are recomputed to contrast species in the same sub-tree separated by an edge. Edge B in
the first iteration contrasted mammals from non-mammals, but in the second iteration, it contrasts mammals from non-mammals,
excluding raptors (partitioned in the first iteration). The result of & iterations of phylofactorization is a set of k£ + 1 bins of species.
Regression-phylofactorization defines an objective function through regression. Regression-phylofactorization can identify clades
with similar patterns of association with environmental meta data and obtain low-rank, phylogenetically interpretable representa-

tions of a data matrix.

can be species, genes, or other evolving units of interest;
we use “species” from here on). Phylofactorization can
be implemented with disjoint phylogenies, such as viral
phylogenies for which there are not clear common ances-
tors, and the sub-phylogenies can either be kept separate
or joined at a polytomous root. The phylogeny may have
an arbitrary number and degree of polytomies. Defini-
tions of mathematical terms can be found in Box 1.

Let X be the data matrix of interest for phylofactoriza-
tion whose rows are species and columns are samples, with
x;; being the data for species i=1,...,m in sample
j=1,...,n. Let Xg be the sub-matrix of X containing only
a subset of species, R, and let Xz ; be the jth column of X.
Let Z be the n x p matrix containing p additional meta
data variables for each sample. Let 7 be the phylogenetic
tree, {7} a set of sub-trees whose tips span all species, and

let edge e in the phylogeny separate the disjoint groups R
and S. Phylofactorization requires (1) an aggregation func-
tion, A(Xg,7,e) € R which aggregates any subset, R, of
species within samples, possibly using information from the
tree, 7 and species’ proximity to the edge, e; (2) a contrast
function, C(A(Xg,7,e),A(Xs,7,e),Z,7T,e) € R which
contrasts the aggregates of two disjoint subsets of species,
R and S, spanning the species in 7, possibly using meta
data, Z, and edge, ¢; and (3) an objective function, o(C).

With these operations, phylofactorization is defined
iteratively as a special case of a graph partitioning
algorithm (Fig. 2). The steps of phylofactorization are
as follows:

1) For each edge, e, in {7} separating disjoint groups
of species R, and S, within the sub-tree 7,
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containing e, compute C,= C(4A(Xg,,7,,e),
AXs,, Te,e),Z,T,,e)

2) Compute edge objective ®, = o(C,) for each edge, e

3) Select winning edge ¢* = argmax, (®,)

4) Update {7} by removing 7, and adding the two
sub-trees formed by partitioning 7, along e*.

5) Repeat 1-5 until a stopping criterion is met.

Unlike more general graph-partitioning algorithms,
phylofactorization does not impose a balance constraint
that would require the partitions have a similar size or
weight. Furthermore, phylofactorization is the particular
application of graph partitioning in which the graph is a
phylogeny capturing the evolutionary relationships
between organisms, thereby allowing an evolutionary
and ecological interpretation of the partitions.

Aggregation and contrast operations used are the prin-
ciple operations for defining scales and units of ecological
organization, and by working with phylogenies the units
aggregated will have many shared traits and the units con-
trasted will have traits or evolutionary histories that sepa-
rate them. Phylofactorization is limited to contrasts of
non-overlapping groups. The constraint of contrasting
aggregates forces researchers to define a priori the method
of aggregating data from groups of species partitioned by
phylofactorization, thereby ensuring data from groups of
species are subsequently summarized with the same
method by which they were discovered to be different
from data from other groups of species. The incorpora-
tion of the tree, 7, in the contrast function encompasses a
class of ancestral state reconstruction reconstruction
methods. Ancestral state reconstruction with non-over-
lapping contrasts can be done with time-reversible models
of evolution; in this case, phylofactorization contrasts the
root ancestral states obtained in which the two nodes
adjacent an edge are considered roots of the subtrees sep-
arated by that edge. Finally, as we discuss in detail in the
section The Contrast Basis, the use of aggregation and
contrast as the central operations in phylofactorization
connect the graph partitioning algorithm with a method
for constructing a basis that can be used for matrix factor-
ization and low-rank approximations of data sets.

We use the term “phylogenetic factor” to refer to the
results from a particular iteration of the algorithm. “Fac-
tors” have two groups, R, and S,, separated by an edge
or link of edges, e, and thus the term “factor”, as
opposed to “iteration”, is chosen to allude to latent vari-
ables (traits, evolutionary regimes, etc.) sensu factor ana-
lysis and the basis elements used for matrix factorization
(Washburne et al. 2017). It’s possible to define objective
functions through pure aggregation, such as 4(Xg, 7, e),
but we limit our focus to contrast-based phylofactoriza-
tions which identify edges along which meaningful dif-
ferences arose due to the non-orthogonality of nested
aggregates and the orthogonality of contrasts, discussed
in greater detail in The Contrast Basis section.

The result of phylofactorization after ¢ iterations is a
set of 7 inferences on edges or links of edges. Links of

GENERALIZED PHYLOFACTORIZATION
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edges occur following a previous partition, when two
adjoining edges separate the same two groups in the
resultant sub-tree. Partitioning the phylogeny along ¢
edges results in 7+ 1 bins of species, referred to as
“binned phylogenetic units” (BPUs). In general, the
problem of maximizing some global objective function,
o(e],...,e}), for a set of ¢ edges, {e], ..., ¢} }, is NP hard
(Bulug et al. 2016). However, stochastic searches of the
space of possible partitions, via a stochastic computa-
tion of ®, in step 2 or a weighted draw of ¢* in step 3,
may yield better approximations of a global maximum
(Metropolis et al. 1953, Hastings 1970, Jerrum and Sor-
kin 1998).

Aggregation, contrast, and objective functions are
decision points to define and interpret meaningful quan-
tities and outcomes from data analysis. Explicit deci-
sions about aggregation formalize how a researcher
would summarize data from an arbitrary set of species.
Explicit decisions about contrasts formalize how a
researcher differentiates two arbitrary, disjoint groups of
species. The operations of aggregation and contrast
operationalize the concept of phylogenetic scales. Many
mathematical operations can be aggregations, including
but not limited to addition, multiplication, generalized
means, and maximum likelihood estimation of ancestral
states under models of trait diffusion away from the
focal node. Likewise, contrasts can be differences, ratios,
two-sample tests, and more complicated metrics of dis-
similarity such as the deviance of a factor contrast in a
generalized additive model. Researchers must decide
how best to aggregate information in groups of species,
contrast two groups, and decide which group maximizes
the objective for a research goal pertaining to a particu-
lar ecological pattern. Doing so allows objective, a priori
definitions of what makes an informative phylogenetic
scale.

Below, we show examples of the algorithm along with
results from phylofactorization of real data. These examples
were run using the R package phylofactor, using relevant
functions for analyzing and visualizing phylogenies from the
R packages ape (Paradis et al. 2004), phangorn (Schliep
2011), phytools (Revell 2012), and ggtree (Yu et al. 2017).

Two-sample tests

If the data are a single vector of observations, x, such
as average body mass estimated for a set of m species,
phylofactorization can be implemented through stan-
dard tests for differences of means or rate parameters in
the two sets of species, R and S.

To illustrate, we phylofactorize a data set of mam-
malian body mass from PanTHERIA (Jones et al. 2009)
and the open tree of life using the R package rotl
(Michonneau et al. 2016). A single vector of data
assumed to be log-normal can be factored based on a
two-sample ¢ test (Fig. 3). In this case, our aggregation
function A(xg) = log(xg) is the arithmetic mean of the
log body mass; our contrast function
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Mammalian body mass (t test)

Laurasiatheria
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Fic. 3. Two-sample tests, such as ¢ tests, can be used as objective functions for phylofactorization of vectors of data. Using a ¢
test of equal variance, five iterations of phylofactorization on a data set of mammalian log body mass yields five clades with very
different body masses. These ¢ statistics are identical to projections of the data onto contrast basis elements discussed in the section

The Contrast Basis.

M

is a standardized difference of means, and the objective
function o, = |C,|. With these operations, our objective
function is the test-statistic for a two-sample ¢ test with
the assumption of constant variance. Maximization of
the objective function yields edges separating mammals
with the most significant difference in body mass.

The first five phylogenetic factors of mammalian body
mass in these data are Euungulata, Ferae, Laurasiatheria
(excluding Euungulata and Ferae), a clade of rodent sub-
orders Myodonta, Anomaluromorpha, and Castorimor-
pha, and the simian parvorder Catarrhini. Five factors
produce six binned phylogenetic units of species with dif-
ferent average body mass (Fig. 3). The most significant
phylogenetic partition of mammalian body mass occurs
along the edge basal to Euungulata, identifying a clade of
296 species with significantly larger body mass than other
mammals. The second partition corresponds to Ferae,
containing 242 species which have body masses larger than
other mammals, excluding Euungulata. The third parti-
tion corresponds to 864 remaining species in Laurasiathe-
ria, excluding Euungulata and Ferae, which contains
Chiroptera, Erinaceomorpha, and Soricomorpha. These
mammals have lower body mass than non-Laurasiather-
ian mammals. The fourth partition identifies three rodent
sub-orders comprising 926 species with lower body mass
than non-Laurasiatherian mammals. Finally, 106 species
comprising the Simian parvorder Catarrhini are factored
as having higher body mass than the remaining mammals.
These factors are fairly robust: 3,000 replicates of stochas-
tic Metropolis-Hasting phylofactorization, drawing edges
in proportion to C* with A =6 (producing a 1/4

probability of drawing the most dominant edge at the first
iteration) could not improve upon these five factors.

The first two phylogenetic factors of mammalian body
size partition the mammalian tree at deep edges with
ancestors near the K-Pg extinction event, corroborating
evidence of ecological release (Alroy 1998, 1999) and the
exponential growth of maximum body sizes following the
K-Pg extinction event (Smith and Lyons 2011) for these
two dominant clades. The crown group of modern Euun-
gulata are thought to have originated in the late Creta-
ceous (Zhou et al. 2011) and its representatives may have
expanded into previously dinosaur-occupied niches dur-
ing the rapid evolution of body size in mammals immedi-
ately after the K-Pg extinction event at the Cretaceous/
Paleogene boundary (Smith et al. 2010). Cope’s rule
posits that lineages tend to increase in body size over
time, and a recent study (Baker et al. 2015) confirms
Cope’s rule and found that mammals have, along all
branch lengths in their phylogeny, tended to increase in
size. The phylogenetic factors of mammalian body size
discovered here illustrate an important feature of phylo-
factorization: correlated evolution within a clade, such as
a consistent directional evolution among lineages in a
clade, can cause the edge basal to a clade to be an impor-
tant partition for capturing variance in a trait. A more
robust phylofactorization may be done through iterative
ancestral-state reconstruction of the roots of subtrees par-
titioned by each edge (where the subtrees are re-rooted at
the nodes adjacent the edge), but this unsupervised phylo-
genetic factorization body masses in 3,374 mammals
takes 15 s on a laptop and yields partitions which sim-
plify the story of mammalian body-mass variation to a
set of five edges forming six binned phylogenetic units.

Two-sample tests can be used for phylogenetic factor-
ization of any vector of trait data. For another example,
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Bernoulli trait data, such as presence/absence of a trait,
can be factored using Fisher’s exact test that there is the
same proportion of presences in two groups, R and S. In
this case, the aggregation operation A(Xg) =) ;g Xi
counts the number of successes in group R, the contrast
function, C, is the P value of Fisher’s exact test with the
contingency table shown in Table 1.

An objective function can be defined as the inverse of
the P value from Fisher’s exact test, w, = C, ' The
phylofactorization of vertebrates by land/water associa-
tion in Fig. 1, using an ad-hoc selection of vertebrates
for illustration, was performed using Fisher’s exact test,
and the factors obtained correspond to Tetrapods, Ceta-
ceans, and Pinnipeds. Unlike the phylofactorization of
mammalian body mass, all three factors obtained from
phylofactorization of vertebrate land/water association
correspond to a set of traits. Tetrapods evolved lungs
and limbs which allowed them to live on land. Cetaceans
evolved fins and blowholes, and Pinnipeds evolved fins,
all traits adaptive to life in the water.

Two-sample tests are used when partitioning a vector
of traits and not controlling for additional meta data
such as sampling effort or other confounding effects.
Phylofactorization of body mass and land/water associa-
tions illustrate two potential evolutionary models under
which edges are important: correlated evolution of mem-
bers of a clade caused by different evolutionary regimes
(e.g., ecological release, niche partitioning or geographic
separation) and punctuated equilibria in which func-
tional traits of large importance arise infrequently. More
complicated methods of phylofactorization will yield
similar evolutionary interpretations: factors may corre-
spond to traits or evolutionary regimes shared among
extant members of a clade and/or their ancestors.

THE CONTRAST Basis

How can we identify the phylogenetic scales in an
arbitrary matrix of data, X, such as the data obtained
when measuring abundances or traits of species across a
range of environments? Low-rank approximations of
matrices are useful tools for simplifying big data, and
often rely on choosing a small set of vectors {v;}~ | and
their coordinates {w;}~, to minimize the distance
between the matrix, X, and some low-rank matrix VW.

In this section, we introduce the contrast basis, a set
of vectors that connect phylofactorization’s graph-parti-
tioning algorithm to various methods for low-rank

TaBLe 1. Fisher’s Exact test for two-sample phylofactorization
of Bernoulli trait data.

Successes Failures Total
A(XR) r— A(x,) r
A(Xs) s — A(XS) N
A(xg) + A(xs) r+s— (A(x,) + A(xs)) r+s

Note: Variables are defined in Box 1.
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approximations of data matrices. We then use the con-
trast basis for a phylogenetic analog of principal compo-
nents analysis to analyze gut microbiomes across
hundreds of patients, and for regression-based dimen-
sionality reduction to identify the phylogenetic scales of
community compositional changes in central park soils.

The phylogeny provides a natural scaffold for low-
rank, phylogenetically interpretable approximations of
the data. As a sphere defines a natural set of coordinates
for GPS data, the phylogeny defines a natural set of
coordinates for community ecological data (Washburne
et al. 2018). One example of a natural coordinate in the
phylogeny is an aggregation; the total abundance of spe-
cies within a clade is obtained by projecting the data
onto a vector containing 1 for all elements corresponding
to species in that clade and O for all other elements.
Another example of a natural coordinate in the phy-
logeny is a contrast; the difference of total abundance
between two clades is obtained by projecting the data
onto a vector containing 1 for all elements in one clade
and —1 for all elements in the other clade. These opera-
tions allow one to construct natural coordinates for
more sophisticated analyses of phylogenetically struc-
tured ecological data.

Phylogenetically interpretable, low-rank approxima-
tions of data can be obtained by constructing basis ele-
ments through aggregation and contrast vectors
(Fig. 1C). If two groups, R and S, are separated by an
edge of interest for phylofactorization, an aggregation
basis element for the group Q = RUS can be con-
structed through a vector, v, whose ith element is

vigi={8 '€ @

0  otherwise.

If, for example, there are 10 species in Q, projecting
the data onto v4, with @ = 1/10 is equivalent to taking
the mean of those 10 species, whereas if ¢ = 1 then pro-
Jection onto v, ; is equivalent to summing the data of
those 10 species. A natural complement to an aggrega-
tion vector is a vector contrasting the groups R and S
whose ith element is

b i€R
Vigsi = { —c i€S (3)

0 otherwise

where b > 0 and ¢ > 0. By meeting the criteria
rb—sc=0 4)
b? 4s¢? = 1 (5)

one can ensure that the aggregation vector, v4,, and the
contrast vector of the two disjoint sets comprising Q,
Veyso are orthogonal to one another (Eq. 4) and have
unit norm (Eq. 5). Solving Egs. 4 and 5 yields a choice
of b and ¢ for contrast basis elements:
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s

b= r(r+s) ©
r

€= s(r+s) @

Phylogenetic scales of interest in data matrices can be
identified through analysis of data projected onto aggre-
gation and contrast vectors. In the language of phylofac-
torization’s graph partitioning algorithm, projecting
data from sample j, x;, onto the contrast vector v, is
equivalent to defining the sample-wise aggregation and
contrast operations as

®)
ClAlxr)). Alxs ) = [ (%ny — Xs5,)

where X ; is the sample mean of species in group R and
sample j. Projecting an entire data set, X, onto v,
yields coordinates, one for each sample, which are a
standardized difference of means identical to Eq. 1.
Since the contrast vector is comprised of two sub-aggre-
gations of opposite sign, one for group R and the other
for group S, it will be orthogonal to a subsequent a con-
trast vector partitioning either R or S into two disjoint
groups. Thus, the non-overlapping contrasts produced
by phylofactorization’s graph-partitioning coupled with
the criterion in Eq. 4 allow one to construct an ortho-
gonal contrast basis during phylofactorization. The
orthonormal contrast basis can be used to make low
rank approximations of X = VW + e where the low-
rank matrix VW corresponds to important phylogenetic
scales in the data.

One can construct a complete basis using only aggrega-
tion and their contrast vectors. By disallowing overlapping
aggregations (e.g., aggregations of nested clades) while
maintaining the criteria in Egs. 4 and 5 for contrast basis
elements, one can ensure the basis is orthonormal. With m
species, first define a set of ¢ <m orthogonal aggregation
vectors aggregating disjoint sets of species Q; such that the
entire set of aggregations, UE'{ 0, ={l1,...,m}, covers
the entire set of m species. Then, m — ¢ contrast vectors
partitioning the aggregations and all multi-species sub-
aggregations within contrast vectors can complete the
basis (Fig. 1C). It’s worth noting that the span of any
aggregate and its contrast is equal to the span of the con-
trasts’ sub-aggregates, i.e., for RUS = Q

span(vAQ,vC“> = span(v4,, Vi) 9)

(Fig. 1C). Thus, these two natural pairs of basis ele-
ments, an aggregate of species and its orthogonal con-
trast (grouping species and partitioning the group) or
two orthogonal aggregates (two disjoint groups of spe-
cies), are rotations of one another.

ALEX D. WASHBURNE ET AL.

Ecological Monographs
Vol. 89, No. 2
Aggregation vectors as defined in Eq. 2 can be defined
a priori based on non-overlapping traits or clades of spe-
cies thought to be important for the question at hand
(e.g., aggregate “terrestrial” and “aquatic” animals), or
they can be learned through clustering algorithms or
even phylofactorization based purely on aggregation by
converting steps 1 and 2 in the phylofactorization algo-
rithm into a single step: maximizing an objective function
of the aggregate of a clade. A special case occurs when
data are compositional (Aitchison 1982), in which case
the sum of the data for all species in the community will
equal 1 and thus the data are constrained by an aggrega-
tion element: the aggregate of all species. Consequently,
changes in compositional data are always orthogonal to
the 1 vector, and, for compositional data, variation is
best described through contrast basis elements. For this
reason, phylofactorization via contrasts of log-relative
abundance data allows one to construct an isometric log-
ratio transform, a commonly used and well-behaved
transform for the analysis of compositional data (Egoz-
cue et al. 2003, Egozcue and Pawlowsky-Glahn 2005, Sil-
verman et al. 2017). For non-compositional data, since
the span of an aggregate and its contrast is equal to the
span of the contrasts’ two aggregates (Eq. 9), we simplify
the identification of phylogenetic scales and the construc-
tion of a phylogenetic basis by considering, from here on
out, only the “contrast basis” similar to that used in com-
positional data whereby an initial aggregate of all species
is partitioned with a series of contrasts.

Phylogenetic components analysis

Principal components analysis obtains a set of orthog-
onal directions, called loadings, which sequentially maxi-
mize the variance of the data projected onto the
loadings. Similarly, orthogonal contrast vectors allow
researchers to partition the variance in a community
ecological data set along each of a set of orthogonal
directions corresponding to discrete, interpretable fea-
tures in the phylogeny.

An edge, e, separating groups of species R and S has a
corresponding candidate basis element, vc,, that we
will refer to as v¢,. Projecting the data matrix onto the
contrast basis element yield what we’ll call component
scores y, = vaX. The component scores can be used to
identify phylogenetically interpretable directions captur-
ing variance in the data through the objective function

®, = Varly,]. (10)

Phylofactorization via the objective function in Eq. 10
yields a phylogenetic decomposition of variance we call
“phylogenetic components analysis” or PhyCA. PhyCA
is a constrained version of principal components analy-
sis, allowing researchers to identify the dominant axes of
variation corresponding to contrasts of species separated
by an edge.
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The component score for sample j, y, ;, can be written

as
s _
Ve = /75 (XRs — Xs) (11

where Xp ; is the sample mean of x; ; for i € R and X ; is
the sample mean of x;; for i € S. Consequently, the vari-
ance of the component score is

Varly,] = % (Var[kg] + Var[ks] — 2Cov[%g, Xs]).

S
(12)

The variance of y, increases through a combination of
variances of the aggregations of groups R and S across
samples (Xg and Xg, respectively) and a high negative
covariance between aggregations for groups R and S
across samples. Negative covariance may be caused by
competitive exclusion, different habitat associations
across the samples, and more - such ecological phenom-
ena can be identified through PhyCA.

We use PhyCA to identify 10 factors from a sub-sam-
ple of the American gut data set (McDonald et al. 2018)
and the greengenes phylogeny (DeSantis et al. 2006)
containing m = 1,991 species and n = 788 samples from

American gut (PhyCA)

GENERALIZED PHYLOFACTORIZATION
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human feces (Fig. 4). The American gut data set was fil-
tered to fecal samples with over 50,000 sequence counts
and, among those samples, operational taxonomic units
(OTUs) with an average sequence per sample greater
than 1. After performing PhyCA, possible ecological
explanations of variance were explored via least squares
regression predicting the winning component score, y,.,
using seven explanatory variables: types_of plants
(a question asking participants how many types of
plants they’ve eaten in the past week), age, bmi, alcohol
consumption frequency, sex, antibiotic use (ABX), and
inflammatory bowel disease (subset_ibd) (Fig. 4). The
raw P values from ¢ tests of the coefficients are presented
below; the P value threshold for a 5% family-wise error
rate, given the 70 tests run, is 7.1 x 1074,

The first factor splits 1,229 Firmicutes OTUs from the
remaining 782 OTUs. The component score for the first
factor, Yers is strongly associated with antibiotic use
(P =3.6 x 107, showing dramatic decreases in relative
abundance in patients who have taken antibiotics in the
past week or month. The second factor identifies 217
species of several genera of Lachnospiraceae, a clade con-
tained within the Firmicutes of factor 1. These Lach-
nospiraceae are contrasted from the remaining Firmicutes
by a strong association with age (P = 1.2 x 107", bmi
(P =32 x 107%), and alcohol (P = 6.4 x 10~%). The third

25
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Fic. 4. Maximizing the variance of component scores, y., of log-relative abundance data produces a “phylogenetic components
analysis” (PhyCA) of the American gut data set. The most variable clades cover a range of phylogenetic scales. Downstream analy-
sis of component scores are tested for associations with biologically relevant meta data. Plotted are linear predictors against relevant
meta data for one exception: the plot of Lachnospiraceae includes the raw data as black dots.
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factor is a clade of 81 Bacteroides most strongly associated
with types_of_plants (P = 2 x 10~°). By identifying clades
of Firmicutes and Bacteroides as major axes of variation,
factors 1 and 3 refine the Firmicutes to Bacteroidetes ratio
commonly used to describe variation in the gut microbiome
and found associated with obesity and other disease states
(Ley et al. 2006, Clemente et al. 2012). It’s been found that
the Firmicutes/Bacteroidetes ratio changes with age (Mariat
et al. 2009), but the picture from phylofactorization is more
nuanced: the large clade of Firmicutes in the first factor
does not change with age relative to the complement set of
all species, but the Lachnospiraceae within that clade
decrease strongly with age relative to the remaining Firmi-
cutes, while the Bacteroides show only a moderate decrease
with age. The strong decrease with age in Lachnospiraceae
is found in a few other clades within the Firmicutes: the
fourth factor identified a clade of Firmicutes of the family
Ruminococcaceae strongly associated with types of plants
(P=3.6x 1077, sex (P=59 x 107 and decreasing
with age (P = 9.2 x 107%), and the fifth factor identified a
group of Firmicutes of the family Tissierellaceae that
decrease strongly with age (P = 1.9 x 1075).

The sixth factor partitions small group of five OTUs
of Prevotella copri associated with types_of_plants
(P =2.8 x 10~* and weakly associated with inflamma-
tory bowel disease (P = 2.5 x 107%). Previous studies
have found that Prevotella copri abundances are corre-
lated with rheumatoid arthritis in humans and inocula-
tion of Prevotella copri exacerbates colitis in mice.
Consequently, Prevotella copri is hypothesized to
increase inflammation in the mammalian gut (Scher
et al. 2013), and the discovery of Prevotella copri as one
of the dominant phylogenetic factors of the American
gut, as well as the discovery of its association with IBD,
corroborates the hypothesized relationship between Pre-
votella copri and inflammation. Likewise, the seventh
factor is a clade of 41 Gammaproteobacteria of the
order Enterobacteriales also associated with types_of_-
plants (P =6.7 x 10°%) and weakly associated with
inflammatory bowel disease (P = 0.022). Gammapro-
teobacteria were used as biomarkers of Crohn’s disease
in a recent study (Vazquez-Baeza et al. 2017) and their
associations with IBD in the American gut project cor-
roborates the use of Gammaproteobacterial abundances
for diagnosis of IBD from stool samples.

Gaussian-based regression-phylofactorization

When the data are assumed to be Gaussian or easily
mapped to Gaussian with a monotonic function, such as
logistic-normal compositional data or log-normal data,
objective functions can be defined directly from regres-
sion on component scores. While y, can be used as either
an independent or dependent variable, the transformed-
Gaussian assumption of the data is particularly impor-
tant when y, are used as dependent variables.

Maximizing the explained variance from regression
identifies clades through the product of a high contrast

ALEX D. WASHBURNE ET AL.

Ecological Monographs
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variance from Eq. 10 and a high percentage of
explained-variance from regression — such clades can
capture large blocks of explained variance in the data
set. Maximizing the deviance or F statistic from regres-
sion identifies clades with more predictable responses:
such clades can be seen as bioindicators or particularly
sensitive clades, even if they are not particularly large or
variable clades. Regression-phylofactorization uses the
component scores as a response or explanatory variable,
the latter being used in the phylofactorization-based
classification of Crohn’s disease (Vazquez-Baeza et al.
2017). For multiple regression, one can define objective
functions based on the explanatory power of the entire
model or the explanatory power of a subset of the
model. More complicated regression models can be con-
sidered, including generalized additive models, regular-
ized regression, and more.

To identify phylogenetic scales corresponding to non-
linear patterns of abundance-habitat associations, we
perform a generalized additive model analysis of the
Central Park soils data set (Ramirez et al. 2014) previ-
ously analyzed with least squares. To identify non-linear
associations between clades and pH, carbon, and nitro-
gen, we perform a generalized additive model of the form

y. ~s(pH) + s(carbon) + s(nitrogen) (13)

where s() indicates a smoothing spline. Our objective
function was the explained variance of the entire model.
The resultant phylofactorization (Fig. 5) identified the
same four factors as the least squares model and nonlin-
ear patterns of community compositional changes along
environmental gradients. The four factors partition over
3,000 species into five binned phylogenetic units; aggre-
gating abundances within BPUs while sorting the data
along pH (the dominant explanatory variable for all four
factors) allows clear, phylogenetically interpretable, low-
rank visualization of otherwise complex behavior of how
a community of several thousand microbes changes
across several hundred soil samples. Phylofactorization
through generalized additive modeling identifies a clade
of Acidobacteria, the Chloracidobacteria, which have
their highest relative abundances in neutral pH soils.

GENERALIZED PHYLOFACTORIZATION

Many ecological data are not Gaussian. Presence—ab-
sence data or count data with many zeros cannot be
easily transformed to yield approximately Gaussian ran-
dom variables. Data assumed to be exponential family
random variables can be analyzed with regression-phylo-
factorization by adapting concepts used in generalized
linear models for aggregation & contrast of species sepa-
rated by edges.

For an example of why this is important, consider a
data matrix, X, whose entries are either 0 or 1 (i.e. pres-
ence—absence data). Projecting these data onto v, will
yield component scores, y,, which are discrete and for
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Central Park soils (gam)
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Lo gam predictions

Relative abundance

pH

+ Chloracidobacteria
+ Acidobacteriia-6

+ Acidobacteriia
+ DAO052

FiG. 5. Projecting the data onto contrast basis elements permits a broad range of analyses. Here, the component scores y,
from projections of log-relative abundances are analyzed to find phylogenetic factors of changing community composition in Cen-
tral Park soils. The model y, ~ s(log (carbon)) + s(log (nitrogen)) + s(pH), where s() indicates a smoothing spline, was combined
with the objective of maximizing the explained variance. The relative importance of pH in the generalized additive models, and
the exact clades with a high amount of variance explained by pH, allows a projection of 3,000 species into 5 binned phylogenetic
units (BPUs) for clear visualization and prediction of nonlinear community compositional changes along a key environmental

gradient.

which least squares regression is not appropriate; among
other things, the regression model could predict values
of y, beyond what is possible given the number of species
in R and S. As one would use logistic regression in gen-
eralized linear models to analyze patterns in the pres-
ence/absence of a single species, we present algorithms
to use generalized linear models for regression-phylofac-
torization of such non-Gaussian, exponential family
random variables.

We present four algorithms to identify edges separating
groups of species with high within-group similarity and
high between-group differences in regression coefficients
estimated through generalized linear modeling. The algo-
rithms either explicitly use the contrast basis to approxi-
mate the regression coefficient matrix or implicitly use an
analog of the contrast basis in the likelihood function via
categorical factor contrasts in a shared coefficients model.
The algorithms we propose are (1) coefficient contrast,
which uses the contrast basis to identify sets of species
with significantly different regression coefficients; (2)
phylo factor contrasts, which uses surrogate categori-
cal variables, phy 10, to contrast regression coefficients;
(3) marginally stable aggregation, which aggregates data
to marginally stable distributions, then use of phylo
factor contrasts; and (4) mixed, which uses algorithm 1
(the fastest) to identify a subset of edges as candidates for
algorithm 2 (the slowest but most accurate).

At the end of this section, we compare the computa-
tional costs and scaling of these algorithms. The broader

use of phylofactorization through generalized linear mod-
elling is referred to as “generalized phylofactorization”.

Algorithm 1: Coefficient contrast

Matrix factorization, X = VW + €, can be used for
low-rank approximations of the coefficient matrix. The
first algorithm, related to reduced rank regression for
vector generalized linear models (Yee and Hastie 2003),
uses the contrast basis to provide a reduced-rank
approximation of the coefficient matrix from multivari-
ate generalized linear models. Multivariate (vector) gen-
eralized linear models assume the data X are drawn
from an exponential family distribution with canonical
parameters for each species, n € R, related to the meta
data Z through a linear model

n~BZ (14)

where B € R"*? is the coefficient matrix and Z € RP*" is
the matrix of meta data. Instead of using m x p coefficients,
one can approximate the coefficient matrix B through con-
trast basis elements and their component scores

B=1w] + VW +€ (15)
where 1 € R” is the one vector, wy € R” contains the

mean of the regression coefficients for each of the p pre-
dictors, V € R™*! is a matrix whose columns are contrast
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basis elements obtained from ¢ iterations of phylofactor-
ization and W € R”? is a matrix whose rows are the
component scores for each contrast basis element and
whose columns are the set of component scores for each
of the p predictors. If one is interested in partitioning spe-
cies based on a subset, P, of the explanatory variables,
one can implement Eq. 15 for the matrix Bp containing
only the partitioning variables for phylofactorization.

The approximation of B in Eq. 15 is best done by
directly testing differences in the standardized regression
coefficients obtained by dividing regression coefficients,
Bi;» by their standard error. We refer to the matrix of
such standard coefficients for partitioning variables as
the “standardized coefficient matrix,” Bp.

The Euclidean norm of the projection of the standard-
ized coefficient matrix onto contrast basis elements can
serve as an objective function

o, = ||v, Bp|| (16)

capturing the extent to which coefficients in Bp differ
between the sets of species partitioned by the edge e. Com-
bined with the asymptotic normality of regression coeffi-
cients in generalized linear models and assuming
independence of B, ; across meta data j, a given objective
function ®, is a chi-squared statistic with p degrees of free-
dom. Coefficient contrasts are fast and easy to compute,
but the algorithm described here minimizes the distance
between VW and Bp and do not necessarily maximize the
likelihood of the reduced-rank regression. Other algo-
rithms described below construct reduced-rank approxi-
mations which maximize the likelihood of the data under
an explicit model of within-group shared coefficients.

Algorithm 2: Stepwise phy 10 factor contrasts

A surrogate variable phylo € {R,S}, indicating
which group a species is in, can be used to explicitly
model shared coefficients within-groups andcontrast the
coefficients between-groups, all while finding the maxi-
mum-likelihood estimates of the shared coefficients.
Stepwise, maximum-likelihood selection of phy 1o fac-
tor contrasts are a more accurate yet computationally
intensive algorithm for generalized phylofactorization.

To see how phylo factors are constructed, a data
frame contrasting how the counts of “birds” and “non-
birds” are associated with meta data z, while controlling
for z; can be constructed as shown in Table 2. The mono-
phyletic group of birds is always takes the value R for the
variable phy 10, whereas non-birds always take on the
value S. Phylofactorization can be implemented through
a generalized linear model for a count family (e.g., Pois-
son, binomial, or negative binomial) using the formula

Abundance ~ z; 4 phylo x z;. 17)

The phy lo factor contrasts groups separated by an
edge; using its deviance as the objective function will find

ALEX D. WASHBURNE ET AL.

Ecological Monographs
Vol. 89, No. 2

TasLE 2. Constructing phy 1o factor corresponding to edge
separating birds from non-birds.

Site Species Abundance z z phylo
1 Pigeon 10 1 0.5 R
1 Dove 8 1 0.5 R
1 Lizard 1 1 0.5 S
1 Mouse 3 1 0.5 S
1 Cat 1 1 0.5 S
2 Pigeon 2 0 -2 R
2 Dove 1 0 -2 R
2 Lizard 10 0 -2 S
2 Mouse 4 0 -2 S
2 Cat 3 0 -2 S

Note: Variables are defined in Box 1.

the edge ¢* whose phylo factor maximizes the likeli-
hood of the data under a model of shared coefficients.

In phylo factor contrasts, aggregation occurs
within the likelihood function. The likelihood L(x;;n)
for a vector of binomial random variables x; € R" can
be written in exponential family form

L(xj;m) = h(x;) exp{n'’x — A(m)} . (18)

A two-factor model, such as x ~ phylo, will reduce the
likelihood function from m parameters in n to two
parameters, 1; € (Ng, Ng), yielding

L(x;;phylo) = h(x;) exp{ Nr Exi.j +Ms intj —A(m) }
i€eR icS

Aggregation within the likelihood function above is
summation of data within-groups; more generally, aggre-
gation is given by the sufficient statistic, 7(x), in the
exponential family random variable’s likelihood func-
tion (e.g., T(x)=>,log(x;) for the Pareto and chi-
squared distributions). With the maximum likelihood
estimates, Tz and Mg, a contrast function can be defined
as a difference of Nz and ng, or the test-statistic from a
hypothesis test that Nz = ng.

Stepwise selection of maximum-likelihood phylo
factor contrasts, constructed for non-overlapping sets of
species via the graph partitioning in phylofactorization,
is an accurate yet extremely computationally intensive
method for regression-phylofactorization of exponential
family random variables. A faster yet less accurate algo-
rithm, which still performs maximume-likelihood estima-
tion of phy 10 factor contrasts, is the use of marginally
stable aggregation (Fig. 6).

Algorithm 3: Marginally stable (mStable) aggregation

Another option, aimed to reduce the computational
costs of explicit maximum-likelihood estimation of
phylo factors, is to aggregate the raw data X prior to
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(Bernoulli)

'Data for samples
j=1,..,n

‘Factor contrast

(xr,j» %s,1)

A(xg) = Z Xi

i€ER

Marginally
stable data

g 673 jr Vs, j)

in glm / gam

(Binomial)

Fic. 6. Exponential family random variables can be explicitly analyzed in regression-phylofactorization either directly through
phylo factor contrasts or through marginally stable aggregation. Aggregating data to a marginally stable distribution, such as
addition of Bernoulli random variables with the same probability of success to a binomial random variable, can dramatically reduce
computational costs while allowing maximum-likelihood estimation of regression coefficients under assumptions of within-group
homogeneity. A comparison of the two methods’ accuracy is provided in the Appendix (see Appendix S1).

evaluating the generalized linear model. The method we
present is to assume within-group homogeneity and
aggregate exponential family random variables to a
“marginally stable” exponential family random variable
that can be used for downstream analysis. Marginal sta-
bility, to the best of our knowledge, has not been explic-
itly defined elsewhere, and thus we introduce the term
here by loosening the definition of stable distributions
(Sato 1999). Given a non-trivial aggregation operator
A:Q"—Q defined for any natural number m, a distribu-
tion with parameters {0;,0,}, F(0;,0,), defined over Q
is said to be marginally stable on 6; with respect to 4 if
for all x € Q" with independent elements x; ~ F(0;,0,;)
for i=1,...,m, A(X) ~F(01,0,,+1) conditioned on 6,
being fixed.

The Gaussian distribution is stable: the sum of two
Gaussian random variables is also Gaussian. Meanwhile,
binomial random variables are marginally stable on the
probability of success; random variables x; ~ Binom(p, N;)
can be summed to yield 4(x)~ Binom(p, > N;). Mar-
ginal stability opens up more distributions to stable aggre-
gation. Presence absence data, for instance, can be
assumed to be Bernoulli random variables. The assump-
tion of within-group homogeneity for the probability of
presence, p, allows addition of Bernoulli random variables
within each group, R and S, to yield a respective binomial
random variable, xz and xg. Likewise, the addition of a set
of binomial random variables with the same probability of
success, p, yields an aggregate binomial random variable.
A set of exponential random variables with the same rate
parameter, A, can be added to form a gamma random vari-
able. Gamma random variables, x; ~Gamma(xk;,0),
parameterized by their shape, k;, and scale, 0, are margin-
ally stable on 6. Addition of geometric random variables
with the same rate parameter forms a negative binomial,
and the addition of a set of negative binomial random

variables, x; ~ NB(m;, p), with the same probability of suc-
cess p but different numbers of failures, 7;, can be aggre-
gated into xg = >, X7 Where xg ~NB(Y ;. 7, p). All
of these distributions are not stable, but they are marginally
stable. Marginal stability, for the purposes of phylofactor-
ization, must be on the parameter of interest in generalized
linear modeling.

Marginal stability can also be used with transforma-
tions connecting the assumed distribution of the data to
a marginally stable distribution. Log-normal random
variables can be converted to Gaussians through expo-
nentiation; chi random variables can be converted to
chi-squared through squaring; random variables from
many distributions may be analyzed by transformation
to a stable or marginally stable family of distributions.
Such transformation-based analyses implicitly define
aggregation through a generalized f-mean

Ap(xg) =/ (Zf(x») (19)

i€R

where f(x) = log(x) for log-normal random variables,
f(x) = x* for chi random variables, etc. The goal of
such aggregation, whether through exploiting marginal
stability or generalized f-means or other algebraic-
group operations in the exponential family, is to pro-
duce summary statistics for each group of species, R
and S, in a manner that permits generalized linear
modeling of the summary statistics. By ensuring sum-
mary statistics are also exponential-family random
variables, one can perform a factor-contrast style analy-
sis as described above using only two summary statis-
tics and not all r+ s species. Doing so can greatly
reduce the computational load of phylofactorizing large
data sets and can increase the power of edge
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identification even when the within-group homogeneity
assumption does not hold (see Appendix S1).

Marginally stable aggregation can be made efficient
by matrix multiplication onto one-vectors 1z and 1g
whose ith entries are 1 for all i € R, S, respectively, and 0
otherwise. Assuming a Poisson or negative binomial
count model for the bird/non-bird data frame above, the
data frame is reduced to Table 3 and the same equa-
tion (Eq. 17) can be used for phylofactorization through
phylo factor-contrasts. Thus, marginally stable aggre-
gation and phy 10 factor contrasts present two options
for generalizing regression-phylofactorization to data
from the exponential family (Fig. 6).

TaBLE 3. Marginally stable aggregation and phylo factor
construction for edge separating birds from non-birds.

Site Species Abundance z) Z phylo
1 Bird 18 1 0.5 R
1 Non-Bird 5 1 0.5 S
2 Bird 3 0 -2 R
2 Non-Bird 17 0 -2 S

Note: Variables are defined in Box 1.

ALEX D. WASHBURNE ET AL.

Ecological Monographs
Vol. 89, No. 2

Algorithm 4: Mixed algorithm

Coefficient contrasts are computationally easy yet less
accurate for edge identification, whereas stepwise
phylo factor selection (without marginally stable
aggregation) is accurate yet computationally demanding
(Fig. 7). It’s possible to develop mixed algorithms with
accuracy similar to stepwise phylo factor selection
and reduced computational costs more similar to coeffi-
cient contrasts or marginally stable aggregation. For
each iteration, coefficient contrasts (Eq. 16) can be used
to narrow down the set of possible edges, {e},,,, to a set
of edges with high objective functions from standardized
coefficient contrasts. We use the top 20% of edges based
on ®, in Eq. 16, resulting in an approximately 80%
speed-up compared to the brute-force phylo factor
contrast algorithm. For only these edges, phylo fac-
tors are considered and the winning edge is the top-
quantile edge which maximizes the deviance of its
phylo factor contrast.

Algorithm comparison

We compare the performance of the four algorithms
listed above. The algorithms are compared on how well

| CoefContrast __mstable _phylo _ Mix |

Time (m = 50) 0.13s
Y 1
Correct (%) 67%
Bo=0
Correct (%) 60%
Bo~Gsn(0,1)
One iteration Two iterations
400.0
200.0
100.0
E 10.0
(0]
£
|_
) //"
0.1
& R ‘]90 rﬁp{b@ & >

1.66s 8.32s 0.99 s
1 2 2
81% 86% 86%
60% 81% 80%

Three iterations

Algorithm

©B

‘® mStable

® phylo
././.‘ o

Q O OO0 kO Q S OO0
R TP [0 O PP

Number of species, m

FiG. 7. Accuracy, computation time, and scaling of four algorithms for generalized phylofactorization. Algorithms are com-
pared by the baseline time for two factors with m = 50 species, the scaling coefficient y in time oc m”, and percent of correctly iden-
tified edges in simulated data with m = 50 species and two affected clades. Stepwise phy 10 factor contrasts have high accuracy
but are computationally costly and scale quadratically with the number of species. Marginally stable (mStable) aggregation scales
linearly with m but only performs well when , = 0. Computation time can be reduced and accuracy preserved if coefficient con-
trasts in Eq. 16 are used to narrow the set of edges considered for rigorous phy 10 factor contrasts.
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they can correctly identify two edges with a known
effect, {e], €5}, and how long they take to extract a vari-
able number of factors across a range of species, m, in
the data set.

To compare edge-identification accuracy, presence/ab-
sence data were simulated for a set of m = 50 species and
n = 40 samples. The logit probabilities of null species i
being present were

’r][.NBI"O +0.1z; + 0.1z, (20)

where either B, = 0 for all species or B;, i N(0,1) to
violate the within-group homogeneity in mean probabil-
ity of presence/absence. The other two explanatory
variables, z; and z;, were the partitioning variables dif-
ferentiating species separated by edges. Two non-nested
clades, one containing 21 species and the other contain-
ing five species, had a different association with the
meta-data:

n; ~ 20 — 0.2z + 0.6z,

for species i in either of the two affected clades. To add
an additional level of complexity, the two meta-data
variables were given multicolinearity by simulating
21 ~Gsn(0, 1) and z; ~Gsn(zy, 1). The algorithms were
run for two factors and the number of correctly identi-
fied edges (out of two) was tallied across 1,000 replicates
(e.g., an algorithm that was 80% correct identified 1,600
correct edges over 1,000 replicates).

The time it took for each of these algorithms to com-
pute two factors above was also recorded. To compare
the scaling of the algorithms with increasing number of
species, null data were simulated across a range of spe-
cies richness m € {50, 100, 150,200, 250,300} and across
a range of factors 7 € {1,2,3}.

Deviance-maximization in the stepwise phylo fac-
tor contrasts had the greatest accuracy but also the slow-
est computation time (Fig. 7). The time required to
compute phylo factor contrasts scale quadratically
with the number species whereas coefficient contrasts
and marginally stable (mStable) aggregation scale lin-
early. Marginally stable aggregation only performs well
when B, =0 for all species, i, and when the within-
group heterogeneity is small. The accuracy of phylo
factor contrasts can be preserved and the computation
time reduced by selecting the top 20% of edges based on
coefficient contrasts.

Summary of generalized phylofactorization

We have presented algorithms to perform regression-
phylofactorization for non-Gaussian data. The stepwise
selection of phy 10 factor contrasts is best able to cor-
rectly identify edges but is computationally costly for
large data sets. The computation time of stepwise
phylo factor contrasts can be reduced by narrowing
the set of considered edges to those with high coefficient

GENERALIZED PHYLOFACTORIZATION
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contrasts. Marginally stable aggregation may be a
promising alternative for faster algorithms as it scales
linearly with the number of species, but marginally stable
aggregation only performs well when there is little differ-
ence in the mean, B;,, across species, i.

These algorithms are intimately related to reduced
rank regression and generalized linear modeling with
shared coefficients. Reduced-rank regression uses gradi-
ent ascent over a compact set of possible basis vectors to
find maximum-likelihood estimates. The constrained,
countable set of contrasts defined by the phylogeny pre-
cludes gradient ascent and produces problems directly
analogous to those in phylogenetic components analysis.
Consequently, we have focused on explicit testing of all
possible allowable contrasts in the phylogeny or, in the
case of the mixed algorithm, testing a subset of contrasts
believed to contain the winning edge, ¢*. These methods
can extend to generalized additive models and, as we dis-
cuss below, spatial and time-series data as well.

PHYLOGENETIC FACTORS OF SPACE AND TIME

Phylofactorization can be used in explicit analyses of
spatial and temporal patterns. For Gaussian data, or for
data used as an explanatory variable, samples of a com-
munity over space and time can be projected onto con-
trast basis elements or other contrast functions and the
resulting component scores analyzed directly using stan-
dard spatial or temporal methods. Similarly, phylo
factor contrasts can be used in spatially explicit analyses.
Multivariate Autoregressive Integrated Moving Average
(ARIMA) models can be constructed either as ARIMA
models of the component scores, y,, or as multivariate
ARIMA models with phy 1o factor contrasts, to iden-
tify phylogenetic partitions based on differences in drift,
volatility, and other time-series features of interest. Coef-
ficient matrices, including spatial and temporal autocor-
relation matrices or coefficients of association with
extrinsic meta-data Z, can be approximated with phylo-
genetic contrast-bases as in Eq. 15.

Marginally stable aggregation in spatial and temporal
data requires a brief consideration of the marginal stabil-
ity of spatially explicit random variables and stochastic
processes. “Stability,” for spatially and temporally expli-
cit random variables, must preserve the underlying
model for the spatial or temporal process assumed to
produce the data. An example of a less obvious margin-
ally stable aggregation of time-series data is the stability
of neutral drift (sensu Hubbell 2001) to grouping.

Neutral communities fluctuate, and those fluctuations
have a drift and volatility unique to neutral drift. Neu-
tral drift can also be defined either by discrete, finite-
community-size urn processes or stochastic differential
equations serving as continuous approximations of large
communities’ neutral drift. Washburne et al. (2016)
articulated the importance of a mathematical property
of neutral drift which enables time-series neutrality tests:
its invariance to grouping of species. If a stochastic
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process of relative abundances, X;, obeys the probability
law defined by neutral drift, then any disjoint groupings
of all species in X, also obeys the probability law for a
lower-dimensional neutral drift. Thus, neutral processes
are stable to aggregation by summation of relative abun-
dances. Collapsing all species into two disjoint groups, R
and S, yields a two-dimensional neutral drift with a well-
defined neutrality test for time-series data. Specifically, if
X, is a Wright Fisher process and R and S are disjoint
groups whose union covers the entire community, the
quantity

v, = arcsin ( <Z Xi,,> — <Z X,z) > (2D
i€eR Jjes

has a constant volatility whose constancy can be tested
in order to test neutrality.

Phylofactorization can use these process-specific oper-
ations for marginally stable aggregation and contrast of
neutral drift to partition edges across which the dynam-
ics appear to be the least neutral. For the test developed
by Washburne et al., the aggregation operation is the L;
norm and the contrast operation is the arcsine of the dif-
ferences of groups:

A(Xg) = [Xg] )
C(A(xR), A(xs)) = arcsin(A4(xg) — A(xs))
An objective function, o, for edge e can be the test statis-
tic of a homoskedasticity test of C,. Neutrality is a relative
measure, biological units are neutral relative to one-
another, and thus the use of aggregation of species into a
unit and a contrast of two units is a natural connection
between the theory and operations of phylofactorization
and the biologically important null model of neutrality.

STATISTICAL CHALLENGES

There are many statistical connections and challenges
which illuminate phylofactorization as a statistical tool.
Phylofactorization is formally defined as a graph-parti-
tioning algorithm, but maximizing the variance of the
data projected onto contrast basis elements is a con-
strained principal components analysis. The use of
regression-based objective functions and the iterative
construction of a low-rank approximation of a data
matrix is similar to factor analysis. The selection of a
sequence of orthogonal factor contrasts in generalized
linear models is a form of stepwise/hierarchical regres-
sion, and the factorization of a coefficient matrix B is a
method for reduced-rank regression. The maximization
of the objective function at each iteration is a greedy
algorithm. Each connection between phylofactorization
and other classes of methods produces a body of related
literature which could inform phylofactorization and
facilitate development of exploratory phylofactorization
into a robust, inferential tool.

ALEX D. WASHBURNE ET AL.

Ecological Monographs
Vol. 89, No. 2
In this section, we enumerate some of the statistical
challenges and discuss work that has been done so far.
First, as with any method using the phylogeny as a scaf-
fold for creating variables or making inferences, the uncer-
tainty of the phylogeny and the common use of multiple
equally likely phylogenies warrant consideration and fur-
ther method development (Washburne et al. 2018). Other
challenges discussed here are: the propagation of error;
the use of Metropolis algorithms to better arrive at global
maxima; the appropriateness and error rates of phylofac-
torization under various evolutionary models underlying
the data; the graph-topological biases and confidence
regions; cross-validation of partitions and inferences from
phylofactorization across communities with different spe-
cies; the appropriate number of factors and stopping crite-
ria to stop a running phylofactorization algorithm; and
the null distribution of test statistics when objective func-
tions being maximized are themselves test-statistics from
a well characterized distribution. Any exploratory data
analysis tool can be made into an inferential tool with
appropriate understanding of its behavior under a null
hypothesis, and the connections of phylofactorization to
related methods can accelerate the development of well
calibrated statistical tests for phylogenetic factors.

Phylogenetic inference.—So far we have assumed that
the phylogeny is known and error free, but the true evo-
lutionary history is not known, it is estimated. Conse-
quently, phylofactorization makes inferences on an
uncertain scaffold; all else being equal, the more certain
the scaffold, the more certain our inferences about a
clade. Two challenges remain for dealing with phylofac-
torization on an uncertain phylogeny.

For a consensus tree, there is the question of what statis-
tics of the consensus tree can yield precise statements of
uncertainty in phylofactorization inferences. Bootstrapped
confidence limits for monophyly (Felsenstein 19854) are
the most common metric of certainty for a consensus tree,
but there may be others as well. Since phylofactorization
can still be performed on a tree with polytomies and
reducing the number of edges considered at each iteration
can focus statistical effort (and chances of false discovery)
on clades about which the researcher is more certain, trees
containing clades with low bootstrap monophyly can be
collapsed to improve the certainty of phylofactorization
inferences. Different organisms will have different lever-
ages in regression or two-sample test phylofactorization,
and thus monophyly is only part of the picture: leverage
and other statistics will also determine the stability of an
inference to changing tree topology. Last, for a set of
equally likely bootstrapped trees, there is a need to inte-
grate phylofactorization across trees. Phylofactorization of
sets of equally likely phylogenies has not yet been done,
but is a fruitful avenue for future research.

Propagation of error.—Phylofactorization is a greedy
algorithm. Like any greedy algorithm, its deterministic
application is non-recoverable. Choosing the incorrect

0d ‘T *610T ‘STOLLSST

mofisay:sdy woxy papeoy

ssdny) suonipuo) pue swId, ay) 39S “[£202/10/60] U Areqr duruQ AN “KISIAIUN [19UI00) AQ ESE1 WIAZON T O1/10p/wi0d K[t

SULIO)/WOD KM’ A,

asu0ar] suouIIO) ANEAI) dlquatdde oy Aq PALIAOS AT SAAMIE YO 198N JO SA[NL 10§ ATBIQIT AUIUQ KI[TAY UO (



May 2019

edge at one iteration can cause errors to propagate,
potentially leading to decreased reliability of down-
stream edges. Little research has been done toward
managing the propagation of error in phylofactoriza-
tion, but recognizing the method as a greedy algorithm
suggests options for improving performance. Stochastic-
optimization schemes, such as replicate phylofactoriza-
tions using Metropolis algorithms and stochastic
sampling as implemented in the mammalian tree phylo-
factorization (sampling of edges with probabilities
increasing monotonically with @, and picking the phylo-
factor object which maximizes a global objective func-
tion), may reduce the risk of error cascades in the final,
resulting phylofactorization (Hastings 1970).

Behavior under various evolutionary models.—Phylofac-
torization is hypothesized to work well under a punctu-
ated-equilibrium model of evolution or jump-diffusion
processes (Gould 1972, Landis et al. 2012) in which
jumps are infrequent and large, such as the evolution of
vertebrates to land or water. Phylofactorization may also
work well when infrequent life-history traits arise or evo-
lutionary events occur along edges which cause corre-
lated, directional evolution among descendants.
Phylofactorization of mammalian body sizes yielded an
example of the second category of evolutionary scenar-
ios under which phylofactorization works well. Both
aggregation and contrast functions can incorporate phy-
logenetic structure and edge lengths to partition the tree

GENERALIZED PHYLOFACTORIZATION

Article e01353; page 19

based on likelihoods of such evolutionary models. The
sensitivity of phylofactorization to alternative models,
such as continuous Brownian motion and Ornstein-
Uhlenbeck models commonly used in phylogenetic com-
parative methods (Felsenstein 1985h, Hansen 1997),
remains to be tested and will likely vary depending on
the particular method used.

Basalldistal biases.—Researchers may be interested in
the graph topological distribution of factored edges in
the tree. If a microbial community is exposed to antibi-
otics and regression-phylofactorization results in many
tips being selected, a researcher suspecting lateral trans-
fer of antibiotic resistance may be interested in quantify-
ing the probability of drawing a certain number of tips
given ¢ iterations of phylofactorization. Alternatively, if
several edges are drawn in close proximity, researchers
may wonder the probability of drawing such clustered
edges under a null model of phylofactorization. For
another example, researchers may ask if an unusually
high/low number of factors appear in a particular histor-
ical time window due to some hypothesis of important
evolutionary event or environmental change. All of these
tests require an accurate understanding of the probabil-
ity of drawing edges in different locations of the tree.

All methods described here, save the Fisher exact test,
have a bias for tips in the phylogeny (Fig. 8). Graph-
topological biases affect the calibration of statistical
tests of the location of phylogenetic factors, such as a

Random PhyCA F statistic: y~z mStable PhyCA Phyl-BM Fisher test Objective
0.0500+ cestetiting  function
o sosscoeeoses o o os0t? 5 g e’ M — ¢ Y e
%o 0.0250 - o | & PVA
Q lo = Fstat
Q l% & GPF
0.0001- \ “0- GraphBM
2} - Fisher test
Partition unevenness |r-s|
Voronoi cells
Random PhyCA F statistic: y~z mStable PhyCA Phyl-BM
0.03 -

0.010 0.015 0.010 0.015 0.010 0.015

0.010 0.015 0.010 0.015

Relative size of contrast basis Voronoi cells

FiG. 8. Graph topological bias in null data and the relative size of Voronoi cells of contrast basis elements. The method and the

null distribution of the data determine graph-topological bias of phylofactorization. A random draw of edges does not discriminate
against edges based on the relative sizes of two groups contrasted by the edge, but 16,000 replicate phylofactorizations of null data
reveal that contrast-basis methods are slightly biased toward uneven splits (e.g., tips of the phylogeny). Standard Gaussian null data
were used for PhyCA, F statistics from regression on contrast basis elements (y, ~ z), and binomial null data was used for general-
ized phylofactorization (GPF) through marginally stable aggregation. Other methods, such as Fisher’s exact test of a vector of Ber-
noulli random variables, have opposite biases. The tip-bias of contrast-basis analysis is amplified for marginally-stable aggregation,
and amplified even more if the null data have residual structure from a Brownian motion diffusion along the phylogeny (Phyl-BM).
The common bias when using contrast bases across a range of objective functions is related to the uneven relative sizes of Voronoi
cells produced by the bases, simulated here by Eq. 24.
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test of whether/not there is an unusually large number of
differentiating edges in mammalian body mass during or
after the K-Pg extinction event.

Phylofactorization using the contrast basis is biased
towards the tips of the tree. Some progress can be made
towards understanding the source of basal/distal biases
in phylofactorization by examining the contrast basis.
The biases from analyses of contrast basis coordinates,
Y., stem from a common feature of the set of K; candi-
date basis elements {Vc(,}gil considered at iteration ¢ of
phylofactorization. In the ¢ test phylofactorization of a
vector of data, x, the winning edge ¢* is

¢" = argmax \vax\ (23)

and thus the objective function is monotonically related
to the angular distance between the vector of data and
the contrast basis elements.

Since the basis elements have unit norm, each basis
element corresponds to a point on an m-dimensional
unit hypersphere. If the data, x, are drawn at random,
such that no direction is favored over another, the proba-
bility that a particular edge e is the winning edge is pro-
portional to the relative size of its Voronoi cell on the
surface of the unit m hypersphere. Thus, the basal/distal
biases for contrast-basis analyses with null data assumed
to be drawn from a random direction can be boiled
down to calculating the relative sizes of Voronoi cells.
For our simulations reported in Fig. 8, the size of Voro-
noi cells was estimated through matrix multiplication

Ynull = VTxnull (24)

were V is a matrix whose columns j is the contrast basis
elements for edge e; being considered and X,y is a null
dataset whose entries are standard Gaussian random
variables. Each column of Y, contains the projections
of a single random vector and the element of each col-
umn with the largest absolute value is the edge closest to
that random vector.

Graph-topology and confidence regions.— As a graph-par-
titioning algorithm, phylofactorization invites a novel
description of confidence regions over the phylogeny. The
graph-topology of our inferred, edges, and their proximity
to other edges, both on the phylogeny and in the m-dimen-
sional hypersphere discussed above, can be used to refine
our statements of uncertainty. 95% Confidence intervals for
an estimate of a real-valued quantity give bounds within
which the true value is likely to fall 95% of the time in ran-
dom draws of the estimate. Confidence regions are multi-
dimensional extensions of confidence intervals. Conceptu-
ally, it’s possible to make similar statements about phyloge-
netic factors, confidence regions on a graph indicating the
regions in which the true, differentiating edge is likely to be.

Extending the concept of confidence regions to the
graph-topological inferences from phylofactorization

ALEX D. WASHBURNE ET AL.
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requires useful notions of distance and “regions” in
graphs. One example of such a distance between two
edges is a walking distance: the number of nodes one
crosses along the geodesic path between two edges.
Alternatively, one could define regions in terms of years
or branch lengths. For phylofactorization using the con-
trast basis, confidence regions may be well-characterized
by angular distances to nearby contrast basis elements
and their Voronoi cells.

Defining confidence regions in any phylofactorization
must combine the uneven Voronoi cell sizes and the
proximity of contrast basis elements to one another. For
low effect sizes, graph-topological confidence regions
extend to distant edges on the graph whose contrast
basis element have a large relative Voronoi cell size (e.g.,
the tips). As the effect sizes increase, confidence regions
over the graph are better described in terms of angular
distances between the contrast basis elements and that
of the winning edge, ¢* (Fig. 9).

Cross-validation.—How do we compare phylofactoriza-
tion across data sets to cross-validate our results? If a
researcher observes a pattern in the ratio of squamates
to mammalian abundances in North America, say a
decrease in the ratio of lizard and snake to mammal
abundance with increasing altitude, they may wish to
cross-validate their findings in other regions, including
regions with few or none of the same species found in
the original study. Researchers replicating the study in
Australia and New Zealand would have to grapple with
whether or not to include monotremes in their grouping
of “mammals” and whether or not to include the tuatara,
a close relative of squamates, in their grouping of “squa-
mates”: such branches were basal to the squamate and
mammalian clades contrasted in the hypothetical North
American study.

Phylofactorization formalizes the issues arising with
such phylogenetic cross-validation (Fig. 10). If all spe-
cies in the training/testing data sets can be located on a
universal phylogeny, phylofactorization of a training
data set identifies edges or links of edges in the training
phylogeny which are guaranteed to correspond to edges
or links of edges in the universal phylogeny. New species
in the testing data set may introduce new edges to the
phylogeny which interrupt the links of edges in the uni-
versal phylogeny along which factors were found in the
training data. In the example above, the tuatara and
monotremes all interrupt the link of edges separating
North American mammals from North American rep-
tiles on the universal phylogeny.

Cross-validating phylofactorization requires addressing
the issues arising from the interruptions of edges produced
by novel species. Interruptions may be ignored or used to
refine the location of a factor on the universal tree by plac-
ing the interrupting clade into one of the two groups con-
trasted at that factor. Returning to the previous example,
one can use the presence of monotremes and tuatara to
refine the definition of North American mammals to
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F1G. 9. Graph-topological confidence regions for phylofactorization. Confidence regions around inferred edges must use dis-
tances relevant to the method and graph topology. A tree with 30 species and 10 samples was given a fixed effect about edge e*.
The effects were an association with meta data, z, modeled as x;; = (£3/2)z; + ¢;; where g;; and z; are i.i.d. standard Gaussian
random variables. A total of 7 x 10° iterations of regression phylofactorization on y, were run and the relative probability of
drawing each edge was visualized through both the color and width of the edge. The relationship between the angular distance of
an edge’s contrast basis element to that of ¢* and the probability of drawing the edge indicate that for low effects, confidence
regions must incorporate a mix of tip-bias and angular distance, but for larger effect sizes, in which the edge drawn is reliably in
the neighborhood of e*, the angular distance of contrast basis elements capture confidence regions around the location of inferred

phylogenetic factors.

mean “all mammals” or “all placental and marsupial
mammals”, and likewise one can refine the definition of
“squamates” to the broader “Lepidosauria” clade.

Stopping criteria.—For computational and conceptual
purposes, it’s desirable to obtain a minimal set of parti-
tions to prioritize findings, simplify high-dimensional
data, and focus downstream effort on more certain infer-
ences. Doing so requires a method for stopping phylo-
factorization as the algorithm is running. There are two
broad options for stopping phylofactorization: null sim-
ulations and stopping criteria for a running algorithm.
Null simulations may allow statistical statements stem-
ming from a clear null model, but stopping criteria can
be far more computationally efficient.

Washburne et al. (2017) proposed a stopping criterion
for regression phylofactorization which extends to all
methods of phylofactorization using an objective func-
tion whose null-distribution for a single edge is known.
The original stopping criterion is based on the fact that,
if the null hypothesis is true, the distribution of P values
from multiple hypothesis tests is uniform. Phylofactor-
ization performs multiple hypothesis tests at each itera-
tion. At each iteration, one can perform a one-tailed
Kolmogorov-Smirnov (KS) test on the uniformity of the
distribution of the P values from the test statistics on
each edge; if the KS test is nonsignificant, stop phylofac-
torization. KS test stopping criteria can conservatively
stop simulations at the appropriate number of factors
when there is a discrete subset of edges with effects. Such
a method performs similarly to Horn’s stopping crite-
rion for factor analysis (Horn 1965), whereby one stops
factorization when the scree plot from the data crosses
that expected from null data (Fig. 11). One can also use

a stopping criterion and subsequently run null simula-
tions to understand the likelihood of observed results
under a null model of the researcher’s choice (Fig. 11).
Other stopping criteria may outperform the KS test,
such as using bonferroni cutoffs or sequentially-rejective
cutoffs, stopping the algorithm when the lowest P value
falls above the cutoff for a desired family-wise error rate
or false-discovery rate.

Calibrating statistical tests for ®,.— Often, the objective
function for phylofactorization is a well understood test
statistic. Applying a standard test for the winning test
statistic, however, will lead to a high false-positive rate
and an overestimation of the significance of an effect,
because the winning statistic was drawn as the best of
many. Even when using a test statistic not equal to the
objective function, researchers should be cautious of
dependence between their test statistic and the objective
function as a possible source of high false-positive rates.
Two methods for calibrating statistical tests of . are
multiple-comparisons corrections to control a family-
wise error rate or false-discovery rate, and conservative
bounds on the distribution of the maximum of many
independent, identically distributed statistics. For exam-
ple, if each edge of one of the K, edges considered at iter-
ation ¢ resulted in an independent F statistic, F,, then
the distribution of the maximum F statistics, F,:, is

P{F, >F}=P{F, >FNF,>Fn...
= P{F, > F}*.

NF,} 25)

Such an approximation may be used to yield conserva-
tive estimates, but the F statistics are not independent
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A) Tree, community 1
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Fic. 10. Graph-topological considerations with cross-validation. (A) The training community has five species (yellow boxes)
split into two factors. The first factor partitions {t1,t6} from {t2,t4,t7}. The second factor partitions t4 from {t2,t7}. The second
factor does not correspond to a single edge, but instead a chain of two edges. (B) A second, testing community is missing species t6
and t7 and contains novel species t3 and t5 (green boxes). (C) All factors can be mapped to chains of edges on a universal phy-
logeny. Novel species “interrupt” edges in the original tree; cross-validation requires deciding what to do with novel species and
interrupted edges. Species t3 does not interrupt a factored edge, and so t3 can be reliably grouped with tl in factor 1. However, spe-
cies t5 interrupts one of the edges in the edge-path of factor 2. (D,E) Interruptions can be ignored, or they can be used to refine the
location of important edges (illustrated in Factor 2.1 and Factor 2.2). Another topological and statistical question is whether/not to
control for factor order. For instance, controlling for factor order with Factor 2.2 would partition t4 from {t2,t5}. Not controlling

for factor order would partition t4 from {t1,t2,t3,t5}.

and thus more nuanced analyses are needed for well cali-
brated statistical tests. Unpublished simulations suggest
that the order statistics of Eq. 25 break down for down-
stream factors. More research is needed to obtain con-
servative bounds on test-statistics in phylofactorization.

Summary of limitations.— Phylofactorization can be a reli-
able statistical tool with a careful understanding of the sta-
tistical challenges inherent in the method and shared with
related methods such as graph partitioning, greedy algo-
rithms, factor analysis, and the use of a constrained basis
for matrix factorization. Phylofactorization is an explora-
tory tool, but all exploratory tools can be made inferential
with suitable understanding of their behavior under an
appropriate null model. For example, principal compo-
nents analysis was and still is primarily an exploratory tool,
but the discovery of the Marcenko-Pastur distribution
(Marcenko and Pastur 1967) has improved the calibration
of statistical tests on principal components for standard-
ized, mean-centered data. Improved understanding of how

uncertainties in phylogenetic inference translate to uncer-
tainties in phylofactorization, conservative stopping crite-
ria, null distributions of test statistics for winning edges,
propagation of error, graph-topological biases, and confi-
dence regions on a graph can all improve the reliability of
phylofactorization as an inferential tool.

While phylofactorization was built with an evolution-
ary model of punctuated equilibria in mind, it may also
work well under other evolutionary models such as corre-
lated evolution among descendants of an edge. There are
also many evolutionary models under which phylofactor-
ization does not perform well. For instance the graph-
topological biases of PhyCA are increased under a Brow-
nian motion model of evolution. All statistical tools
operate well under appropriate assumptions, and under-
standing the assumptions, as well as the known limita-
tions, are necessary for responsible and academically
fruitful use of statistical tools like phylofactorization.
Diagnostic tools to visualize and analyze the appropri-
ateness of a phylofactorization, such as those used to test
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Fic. 11. Null simulations and stopping criteria. A challenge of phylofactorization is determining the number of factors to
include in an analysis. Null simulations allow quantile-based cutoffs such as those in Horn’s parallel analysis from factor analy-
sis. Stopping criteria use features available during phylofactorization to stop a running algorithm. Abundances of m = 32 species
across n = 10 samples were simulated as i.i.d. standard Gaussian random variables. A set of u clades were associated with envi-
ronmental meta data, z, where z; "% Gsn(0, 1). Regression-phylofactorization on the contrast-basis scores y, was performed on
300 data sets for each u € {2, 4, 8, 16} and on data with and without effects. The objective function was the total variance
explained by regression y, ~ z. The top row shows the percentage of the variance in the data set explained at each factor (EV)
decreases with factor, ¢, and the mean EV curve for data with u affected clades intersects the mean EV curve for null data near
t = u, motivating a stopping criterion (Horn) based on phylofactorization of null data sets. The bottom rows shows that the two
algorithms did not have extremely different rates of over-factorization. Both criteria can be modified to be made more conserva-
tive. The KS stopping criterion is far less computationally intensive for large data sets as it requires running phylofactorization
only once. Null simulations, however, can allow inferential statistical statements regarding the null distribution of test statistics in

phylofactorization.

heteroskedasticity and leverage in generalized linear
models, can greatly improve the robustness of analyses.

Discussion

Early physicists studying patterns of projectile motion
were not plagued with challenges of how to group matter
to define a bowling ball. Community ecologists, however,
must grapple with the challenge of how to group organ-
isms into units for experiments, modeling, analysis, and
management. As a starting point, it’s often used to group
organisms based on some measure of high within-group
similarity and between-group differences. Ecological pat-
terns are determined by organisms’ interactions with the
biotic and abiotic conditions of their environment; such
interactions are determined by traits. Functional ecologi-
cal traits thus underlie many observed patterns in ecology
and, where an ecological pattern of interest is associated
with heritable traits, the phylogeny provides a scaffold
for functional groupings of organisms with a common
role in the ecological pattern of interest.

Traits arise along edges in the phylogeny. Contrasting
taxa on opposing sides of an edge allows one to uncover
sets of species that are meaningfully different and whose
differences may be due to heritable traits. By noting that

each edge partitions the phylogeny into two disjoint sets
of species, by generalizing the operations of aggregation
and contrast, and by defining the objective function of
interest, we have developed a universal method for iden-
tifying the relevant phylogenetic scales underlying eco-
logical patterns in community ecological data sets.
Phylofactorization is a graph-partitioning algorithm
which can use community ecological data to separate the
phylogeny into binned phylogenetic units with high
within-group similarity and high between-group differ-
ences. For a vector of data, two-sample tests are a natural
method for making such partitions. The quantities used
in two-sample tests can be extended to larger, real-valued
data sets by analyzing a contrast basis. Objective func-
tions for choosing the appropriate contrast basis include
maximizing variance, a phylogenetic analog of principal
components analysis, maximizing explained variance
from regression, maximizing F statistics from regression,
and more. For regression on community ecological data
assumed to be exponential family random variables,
phylofactorization can be extended to generalized linear
models, generalized additive models, and analyses of spa-
tial and temporal patterns in ecological data by use of
phylo factor contrasts and marginally stable aggrega-
tion within the exponential family. All algorithms
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discussed here can be extended to analysis of spatially
and temporally explicit ecological patterns.

We’ve illustrated that two-sample tests can partition
a data set of mammalian body mass into groups with
very different average body masses. Maximizing the
variance of data projected onto contrast basis elements
can identify major clades of bacteria in human feces
known at a coarser resolution to be highly variable.
Additionally, one of the top phylogenetic factors in the
American gut data set is a clade of Gammaproteobac-
teria associated with inflammatory bowel disease
(IBD) used recently in an effort to diagnose patients
with Crohn’s disease. We’ve shown that analyses of
contrast bases can use nonlinear regression, sorting
3,000 species into five binned phylogenetic units pro-
ducing a simplified story of nonlinear community com-
positional changes in Central Park soils across a
gradient of pH, carbon concentrations, and nitrogen
concentrations.

One can also perform phylofactorization when doing
maximum-likelihood regression of exponential family
random variables. The coefficient matrix can be approxi-
mated using the contrast basis, resulting in a phylogeneti-
cally interpretable reduced-rank regression. Alternatively,
phylo factor contrasts specify a shared-coefficients
model and which can be used to select edges based explic-
itly on likelihood maximization of a shared coefficients
model. One can perform the factor contrasts on the raw
data, or, for many exponential family random variables,
aggregate the data within each group to a marginally
stable distribution for more computationally efficient fac-
tor contrasts. All methods discussed here can be imple-
mented with the R package phylofactor, and scripts for
running all analyses in this paper are available on Zenodo
(see Data Availability).

As with any method, there are limitations to be aware
of. First, the general problem of separating species into
k bins that maximize a global objective function is NP
hard. Second, like any greedy algorithm, phylofactoriza-
tion may fall into ruts and errors in one step that might
propagate into downstream inferences. Third, the null
distribution of test-statistics resulting from phylofactor-
ization is not known; the resultant test statistics are
biased towards extreme values. Null simulations, conser-
vative stopping functions, and/or extremely stringent
multiple comparisons corrections can be used to make
inferences through phylofactorization while maintaining
conservative bounds in family-wise error rates or false-
discovery rates. When the objective function being maxi-
mized has a well-characterized null distribution for a sin-
gle edge, one-sided KS-tests of the P values of the test
statistic can serve as a computationally efficient and con-
servative stopping function. Fourth, common objective
functions using the contrast basis will be biased due to
the unequal relative sizes of the Voronoi cells of the con-
trast basis elements in the unit hypersphere in which they
lie; contrast basis elements corresponding to tips of the
phylogeny tend to have larger relative Voronoi cell size
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than contrast basis elements corresponding to interior
edges. Understanding the graph-topology of errors can
assist the description of graph-topological confidence
regions for each inference. Finally, phylofactorization
formalizes the logic and challenges of cross-validating
ecological comparisons even when the training and test-
ing sets of species are completely disjoint. Many of these
limitations may be resolved with future work, allowing
the exploratory algorithm to become a fast, well-cali-
brated inferential tool.

Phylofactorization can objectively identify phyloge-
netic scales for ecological data and produce avenues for
future natural history research. By iteratively identifying
clades, phylofactorization provides a sequence of low-
rank approximations of a data set that correspond to
groups of species with a shared evolutionary history.
What traits characterize the Chloracidobacteria which
don’t like acidic soils? What traits characterize the
monophyletic clade of Gammaproteobacteria associated
with IBD? What ecological or immunological mecha-
nisms underlie the Prevotella species’ variability in the
American gut? The low-rank approximations of ecologi-
cal data obtained by phylofactorization motivate subse-
quent questions best answered by life history
comparisons, comparative genomics, physiological stud-
ies, and other avenues of future research contrasting the
species partitioned.

Relation to other phylogenetic methods.—Phylofactoriza-
tion is proposed during an explosion of literature in phy-
logenetic comparative methods and various other
phylogenetic methods for analyzing ecological data sets
(Lozupone and Knight 2005, Purdom 2011, Garamszegi
2014), and some careful thinking is beneficial to clarify
the distinctions between phylofactorization and other
methods.

Phylogenetic generalized least squares (Grafen 1989)
aims to control for residual structure in the response
variable expected under a model of trait evolution, and
is thus used when performing regression on a trait,
whereas phylofactorization aims to partition observed
trait values or abundances into groups, separated by
edges, with different means or associations with meta
data. Thus, while methods of phylogenetic signal, such
as Pagel’s A (Pagel 1999) or Blomberg’s « (Blomberg
et al. 2003), summarize global patterns of phylogenetic
signal by parameterizing the extent to which a particu-
lar model of evolution can be assumed to underlie the
residual structure of observed traits (often for down-
stream use in PGLS), phylofactorization iteratively
identifies precise locations of putative changes and
precise locations partitioning phylogenetic signal or
structure.

Phylofactorization can be implemented by a contrast
of ancestral state reconstructions of nodes separated by
edges, for example by looking for edges with nodes
whose reconstructed ancestral states are most different,
but is limited by disallowing the descendant clade of an

0d ‘T *610T ‘STOLLSST

mofisay:sdy woxy papeoy

ssdny) suonipuo) pue swId, ay) 39S “[£202/10/60] U Areqr duruQ AN “KISIAIUN [19UI00) AQ ESE1 WIAZON T O1/10p/wi0d K[t

SULIO)/WOD KM’ A,

asu0ar] suouIIO) ANEAI) dlquatdde oy Aq PALIAOS AT SAAMIE YO 198N JO SA[NL 10§ ATBIQIT AUIUQ KI[TAY UO (



May 2019

edge to impact the ancestral state of the edge’s basal
node; a proper non-overlapping contrast would separate
the groups of species being used to reconstruct each
node, and thus phylofactorization can be implemented
with ancestral state reconstruction under the assumption
of time-reversible evolutionary models.

Phylogenetically independent contrasts (PIC; Felsen-
stein 1985b) produces variables corresponding to contrasts
of descendants from each node, whereas phylofactoriza-
tion uses contrasts of species separated by an edge, picks
out the best edge, splits the tree, and repeats. The contrasts
used in PIC for comparison of sister clades (standardized
differences of means) can be used as the contrast function
for phylofactorization to identify edges with standardized
differences of means that maximize some objective func-
tion. While the contrast basis proposed here is fixed
regardless the observed data across samples, PIC divides
the difference of group means by empirically observed
standard deviations for each sample. Consequently, the
contrasts from PIC can be used as a contrast function but
can’t be interpreted as a projection of the data onto a
fixed basis.

Phylofactorization develops a set of variables and an
orthonormal basis to describe ecological data, but limits
itself to bases interpretable as non-overlapping contrasts
along edges; eigenvectors of phylogenetic distances
matrices or covariance matrices under diffusion models
of traits (Pagel 1999), are not encompassed in phylofac-
torization as they do not construct non-overlapping con-
trasts along edges. Such eigenvector methods construct
quantities whose evolutionary and functional ecological
interpretation is less clear. Unlike many modern methods
for redefining distances, such as UniFrac distances
(Lozupone and Knight 2005) or phylogenetically defined
inner products (Purdom 2011), phylofactorization is
principally about discovering phylogenetically inter-
pretable directions: contrast basis vectors that character-
ize primary axes of variation in the community or a basis
made of aggregations of the binned phylogenetic units.

R package: phylofactor—An R package is in develop-
ment and publicly available (see Data Availability). The
R package contains detailed help functions and supports
flexible definition of two-sample tests (the function
twoSampleFactor), contrast-basis analyses with
the function PhyloFactor, and generalized phylo-
factorization with the function gp f. Phylofactorization
is highly parallelizable, and the R package functions
have built-in parallelization. The R package also works
with phylogenies containing polytomies, allowing
researchers to collapse clades with low bootstrap sup-
port to make more robust inferences. The output from
phylofactorization is a “phylofactor” object containing
the contrast basis and other useful features, allowing
one to input the object into various functions which
summarize, plot, cross-validate and do other tricks to
parse out the information from phylofactorization.
Researchers are invited to beta-test the package and
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contact the first author Alex Washburne for assistance
with the package, including how to produce their own
customized phylofactorizations. Such feedback will be
invaluable for a user-friendly stable release to CRAN.

Until then, the Supporting Information contains the
data and scripts used for all analyses done in this manu-
script along with a tutorial for the R package in an effort
to accelerate method development in this field.

Everything makes sense in light of evolution.— Phyloge-
netic factorization is a new paradigm for analyzing a
large class of biological data. Ecological data, as Tho-
mas Dhobzansky noted about biology in general, makes
sense “in light of evolution.” Phylofactorization connects
a broad set of data analyses—two sample tests, general-
ized linear modeling, factor analysis and PCA, and anal-
ysis of spatial and temporal patterns—to a natural set of
variables and operations defined by the phylogeny.
Phylofactorization localizes inferences to particular
edges or chains of edges on the phylogeny and, in so
doing, accelerates our understanding of the phylogenetic
scales underlying ecological patterns of interest. The
problem of pattern and scale is central to biology, and
phylofactorization uses flexible definitions of patterns to
objectively uncover the relevant phylogenetic scales in
ecological data sets.
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https://github.com/reptalex/phylofactor.
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