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We present a promising machine-learning model, which focuses on site magnetic properties for rapid screening
in materials design. We perform high-throughput first-principles calculations to predict the magnetic anisotropy
energies of a variety of iron-cobalt nitrides. We illustrate the efficacy of a spatial decomposition technique that
divides the total magnetic anisotropy energy into contributions from individual sites in terms of spin-orbit
coupling energies. The spatial decomposition scheme that we utilized works for a wide range of magnetic
anisotropy energies. We also construct a machine-learning model by combining the site-specific spin-orbit
coupling energies with structural details on each atomic site. We adopt the same approach to predicting the
site-specific magnetic moments. We demonstrate the capability of our machine-learning model to accelerate
computational screening of candidate materials that possess high magnetizations and large magnetic anisotropy
energies.
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I. INTRODUCTION

Magnetocrystalline anisotropy is a basic magnetic phe-
nomenon arising from spin-orbit interactions [1,2]. Such
interactions reflect a relativistic effect, which couples electron
spin and orbital angular momentum and results in magnetic
moments aligning in a specific direction. There is grow-
ing interest in the magnitude of magnetic anisotropy [3].
An increase in the strength of uniaxial magnetic anisotropy
can lead to higher coercivity, making it possible to enhance
the maximum energy product, a standard measure for the
performance of a permanent magnet. The maximum energy
product is defined as the maximum of the product of B

and H in the second quadrant of the B-H curve, where
B = μ0(H + M ) is the flux density and μ0 is the magnetic
permeability in vacuum. In addition to uniaxial magnetic
anisotropy, magnetic anisotropy in chiral magnets can be
a key parameter for a helical magnetic ordering [4] called
“skyrmions.”

Common permanent magnets are composed using rare-
earth and transition-metal elements, such as Nd-Fe-B and
Sm-Co [5,6]. The f electrons of rare earths play an impor-

*timothy.liao@utexas.edu
†weiyixia@iastate.edu

tant role in enhancing the magnetic anisotropy in rare-earth
magnets. Magnets for recording-media applications often
contain expensive metals, such as Pt, to control magnetic
anisotropy [7,8]. These elements are considered as “critical”
resources [9,10] owing to concerns about production and
availability of these elements. For these reasons, efforts have
been made to discover new magnetic materials without relying
on rare earths or expensive metals [11,12].

For example, recent work integrating computational and
nonequilibrium fabrication methods has led to the discovery
of new rare-earth-free magnetic materials with a noncubic
symmetry (e.g., a tetragonal or hexagonal structure) [12].
These magnet materials include FeCo-based alloys [13–19]
and ZrCo-based alloys [20–23]. Doping of a light nontoxic
element, such as boron and nitrogen, is a common strategy to
stabilize the Fe-rich noncubic structures.

Recently, various machine-learning (ML) techniques and
data science have been adopted as efficient tools to understand
and predict the crystal structures and physical phenomena
[24–28]. Notably, a combination of ML methods with high-
throughput first-principles calculations enables one to build an
automated framework for designing new magnetic materials
[29,30]. Recent effort in this research area includes the con-
struction of open-access materials databases and data-sharing
platforms [31–37]. In particular, the Magnetic Materials
Database [32] is specialized for the magnetic properties of
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rare-earth-free magnets, with an emphasis on site-specific
data, such as the local magnetic moment for each atomic site.
These site-specific quantities are suitable as training data for
machine-learning and data-mining approaches.

Our goal in this study is to build a ML model focusing
on site-specific spin-orbit anisotropy energy. The layout of
the remainder of the paper is as follows. In Sec. II, we detail
the settings for our first-principles calculations and construct
a machine-learning model by combining the calculated site-
specific magnetic properties with structural details for each
site. In Sec. III, we describe the origin of the variety of
iron-cobalt nitrides that were used. In Sec. IV, we demon-
strate the efficacy of a spatial decomposition scheme and
illustrate the capability of our machine-learning model to fa-
cilitate computational screening of candidate materials with
high magnetization and large magnetic anisotropy energies.
We summarize this work in Sec. V.

II. THEORY

A. First-principles calculations

Our first-principles calculations are based on density-
functional theory (DFT) [38,39]. We adopt the generalized
gradient approximation (GGA) of Perdew, Burke, and Ernz-
erhof (PBE) [40] for the exchange-correlation energy func-
tional. We use the projector-augmented wave (PAW) method
[41] with a cutoff energy of 500 eV. The Monkhorst-Pack
scheme [42] is used to generate a k-point grid with a mesh size
of 2π × 0.025 Å−1. This mesh size is fine enough to sample
the first Brillouin zone for achieving k-point convergence
[43]. All DFT calculations are performed using Vienna ab

initio simulation package (VASP) [44,45].
We perform spin-polarized calculations for collinear mag-

netism in a self-consistent manner. We then include the
spin-orbit couplings and perform a non-self-consistent cal-
culation [46]. When the spin-orbit couplings are included,
symmetry operations are omitted, and the spin-quantization
axis is set to the chosen direction.

B. Formation energy

The formation energy per atom, Ef, of an FeαCoβNγ struc-
ture with α + β + γ = 1 is calculated with respect to a linear
combination of the total energies per atom of reference ele-
mental phases:

Ef = E (FeαCoβNγ ) − αE (Fe) − βE (Co) − γ E (N). (1)

Here, E (FeαCoβNγ ) is the total energy per atom of an
FeαCoβNγ structure. Reference energies are the total ener-
gies per atom of bcc Fe, hcp Co, and solid nitrogen (α-N2),
denoted as E (Fe), E (Co), and E (N), respectively. In Table I,
we list the lattice parameters and Wyckoff positions of these
phases. Structures with a negative formation energy are likely
to be stable against decomposition into elemental phases.
The formation energy for nitrides would be sensitive to the
choice of the reference nitrogen energy. Various correction
schemes, especially for nitrides exhibiting semiconducting or
insulating characteristics, have been pursued by researchers
including the fitted elemental reference energies scheme and
a gas-fit reference scheme [47–50]. Here, we use as reference

TABLE I. Space group, lattice constants (a and c), and Wyckoff
positions of elemental phases of Fe, Co, and N. These structural
parameters are used for calculating the reference energies in Eq. (1).

Space group Structural parameters

Material [Number] a (Å) c (Å) Wyckoff positions

bcc Fe Im3m [229] 2.866 2a (0, 0, 0)
hcp Co P63/mmc [194] 2.510 4.071 2c (1/3, 2/3, 1/4)
α-N2 Pa3 [205] 5.856 8c (u, u, u)

u = 0.054869

the energy of α-N2, which is the stable state retrieved from the
“Phase Diagram” app of the Materials Project [51,52].

C. Magnetic anisotropy energy

For each structure, we calculate the total energy for mag-
netic moments oriented along the Cartesian (100), (010), and
(001) directions, respectively. The direction associated with
the lowest total energy can be labeled as the magnetic “easy”
direction. The direction for the second lowest total energy
can also be labeled as the magnetic “intermediate” direction.
The magnetic anisotropy energy (MAE) can be expressed as
the total-energy difference between ferromagnetic states with
different magnetization directions:

EMAE = Eintermediate − Eeasy. (2)

The spins of all atoms are pointing in the same direction
(ferromagnetic) during the MAE calculation. The magne-
tocrystalline anisotropy constant K1 is obtained by dividing
the MAE, EMAE, by the volume of the unit cell, V :

K1 = EMAE/V. (3)

D. Spatial decomposition of MAE

Within second-order perturbation theory [53,54], the MAE
can be decomposed into contributions from individual sites
in the unit cell. We adopt the spatial decomposition scheme of
Antropov and co-workers [53,54], where we express the MAE
as a half of the sum of the local MAEs over all atomic sites in
the unit cell:

EMAE-sum =
1

2

∑

i

EMAE-SO(i)

=
1

2

∑

i

{

ESO
intermediate(i) − ESO

easy(i)
}

. (4)

In this scheme, the site-resolved MAE is defined as the differ-
ence in the spin-orbit (SO) coupling energy at site i between
two magnetization orientations:

EMAE-SO(i) = ESO
intermediate(i) − ESO

easy(i). (5)

The subscript indicates the direction of the local magnetic mo-
ments. This MAE decomposition scheme was carefully tested
for L10-ordered binary alloys and the α′′ phase of Fe16N2

[53,54].
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E. Machine learning

Machine-learning models for predicting relationships be-
tween chemical compositions, crystal structures, their for-
mation energies, and magnetic properties (e.g., magnetic
moments) can play an important role in accelerating material
discovery. Our ML approach adopts a crystal graphic convo-
lutional neural network (CGCNN) ML model [55] trained by
our ab initio calculations. Our model learns material prop-
erties directly from both atomic information and bonding
interactions between atoms, providing a universal and inter-
pretable representation of crystalline materials. Crystal graphs
are constructed with the nodes representing atoms and the
edges representing connections between atoms in a crystal.
The atomic feature vector includes the group number, the
period number, electronegativity, covalent radius, number of
valence electrons, first ionization energy, electron affinity,
block (i.e., s, p, d , and f ), and atomic volume. The bond
feature vector includes the atom distance. Continuous prop-
erties such as the electronegativity are discretized into ten
categories. (See the supplemental material of Ref. [55] for
the range of each property). A convolutional neural network
is built on top of the crystal graph to construct the proper
descriptors that are optimal for predicting target properties.
This method has been proven to provide reliable estimation
of DFT calculated materials properties (such as formation
energies, band gap, and bulk moduli) with good accuracy and
computational efficiency.

We train a CGCNN model using our ab initio DFT results.
Crystallographic data are stored in a standard crystallographic
information file [56], and targeted properties are prepared
as input data. The input data were randomly divided into
training, validation, and test sets. The best-performing model
that provides the lowest mean absolute error for the valida-
tion set is selected from 30 epochs during the computation.
The number of epochs is set to 30, which is big enough for
each ML prediction to be converged to minimum error. We
optimized all the parameters in the CGCNN framework, such
as the batch size and the number of convolutional layers.
Both macroscopic and site-specific magnetic properties are
investigated in this paper. Macroscopic properties include the
total magnetic moment and the magnetic anisotropy energy of
each structure.

Site-specific properties can vary from site to site owing to
the difference in local environments. Inspired by the idea that
site-specific properties are dominated by the nearest-neighbor
atoms, we propose a universal approach for ML prediction of
site-specific properties. In the first step, we select the atom of
interest and all its nearest neighbors to generate a “cluster”
centered on this specific atom. In the next step, the cluster
is placed in a large cell with periodic boundary conditions
to convert the cluster into a “crystal” for CGCNN. The cell
is chosen to be large enough to avoid interactions among the
atoms in different clusters due to the periodicity. For a given
crystal structure, such a site-specific cluster and cell geometry
can be generated for each nonequivalent site in the original
crystal. The properties associated with the atom at the center
of the clusters are used as the target values for ML training and
prediction. All the ML parameters are reoptimized within this
approach. We utilize this approach to predict the site-specific
magnetic moment and the spin-orbit coupling energy.

TABLE II. Numbers by crystal system of Fe-N, Co-N, Fe-Co,
and Fe-Co-N compounds examined in this paper. Crystallographic
data of these compounds are taken from the Materials Project [34]
and the Magnetic Materials Database [32].

Crystal system Fe-N Co-N Fe-Co Fe-Co-N Total

Triclinic 0 12 0 8 20
Monoclinic 1 41 0 17 59
Orthorhombic 10 69 1 100 180
Tetragonal 6 16 5 112 139
Trigonal 7 8 0 1 16
Hexagonal 4 7 0 1 12
Cubic 0 18 5 3 26
Total 28 171 11 242 452

III. CRYSTAL STRUCTURES

We employed the Materials Project [34] and the Mag-
netic Materials Database [32] to collect Fe-Co-N structures.
The Magnetic Materials Database provides several hundred
Fe-rich compounds. These compounds include stable and
metastable structures discovered through crystal structure
searches using adaptive genetic algorithms [57,58]. Table II
shows the numbers of the collected structures by crystal
system. The collected structures include ternary Fe-Co-N
compounds and binary compounds, such as Fe-N. Crystallo-
graphic data are analyzed using the PYMATGEN library [59].

Our calculations were carried out on all the 452 FeαCoβNγ

structures. We did not use the properties listed in the Materials
Project such as the total energy and total magnetic moment
since we specified a different energy cutoff. Additionally,
we calculated the site-specific properties. Only the crystallo-
graphic structure information from the two databases is used
in this paper. All other data are calculated from our present
work.

IV. RESULTS AND DISCUSSION

A. Phase diagram

We carried out high-throughput DFT spin-polarized calcu-
lations to compute the formation energies for the collected
FeαCoβNγ structures. We examined the structural stability of
each compound by composing a phase diagram, where we plot
the calculated formation energies as a function of chemical
composition.

Figure 1(a) shows the phase diagram obtained for Fe-N
compounds. Our calculations using a GGA functional yield
the formation energy to be negative for not only experimen-
tally known phases but also some metastable Fe-N phases.
The former group consists of FeN, a nonmagnetic phase
with a cubic unit cell, and Fe3N, a ferromagnetic phase (6.2
μB/f.u.) with a space group of P6322. The latter group in-
cludes Fe2N (trigonal P31m and orthorhombic P21212) and
Fe12N5 (P31m).

Figure 1(b) shows the phase diagram obtained for Co-N
compounds. The formation energy is predicted to be positive
for all the Co-N structures. Our GGA results are consistent
with previous work [14]. We find that CoN, an experi-
mental phase with space group of F43m, has a formation
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FIG. 1. Phase diagrams of (a) Fe-N, (b) Co-N, and (c) Fe-Co compounds. Stable phases are shown as filled symbols. The solid lines
represent the lower limit in formation energy, called the “convex hull.” Here, structures are classified by the magnitude of the magnetic
anisotropy constant K1. (d) For a ternary system, the convex hull can be shown as a two-dimensional projection. Phase diagrams of an Fe-Co-N
system for (e) the formation energy E f and (f) K1.

energy of 0.11 eV/atom relative to the convex hull. As
shown in Fig. 1(b), many metastable Co-rich phases have
formation energies comparable to or lower than that of
CoN, indicating the possibility of these low-energy structures
being produced.

Figure 1(c) shows the phase diagram obtained for Fe-Co
compounds. We find several Fe-Co phases that are distributed
in the vicinity of the convex hull (within ∼0.1 eV/atom rel-
ative to the hull). Such metastable phases include FeCo with
Cmmm and FeCo3 with P4/mmm and Pm3m.

Figure 1(d) shows the convex hull of an Fe-Co-N system
as a two-dimensional projection. In Fig. 1(e), we show the
ternary phase diagram with respect to the formation energies
of Fe-Co-N compounds. From our calculations, 242 structures
are predicted to have a negative formation energy, being less
likely to decompose into elemental phases. Most of these
structures have a formation energy of less than 100 meV/atom
relative to the convex hull. Metastable structures in such an
energy range often correspond to an accessible phase in ex-
periment, as discussed elsewhere [32].
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FIG. 2. Magnetic anisotropy constant K1 and magnetic polariza-
tion for a total of 452 FeαCoβNγ crystal structures.

B. Magnetic anisotropy energy

We compute the magnetic anisotropy energy using a total-
energy difference scheme [i.e., using Eqs. (2) and (3)] in our
DFT spin-orbit calculations. In Figs. 1(a)–1(d), we show the
magnitude of K1 of each structure by using different colors
and symbols. Our calculations yield a sizable K1 for many
metastable structures with an Fe-rich or Co-rich composition.
However, most of the stable FeαCoβNγ phases yield K1 = 0.
This low value arises from the cubic symmetry or a nonmag-
netic ground state in these structures.

Figure 2 shows the distribution of K1 with different crystal
systems. We find 34 Fe-Co-N structures (out of 452 structures
we examined) with a strong magnetic anisotropy, i.e., a K1

value of more than 2 MJ/m3. Among these there are 11 or-
thorhombic and 21 tetragonal structures. Owing to an Fe-rich
or Co-rich stoichiometry, these large-MAE structures possess
high magnetic polarization as large as 1–2.1 T.

C. Spatial decomposition of MAE

We calculate the spin-orbit coupling energies at each
atomic site of all the structures. This is done for each of the
three Cartesian axes as a spin-quantization axis. In addition
to the calculated site-specific spin-orbit coupling energies, we
derive the local MAEs for individual sites using Eq. (5). We
sum up the site-specific MAEs over all sites in the unit cell
[Eq. (4)] to estimate the total MAE for each structure. The
total MAEs from Eq. (4) are directly compared with those
from Eq. (2).

Figure 3 shows our results for the spatial decomposition of
the MAEs for Fe-N, Co-N, Fe-Co, and Fe-Co-N structures. In
Fig. 3, we plot the total MAEs derived from the site-specific
MAEs against the ones derived from the total-energy differ-
ence scheme. Our MAE data sets strongly correlate with each
other with a linear relationship. The spatial decomposition
scheme using Eq. (4) works well for all the structures over
a large span of K1 from 0 to 2.7 meV/f.u. This energy range
corresponds to a range from 0 to 3.2 MJ/m3. We find that our
spatial decomposition scheme underestimates the MAE. This

FIG. 3. Comparison of two methods for calculating the magnetic
anisotropy energy. MAE values derived from the total-energy differ-
ence scheme [Eq. (2)] are on the vertical axis, while those derived
from a spatial decomposition scheme (total MAE as a half of the
sum of site-specific MAEs over all atomic sites) [Eq. (4)] are on the
horizontal axis. The Pearson’s correlation coefficient, denoted as r,
is given as a measure of correlation between the two data sets. The
data points on the dotted line with a slope of unity indicate that the
predicted data perfectly fit the reference data.

is partly due to higher-order terms, which are omitted in the
present formalism for decomposing the total MAE.

We introduce the coefficient of determination, denoted R2,
as a measure of correlation between the two data sets. The R2

coefficient is calculated by

R2 = 1 −

∑

(EMAE − EMAE-sum)
2

∑

(EMAE − 〈EMAE〉)2 . (6)

〈EMAE〉 denotes the mean of the MAE data. The summation
runs over all structures. The R2 coefficient can range from 0
to 1. A value of 1 means that the predicted values are identical
to the reference values. The closer it is to 1, the stronger the
positive linear relationship between the two data sets.

We find that the calculated R2 value is close to unity, as
listed in Table III. Our results indicate that the spatial decom-
position scheme of Eq. (4) is an effective way of splitting
the total MAE into site-specific components. We quantify
the performance of the MAE decomposition scheme from
a different perspective. We calculate the Pearson’s product-

TABLE III. Cross-validation scores and correlation coefficients
between two sets of MAE data. Reference MAE data are derived
from the total-energy difference scheme, while estimated MAE data
are obtained from the spatial decomposition scheme.

Measure Value for K1

Coefficient of determination [Eq. (6)] R2 = 0.9804
Pearson’s correlation coefficient [Eq. (7)] r = 0.9905
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FIG. 4. Distribution of the site-specific magnetic anisotropy
energies, EMAE-SO(i) = ESO

intermediate(i) − ESO
easy(i), obtained from our

first-principles calculations. The subscript indicates the quantization
axis for spins and i denotes the site index. A total of 452 FeαCoβNγ

structures is used. The total number of atomic sites for each element
is given in the legend. A fitting curve with a Gaussian distribution is
also shown.

moment correlation coefficient as

r =

∑

(X − 〈X 〉)(Y − 〈Y 〉)
√

∑

(X − 〈X 〉)2 ∑

(Y − 〈Y 〉)2
, (7)

where X = EMAE and Y = EMAE-sum. The correlation co-
efficient r can take a value from +1 (a perfect positive
correlation) to −1 (a perfect negative correlation). For the two
sets of our MAE data, the r value is 0.99. This means that the
two MAE data sets are highly correlated.

D. Site-specific MAE

We compile all of the calculated site-specific MAEs into a
single data file. In particular, we associate site-specific MAE
data with atomic structure data, such as species on each site
and fractional coordinates of each species. A one-to-one rela-
tionship between MAE data and structure data is essential to
analyze the site-specific MAEs. Such a data set is also useful
to construct a machine-learning model, as we will illustrate in
the following.

In Fig. 4, we show the distribution of site-specific MAEs
for each species. Overall, many Fe and Co sites possess a local
MAE of the order of several tenths of a meV. The calculated
site-specific MAEs range from −0.5 to 0.5 meV. This is be-
cause the sign and magnitude of the local MAEs vary from site
to site, indicating the influence of bonding configurations on
a local MAE. An atomic MAE at a nitrogen site is negligibly
small owing to the very weak spin-orbit couplings of nitrogen.

E. Machine learning for magnetic properties

The performance of ML-based prediction often relies on
the size of sample data (known as “training data”) in database
space. Here, we illustrate the importance and utility of site-
specific data for ML modeling. In particular, we show that
thousands of microscopic data, such as the site-specific spin-
orbit energies and the local magnetic moments associated with
local atomic structures, can serve as good training data for
constructing a ML model to predict the MAE and magneti-
zation of new materials. Our ML-based approach will lead
to efficient computational screening for the design of new
magnets.

We illustrate the feasibility of our CGCNN ML model ap-
proach for predicting the magnetic properties of new Fe-Co-N
structures. For the total magnetic moment and the magnetic
anisotropy energy, we use the data for a total of 452 struc-
tures. ML models are trained with 80% of the data and then
validated with 10% of the data. The remaining 10% of the data
are used as a test set.

FIG. 5. (a) The site-specific magnetic moment and (b) the total magnetic moment per unit cell for Fe-Co-N compounds. Magnetic moment
values from first-principles DFT calculations are on the horizontal axis, while those predicted from our ML model are on the vertical axis.
Data points on the solid line (with a slope of unity) indicate a perfect fit between the ML-predicted and DFT-predicted data.
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FIG. 6. The mean absolute error vs the size of training set data
for the site-specific magnetic moment prediction.

We also study site-specific magnetic moments and the
atomic spin-orbit coupling energies using our method. A total
of 4924 “clusters” are generated from the original 452 Fe-Co-
N crystal structures. Each cluster can be associated with the
site-specific magnetic properties corresponding to the atom
centered on a cluster. (Due to difficulties in the convergence
of some calculations, the number of data for the spin-orbit
energies was 4790, which was less than that for the local
magnetic moments, 4924). The data set is divided into train-
ing, validation, and test data sets with the same 8:1:1 ratio.

In Figs. 5(a) and 5(b), we plot the results for the mag-
netic moments predicted by our CGCNN ML model. The
ML results are compared with the DFT calculated results.
The total and site-specific magnetic moments from our ML
prediction agree very well with DFT calculations. For site-
specific magnetic moments, we get a small mean absolute
error of 0.055 μB. In Fig. 5(a), almost all the data points lie
in the vicinity of the perfect-fit line (with a slope of unity),

indicating that our CGCNN-based approach works very well
for predicting the site-specific magnetic moments. The scaling
of the accuracy against the size of training data is plotted in
Fig. 6. We estimate that the error will fall below 0.1 μB per
site when the training set has a size of 4000. Our CGCNN
model also works well for the total magnetic moment. As
shown in Fig. 5(b), the data points are scattered around the
45◦ line. It shows a good agreement between the DFT and
ML results. The root-mean-square error is about 2.8 μB per
unit cell.

We illustrate the capability of our CGCNN ML model to
describe the magnetic anisotropy energy. Figure 7(a) shows
the result for the site-specific magnetic anisotropy energies.
The data points are distributed along the 45◦ reference line,
with a mean absolute error of 0.15 meV per atomic site. Our
ML model enables us to estimate the total magnetic anisotropy
energies as shown in Fig. 7(b). We find a mean absolute error
of 0.5 MJ/m3 for the total MAE. The model is the most
accurate when the training data set covers a large range of
values.

The computational time required for ML predictions is
much faster compared with that of DFT calculations. A sin-
gle run for the total magnetic moment and the magnetic
anisotropy energy of 452 structures takes 5 min to complete
on a computational node with 16 cores. Suppose we perform
DFT calculations for all of these 452 structures, which in-
cludes the collinear calculation and the spin-orbit calculations
with magnetic moments aligned along three different direc-
tions. The computational time for this task is 79 days on a
64-core Intel Knights Landing (KNL) node. For site-specific
magnetic properties, our ML calculation takes about 30 min
to finish for all of the 4790 atomic sites.

V. SUMMARY

We present a promising machine-learning model focusing
on site magnetic properties for rapid screening in materi-
als design. We analyzed the magnetic anisotropy energy of

FIG. 7. (a) The site-specific MAE, EMAE-SO, in units of meV and (b) the total MAE divided by volume, K1, in units of MJ/m3 for Fe-Co-N
compounds. MAE values from first-principles DFT calculations are on the horizontal axis, while those predicted from our ML model are on
the vertical axis. Data points on the solid line (with a slope of unity) indicate a perfect fit between the ML-predicted and DFT-computed data.
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iron-cobalt nitrides using high-throughput first-principles cal-
culations and ML models. The spatial decomposition scheme
we employed works well for a wide range of magnetic
anisotropy energy. The CGCNN ML model trained with
structural details on each atomic site has great potential
to reproduce the site-specific spin-orbit coupling energies.
The CGCNN ML approach is applied to predicting the
site-specific magnetic moments as well as the total mag-
netic moments. Our results indicate the capability of our
ML-assisted approach to accelerate computational screening
of candidate materials with high magnetization and a large
magnetic anisotropy energy.

Crystallographic and computational data, such as the for-
mation energy and magnetic anisotropy constants, for the
iron-cobalt nitrides are available from the Magnetic Materials
Database [32].
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