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Abstract: Most modern day automotive chassis control systems employ a 
feedback control structure. Therefore, a real-time estimate of the vehicle 
handling dynamic states and tyre-road contact parameters are invaluable for 
enhancing the performance of current vehicle control systems, such as anti-lock 
brake system (ABS) and electronic stability program (ESP). Today’s 
production cars are equipped with onboard sensors (e.g., a 3-axis 
accelerometer, 3-axis gyroscope, steering wheel angle sensor, and wheel speed 
sensors) which when used in conjunction with certain model based observers 
can be used to identify relevant vehicle states for optimal control of comfort, 
stability and handling. However, some key variables such as the tyre forces, 
road bank/grade angles, and the tyre-road friction coefficient, which have a 
significant impact on vehicle handling performance and safety are difficult to 
measure using sensors already onboard vehicles. This paper introduces an 
integrated vehicle state estimator comprising a series of model-based and 
kinematic-based observers for estimating these unmeasurable states. Using an 
appropriate vehicle model, kinematic equations of motion and vehicle sensor 
data, the unknown vehicle states as well as the tyre-road contact forces are 
estimated by implementing a series of observers arranged in a cascade 
structure. Key estimated signals include the vehicle side slip angle (β), tyre 
longitudinal/lateral/vertical forces, and the tyre-road friction coefficient (μ). 
The performance of the proposed estimators has been evaluated via computer 
simulations conducted using the vehicle dynamics software CarSim®. An 
effectively designed merging scheme ensures robust estimation performance 
even during the vehicle manoeuvres which show highly nonlinear tyre 
characteristics and in the existence of road inclination or bank angle. 

Keywords: state estimation; parameter estimation; SMO; sliding mode 
observer; KF; Kalman filter; RLS; recursive least squares. 
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1 Introduction 

For implementation of automotive control algorithms, accurate information about  
the state of the vehicle and its surroundings is important. Real-time measurements of the 
vehicle handling dynamic states are extremely vital for the online computation of the 
optimised active longitudinal and lateral tyre forces to be generated by electronic stability 
control modules. Although some of these states are easily measured, others are difficult 
to measure because of high cost or impracticality. Therefore, vehicle-control systems 
currently available on production cars rely on available inexpensive measurements, such 
as wheel speeds, accelerations and yaw-rate. Knowledge about additional states of a 
vehicle (e.g., vehicle roll angle, side slip angle, lateral load transfer ratio etc.) can 
significantly reduce the risk of accidents through effective design and implementation of 
advanced chassis control systems. As a result, the problem of vehicle state estimation has 
attracted considerable attention of many researchers and many studies have been 
conducted to estimate vehicle states using model based and/or kinematic based estimation 
techniques. 

A summary description of the state-of-the-art in the field of vehicle state estimation is 
given in Table 1. In works by Baffet et al. (2008, 2009) and Zhang et al. (2009), a sliding 
mode observer is proposed to estimate tyre-road forces, while an extended Kalman filter 
estimates sideslip angle and cornering stiffness. An extended Kalman filter based 
estimation process for lateral load transfer and wheel-ground contact normal forces is 
developed in Doumiati et al. (2008, 2009a, 2009d). In Fathy et al. (2008), Vahidi et al. 
(2005), a recursive least square scheme for the online estimation of vehicle mass is 
examined. Cho et al. (2010) presents a scheme for longitudinal/lateral tyre-force 
estimation using a random-walk Kalman filter. Doumiati et al. (2009b, 2009c, 2010a, 
2010b, 2011), two observers derived from extended and unscented Kalman filtering 
techniques are proposed and compared to estimate tyre-road forces and vehicle sideslip 
angle. A method for the evaluation of a risk skid indicator based on the estimation of the 
maximum friction coefficient is proposed in (Ghandour et al., 2010, 2011a, 2011b). 
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Doumiati et al. (2011a) present a method to estimate the road profile elevation based on a 
classical Kalman filter. Grip et al. (2009b) presents a nonlinear vehicle sideslip observer 
with reduced computational complexity compared to an extended Kalman filter. In Ray 
(1995) and Samadi et al. (2001), an extended Kalman filter based method is presented to 
estimate the dynamic state and tyre-road forces for a nonlinear vehicle model. In Rabhi  
et al. (2007) and M’sirdi et al. (2006) cascaded observers based on first or second order 
sliding modes are used to estimate the contact forces. Hsiao et al. (2011) presents a tyre 
force estimator, designed by accounting for the dependency between the longitudinal and 
lateral tyre forces by introducing the friction ellipse into the estimation algorithm. In 
Dakhlallah et al. (2008) and Sebsadji et al. (2008), an extended Kalman filter and 
Luenberger observer based method for the estimation of the vehicle dynamics using a 
nonlinear vehicle model is proposed. In Zhu and Zheng (2008), Pan et al. (2009), Chen 
and Hsieh (2008) and Cheng et al. (2011), a nonlinear observer using unscented Kalman 
filter (UKF) to estimate sideslip angle is presented. In Nam et al. (2011), lateral tyre 
forces obtained from a multi-sensing hub unit are used to estimate vehicle lateral velocity 
and roll angle using a recursive least square algorithm and a Kalman filter. Hu et al. 
(2010) and Chu et al. (2010) present a vehicle lateral and longitudinal velocity estimation 
method using an adaptive/unscented Kalman filter. In Tanelli et al. (2006), an algorithm 
for the estimation of longitudinal vehicle speed, based on the measurements of the  
four-wheel rotational speeds and of the longitudinal vehicle acceleration is presented.  
In Chu et al. (2011), a fuzzy logic is used to get an estimate of the vehicle longitudinal 
velocity; together with the estimated vehicle longitudinal acceleration, a Kalman filter is 
used to estimate the velocity of vehicle for use in ESC control applications. Chen et al. 
(2010) and Ryu et al. (2007) present a Kalman filter based approach to estimate roll angle 
and roll rate with either a three-degree-of freedom (3DOF), or 1DOF vehicle model. In 
(Yi et al., 2007), an estimator design based on a three-degree-of-freedom vehicle 
manoeuvring model and a four-degree-of-freedom half-car suspension model is used to 
obtain estimates of the vehicle roll angle and roll rate in driving situations in which both 
manoeuvring and road disturbances affect the vehicle roll motions. In Hac et al. (2004), 
an approach using a closed-loop adaptive observer for estimating roll angle and roll rate 
of vehicle body with respect to the road is proposed. Works from Rajamani et al. (2009, 
2011) focuses on algorithms to estimate roll angle and CoG height. The algorithms 
investigated include a sensor fusion algorithm that utilises a low frequency tilt angle 
sensor, a gyroscope and a dynamic observer that utilises only a lateral accelerometer and 
a gyroscope. In Tsourapas et al. (2009), two rollover indexes are proposed and analysed. 
The first rollover index estimates the actual lateral transfer ratio (LTR) while the second 
index referred to as the predictive lateral transfer ratio (PLTR), incorporates the 
predictive influence of the driver’s steering input. Oh and Choi (2011) focus on the 
accurate estimation of the vehicle states, including the longitudinal, lateral, and vertical 
velocities, as well as the roll and pitch angles, using merging schemes that combine the 
kinematic and model-based observer outputs. In Tseng (2001), Eric Tseng et al. (2007) 
and Rehm (2010), methods for estimation of road inclination and bank angle are 
presented. In Grip et al. (2009a), a scheme for the vehicle roll angle is derived based on 
the combination of sensors from vehicle dynamics control system and a rollover 
mitigation system. In Cho et al. (2010) and Hac et al. (2010), methods for compensating 
the gravity components of the lateral acceleration are proposed. Hsu et al. (2010) present 
a model based estimation method that utilises pneumatic trail information in steering 
torque to identify a vehicle’s lateral handling limits. 
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Table 1 State-of-the-art literature review 

Measurements used 
Estimated 
states Model used 

Estimation 
methodology References 

, , ,y xr a a δ  Tyre forces and 
vehicle sideslip 
angle 

Single-track 
model 

SMO, EKF Baffet et al. 
(2008, 2009), 
Zhang et al. 
(2009) 

, ,y x susa a δ  Tyre normal 
force 

Vehicle roll 
dynamic 
model 

EKF Doumiati et al. 
(2008, 2009a, 
2009d) 

, , , , ,x x e ba v r T Tλ  Vehicle mass Longitudinal 
dynamics 

RLS Fathy et al. 
(2008) and 
Vahidi et al. 
(2005) 

, , , , , ,y x w e br a a T Tδ ω  Tyre forces Wheel 
dynamics 
model, 
vehicle 
planar model 

KF Cho et al. (2010) 

, , , , , ,y x susa a r pδ δ ω  Tyre forces and 
vehicle sideslip 
angle 

Four-wheel 
vehicle 
model 

EKF, UKF Doumiati et al. 
(2009b, 2009c, 
2010a, 2010b), 
Doumiati et al. 
(2011b) 

, , , , , ,y x susa a r pδ δ ω  Tyre-road 
friction 
coefficient and 
vehicle lateral 
skid indicator 

Four-wheel 
vehicle 
model 

EKF, UKF, 
NLLS 

Ghandour et al. 
(2010, 2011) 

, , , , , ,y x susa a r pδ δ ω  LTR (Lateral 
load transfer) 
and LSI 
(Lateral skid 
indicator)- 
Accident risk 
prediction 

Four-wheel 
vehicle 
model 

EKF, UKF, 
NLLS 

Ghandour et al. 
(2011) 

,y susa δ  Road profile 
and wheel load 

Quarter-car 
model 

KF Doumiati et al. 
(2011) 

, ,y xr a a  Vehicle 
sideslip angle 

Kinematics 
model 

Nonlinear 
observer 

Grip et al. 
(2009b) 

, , ,y xr a a ω  Tyre forces Nonlinear 
vehicle 
model 

EKF Ray (1995), 
Samadi et al. 
(2001) 
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Table 1 State-of-the-art literature review (continued) 

Measurements used 
Estimated 
states Model used 

Estimation 
methodology References 

, ,w x wT v θ  Velocities and 
accelerations of 
the wheels, tyre 
forces (vertical 
and 
longitudinal) 
and friction 
coefficient 

Wheel 
dynamics 
model 

Robust 
differentiator 
and sliding 
modes 

Rabhi et al. 
(2007) and 
M’sirdi et al. 
(2006) 

, , , ,w x yT r a aω  Tyre forces and 
vehicle 
parameter 
estimation 

Wheel 
dynamics 
model, 
vehicle 
planar 
model, 
Friction 
ellipse 

Model based Hsiao et al. 
(2011) 

, , , ,x yr a a ω δ  Tyre forces and 
road grade 

Four-wheel 
vehicle 
model 

EKF, 
Luenberger 
observer 

Dakhlallah et al. 
(2008) and 
Sebsadji et al. 
(2008) 

, , ,x ya a ω δ  Vehicle 
sideslip angle 
and yaw rate 

Bicycle 
model 

UKF Zhu and Zheng, 
2008) and Pan et 
al. (2009) 

, ,x ya a r  Vehicle 
sideslip angle 

Kinematic 
model 

EKF Chen and Hsieh 
(2008) 

, , , ,x y xa a v rδ  Vehicle 
sideslip angle, 
lateral tyre road 
forces and tyre 
road friction 
coefficient 

Four-wheel 
vehicle 
model 

UKF Cheng et al. 
(2011) 

yF  Vehicle 
sideslip angle 

Yaw plane 
model 

RLS Nam et al. 
(2011) 

, , , ,x yr a a ω δ  Vehicle 
longitudinal 
and lateral 
velocity 

Bicycle 
model 

AKF, UKF Hu et al. (2010) 
and Chu et al. 
(2010) 

,xa ω  Vehicle 
longitudinal 
velocity 

Kinematics-
based 

Rule Based Tanelli et al. 
(2006) 

,xa ω  Vehicle 
longitudinal 
velocity 

Yaw plane 
model 

KF, Fuzzy 
logic 

Chu et al. (2011) 

,ya p  Roll angle Vehicle roll 
dynamic 
model 

KF Chen et al. 
(2010) and Ryu 
et al. (2007) 
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Table 1 State-of-the-art literature review (continued) 

Measurements used 
Estimated 
states Model used 

Estimation 
methodology References 

, ,ya r δ  Roll angle and 
roll rate 

Lateral-
dynamics-
model a 
four-degree-
of-freedom 
half-car 
suspension 
model 

KF Park et al. (2008) 
and Yi et al. 
(2007) 

,ya p  Roll angle Vehicle roll 
dynamic 
model 

Closed loop 
adaptive 
observer 

Hac et al. (2004) 

, ,y tilt angle sensora p φ  Roll angle and 
center of 
gravity height 

Kinematic 
sensor 
fusion, 
Vehicle roll 
dynamic 
model 

Sensor fusion Rajamani et al. 
(2009, 2011) 

,ya p  Load Transfer 
Ratio (LTR) 
and Predictive 
Load Transfer 
Ratio (PLTR) 

Vehicle roll 
dynamic 
model 

Model based Tsourapas et al. 
(2009) 

, , , , ,x y za a a p q r  Roll and pitch 
angles, 
longitudinal, 
lateral, and 
vertical 
velocities 

Kinematic 
and model-
based 
(bicycle 
model) 
observer 

Merging 
schemes 

Oh and Choi 
(2011) 

, ,ya r δ  Road bank 
angle 

Bicycle 
model 

Transfer 
function 
approach, 
superposition 

Tseng (2001) 

, , , , ,x ya a p q r ω  Vehicle roll 
and pitch 
angles 

Kinematics-
based 
observer 

State observer Tseng et al. 
(2007) 

, , , ,x yr a a ω δ  Road bank and 
grade angles 

Kinematic 
model 

Observers 
using time-
varying gains 

Rehm (2010) 

p Roll angle Vehicle roll 
dynamic 
model 

Controlled 
integration 

Grip et al. 
(2009a) 
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Table 1 State-of-the-art literature review (continued) 

Measurements used 
Estimated 
states Model used 

Estimation 
methodology References 

, , ,y xa r v p  Roll angle Vehicle roll 
dynamic 
model, 
Kinematic 
model 

Vehicle state 
index based 
switching 

Cho et al. (2010) 

, , , ,yr a pω δ  Vehicle roll 
angle and 
Sideslip angle 

Kinematic 
model 

Weighting 
function 

Hac et al. (2010) 

, , ,y xr a vδ  Tyre Slip angle Bicycle 
model 

State observer Hsu et al. (2010) 

*List of acronyms- SMO: Sliding mode observer, KF: Kalman Filter, EKF: Extended 
Kalman Filter, UKF: Unscented Kalman Filter, AKF: Adaptive Kalman Filter, RLS: 
Recursive least squares, NLLS: Nonlinear least squares. 

Another research topic related to state estimation that has garnered considerable attention 
is the concept of system state estimation for active suspension control. This is driven by 
the need to develop more advanced control systems for semi-active and fully active 
suspension systems which are becoming more and more common on production vehicles. 
In Pletschen and Badur (2014), the concept of Takagi-Sugeno observer design has been 
adopted for nonlinear state estimation in an actively controlled vehicle suspension 
application. In Hernandez-Alcantara et al. (2014), an observer capable of estimating the 
unmeasured state variables of the quarter of vehicle (QoV) dynamics subject to unknown 
road surfaces is proposed. In Rath et al. (2014), an adaptive super-twisting observer was 
proposed for state and unknown input estimation for the active suspension system. In 
(Kaldas et al., 2011), a Kalman Filter algorithm is constructed for bounce velocity 
estimation. De Bruyne et al. (2011) present the design and development of a state 
estimator that accurately provides the information required by a sky-hook controller, 
using a minimum of sensors. In Hong and Park (2010), a road-frequency adaptive control 
for semi-active suspension systems is investigated. By using the data measured from a 
relative displacement sensor, a state estimator based on a Kalman filter for estimating the 
required state variables is designed. Road disturbance frequencies are estimated by using 
a first order zero-crossing algorithm. In Koch et al. (2010), an estimator structure for 
active vehicle suspension control incorporating three parallel Kalman filters has been 
presented. 

This study introduces an integrated vehicle state estimator, comprising of a series of 
model based and kinematic based observers and an effectively designed merging scheme 
that ensures robust estimation performance even during the vehicle manoeuvres which 
show highly nonlinear tyre characteristics and in the existence of road inclination or bank 
angle. In this study, it is assumed that measurements from a 6-axis Inertial Measurement 
Unit (IMU) (3-axes of rotation rate measurement and 3-axes of acceleration 
measurement), wheel speed sensors, and steering wheel angle sensor are available. 
Hence, the scope of this research is to maximise the estimation performance of vehicle 
states with only a low-cost six-dimensional (6D) inertial measurement unit (IMU), 
regardless of how severely a vehicle is manoeuvred, and without the aid of a GPS. 
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The basic organisation of this paper is as follows: Section 2.1 contains information on 
the general layout of the observer with the data flow description. Section 2.2 denotes the 
principle behind the chassis roll angle estimator. Section 2.3 describes the method for 
chassis pitch angle estimation. Section 2.4 focuses on the vehicle roll (global roll) and 
pitch angle (global pitch) observer design. Section 2.5 describes the method to 
compensate the measured acceleration signals for gravity. Section 2.6 focuses on the 
method to estimate the vehicle longitudinal velocity. Section 2.7 describes the method to 
estimate the tyre vertical load. Section 2.8 presents a scheme for longitudinal/lateral tyre-
force estimation. Section 2.9 describes a method for estimating the vehicle lateral and 
longitudinal velocity. Section 2.10 proposes an estimation procedure for the tyre slip-
ratio and slip-angle, and conclusions are finally given in Section 3. 

2 Observer design 

2.1 General observer flow chart 
The block diagram in Figure 1 explicitly shows the estimation process in its entirety. 

Figure 1 Functional diagram of the estimation process (see online version for colours) 

 

The entire process is separated into five blocks: the first block serves to identify the road 
bank and grade angles (using a kinematics-based observer) and vehicle chassis roll (using 
a Kalman filter) and pitch angles (with vehicle mass adaptation), the second block 
contains a bias compensation algorithm (gravity compensation in accelerometer 
measurements), a vehicle longitudinal speed estimation algorithm (based on the 
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measurements of the four wheel rotational speeds and the gravity-compensated 
longitudinal vehicle acceleration) and a tyre load estimation algorithm (using gravity-
compensated acceleration information and roll/pitch states), the third block contains a 
tyre longitudinal/lateral force estimation observer (sliding-mode observer based), while 
the fourth block contains a nonlinear vehicle longitudinal and lateral velocity observer 
(based on unscented Kalman filter), designed for the purpose of vehicle side-slip 
estimation. Finally, the fifth block makes use of the estimations provided by the third and 
the fourth block to estimate the tyre slip-ratio and slip-angle (Luenberger observer 
based). 

2.2 Vehicle chassis roll angle estimator 

2.2.1 Modelling approach 
Roll angle is an important variable that plays a critical role in the calculation of real-time 
rollover index for a vehicle (Yi et al., 2007). Vehicle models used for estimation roll 
angle and roll rate include: 

• 3DOF model, which represents yaw, lateral and roll motions of a vehicle  
(Figure 2(a)) 

• 1DOF model, which represents only roll motion of a vehicle (Figure 2(b)). 

As shown in previous work (Chen et al., 2010), roll angle estimation accuracy using the 
3DOF model is adversely affected by the linear tyre model assumption. On the other 
hand, the 1DOF model, which does not rely on any tyre model uses the lateral 
acceleration directly. 

Figure 2 (a) linear 3DOF yaw-roll vehicle model and (b) 1DOF roll dynamics model: (a) 3DOF 
vehicle model and (b) 1DOF vehicle model (see online version for colours) 

 

Therefore, the 1DOF model is not sensitive to the nonlinear tyre dynamics. Also, the 
1DOF model has a practical advantage over the 3DOF model in terms of the required 
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model parameters. With these considerations, in this study, a 1DOF model was 
considered for designing a roll angle estimator. 

Considering the effect of gravity, the equation of vehicle chassis roll motion 
(according to the torque balance about the roll axis) is: 

2
,( )x s roll chassis roll chassis roll chassis s roll y mI m h c k m h aφ φ φ⋅⋅+ + + = −  (1) 

Here 2
x s rollI m h+  is the moment of inertia of vehicle body with respect to the roll axis, 

 rollc  is the combined roll damping of suspension and tyres, and rollk  is the combined roll 
stiffness of suspension and tyres. The lateral acceleration used in equation (1) is the 
measured lateral acceleration, , gsin( )y m y chassisa a φ= + , which includes the effect of the 
gravity component, contributing to the roll moment. The corresponding state-space 
realisation of the model described by equation (1) can be given as follows: 

,
2 2 2

0 1 0

y mroll roll s roll

x s roll x s roll x s roll

ak c m h
I m h I m h I m h

φφ
φφ

⋅

⋅⋅⋅

   
      = + ⋅− − −            + + +   

 (2) 

Assuming roll rate measurement is available from a 6-axis IMU, an estimator based on 
the Kalman filter (Bishop, 2006) is implemented to estimate vehicle states (Figure 3). 
The states are roll angle and roll rate and the input is the measured lateral acceleration. 
The state feedback is the measured roll rate. 

Figure 3 Roll estimation based on a 1DOF model (see online version for colours) 

 

2.2.2 Estimator performance 
The performance of the Kalman filter based estimator was examined under a simulated 
fishhook manoeuvre (Figure 4(a)) and double lane change (Figure 4(b)) to verify the 
effectiveness under aggressive driving conditions. 

It can be concluded that even under aggressive driving conditions vehicle roll angle 
can accurately be estimated. 

2.3 Vehicle chassis pitch angle estimator 

2.3.1 Modelling approach 
During a severe deceleration (acceleration) manoeuvre, the vehicle experiences a load 
transfer from the rear to the front (front to rear), which results in a non-zero vehicle pitch 
angle (Figure 5). 
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Figure 4 Estimator performance: (a) fishhook manoeuvre and (b) double lane change manoeuvre 
(see online version for colours) 

 

Figure 5 Longitudinal vehicular load transfer under acceleration (see online version for colours) 

 

According to Hooke’s law, we can compute the suspension springs compression ( )x  due 
to load variation ( )zF  as zx F= / suspensionk , where suspensionk  is the spring elastic constant. 
Hence, the pitch angle can be approximated by its tangent as: 

2 2
( ) ( )chassis

suspension

x F
a b k a b

θ ⋅ Δ ⋅ Δ= =
+ ⋅ +

 (3) 

The longitudinal load transfer (axle load variation) can be estimated using the vehicle’s 
longitudinal acceleration as: 

,( )
s cg

x c

m h
F a

a b
⋅

Δ = ⋅
+

 (4) 

where ,x ca  is the bias-compensated longitudinal acceleration signal and is given by the 
expression , , gsin(x c x m chassisa a= + ). A methodology to compensate the measured 
acceleration signal for the gravity component is given in Section 2.5. Substituting 
equation (4) in equation (3), we get an expression for the chassis pitch angle as: 

,2

2
( )

s cg
chassis x c

suspension

m h
a

k a b
θ

⋅ ⋅
= ⋅

⋅ +
 (5) 

Since chassis pitch angle is calculated through a linear model, the parameters used in the 
model are functions of characteristics such as the height of the CoG and the sprung mass. 
One challenge with using these parameters in computing chassisθ  is that they vary with the 
vehicle loading conditions. If the above parameters are fixed at certain nominal values, it 
is conceivable that optimal estimation performance may not be achieved under a different 
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loading condition. To improve the overall performance of the estimation process, it is 
desirable to estimate and update the vehicle parameters periodically or adaptively adjust 
them in real time based on the actual behaviour of the vehicle. 

2.3.2 Vehicle sprung mass estimation 
The estimation approach proposed here is a model-based approach, i.e., using equations 
for the longitudinal motion of the vehicle (Figure 6(a)). Vehicle acceleration is a result of 
a combination of wheel drive and braking torques and the road loads on the vehicle. The 
dynamic equation for the vehicle motion is: 

  x x aero drag grademv F F F= − −


 –   rolling resistanceF  (6) 

where: 

:xF  Summation of the tyre forces generated at all the four tyres 

 :aero dragF  Aerodynamic drag force ( )1 2
2 d f xC A vρ  

 :gradeF  Road grade force ( )grademgsinθ  

  : rolling resistanceF  Rolling resistance ( )r gradef mgcosθ  

( ) 21    
2fl fr rl rrx x x x x d f x gradeor mv F F F F C A v mgsinρ θ= + + + − −



r gradef mgcosθ−  

Figure 6 (a) Longitudinal vehicle dynamics model and (b) simplified wheel dynamics model  
(see online version for colours) 

 

Rearranging the above Equation yields an expression for the vehicle mass as: 

( ) 21
2

 sin cos

fl fr rl rrx x x x d f x

x grade r grade

F F F F C A v
m

v g f g

ρ

θ θ

+ + + −
=

+ +
  (7) 

From the above expression, we can see that an estimate of the vehicle mass can be made 
by using information about the longitudinal tyre forces, vehicle longitudinal velocity and 
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road grade. To achieve the objective of estimating vehicle mass, an integrated estimation 
scheme is proposed. The estimation scheme consists of three key estimator blocks;  

• tyre longitudinal force estimator  

• vehicle longitudinal velocity estimator; 

• road bank-grade angle estimator.  

The tyre longitudinal force estimator is based on a simplified wheel dynamics model 
(Figure 6(b)). The dynamic equation for the angular motion of the wheel is given as: 

( )w w b x w rr wJ T T F r F rω = − − −


 (8) 

where the subscripts have been omitted for convenience. The same estimator and 
equations hold true for all the wheels. Rearranging equation (8) yields an expression for 
the longitudinal force as: 

( )w b w
x rr

w

T T JF F
r

ω− −
= −



 (9) 

Here the wheel drive torque ( )wT  can be estimated by using the turbine torque, the 
turbine angular velocity, and the wheel angular velocity (Masmoudi and Hedrick, 1992). 
It is assumed that the brake pressure of each wheel is an available signal. Therefore, the 
brake torque ( )bT  can be computed by the brake gain ( ,bf brk k ). rrF , the wheel rolling 
resistance force is given by the expression: 

( )20.005 3.24 0.01rr w wF r ω= + ⋅ ⋅ ⋅  (10) 

In a previous work (Hoseinnezhad and Bab-Hadiashar, 2011), it has been shown that the 
accuracy of longitudinal force estimation using equation (8) heavily depends on the 
accuracy of the tyre effective rolling radius ( )wr , and therefore, obtaining an accurate 
estimate of wr  is crucial. The tyre effective rolling radius ( )wr  can be determined by the 
vertical load (estimation methodology for the vertical load is explained in Section 2.7) as: 

,
,

 
     

 
z i

w i o
t

F
r r

k
= −  (11) 

Even though equation (9) presents a relatively simple method to estimate the longitudinal 
tyre force (i.e., we can calculate the longitudinal tyre force directly using equation (9), or 
use a recursive least squares (RLS) method for a smoother estimation), it is not advisable 
to use this approach, since in real-world conditions finding the time derivative of angular 
wheel speed signals ( )wω  can pose some challenges. To avoid the need to take 
derivatives of wω , a sliding mode observer (SMO) based estimation scheme is used 
(Rajamani et al., 2012). The SMO uses a sliding mode structure, with the state estimate  
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( ) wω  evolving according to the wheel dynamics model, the force model 0,xF =


 i.e., tyre 
forces are modelled with a random walk model and the sign of the measurement 
estimation error (difference between actual ( )wω  and estimated ( ) wω  angular wheel 
speed) as: 

( )w 1 ( ww b x w rr w wJ T T F r F r k sgnω ω ω= − − − + −

  

) (12) 

2 ( )wx wF k sgn ω ω= −

 

 (13) 

Here 1 2& k k  are the observer gains and sgn denotes signum function defined as: 

( )
( )
( )

1,  if  0
sgn ( ( ))  0, if  0

1, if  0

s t
s t s t

s t

>
= =
− <

 (14) 

It is known that the discontinuous switching functions can be approximated by their 
continuous switching functions to avoid the chattering of the control force and to achieve 
the exponential stability. Instead of signum function, a saturation function has been used 
via introducing a thin boundary layer around the sliding surface to avoid chattering. For a 
smoother change of the switching signal, a hyperbolic tangent function has also been 
used to improve the switching control effort. The results (Figure 7(a)–(b)) show that the 
estimated longitudinal forces match the simulated forces very well. The proposed 
observer based on equations (13) and (14) thus ensures stable estimation of the 
longitudinal tyre force. As previously mentioned, apart from the longitudinal tyre force, 
the other variables required to estimate the vehicle mass include: road grade angle and 
vehicle longitudinal velocity. The road grade angle ( )gradeθ  can be determined using a 
kinematics-based observer, as explained in Section 2.5. The vehicle longitudinal velocity 
( )xv  can be determined using the measurement of the four-wheel rotational speed and 
longitudinal vehicle acceleration, as explained in Section 2.6. Finally, using information 
from the three estimators, vehicle mass can be estimated using equation (7). Even though 
we can directly use equation (7), using a Recursive Least Squares (RLS) algorithm (by 
rewriting equation (7) into a standard parameter identification form) results in smoother 
estimates of the vehicle mass, as shown in Figure 8. 

2.3.3 Estimator performance 
The performance of the chassis pitch angle estimator (refer equation (5), with vehicle 
mass adaptation) was evaluated for a high speed straight-line braking manoeuvre  
(100-0 Kph) for constant friction coefficient ( tancons tµ ) (Figure 9(a)), and varying friction 
coefficient ( var yingµ ) (Figure 9(b)) conditions. Satisfactory results were obtained in both 
cases, as shown in Figure 9. 
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Figure 7 Longitudinal force (individual tyre) estimator performance: a) high µ surface condition 
and (b) low µ surface condition (see online version for colours) 

 

Figure 8 Vehicle mass estimation results: (a) D-class vehicle (sedan) driving on low µ surface 
and (b) B-class vehicle (hatchback) driving on high µ surface (see online version  
for colours) 

 

Figure 9 Estimator performance: (a) straight-line braking manoeuvre (constant µ condition) and 
(b) straight-line braking manoeuvre (varying µ condition) (see online version for 
colours) 
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2.4 Vehicle roll and pitch angle estimator 

Knowledge of the vehicle roll and pitch angle is very important for satisfactory control 
performance. Analysis presented in Sections 2.2 and 2.3 described a methodology to 
estimate the vehicle chassis roll (local roll) and chassis pitch (local pitch) angle. The 
vehicle roll angle (global roll) consists of a combination of vehicle chassis roll angle and 
road bank angle: 

vehicle roll chassis road bankφ φ φ= +
 (15) 

Similarly, the vehicle pitch angle consists of the combination of vehicle chassis pitch 
angle and road grade angle: 

vehicle pitch chassis road gradeθ θ θ= +
 (16) 

The effect of vehicle chassis roll and pitch, as well as the dynamically changing road 
bank and road grade is significant because they directly lead to the gravity components 
measured by the accelerometers, as shown below: 

,
.

,

sin( )
( ) ( sin( ))

x m x vehicle pitch

x m x y vehicle pitch

a a g
a v r v g

θ
θ

= − ⋅
=> = − ⋅ − ⋅

 (17) 

( )

( )

,

.
,

sin

cos( )

( ) ( sin )

cos( ) )

y m y vehicle roll

vehicle pitch

y m y x vehicle roll

vehicle pitch

a a g

a v r v g

φ

θ
φ

θ

= + ⋅

=> = + ⋅ + ⋅

⋅

 (18) 

Rearranging the above equations, we have expressions for the vehicle chassis roll and 
pitch angles as: 

.
,

.
,

cos( )

x y x m
vehicle pitch

y m y x
vehicle roll

vehicle pitch

v r v a
arcsin

g

a v r v
arcsin

g

θ

φ
θ

 − ⋅ −
=   

 
 − − ⋅

=   ⋅ 

 (19) 

In the following section, a methodology to estimate the vehicle roll and pitch angles 
under steady state conditions is presented. 

2.4.1 Steady state vehicle roll and pitch angle estimator 
In this section, steady state estimates of the vehicle pitch and roll angles are presented by 
utilising the sensors typically available on vehicles equipped with electronic stability 
program (ESP) or yaw dynamics control (YDC). As seen from equation (19), vehicle 
pitch and roll angles can be calculated if . ., ,  and x y x yv v v v  are available. Although it is 

possible to obtain fairly accurate xv  and thus .  xv  from wheel speed sensors when the 
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wheel slip is small (see Section 2.6 for details), yv  and .
yv  are generally not available on 

current production vehicles. Thus equation (19) cannot be implemented. Fortunately, 
during many manoeuvres,   yv  or .

yv  is relatively small and can be neglected. In such 

cases, the so-called steady state pitch and roll angles,  SSvehicle pitchθ  and   SSvehicle rollφ , 

respectively, are given by the following equations: 
.

,

,

cos( )

SS

SS

SS

x x m
vehicle pitch

y m x
vehicle roll

vehicle pitch

v a
arcsin

g

a r v
arcsin

g

θ

φ
θ

 −
=   

 
 − ⋅

=   ⋅ 

 (20) 

The steady state estimates obtained from the algebraic manipulation of the kinematic 
relationships only captures the low-frequency component of the vehicle attitude  
(Figure 10) 

Figure 10 Performance of the steady state vehicle roll angle estimator: (a) constant speed straight-
line driving (steady state) on a banked road and (b) double lane change manoeuvre 
(transient state) on a banked road (see online version for colours) 

 

The underlying reason for the poor performance of the steady state estimator  
(Figure 10(b)) is the assumption (  0yv ≈  or .

yv  ≈ 0) on which the estimator works. This 
assumption is often violated during real life driving situations. For example, a vehicle 
performing an object avoidance manoeuvre on a highway ramp or a vehicle negotiating a 
mountain road may experience significant bank angle variations during the transient 
manoeuvre. Hence this estimate would contain significant bias in transient manoeuvres. 
In the following section, a methodology to estimate the vehicle roll and pitch angles 
under transient state conditions is presented. 

2.4.2 Transient state vehicle roll and pitch angle estimator 
Without loss of generality, it is assumed that the IMU is placed at the vehicle center of 
gravity, and there is no misalignment with respect to the vehicle body frame. Using the 



   

 

   

   
 

   

   

 

   

   346 K.B. Singh and S. Taheri    
 

    
 
 

   

   
 

   

   

 

   

       
 

kinematic relationship between IMU output (vehicle-fixed frame) and the derivatives of 
the Euler angles (inertial frame), and assuming that the rotation rate of the earth is 
negligible, the equations of vehicle motion can be written as (Greenwood, 1988): 

( )

( )

.

.

.

sin cos

( )
cos sin

sin cos

sec( )

vehicle roll vehicle roll vehicle roll

vehicle pitch

vehicle pitch vehicle roll vehicle roll

vehicle yaw vehicle roll vehicle roll

vehicle pitch

p q r

tan
q r

q r

φ φ φ

θ
θ φ φ

ψ φ φ

θ

= + ⋅ + ⋅

⋅
= ⋅ − ⋅

= ⋅ + ⋅

⋅

 (21) 

From the above relationships we can see that, theoretically, the vehicle roll 
(    )vehicle pitchφ

 
and pitch angles ( vehicle pitchθ ) can be computed via mathematical 

integration (open-loop integration), if the initial condition is known and angular rates 
( ), ,p q r  are measured by the gyro sensors. In practice, however, direct integration tends 
to drift due to sensor bias and inevitable numerical errors. To overcome limitations of an 
open-loop integration process, an alternative method is proposed. With the addition of an 

observer feedback term, (  chassischassisk θ θ−


), a new closed-loop observer is designed, 
motivated by (K. Cho et al., 2010), to estimate the vehicle roll-pitch angle under transient 
state conditions as: 

( ).

ˆ

sin cos

( )  

( )

TS TS TS

TS

vehicleroll vehicleroll vehicleroll

vehicle pitch

chassis chassis

p q r

tan

k

φ φ φ

θ

θ θ

= + ⋅ + ⋅

⋅

+ −

 

. cos sin
TS TS TSvehicle pitch vehicleroll vehiclerollq rθ φ φ= ⋅ − ⋅  (22) 

Where the subscript TS denotes transient state. The observer feedback term 

( (  chassischassisk θ θ−


)), basically consists of a measurement estimation error, i.e., difference 

between actual  chassisθ  and estimated chassisθ


 chassis roll angles. Here chassisθ  is obtained 
using a 1DOF roll dynamics model in conjunction with a Kalman filter (details given in 

Section 2.2).  chassisθ


, is obtained using information about the lateral load transfer ratio 
(LTR), where the LTR is estimated using dynamic tyre load estimates (details given in 
Section 2.7). To fuse the steady state and transient state estimates, an index known as the 
vehicle transient state factor (VTSF) is defined, which represents the state of the vehicle 
(i.e., VTSF = 1 (Transient State); VTSF = 0 (Steady State)). 

The vehicle transient state factor (VTSF) is characterised as a function of the vehicle 
roll rate, derivative of the steering wheel angle and yaw rate. Finally, the vehicle roll 
angle is estimated using the vehicle steady state and transient state roll angles based on 
the vehicle state index switching (Figure 11) as: 
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( )
( )

*

sin cos

tan
*

( )

[(1 ) ]

TS TS

TS

SS

SS

vehicle roll vehicle roll

vehicle pitch
vehicle roll

chassischassis

vehicle roll

vehicle roll

p q r

VTSF
k

VTSF

φ φ

θ
φ

θ

φ

φ

  
  + ⋅ + ⋅
  
  ⋅
  =
   + −   

   
 + 

+ − ⋅

   (23) 

Where *
  SSvehicle rollφ  is the vehicle steady state roll angle when the state index switches 

from 1 to 0. It is used as an initial condition for the vehicle transient roll angle estimator. 
An updated estimate of the vehicle pitch angle is derived using the following 

expression: 
. cos sinvehicle pitch vehicle roll vehicle rollq rθ φ φ= ⋅ − ⋅  (24) 

Figure 11 Schematic diagram of the proposed vehicle roll/pitch angle estimation process  
(see online version for colours) 

 

2.4.3 Estimator performance 
The performance of the designed roll/pitch angle estimator was evaluated for a range of 
different simulations cases (Table 2). 
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Table 2 Simulation cases 

 
Vehicle 

speed (Kph) 
Friction coefficient 

(µ) 
Test 

manoeuvre 

Road 
bank 

angle (°) 
Road grade 

angle (°) 
Case 1 140 0.85 Double lane 

change 
0° 0° 

Case 2 140 0.85 Double lane 
change 

0°-18°- 0° 0° 

Figure 12 shows that the proposed observer can estimate the vehicle states (roll/pitch 
angle) successfully even for challenging (aggressive manoeuvring) operating conditions. 

Figure 12 Vehicle roll/pitch angle estimator performance (ref Table 2 for a description of the 
simulation conditions) (see online version for colours) 

 

2.5 Bias Compensation 
The measured lateral/longitudinal acceleration has both lateral/longitudinal dynamics 
components and gravity components due to road bank/grade and chassis angles. Using 
the real-time vehicle roll and pitch angle estimates (as described in Section 2.4), the 
measured acceleration signals are compensated for the gravity components using: 

, , sin( )x c x m vehicle pitcha a g θ= + ⋅  (25) 

, , sin( ) cos( )y c y m vehicle roll vehicle pitcha a g φ θ= − ⋅ ⋅  (26) 
Vehicle sideslip angle is estimated using a simple integration method to verify whether 
the compensation of the lateral acceleration is useful to estimate the side-slip angle. The 
integration method to estimate the side-slip angle is as follows: 

, ( sin( ) cos( ) )
dy m vehicle roll vehicle pitch xy

x x

a g r vv
t

v v
φ θ

β
− ⋅ ⋅ − ⋅

= =   (27) 

, dy y c x

x x

v a r v
or t

v v
β

− ⋅
= =   (28) 

The simulation results show (Figure 13) that the compensated lateral acceleration can be 
used directly to estimate the vehicle side-slip angle. 
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Figure 13 Vehicle sideslip angle estimation using a simple integration method: (a) double lane 
change steering/high mu(0.85/120 kph/bank(0 – 18- 0 deg) and (b) fishhook 
steering/high mu (0.85/80kph/flat surface) (see online version for colours) 

 

2.6 Vehicle longitudinal velocity estimator 

2.6.1 Estimation methodology 
An integrated state estimation scheme (refer Figure 1) requires reliable vehicle speed 
information. It is much harder to estimate the vehicle speed during braking than in 
traction, since in the former case all four wheels are slipping. The proposed vehicle speed 
estimation algorithm (Figure 14) is based on the measurement of the four-wheel 
rotational speed and longitudinal vehicle acceleration. 

Figure 14 Estimation algorithm data flow chart 

 

The estimator uses a structure based on the work of reference (Tanelli et al., 2006). The 
main advantage of this approach is the low computation burden, as compared to some of 
the previous work proposed in literature (Jiang and Gao, 2000; Watanabe et al., 1992; 
Klein et al., 1996; Kobayashi et al., 1995), which suffer from high computational 
complexity. The longitudinal acceleration signal is supposed to have been properly 
corrected according to the discussion given in Section 2.5 as: 

, , sin( )x c x m vehicle pitcha a g θ= + ⋅  (29) 
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The effective tyre radius ( )wr  required to estimate the linear wheel speed can be 
determined using the tyre vertical load information (load estimation methodology 
described in Section 2.7) as: 

,
, z i

w i
t

F
r r

k
= −  (30) 

At each sampling instant, the following auxiliary signals are computed: 

averagev : average of the four wheel speeds  

non driven averagev : averageofthe two non driven wheel speeds.− −  

The estimation algorithm behaviour changes according to the status of the vehicle, which 
is represented by the following four states: 

State 1: Low Speed 

State 2: Accelerating 

State 3: Constant speed or is softly braking 

State 4: Braking. 

The status of the vehicle is determined using the following threshold values: 

min : vehilespeed thresholdv  

acc : vehicleacceleration thresholda  

dcc : vehicledecceleration thresholda  

When the vehicle has very low or constant speed, the estimated vehicle speed is obtained 
as the average of the four-wheel speeds. When the car is accelerating, instead, as the 
driving wheels have a non–null longitudinal slip due to traction force, the estimated 
vehicle speed is obtained as the average of the non–driving wheels. During an extreme 
braking manoeuvre, the estimated vehicle speed is obtained via an open-loop integration 
of the corrected accelerometer signal, augmented with a backward integration phase to 
cope with initialisation errors (Table 3). 

Table 3 Estimation algorithm rules 

Rule chart: Vehicle status and velocity estimation 
Case 1 Case 2 Case 3 Case 4 

 
& & 

 
& 

 
Vehicle status: Low 

speed 
Vehicle status: 
Acceleration 

Vehicle status: Constant 
speed or softly braking

Vehicle status: Braking 
speed is estimated using 

a recursive rule 

  

Thresholds: ;  
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2.6.2 Estimator performance 
The performance of the velocity estimator was evaluated for an aggressive straight-line 
braking manoeuvre (Figure 15). 

According to these encouraging results (Figure 15(a)), the output of the longitudinal 
vehicle speed estimation algorithm could also be employed for reliably computing the 
longitudinal wheel slip (Figure 15(b)). 

Figure 15 (a) Estimated vehicle speed compared with the reference vehicle speed and  
(b) estimated wheel slip (top) and absolute error (bottom) compared with the reference 
wheel slip (see online version for colours) 

 

2.7 Tyre vertical load estimator 

The vertical tyre forces can be estimated by the summation of longitudinal load transfer, 
lateral load transfer and the static normal force. The estimates of the vertical tyre forces 
can be represented as follows: 

2

2

2

front axle
fl Lateral Load Transfer Longitudinal Load Transfer

front axle
fr Lateral Load Transfer Longitudinal Load Transfer

rear axle
rl Lateral Load Transfer Longitudinal Load Transfer

re
rr

Fz
Fz W W

Fz
Fz W W

Fz
Fz W W

Fz
Fz

= − −

= + −

= − +

=
2
ar axle

Lateral Load Transfer Longitudinal Load TransferW W+ +

 (31) 

Where the axle load distribution is strictly a function of the vehicle geometry and is given 
as: 

front axle

rear axle

bFz mg
a b

aFz mg
a b

= ⋅
+

= ⋅
+

 (32) 
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The vehicle mass (m) can be estimated adaptively using an estimation scheme described 
in Section 2.3.2. The lateral and longitudinal load transfer terms can be estimated using 
the vehicle’s roll model (Figure 2(a)) and longitudinal models (Figure 6(a)) as: 

( )
,

.

,

2

2( )

s r u a
y c

roll chassis roll chassis

Lateral Load Transfer

s cg
Longitudinal Load Transfer x c

m h m h
a

t

k c
t

W

m h
W a

a b

φ φ

⋅ + ⋅ 
⋅ 

 
 ⋅ + ⋅+  
 =

⋅
= ⋅

+

 (33) 

The roll sates required to estimate the lateral load transfer term can be obtained using a 
vehicle roll state estimator, as described in Section 2.4. 

2.7.1 Effect of grade angle on the load distribution 
In this case, the lower tyres (rear tyres, going up and front tyres, going down) become 
more heavily loaded. Load distribution can be determined by summing the moments 
around the tyre-road contact points, leading to equations: 

cos sin 

cos sin 

cg
front axle road grade road grade

cg
rear axle road grade road grade

hbFz mg mg
a b a b

haFz mg mg
a b a b

θ θ

θ θ

= ⋅ ⋅ − ⋅ ⋅
+ +

= ⋅ ⋅ + ⋅ ⋅
+ +

 (34) 

2.7.2 Effect of bank angle on the load distribution 
A bank causes the load on the interior (lower) tries to increase, while the load on the 
exterior (upper) tyres decreases. The formulas for the change in loads on the tyre are: 

cos sin
2

cos sin
2

cos sin
2

front axle front axle cg
fl vehicle roll vehicle roll

front axle front axle cg
fr vehicle roll vehicle roll

rear axle rear axle cg
rl vehicle roll vehicle roll

rr

Fz Fz h
Fz

t
Fz Fz h

Fz
t

Fz Fz h
Fz

t

Fz

φ φ

φ φ

φ φ

⋅
= ⋅ − ⋅

⋅
= ⋅ + ⋅

⋅
= ⋅ − ⋅

cos
2

rear axle rear axle cg
vehicle roll vehicle roll

Fz Fz h
v

t
φ φ

⋅
= ⋅ + ⋅

 (35) 

2.7.3 Estimator performance 
To investigate the performance of the proposed vertical load estimator, simulations have 
been conducted for wide range of driving manoeuvres (Table 4), without including any 
road disturbances. 
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Table 4 Simulation cases 

 Vehicle 
Speed (Kph) 

Friction 
Coefficient (µ) 

Test 
manoeuvre 

Road Bank 
Angle (°) 

Road Grade 
Angle (°) 

Case 1 140 Varying  
(high-low-high) 

Double lane 
change 

0° 0° 

Case 2 80 0.85 Fishhook 3° 3° 

The comparison of the estimated vertical forces using the algorithm described in Section 
2.7 and actual forces using the CarSim software is presented in Figures 16 and 17. 
Results show that the estimated vertical forces match the simulated forces well. 

Figure 16 Test condition: double lane change manoeuvre (varying µ condition) (see online version 
for colours) 

 

Figure 17 Test condition: fishhook manoeuvre (constant µ, banked (3°) and graded road (2°) 
condition) (see online version for colours) 
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2.8 Tyre longitudinal and lateral force estimator 

2.8.1 Longitudinal force estimator 
In the case of a normal driving situation, longitudinal force estimators designed at the 
previous time instant (i.e., wheel dynamics based observer) show good performance. 
However, during extreme manoeuvring conditions, where the slip-ratio is large, the 
performance of the estimator is not satisfactory, since the longitudinal tyre-force 
estimator based on wheel dynamics model does not take into consideration the effects of 
deformation slip or wheel slip. To overcome this drawback (unsatisfactory performance 
under high-slip conditions) of a wheel dynamic based observer, a tyre model based 
closed-loop feedback observer is proposed. It is possible to use the commonly used tyre 
models such as the Magic Formula (MF for short) tyre model for accurate modelling, but 
this would result in heavy computation work which is usually beyond the computation 
authority of the on-board microprocessors. The estimator concept used here relies on a 
physically derived tyre model called the Dugoff tyre model. In its simplest formulation, 
the model describes the relationship between the tyre force and the slip as a function of 
two parameters, the tyre stiffness ( ,x yC ) and the tyre to road friction coefficient (µ). The 
tyre stiffness describes the inclination of the force-slip relation at small slips whereas the 
friction coefficient describes its curvature and peak value. 

Dugoff-tyre model can be expressed as follows: 

( )
1x x

sF C f
s

λ= ⋅ ⋅
+

 (36) 

tan( ) . ( )
1yF C f

s
α λ= ⋅

+
 (37) 

where λ is related to tyre-road friction coefficient (µ); λ and function f(λ) are defined, as 
follows: 

2 2

(1 )

2 ( ) ( tan )
z

x y

F s

C s C

μλ
α

⋅ ⋅ +
=

+
 (38) 

( )2 , 1
( )

1, 1
f

λ λ λ
λ

λ
− <

=  ≥
 (39) 

Under pure longitudinal slip conditions, the above equations simplify to: 

( )
1x x

sF C f
s

λ= ⋅ ⋅
+

 (40) 

(2 ) , if 1
( )

1, otherwise
f

λ λ λ
λ

− <
= 


 (41) 

(1 )
2 | |

x z

x

F s
C s

μλ ⋅ ⋅ +
=  (42) 
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max( , )
w x

w x

r v
s

r v
ω

ω
⋅ −

=
⋅

 (43) 

Figure 18(a) shows the comparison between the longitudinal forces calculated by the 
Dugoff and MF tyre models. This comparison shows that there is no peak point in the 
Dugoff model, and the peak value is much smaller than the MF model. Also, the 
difference in the two models is larger when the slip-ratio is high (i.e., a larger difference 
in the unstable/saturation region can be seen). Previous publications (Ding and Taheri, 
2010) have shown that the above stated discrepancies between Dugoff-tyre and MF-tyre 
models can be reduced if different tyre/road friction coefficients are taken for different 
magnitudes of slip-ratio. 

Figure 18 (a) tyre forces calculated by the dugoff and MF model and (b) tyre forces calculated by 
the modified dugoff and MF model (see online version for colours) 

 
The slip-dependent friction coefficient is expressed as (Ding and Taheri, 2010): 

( )1

for pure longitudinal slip,  where
x xp xs

l
xp

l

s s

c
k

μ μ μ

μ μ

= − +

=

 (44) 

3 20.5545 0.9697 1.0424xs xp xp xpμ μ μ μ= − +  (45) 

where lc  = 1.125 and lk  = 0.925. lc  and lk  are compensation factor and attenuation 
factor, respectively. Force calculations based on the modified Dugoff tyre model are 
shown in Figure 18(b). The results are seen to be coincident to the MF tyre model. The 
modified Dugoff model has the virtues of the original model, and the precision in 
nonlinear condition is much improved. Hence, the estimator concept proposed here is 
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based on the modified Dugoff tyre model. As mentioned previously, the Dugoff model 
describes the relationship between the tyre force and the slip as a function of two 
parameters, the tyre stiffness and the tyre to road friction coefficient. In the small slip 
range, the longitudinal force increases proportional to the slip and the gradient of the 
force-slip curve is defined as the tyre longitudinal stiffness. Thus, the longitudinal force 
model in the small-slip range can be expressed as follows: 

, for | | 3%x xF C λ λ= ⋅ <  (46) 

Satisfactory performance of the wheel dynamics based observer in the small slip region 
( 3%λ < ) provides us with an opportunity to adaptively estimate the longitudinal 
stiffness of the tyre using an online parameter estimation algorithm. Equation (46) can be 
rewritten into a standard parameter identification form as follows: 

( ) ( ) ( )Ty t t tϕ θ= ⋅  (47) 

where ( ) xy t F=  is the system output (from the wheel dynamics based observer), 

( ) xt C= , is the unknown parameter, and ( )T tϕ λ=  is the measured slip ratio. The 

unknown parameter ( ) t
 
can be identified in real-time using parameter identification 

approach. The recursive least squares (RLS) algorithm (Sastry, 1989) provides a method 
to iteratively update the unknown parameter at each sampling time to minimise the sum 
of the squares of the modelling error using the past data contained within the regression 
vector, ( ) tϕ . The performance of the RLS algorithm is evaluated with simulations 
where the road surface is designed to have sudden friction coefficient changes, and the 
vehicle manoeuvre is straight driving with intermittent gas pedal presses. 

From Figure 19, it can be see that the estimator shows delayed estimation at the first 
change due to lack of excitation at that time. Once excitation occurs at 2.2 seconds, the 
estimator updates the longitudinal stiffness. 

Figure 19 (a) road surface condition (bottom) and the tyre slip-ratio (top) during the simulation 
and (b) longitudinal stiffness estimation result (bottom) and corresponding activation 
signal (top) (see online version for colours) 

 

The second parameter of interest required to describe the relationship between the tyre 
force and the slip using the Dugoff model is the tyre- road friction coefficient (µ). As 
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shown previously in Germann et al. (1994), Ray (1997), Gustafsson (1997), Muller et al. 
(2003), Lee et al. (2004) and Li et al. (2007), there is a co-variation between the friction 
coefficient and the longitudinal stiffness ( xC ) of a tyre. Hence a popular and in many 
circumstances successful approach to assess the friction is to estimate the longitudinal 
stiffness, i.e., the incline of the tyre force relative to slip at low slips and from this value 
distinguishing between different surface conditions. 

Contrary to this popular belief, some recent studies (Svendenius, 2007) show that the 
longitudinal stiffness depends on many factors and a generic relation between the slope 
and the exact friction coefficient is therefore not possible to obtain. The relation is 
physically difficult to explain and does not always hold. The longitudinal stiffness has 
been shown to be sensitive to many other factors, namely, tyre inflation pressure, vertical 
load, wear and temperature, and a change of the stiffness might not guarantee a change in 
friction. To develop a tyre-road friction coefficient (µ) estimation technique robust 
against these uncertainties, it is proposed here to use an observer based parameter 
estimation scheme. The general formulation of the estimation scheme is as follows: 

Consider the following nonlinear dynamic system and nonlinear measurement: 

( , , )
( , , )

x f x u
y h x u

θ
θ

⋅ =
=

 (48) 

where x is the state of the system, y is the measurement, u is the control input, and θ is a 
vector of constant parameters to be estimated. For the system shown in (61), the 
following parameter and state estimation algorithm (Friedland, 1997) can be applied: 

1

2

( , , ) ( , , ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
ˆ ( , , )ˆ ˆ(ˆ )ˆ

x f x u k x u y y

k x u y y

θ θ
θ θ

⋅

⋅

= + ⋅ −

= ⋅ −
 (49) 

Where the observer gains ( 1k , 2 k ) can be determined using an optimisation routine that 
maximises robust stability against plant uncertainties. Applying the above design 
methodology for our friction estimation problem, the estimation scheme proposed here is 
based on equations for the longitudinal motion of the vehicle (Figure 6(a)). The equation 
of motion can be derived by force equilibrium as shown in Figure 6(a) and the resulting 
equation is: 

    x x aero drag grade rolling resistancemv F F F F−= − −


 (50) 

( ) 21or     sin cos
2fl fr rl rrx x x x x d f x grade r grademv F F F F C A v mg f mgρ θ θ= + + + − − −


 (51) 

( ) 21or   
2fl fr rl rrx x x x x d f x grade r gradeF F F F mv C A v mgsin f mgcosρ θ θ+ + + = + + +


 (52) 

The longitudinal force ( ) 
fl fr rl rrx x x x xF F F F F= + + +  

evolution is modelled with a 

random walk model, with derivative equal to random noise as: 

ˆ 0xF ⋅ =  (53) 

Applying principles of sliding mode observer, an estimator can be designed as: 
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1
ˆ
xF k⋅ =  

21( )
2tanh

( ˆ ˆ ˆ ˆ )
fl fr rl rr

x d f x grade r grade

x x x x

mv C A v mgsin f mgcos

F F F F

ρ θ θ⋅ + + + 
 
 − + + + 

 (54) 

2

2

3

1( sin cos )
2tan

( )

ˆ

ˆ ˆ ˆ ˆ

an ( ˆt )
fl fr rl rr

x

x d f x grade r grade

x x x x

C

k

mv C A v mg f mg
h

F F F F

k h

μ

ρ θ θ

μ μ

⋅

⋅

=

 + + + ⋅  
 − + + + 

+ ⋅ −

 (55) 

Where the system state and parameter to be estimated are 
.

xF


 and 
.

µ


. 
. . .

 
fl fr rf rrxF

 
is the 

longitudinal force estimate for the individual wheels obtained using the modified Dugoff 
model, updated at each time step using the tyre stiffness and the tyre-road friction 
coefficient estimate. 

The performance of the observer was evaluated with simulations where the road 
surface is designed to have sudden friction coefficient changes (Table 5). 

Table 5 Simulation cases 

 Friction coefficient (µ) 
Case 1 Low mu 
Case 2 Jump mu (high-low-high) 

Figure 20 shows that the proposed observer can estimate the longitudinal forces 
successfully even under high-slip conditions. 

2.8.2 Lateral force estimator 

A sliding mode observer (SMO) methodology is proposed to observe the tyre lateral 
forces. The observer estimates lateral forces per axle ( , )

front reary yF F  and then calculates 
lateral force on each tyre according to the distribution of the estimated vertical forces as: 

fl

fl front

fl fr

fr

fr front

fl fr

rl

rl rear

rl rr

rr

rr rear

rl rr

z
y y

z z

z
y y

z z

z
y y

z z

z
y y

z z

F
F F

F F

F
F F

F F

F
F F

F F

F
F F

F F

= ×
+

= ×
+

= ×
+

= ×
+

 (56) 



   

 

   

   
 

   

   

 

   

    Integrated state and parameter estimation for vehicle dynamics control 359    
 

    
 
 

   

   
 

   

   

 

   

       
 

The observer is built in such a way that it requires no tyre force model or prior 
knowledge of road friction. The tyre forces (axle forces) are modelled with a random 
walk model: 

0

0
front

rear

y

y

F

F

⋅

⋅

=

=
 (57) 

The vehicle dynamics are described by the following state and measurement equations: 

1 2 3

1 2

[ , , ] [ , , ]

[ , ] [ , ]
front reary y

y

X x x x F F r

Y y y a r

= =

= =
 (58) 

Vectors 1 2 3[ , , ]X x x x=
   

 and 1 2[ , ]Y y y=
  

 represent the state and measurement 
estimations. The measurement model is: 

1

1 2
1 1 3;

ˆ ˆ
ˆ ˆ ˆx xy y x

m
+

= =  (59) 

where m is the vehicle mass. The estimation errors for states and measurements are 
denoted respectively as: 

1 1 2 2 3 3

1 1 2 2

ˆ ˆ ˆ[ , , ]
[ , ]ˆ ˆ

x

y

e x x x x x x
e y y y y

= − − −
= − −

 (60) 

The state estimates evolve according to the four-wheel vehicle model, the force model 
and the sign of the measurement estimation errors as: 

1 1

1 2

2

1 11 12

2 21 22

3 2 1 31

( ) ( )

( ) ( )

1 * * (( ) (

ˆ

ˆ

ˆ )) ( )
2

ˆ ˆ
fr rr fl rl

y y

y y

x x x x y
z

x k sign e k sign e

x k sign e k sign e

tx a x b x F cos F F cos F k sign e
I

δ δ

⋅

⋅

⋅

= +

= +

 = − + + − + +  

 (61) 

where 11 12 21 22 31, , , ,  k k k k k  are the observer gains. xijF
 
is the longitudinal force estimate 

for the individual wheels obtained using the estimation scheme proposed in Section 2.8.1. 
The force balance equations also include any additional forces and moments 

generated from longitudinal drive traction or braking forces at the wheels. The 
longitudinal force terms should be included so the lateral estimation does not become 
corrupted, especially in situations when the vehicle is undergoing significant acceleration 
or braking. The drive and traction forces of the front wheels contribute to the lateral force 
of the steered wheels, and any ESC differential braking produces an additional moment 
that must be included in the moment equation. A complete study for the convergence of 
the SMO is presented in (Baffet et al., 2007). The performance of the observer was 
evaluated for a range of different simulations cases. From Figure 21 we see that the SMO 
observer produces satisfactory estimations close to the actual value. 
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Figure 20 Observer performance (ref. Table 5 for a description of the simulation conditions)  
(see online version for colours) 

 

2.9 Vehicle lateral and longitudinal velocity estimator 

2.9.1 Estimation concept 
Longitudinal and lateral vehicle velocities are important information for active vehicle 
stability control. But for both technical and economical reasons, these vehicle states 
cannot be measured directly in a standard car. As a result, the problem of longitudinal 
and lateral vehicle velocities estimation has attracted considerable attentions of many 
researchers, and several works have already been conducted over the past few years. 
Kalman filter based techniques (KF, EKF…) have become a standard technique, used in 
many nonlinear estimation and machine learning applications. KF is only applied to 
linear systems, and EKF is developed for state estimation in non-linear systems. But as 
linearisation of EKF algorithm requires the evaluation of a Jacobian matrix at each time 
step, the computational complexity is enlarged. To avoid this problem, Julier et al. (1995) 
proposes Unscented Kalman Filter (UKF) (Wan and Van Der Merwe, 2000), which 
avoids the linearisation errors and improves filtering accuracy. The UKF acts directly on 
the nonlinear model and approximates the states by using a set of sigma points, avoiding 
the linearisation made by the EKF (Julier and Uhlmann, 1997). This study proposes to 
estimate longitudinal and lateral velocity based on UKF using vehicle dynamics model. 
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Figure 21 Observer performance: case 1- double lane change, and case 2- slalom steering 
manoeuvre (55 deg/0.25 Hz) (see online version for colours) 

 

In most vehicle handling and stability studies, two degrees of freedom vehicle model is 
usually used, which need to make a great linear hypothesis. To obtain a more realistic 
simulation of vehicle performance, a nonlinear model with four wheels (coupled model 
very largely used in simulation) is selected in this study. The different equations for the 
calculation of longitudinal, lateral and yaw motion are as follows: 

cos cos
fl fr rl rrx x x x

x

F F F F
v

m

δ δ
⋅

+ + +
=  

sin( )y pitchr v g θ+ ⋅ − ⋅  (62) 

sin( )front reary y
y x roll

F F
v r v g

m
φ⋅

+
= − ⋅ − ⋅

 (63) 

(( )

( ))
2

front rear fr rr

fl rl

y y x x

x x

z

a F b F F cos F

tF cos F
r

I

δ

δ
⋅

⋅ − ⋅ + +

− + ⋅
=  (64) 
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where, m is the vehicle mass; δ is the steering angle of front wheel; a and b are the 
distances from front and rear axle respectively to center of gravity; t is the vehicle track-
width; xv  is longitudinal velocity; yv  is lateral velocity; r is yaw rate;  pitchθ  is the vehicle 
pitch (global) angle; rollφ  is the vehicle roll (global) angle;

ijxF  are tyre longitudinal 

forces, and  
frontyF  and  

rearyF  are the lateral forces at the front and rear axles, respectively. 

The nonlinear model can be transformed into standard state-space form with state vector 
(x) composed of longitudinal speed, lateral speed and yaw rate: 

[ , , ]x yx v v r=  (65) 

The input vector (u) comprises the measured steering angle, tyre forces (considered 
estimated beforehand, see Section 2.7), and vehicle global roll and pitch angles 
(considered estimated beforehand, see Section 2.4): 

[ , , , , , , , , ]
fl fr rl rr front frontx x x x y y pitch rollu F F F F F Fδ θ φ=  (66) 

The measure vector (y) comprises vehicle longitudinal velocity (considered estimated 
beforehand, see Section 2.6), measured yaw rate, and lateral accelerations: 

,[ , , ]x y my v r a=  (67) 

The process and measurement noise vectors are assumed to be white, zero mean and 
uncorrelated. The schematic simulation block diagram is represented in Figure 22. 

Figure 22 Schematic diagram of the vehicle longitudinal and lateral velocity estimation process 
(see online version for colours) 
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2.9.3 Simulation analysis 
The performance of the observer was evaluated for a range of different simulations cases 
(Table 6 and Figure 23). 

Table 6 Simulation cases 

 Vehicle speed (Kph) Friction coefficient (µ) Test manoeuvre 
Case 1 140 0.85 Double lane change 
Case 2 140 Varying (high-low-high) Double lane change 

Figure 23 Observer performance (ref. Table 6 for a description of the simulation conditions)  
(see online version for colours) 

 

2.10 Tyre slip-ratio and slip-angle estimator 

2.10.1 Slip ratio estimator 
As shown in Section 2.6, the output of the longitudinal vehicle speed estimation 
algorithm could also be employed for reliably computing the longitudinal wheel slip. 
Performance of the observer under extreme braking conditions (Table 7) is demonstrated 
in Figure 24. 

Table 7 Simulation cases 

 Vehicle Speed (Kph) Friction coefficient (µ) Test manoeuvre 
Case 1 100-0 0.5 Straight-line braking 
Case 2 100-0 Varying Straight-line braking 

2.10.2 Slip angle estimator 
2.10.2.1 Estimation concept and observer update law 
To estimate the tyre slip angle, an update equation for the front slip angle is derived as a 
function of the tyre forces. A four-wheel vehicle model is employed to simulate the 
vehicle rigid body dynamic. The dynamic equations of motion of the vehicle model are 
presented in equations (68)–(70): 
 
 



   

 

   

   
 

   

   

 

   

   364 K.B. Singh and S. Taheri    
 

    
 
 

   

   
 

   

   

 

   

       
 

cos cos
sin( )fl fr rl rrx x x x

x y pitch

F F F F
v r v g

m

δ δ
θ⋅

+ + +
= + ⋅ − ⋅  (68) 

sin( )front reary y
y x roll

F F
v r v g

m
φ⋅

+
= − ⋅ − ⋅  (69) 

(( )

( ))
2

front rear fr rr

fl rl

y y x x

x x

z

a F b F F cos F

tF cos F
r

I

δ

δ
⋅

⋅ − ⋅ + +

− + ⋅
=  (70) 

where ( cos sin ) ( cos sin )
front fl fl fr fry y x y xF F F F Fδ δ δ δ= + + +  and 

rear rl rry y yF F F= +  are the 

lateral forces at the front and rear axles, respectively. 
Using kinematics, the front and rear tyre slip angles are linearised to be: 

y
f

x

v a r
v

α δ
+ ⋅

= −  (71) 

y
r

x

v b r
v

α
− ⋅

=  (72) 

The update equation for the front slip angle is derived by taking the derivative of (72) 

y
f

x

v a r
v

α δ
⋅ ⋅

⋅ ⋅+ ⋅
= −  (73) 

Substituting expressions for yv
⋅

 (equation (69)), and r
⋅
 (equation (70)) in equation (73), 

we get: 
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Rearranging above equation, we get: 
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Figure 24 Observer performance (ref. Table 7 for a description of the simulation conditions)  
(see online version for colours) 

 

Thus, to update ˆ fα ⋅ , we may integrate the following observer update law: 
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where k  is the observer feedback gain and ya  is the measured lateral acceleration. Once 
ˆ fα  is updated, the rear slip angle estimate ( ˆrα ) can be updated using the kinematic 

relationship described by equation (72). 
From equation (76), we can see that an estimate of the tyre slip angle can be made, 

provided we have real-time information about the tyre longitudinal/lateral forces. To 
successfully achieve the objective of estimating the tyre slip angle, an integrated 
estimation scheme is proposed (Figure 25). The estimation scheme consists of two key 
blocks:  

• tyre longitudinal force estimator 

• tyre lateral force estimator. 

2.10.2.2 Slip angle estimator performance 
Using the tyre longitudinal/lateral force estimates (considered estimated beforehand, see 
Section 2.8), the performance of the slip angle observer (equation (86)) was evaluated for 
range of different aggressive steering manoeuvres. Figure 26 shows that the proposed 
observer can estimate the tyre slip angle successfully even for challenging (aggressive 
manoeuvring) operating conditions. 

Figure 25 Schematic diagram of the tyre slip angle estimation process (see online version  
for colours) 
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Figure 26 Observer performance – slalom steering manoeuvre (55 deg/0.25 Hz) (see online 
version for colours) 

 

3 Conclusion 

Active safety systems such as the antilock braking system (ABS), traction control system 
(TCS) or Electronic Stability Program (ESP) intervene before a crash occurs and 
significantly contribute to the reduction in the number of crashes. For the future 
development trend of these systems, a more complex and integrated control unit requires 
additional information about the vehicle dynamics. Some fundamental parameters such as 
tyre forces and sideslip angle are effective in describing vehicle dynamics, however, a 
direct measurement of these variables is cost-prohibitive for automotive applications. 
This study presents a method to estimate these parameters of interest using observer 
technologies. The proposed observer consists of an integrated vehicle state estimator 
comprising of a series of model based and kinematic based observers arranged in a 
cascaded structure. It is assumed that a set of data obtained from a low-cost six-
dimensional inertial measurement unit is available. This includes the linear acceleration 
of the vehicle and the angular rates of all axes. In addition, the observer exploits the data 
from the wheel speed sensors and the steering-wheel angle, which are already available 
for recent production cars. The estimator is implemented in the Matlab/Simulink and 
CarSim® software environment. Results presented here show the ability of cascaded 
estimators to provide accurate estimates of vehicle states. 

The main contribution of this work is to estimate tyre forces and sideslip angle with 
an acceptable accuracy using standard sensors which are available in most of the series 
production vehicles today. Therefore, this method enables a cost-effective 
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implementation for future real-time vehicle applications. The longitudinal/lateral tyre 
forces provide important information on the computation of the optimised active 
longitudinal and lateral tyre forces to be generated by the different control modules of an 
integrated chassis control system typically consisting of individual modular chassis 
control systems such as the ESC, active front steering (AFS) and continuous damping 
control (CDC). An integrated chassis control ensures optimal tyre usage via an optimum 
longitudinal and lateral tyre force distribution by four-wheel independent steering, 
driving, and braking. Using an integrated state estimation approach also gives added 
value in terms of more information, increased robustness and the opportunity to reduce 
costs by allowing the use of fewer or lower resolution sensors. 

These improved state estimates can be used to develop a more reliable and efficient 
vehicle stability control algorithm. It is expected that a new control strategy aiming to use 
all the information available from the vehicle state estimator would significantly enhance 
vehicle stability during emergency evasive manoeuvres on various road conditions 
ranging from dry asphalt to very slippery packed snow road surfaces. Another potential 
advantage could be in terms of minimising false ESC interventions. In a situation where 
an ESC is tuned to prioritise stability over handling for robustness reasons, brake 
interventions may come too early and feel harsh to the driver. However, with knowledge 
of the sideslip angle, the control engineer has more freedom to tune the ESC intervention 
thresholds and prevent brake interventions occurring too early. It is noteworthy to 
mention that the vehicle state information derived either from chassis mounted 
accelerometer sensors or from engine/brake torque information are fraught with 
reliability problems. The development of a sensorised smart/intelligent tyre system 
(Singh et al., 2012, 2013; Morinaga, 2013; Yasushi Hanatsuka and Morinaga, 2013; Arat 
et al., 2013, 2014; Singh and Taheri, 2015) is expected to eliminate some of the vehicle 
sensors and provide accurate, reliable and real-time information about magnitudes, 
directions and limits of force for each tyre. Future work will explore the possibility of 
developing novel sensor signal fusion schemes combining the tyre sensed information 
from an intelligent tyre and vehicle sensor information available on typical passenger cars 
to further improve the accuracy of the vehicle state estimator. 
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Nomenclature 
In this section all symbols used in this work are listed. 

fFy  ( )Front axle lateralforce in vehiclebodyaxis  

rFy  ( )Rearaxle lateralforce in vehiclebodyaxis  

Fx  ( )Summation of tire longitudinalforces in vehiclebodyaxis  

φ  Roll angle  

:θ  Pitch angle  

ψ  Yaw angle  
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:xv  Longitudinal velocity at C.G  

yv  Lateral velocity at C.G  

xa  Longitudinal acceleration measured at C.G  

ya  Lateral acceleration measured at C.G  

za  Vertical acceleration measured at C.G  

p  Roll rate measured at C.G  

q  Pitch rate measured at C.G  

r  Yaw rate measured at C.G  

m  Total vehicle mass  

ms Sprung massof the vehicle  

mu Unsprung massof the vehicle  

g Gravitational constant  

hcg VehicleC.G. height  

hr Eight of therollcenter from theground  

frontrh  Height of thefront rollcenter from theground  

rearrh  Height of the rear rollcenter from theground  

ah  Height of theunsprung massfrom theground  

rollh  Height of thesprung massfrom therollaxis  

a  Distance between C.G.and frontaxle  
b Distance between C.G.and rearaxle  

L Distance between front and rear axle  
Iz Moment of inertia about z-axis/yaw axis  

Ix Moment of inertia about x-axis/rollaxis  

β Vehiclesideslipangle  

susδ  Suspension deflection  

λ  Tyre slip-ratio  

α  Tyre slip-angle  

eT  Engine torque  

Tb Brake torque  

Tw Wheel torque  

 Wheelangularspeed  
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wω  Angular position of the wheel  

rollk  Rollstiffness  

rollc  Roll damping coefficient  

chassisφ  Vehicle chassis rollangle  

chassisθ  Vehicle chassispitch angle  

road bankφ  road bank angle  

road gradeθ  Road gradeangle  

t  Track width  

vehiclerollφ  Vehicle rollangle  

SSvehiclerollφ  Vehicle steadystate rollangle  

TSvehiclerollφ  Vehicle transient state rollangle  

vehicle pitchθ  Vehiclepitch angle  

SSvehicle pitchθ  Vehiclesteadystatepitch angle  

TSvehicle pitchφ  Vehicle transient statepitch angle  

,x ma  Measured longitudinal acceleration of the vehicle  

,y ma  Measured lateral acceleration of the vehicle  

,x ca  Bias compensated longitudinal acceleration of the vehicle  

,y ca  Bias compensated lateral accelerationof the vehicle  

or  Originial wheel radius  

wr  Effective wheel radius  

wv  Linear velocity of the four wheels  

averagev  Average of the four wheel speeds  

non driven averagev −  Average of the two non-driven wheel speeds  

:minv  Vehilespeed threshold  

acca  Acceleration threshold  

dcca  Decceleration threshold  

front axleFz  Normal force of the frontaxle  

rear axleFz  Normal force of the rear axle  
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flFx  Longitudinal force of the front-leftwheel  

frFx  Longitudinal force ofthe front-rightwheel  

rlFx  Longitudinal force ofthe rear-leftwheel  

rrFx  Longitudinal force of the rear-rightwheel  

flFy  Lateral force of the front-leftwheel  

frFy  Lateral force of the front-rightwheel  

rlFy  Lateral force of the rear-leftwheel  

rrFy  Lateral force of the rear-rightwheel  

flFz  Vertical force of the front-leftwheel  

frFz  Vertical force of the front-rightwheel  

rlFz  Vertical force of the rear-leftwheel  

rrFz  Vertical force ofthe rear-rightwheel  

rrF  Rolling resistanceforce  

Lateral Load TransferW  Vehicle lateral load transfer  

Longitudinal Load TransferW  Vehiclelongitudinal load transfer  

LTR  Load transfer ratioδ  

kf Front suspension stiffness  

kr Rearsuspension stiffness  

kbf Brake gain of the frontwheel  

kbr Brake gain of the rearwheel  

Jw Spin inertia for each wheel  

kt Spring ratio of the tire  

δ Tyresteerangle  

Cx Tyrelongitudinalstiffness  

Cy Tyrecorneringstiffness  

μ Tyre road friction coefficient  

Cd Vehicledragcoefficient  

Af Frontalarea of the vehicle  

ρ Densityof air  
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A Statematrix  

B Input matrix  

C Output matrix  

D Feedthrough matrix  

P Covariancematrix  

Appendix 

In this appendix section, the effectiveness of the overall integrated scheme is validated 
for a double lane change manoeuvre. 

List of vehicle model parameters used in simulation: 

m = 1570 Total mass of the vehicle (kg) 

sm = 1370 Sprung mass of the vehicle (kg) 

zI = 4192 Moment of inertia about the yaw axis (kg-m2) 

a = 1.11 Distance from the CG to the front axle (m) 
b = 1.66 Distance from the CG to the rear axle (m) 
tr = 1.6 Track width (m) 
Steering gear ratio 17.25 
hr = 0.42 Height of the roll center (m) 
ha = 0.3 Unsprung mass from the ground (m) 
hs = 0.11 CG to roll center distance (m) 

cg r sh h h= +  CG height from ground (m) 

sfk = 29.661 Front suspension spring stiffness (N/mm) 

srk = 20.082 Rear suspension spring stiffness (N/mm) 

rollk = 29 Roll stiffness (N-m/deg) 
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