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Abstract: Most modern day automotive chassis control systems employ a
feedback control structure. Therefore, a real-time estimate of the vehicle
handling dynamic states and tyre-road contact parameters are invaluable for
enhancing the performance of current vehicle control systems, such as anti-lock
brake system (ABS) and electronic stability program (ESP). Today’s
production cars are equipped with onboard sensors (e.g., a 3-axis
accelerometer, 3-axis gyroscope, steering wheel angle sensor, and wheel speed
sensors) which when used in conjunction with certain model based observers
can be used to identify relevant vehicle states for optimal control of comfort,
stability and handling. However, some key variables such as the tyre forces,
road bank/grade angles, and the tyre-road friction coefficient, which have a
significant impact on vehicle handling performance and safety are difficult to
measure using sensors already onboard vehicles. This paper introduces an
integrated vehicle state estimator comprising a series of model-based and
kinematic-based observers for estimating these unmeasurable states. Using an
appropriate vehicle model, kinematic equations of motion and vehicle sensor
data, the unknown vehicle states as well as the tyre-road contact forces are
estimated by implementing a series of observers arranged in a cascade
structure. Key estimated signals include the vehicle side slip angle (f), tyre
longitudinal/lateral/vertical forces, and the tyre-road friction coefficient (u).
The performance of the proposed estimators has been evaluated via computer
simulations conducted using the vehicle dynamics software CarSim®. An
effectively designed merging scheme ensures robust estimation performance
even during the vehicle manoeuvres which show highly nonlinear tyre
characteristics and in the existence of road inclination or bank angle.

Keywords: state estimation; parameter estimation; SMO; sliding mode
observer; KF; Kalman filter; RLS; recursive least squares.
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1 Introduction

For implementation of automotive control algorithms, accurate information about
the state of the vehicle and its surroundings is important. Real-time measurements of the
vehicle handling dynamic states are extremely vital for the online computation of the
optimised active longitudinal and lateral tyre forces to be generated by electronic stability
control modules. Although some of these states are easily measured, others are difficult
to measure because of high cost or impracticality. Therefore, vehicle-control systems
currently available on production cars rely on available inexpensive measurements, such
as wheel speeds, accelerations and yaw-rate. Knowledge about additional states of a
vehicle (e.g., vehicle roll angle, side slip angle, lateral load transfer ratio etc.) can
significantly reduce the risk of accidents through effective design and implementation of
advanced chassis control systems. As a result, the problem of vehicle state estimation has
attracted considerable attention of many researchers and many studies have been
conducted to estimate vehicle states using model based and/or kinematic based estimation
techniques.

A summary description of the state-of-the-art in the field of vehicle state estimation is
given in Table 1. In works by Baffet et al. (2008, 2009) and Zhang et al. (2009), a sliding
mode observer is proposed to estimate tyre-road forces, while an extended Kalman filter
estimates sideslip angle and cornering stiffness. An extended Kalman filter based
estimation process for lateral load transfer and wheel-ground contact normal forces is
developed in Doumiati et al. (2008, 2009a, 2009d). In Fathy et al. (2008), Vahidi et al.
(2005), a recursive least square scheme for the online estimation of vehicle mass is
examined. Cho et al. (2010) presents a scheme for longitudinal/lateral tyre-force
estimation using a random-walk Kalman filter. Doumiati et al. (2009b, 2009¢, 2010a,
2010b, 2011), two observers derived from extended and unscented Kalman filtering
techniques are proposed and compared to estimate tyre-road forces and vehicle sideslip
angle. A method for the evaluation of a risk skid indicator based on the estimation of the
maximum friction coefficient is proposed in (Ghandour et al., 2010, 2011a, 2011b).
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Doumiati et al. (2011a) present a method to estimate the road profile elevation based on a
classical Kalman filter. Grip et al. (2009b) presents a nonlinear vehicle sideslip observer
with reduced computational complexity compared to an extended Kalman filter. In Ray
(1995) and Samadi et al. (2001), an extended Kalman filter based method is presented to
estimate the dynamic state and tyre-road forces for a nonlinear vehicle model. In Rabhi
et al. (2007) and M’sirdi et al. (2006) cascaded observers based on first or second order
sliding modes are used to estimate the contact forces. Hsiao et al. (2011) presents a tyre
force estimator, designed by accounting for the dependency between the longitudinal and
lateral tyre forces by introducing the friction ellipse into the estimation algorithm. In
Dakhlallah et al. (2008) and Sebsadji et al. (2008), an extended Kalman filter and
Luenberger observer based method for the estimation of the vehicle dynamics using a
nonlinear vehicle model is proposed. In Zhu and Zheng (2008), Pan et al. (2009), Chen
and Hsieh (2008) and Cheng et al. (2011), a nonlinear observer using unscented Kalman
filter (UKF) to estimate sideslip angle is presented. In Nam et al. (2011), lateral tyre
forces obtained from a multi-sensing hub unit are used to estimate vehicle lateral velocity
and roll angle using a recursive least square algorithm and a Kalman filter. Hu et al.
(2010) and Chu et al. (2010) present a vehicle lateral and longitudinal velocity estimation
method using an adaptive/unscented Kalman filter. In Tanelli et al. (2006), an algorithm
for the estimation of longitudinal vehicle speed, based on the measurements of the
four-wheel rotational speeds and of the longitudinal vehicle acceleration is presented.
In Chu et al. (2011), a fuzzy logic is used to get an estimate of the vehicle longitudinal
velocity; together with the estimated vehicle longitudinal acceleration, a Kalman filter is
used to estimate the velocity of vehicle for use in ESC control applications. Chen et al.
(2010) and Ryu et al. (2007) present a Kalman filter based approach to estimate roll angle
and roll rate with either a three-degree-of freedom (3DOF), or 1DOF vehicle model. In
(Yi et al.,, 2007), an estimator design based on a three-degree-of-freedom vehicle
manoeuvring model and a four-degree-of-freedom half-car suspension model is used to
obtain estimates of the vehicle roll angle and roll rate in driving situations in which both
manoeuvring and road disturbances affect the vehicle roll motions. In Hac et al. (2004),
an approach using a closed-loop adaptive observer for estimating roll angle and roll rate
of vehicle body with respect to the road is proposed. Works from Rajamani et al. (2009,
2011) focuses on algorithms to estimate roll angle and CoG height. The algorithms
investigated include a sensor fusion algorithm that utilises a low frequency tilt angle
sensor, a gyroscope and a dynamic observer that utilises only a lateral accelerometer and
a gyroscope. In Tsourapas et al. (2009), two rollover indexes are proposed and analysed.
The first rollover index estimates the actual lateral transfer ratio (LTR) while the second
index referred to as the predictive lateral transfer ratio (PLTR), incorporates the
predictive influence of the driver’s steering input. Oh and Choi (2011) focus on the
accurate estimation of the vehicle states, including the longitudinal, lateral, and vertical
velocities, as well as the roll and pitch angles, using merging schemes that combine the
kinematic and model-based observer outputs. In Tseng (2001), Eric Tseng et al. (2007)
and Rehm (2010), methods for estimation of road inclination and bank angle are
presented. In Grip et al. (2009a), a scheme for the vehicle roll angle is derived based on
the combination of sensors from vehicle dynamics control system and a rollover
mitigation system. In Cho et al. (2010) and Hac et al. (2010), methods for compensating
the gravity components of the lateral acceleration are proposed. Hsu et al. (2010) present
a model based estimation method that utilises pneumatic trail information in steering
torque to identify a vehicle’s lateral handling limits.
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Table 1 State-of-the-art literature review
Estimated Estimation
Measurements used states Model used methodology References
r,ay,ax,é Tyre forces and  Single-track SMO, EKF Baffet et al.
vehicle sideslip  model (2008, 2009),
angle Zhang et al.
(2009)
ay’ax’é‘sus Tyre normal Vehicle roll EKF Doumiati et al.
force dynamic (2008, 2009a,
model 2009d)
ay vy, AT, Ty Vehicle mass Longitudinal RLS Fathy et al.
v dynamics (2008) and
Vahidi et al.
(2005)
r.a,,a.,6,0,,T,,T, Tyre forces Wheel KF Cho et al. (2010)
dynamics
model,
vehicle
planar model
RN NN NN Tyre forces and  Four-wheel ~ EKF, UKF Doumiati et al.
vehicle sideslip ~ vehicle (2009b, 2009c,
angle model 2010a, 2010b),
Doumiati et al.
(2011b)
RN NN NN Tyre-road Four-wheel ~ EKF, UKF, Ghandour et al.
friction vehicle NLLS (2010, 2011)
coefficientand  model
vehicle lateral
skid indicator
ay,ax,gsus, 7, D,0,® LTR (Lateral Four-wheel EKF, UKF, Ghandour et al.
load transfer) vehicle NLLS (2011)
and LSI model
(Lateral skid
indicator)-
Accident risk
prediction
ay, s Road profile Quarter-car KF Doumiati et al.
i and wheel load  model (2011)
r,a,,a, Vehicle Kinematics Nonlinear Grip et al.
sideslip angle model observer (2009b)
Fody,,dy, O Tyre forces Nonlinear EKF Ray (1995),
. vehicle Samadi et al.
model (2001)
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Table 1 State-of-the-art literature review (continued)
Estimated Estimation
Measurements used states Model used methodology References
T, vy, 0, Velocities and Wheel Robust Rabhi et al.
accelerations of  dynamics differentiator (2007) and
the wheels, tyre  model and sliding M’sirdi et al.
forces (vertical modes (20006)
and
longitudinal)
and friction
coefficient
Ty, 0,r,a,,a, Tyre forces and ~ Wheel Model based Hsiao et al.
vehicle dynamics (2011)
parameter model,
estimation vehicle
planar
model,
Friction
ellipse
r,ax,ay,a),ﬁ Tyre forces and  Four-wheel EKF, Dakhlallah et al.
road grade vehicle Luenberger (2008) and
model observer Sebsadji et al.
(2008)
ay,a,, 0, S Vehicle Bicycle UKF Zhu and Zheng,
sideslip angle model 2008) and Pan et
and yaw rate al. (2009)
Ay, T Vehicle Kinematic EKF Chen and Hsieh
sideslip angle model (2008)
Ayrdy,Vy,s o,r Vehicle Four-wheel UKF Cheng et al.
sideslip angle, vehicle (2011)
lateral tyre road model
forces and tyre
road friction
coefficient
F, Vehicle Yaw plane RLS Nam et al.
sideslip angle model (2011)
Fay,d,, 0,0 Vehicle Bicycle AKF, UKF Hu et al. (2010)
: longitudinal model and Chu et al.
and lateral (2010)
velocity
a,,o Vehicle Kinematics- ~ Rule Based Tanelli et al.
longitudinal based (2006)
velocity
a,,w Vehicle Yaw plane KF, Fuzzy Chu et al. (2011)
longitudinal model logic
velocity
ay,p Roll angle Vehicle roll KF Chen et al.
dynamic (2010) and Ryu
model et al. (2007)
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Table 1 State-of-the-art literature review (continued)
Estimated Estimation
Measurements used states Model used ~ methodology  References
ay,r,é' Roll angle and  Lateral- KF Park et al. (2008)
roll rate dynamics- and Yi et al.
model a (2007)
four-degree-
of-freedom
half-car
suspension
model
ay,,p Roll angle Vehicleroll  Closed loop Hac et al. (2004)
dynamic adaptive
model observer

Ay P> it angle sensor Roll angle and ~ Kinematic Sensor fusion ~ Rajamani et al.
center of sensor (2009, 2011)
gravity height fusion,

Vehicle roll
dynamic
model

ay,p Load Transfer Vehicle roll Model based Tsourapas et al.
Ratio (LTR) dynamic (2009)
and Predictive model
Load Transfer
Ratio (PLTR)

Ay, 0z, PsqsT Roll and pitch Kinematic Merging Oh and Choi
angles, and model- schemes (2011)
longitudinal, based
lateral, and (bicycle
vertical model)
velocities observer

a,r, ) Road bank Bicycle Transfer Tseng (2001)
angle model function

approach,
superposition

Ay, PogsT,@ Vehicle roll Kinematics-  State observer ~ Tseng et al.
and pitch based (2007)
angles observer

7.y, 0,0, ) Road bank and  Kinematic Observers Rehm (2010)
grade angles model using time-

varying gains
p Roll angle Vehicle roll ~ Controlled Grip et al.
dynamic integration (2009a)

model
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Table 1 State-of-the-art literature review (continued)
Estimated Estimation
Measurements used states Model used ~ methodology  References
Ays T3V, P Roll angle Vehicle roll Vehicle state Cho et al. (2010)
dynamic index based
model, switching
Kinematic
model
r,m,0, ay,p Vehicle roll Kinematic Weighting Hac et al. (2010)
angle and model function
Sideslip angle
r,9, ay,vy Tyre Slip angle Bic()llclle State observer  Hsu et al. (2010)
mode

*List of acronyms- SMO: Sliding mode observer, KF: Kalman Filter, EKF: Extended
Kalman Filter, UKF: Unscented Kalman Filter, AKF: Adaptive Kalman Filter, RLS:
Recursive least squares, NLLS: Nonlinear least squares.

Another research topic related to state estimation that has garnered considerable attention
is the concept of system state estimation for active suspension control. This is driven by
the need to develop more advanced control systems for semi-active and fully active
suspension systems which are becoming more and more common on production vehicles.
In Pletschen and Badur (2014), the concept of Takagi-Sugeno observer design has been
adopted for nonlinear state estimation in an actively controlled vehicle suspension
application. In Hernandez-Alcantara et al. (2014), an observer capable of estimating the
unmeasured state variables of the quarter of vehicle (QoV) dynamics subject to unknown
road surfaces is proposed. In Rath et al. (2014), an adaptive super-twisting observer was
proposed for state and unknown input estimation for the active suspension system. In
(Kaldas et al., 2011), a Kalman Filter algorithm is constructed for bounce velocity
estimation. De Bruyne et al. (2011) present the design and development of a state
estimator that accurately provides the information required by a sky-hook controller,
using a minimum of sensors. In Hong and Park (2010), a road-frequency adaptive control
for semi-active suspension systems is investigated. By using the data measured from a
relative displacement sensor, a state estimator based on a Kalman filter for estimating the
required state variables is designed. Road disturbance frequencies are estimated by using
a first order zero-crossing algorithm. In Koch et al. (2010), an estimator structure for
active vehicle suspension control incorporating three parallel Kalman filters has been
presented.

This study introduces an integrated vehicle state estimator, comprising of a series of
model based and kinematic based observers and an effectively designed merging scheme
that ensures robust estimation performance even during the vehicle manoeuvres which
show highly nonlinear tyre characteristics and in the existence of road inclination or bank
angle. In this study, it is assumed that measurements from a 6-axis Inertial Measurement
Unit (IMU) (3-axes of rotation rate measurement and 3-axes of acceleration
measurement), wheel speed sensors, and steering wheel angle sensor are available.
Hence, the scope of this research is to maximise the estimation performance of vehicle
states with only a low-cost six-dimensional (6D) inertial measurement unit (IMU),
regardless of how severely a vehicle is manoeuvred, and without the aid of a GPS.
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The basic organisation of this paper is as follows: Section 2.1 contains information on
the general layout of the observer with the data flow description. Section 2.2 denotes the
principle behind the chassis roll angle estimator. Section 2.3 describes the method for
chassis pitch angle estimation. Section 2.4 focuses on the vehicle roll (global roll) and
pitch angle (global pitch) observer design. Section 2.5 describes the method to
compensate the measured acceleration signals for gravity. Section 2.6 focuses on the
method to estimate the vehicle longitudinal velocity. Section 2.7 describes the method to
estimate the tyre vertical load. Section 2.8 presents a scheme for longitudinal/lateral tyre-
force estimation. Section 2.9 describes a method for estimating the vehicle lateral and
longitudinal velocity. Section 2.10 proposes an estimation procedure for the tyre slip-
ratio and slip-angle, and conclusions are finally given in Section 3.

2 Observer design

2.1 General observer flow chart

The block diagram in Figure 1 explicitly shows the estimation process in its entirety.

Figure 1 Functional diagram of the estimation process (see online version for colours)
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Sensor T D . [Steering Input] [Wheel Speed]
Signal e D 5 P | > Information from CAN Bus
y'z . . —> Internal State Estimates
v v
Vehicle CAN Bus
\'s ¥
i Block 1 .. / Block 3 %
H . accic DI a_.a,
| Vehicle Chassis Roll Vehicle Ch"§s's Pitch 2% > Tire Axle Force
: A . Angle Estimator S .
: ngle Estimator 5 g T —3 > Estimator
: prd i . chassis > ®road bank :
| |ectassis - V‘ chassis| Ochassis *Oroad grade [F, (¥, ¥ ol
. @ bt State Factor Lstimator P q, fe T vV V Ll Tire Longitudinal
TS:[0or 1 - .
Steady State ¢ Transient State > Tlre]?::?eratl Force E l:'orc(:
V| Vehicle Roll & Switch Vehicle Roll & P stimator stimator
2| Pitch Angle Selector Pitch Angle -
Estimator Estimat
O chassis-+ road bank O chassis + road grade :
_ _ a_,rs F .F \
SO ¥ £30€ a v, >y ¥y
S
O bark ®) grade echassfx\ : Vehicle Longitudinal &
T 3 > Lateral Velocity Estimator
chassis > road bank x
0 - y Vo,V
L — B2 chassis * *road grade v Y
chassis ** road grade Vehicle Sideslip Angle
Estimator
Bias Comp i N Block 4
Tire Vertical
Vehicle Longitudinal “| Force/Load Estimator = - =
- ’ K <V riy
Velocity Estimator
Tire Slip-ratio Tire Slip-angle <=
Estimator Estimator i
.

The entire process is separated into five blocks: the first block serves to identify the road
bank and grade angles (using a kinematics-based observer) and vehicle chassis roll (using
a Kalman filter) and pitch angles (with vehicle mass adaptation), the second block
contains a bias compensation algorithm (gravity compensation in accelerometer
measurements), a vehicle longitudinal speed estimation algorithm (based on the
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measurements of the four wheel rotational speeds and the gravity-compensated
longitudinal vehicle acceleration) and a tyre load estimation algorithm (using gravity-
compensated acceleration information and roll/pitch states), the third block contains a
tyre longitudinal/lateral force estimation observer (sliding-mode observer based), while
the fourth block contains a nonlinear vehicle longitudinal and lateral velocity observer
(based on unscented Kalman filter), designed for the purpose of vehicle side-slip
estimation. Finally, the fifth block makes use of the estimations provided by the third and
the fourth block to estimate the tyre slip-ratio and slip-angle (Luenberger observer
based).

2.2 Vehicle chassis roll angle estimator

2.2.1 Modelling approach

Roll angle is an important variable that plays a critical role in the calculation of real-time
rollover index for a vehicle (Yi et al., 2007). Vehicle models used for estimation roll
angle and roll rate include:

e 3DOF model, which represents yaw, lateral and roll motions of a vehicle
(Figure 2(a))

e  1DOF model, which represents only roll motion of a vehicle (Figure 2(b)).

As shown in previous work (Chen et al., 2010), roll angle estimation accuracy using the
3DOF model is adversely affected by the linear tyre model assumption. On the other
hand, the 1DOF model, which does not rely on any tyre model uses the lateral
acceleration directly.

Figure 2 (a) linear 3DOF yaw-roll vehicle model and (b) 1DOF roll dynamics model: (a) 3DOF
vehicle model and (b) 1DOF vehicle model (see online version for colours)

(a) 3DOF Vehicle Model (b) IDOF Vehicle Model

Top View

Front View

Therefore, the 1DOF model is not sensitive to the nonlinear tyre dynamics. Also, the
IDOF model has a practical advantage over the 3DOF model in terms of the required
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model parameters. With these considerations, in this study, a 1DOF model was
considered for designing a roll angle estimator.

Considering the effect of gravity, the equation of vehicle chassis roll motion
(according to the torque balance about the roll axis) is:

+k

roll ¥'chassis

2 - —
(Ix + ms hmll )¢ chassis + crol/ chassis - _mx hrnll ay,m (l)

Here I +mh., is the moment of inertia of vehicle body with respect to the roll axis,

s "roll

¢, 1s the combined roll damping of suspension and tyres, and k,, is the combined roll

stiffness of suspension and tyres. The lateral acceleration used in equation (1) is the
measured lateral acceleration, a,, =a, +gsin(@,,, ), Which includes the effect of the

gravity component, contributing to the roll moment. The corresponding state-space
realisation of the model described by equation (1) can be given as follows:

5 0 1 . 0
|:¢:| = _kroll _Crall |: . :| + _ms hroll : ay,m (2)
]x + mx hrzol/ Ix + ms hrzoll Ix + mS hrz()[[

Assuming roll rate measurement is available from a 6-axis IMU, an estimator based on
the Kalman filter (Bishop, 2006) is implemented to estimate vehicle states (Figure 3).
The states are roll angle and roll rate and the input is the measured lateral acceleration.
The state feedback is the measured roll rate.

Figure 3 Roll estimation based on a 1DOF model (see online version for colours)
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2.2.2 Estimator performance

The performance of the Kalman filter based estimator was examined under a simulated
fishhook manoeuvre (Figure 4(a)) and double lane change (Figure 4(b)) to verify the
effectiveness under aggressive driving conditions.

It can be concluded that even under aggressive driving conditions vehicle roll angle
can accurately be estimated.

2.3 Vehicle chassis pitch angle estimator

2.3.1 Modelling approach

During a severe deceleration (acceleration) manoeuvre, the vehicle experiences a load
transfer from the rear to the front (front to rear), which results in a non-zero vehicle pitch
angle (Figure 5).
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Figure 4 Estimator performance: (a) fishhook manoeuvre and (b) double lane change manoeuvre
(see online version for colours)
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Figure 5 Longitudinal vehicular load transfer under acceleration (see online version for colours)
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According to Hooke’s law, we can compute the suspension springs compression (x) due

where k

suspension

to load variation (F,) as x=F,/k

suspension

is the spring elastic constant.
Hence, the pitch angle can be approximated by its tangent as:
0 _2-Ax 2-AF
I (a+b)  k (a+b)

suspension

3)

The longitudinal load transfer (axle load variation) can be estimated using the vehicle’s
longitudinal acceleration as:

m, 'hcg
(a+b)

a, (4)

where a_ is the bias-compensated longitudinal acceleration signal and is given by the

expression a,, =a,, +gsin( ). A methodology to compensate the measured

chassis
acceleration signal for the gravity component is given in Section 2.5. Substituting
equation (4) in equation (3), we get an expression for the chassis pitch angle as:

2-mg-h,
‘a
(a+b)*

echassis = k
suspension

)

Since chassis pitch angle is calculated through a linear model, the parameters used in the
model are functions of characteristics such as the height of the CoG and the sprung mass.
One challenge with using these parameters in computing 6 is that they vary with the

chassis
vehicle loading conditions. If the above parameters are fixed at certain nominal values, it
is conceivable that optimal estimation performance may not be achieved under a different
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loading condition. To improve the overall performance of the estimation process, it is
desirable to estimate and update the vehicle parameters periodically or adaptively adjust
them in real time based on the actual behaviour of the vehicle.

2.3.2 Vehicle sprung mass estimation

The estimation approach proposed here is a model-based approach, i.e., using equations
for the longitudinal motion of the vehicle (Figure 6(a)). Vehicle acceleration is a result of
a combination of wheel drive and braking torques and the road loads on the vehicle. The
dynamic equation for the vehicle motion is:

F,

grade - F;{Jlliz1g resistance (6)

m vx = ZF; - F;ero drag —

where:

ZFX : Summation of the tyre forces generated at all the four tyres

F o arae + A€rodynamic drag force (% pC, Afvxz)
F,... - Road grade force (mgsing,,,)

: Rolling resistance ( f,mgcos@,,,,,)

rolling resistance

grade

) 1
orm vx = (Fx” + Er,,. + F;(,., + F;(,,. ) - 5 pCd Afvxz - mgSinagmde _f;‘ mgcose

Figure 6 (a) Longitudinal vehicle dynamics model and (b) simplified wheel dynamics model
(see online version for colours)

r
aerodrag

mv "
x

rru[h’ng resistance

Forade

Rearranging the above Equation yields an expression for the vehicle mass as:

1 2
(FV/I + Eff, + F.'vr, + Fv,_,_ ) —EpCd Afvx

m= @)

v +gsing,,, + f.gcosb,

rade

From the above expression, we can see that an estimate of the vehicle mass can be made
by using information about the longitudinal tyre forces, vehicle longitudinal velocity and
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road grade. To achieve the objective of estimating vehicle mass, an integrated estimation
scheme is proposed. The estimation scheme consists of three key estimator blocks;

e tyre longitudinal force estimator
e vehicle longitudinal velocity estimator;
e road bank-grade angle estimator.

The tyre longitudinal force estimator is based on a simplified wheel dynamics model
(Figure 6(b)). The dynamic equation for the angular motion of the wheel is given as:

Ja)w :(Tlv _];)_Fxrw _E'rrw (8)
where the subscripts have been omitted for convenience. The same estimator and

equations hold true for all the wheels. Rearranging equation (8) yields an expression for
the longitudinal force as:

F= Lm0 g ©)

r

w

Here the wheel drive torque (7,) can be estimated by using the turbine torque, the

turbine angular velocity, and the wheel angular velocity (Masmoudi and Hedrick, 1992).
It is assumed that the brake pressure of each wheel is an available signal. Therefore, the
brake torque (7,) can be computed by the brake gain (%, ,k,, ). F,, , the wheel rolling

x r

resistance force is given by the expression:
F, =0.005+3.24-0.01-(r, - @, )’ (10)

In a previous work (Hoseinnezhad and Bab-Hadiashar, 2011), it has been shown that the
accuracy of longitudinal force estimation using equation (8) heavily depends on the
accuracy of the tyre effective rolling radius (7,), and therefore, obtaining an accurate

estimate of 7, is crucial. The tyre effective rolling radius (7,) can be determined by the
vertical load (estimation methodology for the vertical load is explained in Section 2.7) as:

F

- (D

t

r,, =1 —

Even though equation (9) presents a relatively simple method to estimate the longitudinal
tyre force (i.e., we can calculate the longitudinal tyre force directly using equation (9), or
use a recursive least squares (RLS) method for a smoother estimation), it is not advisable
to use this approach, since in real-world conditions finding the time derivative of angular
wheel speed signals (@,) can pose some challenges. To avoid the need to take
derivatives of @, , a sliding mode observer (SMO) based estimation scheme is used
(Rajamani et al., 2012). The SMO uses a sliding mode structure, with the state estimate
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(w,) evolving according to the wheel dynamics model, the force model F, =0, i.e., tyre
forces are modelled with a random walk model and the sign of the measurement
estimation error (difference between actual (@,) and estimated (@), ) angular wheel

speed) as:
wa =(TVI_];J)_F;' ’11/_Errw+klsgn(a)w_ww) (12)
F, = kysgn(@, - o.) (13)

Here k, &k, are the observer gains and sgn denotes signum function defined as:

I, if s()>0
sgn(s()=1 0, if s(1)=0 (14)
-1, if s(¢)<0

It is known that the discontinuous switching functions can be approximated by their
continuous switching functions to avoid the chattering of the control force and to achieve
the exponential stability. Instead of signum function, a saturation function has been used
via introducing a thin boundary layer around the sliding surface to avoid chattering. For a
smoother change of the switching signal, a hyperbolic tangent function has also been
used to improve the switching control effort. The results (Figure 7(a)—(b)) show that the
estimated longitudinal forces match the simulated forces very well. The proposed
observer based on equations (13) and (14) thus ensures stable estimation of the
longitudinal tyre force. As previously mentioned, apart from the longitudinal tyre force,
the other variables required to estimate the vehicle mass include: road grade angle and
vehicle longitudinal velocity. The road grade angle (6,,,) can be determined using a

kinematics-based observer, as explained in Section 2.5. The vehicle longitudinal velocity
(v,) can be determined using the measurement of the four-wheel rotational speed and

longitudinal vehicle acceleration, as explained in Section 2.6. Finally, using information
from the three estimators, vehicle mass can be estimated using equation (7). Even though
we can directly use equation (7), using a Recursive Least Squares (RLS) algorithm (by
rewriting equation (7) into a standard parameter identification form) results in smoother
estimates of the vehicle mass, as shown in Figure 8.

2.3.3 Estimator performance

The performance of the chassis pitch angle estimator (refer equation (5), with vehicle
mass adaptation) was evaluated for a high speed straight-line braking manoeuvre
(100-0 Kph) for constant friction coefficient (u ) (Figure 9(a)), and varying friction

constant

coefficient (u,,,,,, ) (Figure 9(b)) conditions. Satisfactory results were obtained in both

cases, as shown in Figure 9.
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Figure 7 Longitudinal force (individual tyre) estimator performance: a) high p surface condition
and (b) low p surface condition (see online version for colours)
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Figure 8 Vehicle mass estimation results: (a) D-class vehicle (sedan) driving on low p surface
and (b) B-class vehicle (hatchback) driving on high p surface (see online version
for colours)
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Figure 9 Estimator performance: (a) straight-line braking manoeuvre (constant p condition) and
(b) straight-line braking manoeuvre (varying p condition) (see online version for
colours)
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2.4 Vehicle roll and pitch angle estimator

Knowledge of the vehicle roll and pitch angle is very important for satisfactory control
performance. Analysis presented in Sections 2.2 and 2.3 described a methodology to
estimate the vehicle chassis roll (local roll) and chassis pitch (local pitch) angle. The
vehicle roll angle (global roll) consists of a combination of vehicle chassis roll angle and
road bank angle:

¢vehicle roll = ¢chassis + ¢r0ad bank (15)

Similarly, the vehicle pitch angle consists of the combination of vehicle chassis pitch
angle and road grade angle:

0 0

vehicle pitch — “chassis

+0

road grade (1 6)

The effect of vehicle chassis roll and pitch, as well as the dynamically changing road
bank and road grade is significant because they directly lead to the gravity components
measured by the accelerometers, as shown below:

ax,m = ax —-& Sln(evehiclepitvh)

, | (17)
=> ax,m = (Vx -r Vy) - (g ’ SIH(Q\;ehiclepitvh ))
ay,m = ay + g : Sin (¢veh[c/em// )
Cos(evehicle pitch ) ( 1 8)

=> ay,m = (vy- +r- vx) + (g ' Sin (¢vehicleroll ))

'COS(Hvehicle pitch ) )

Rearranging the above equations, we have expressions for the vehicle chassis roll and
pitch angles as:

v —r-v, —a
_ . x ¥ X,m
avehicle pitch — arcsin ( ]

g

_ . a},’m - Vy‘ -r-v,
¢veh[c/e roll = AVCSIN

g COS(Hvehicle pitch )

(19)

In the following section, a methodology to estimate the vehicle roll and pitch angles
under steady state conditions is presented.

2.4.1 Steady state vehicle roll and pitch angle estimator

In this section, steady state estimates of the vehicle pitch and roll angles are presented by
utilising the sensors typically available on vehicles equipped with electronic stability
program (ESP) or yaw dynamics control (YDC). As seen from equation (19), vehicle
pitch and roll angles can be calculated if v ,v ,v,andv, are available. Although it is

possible to obtain fairly accurate v, and thus v, from wheel speed sensors when the
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wheel slip is small (see Section 2.6 for details), v, and v, are generally not available on

current production vehicles. Thus equation (19) cannot be implemented. Fortunately,
during many manoeuvres, v, or v, is relatively small and can be neglected. In such

and @

cases, the so-called steady state pitch and roll angles, & ehicle rollgs >

vehicle pitchgg

respectively, are given by the following equations:

) _ . Vx. - ax,m
vehicle pitchgg — arcsin

g
(20)
y,m -r Vx

g-cos(6

vehicle pitchgg )

¢vehide rollgg = arcsin

The steady state estimates obtained from the algebraic manipulation of the kinematic
relationships only captures the low-frequency component of the vehicle attitude
(Figure 10)

Figure 10 Performance of the steady state vehicle roll angle estimator: (a) constant speed straight-
line driving (steady state) on a banked road and (b) double lane change manoeuvre
(transient state) on a banked road (see online version for colours)
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The underlying reason for the poor performance of the steady state estimator
(Figure 10(b)) is the assumption (v, =0 or v, =0) on which the estimator works. This

assumption is often violated during real life driving situations. For example, a vehicle
performing an object avoidance manoeuvre on a highway ramp or a vehicle negotiating a
mountain road may experience significant bank angle variations during the transient
manoeuvre. Hence this estimate would contain significant bias in transient manoeuvres.
In the following section, a methodology to estimate the vehicle roll and pitch angles
under transient state conditions is presented.

2.4.2 Transient state vehicle roll and pitch angle estimator

Without loss of generality, it is assumed that the IMU is placed at the vehicle center of
gravity, and there is no misalignment with respect to the vehicle body frame. Using the
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kinematic relationship between IMU output (vehicle-fixed frame) and the derivatives of
the Euler angles (inertial frame), and assuming that the rotation rate of the earth is
negligible, the equations of vehicle motion can be written as (Greenwood, 1988):

¢.vehicle roll = p + (q ‘s ¢vehicl€ roll + r-cos ¢vehicleroll )
‘tan(6,

ehicle pitch )

9.vehicle pitch = q - COS ¢vehicler0/l — 7r-sm vehicleroll (2 1)
‘//.vehicleyaw = (q ‘S ¢vehicle roll + r-cos ¢vehicle roll )

"Sec (evehicle pitch )

From the above relationships we can see that, theoretically, the wvehicle roll
(s pm,h) and pitch angles (6, ,.,) can be computed via mathematical

integration (open-loop integration), if the initial condition is known and angular rates
(p.q.r) are measured by the gyro sensors. In practice, however, direct integration tends

to drift due to sensor bias and inevitable numerical errors. To overcome limitations of an
open-loop integration process, an alternative method is proposed. With the addition of an

observer feedback term, k(8. —Ocssis ), @ new closed-loop observer is designed,

hassis
motivated by (K. Cho et al., 2010), to estimate the vehicle roll-pitch angle under transient
state conditions as:

¢'vehiclerollrs =pt (q *Sin ¢vehiclerollrs + r-cos ¢vehiclemllrs )

-tan(0,

vehicle pitchrg )

- gchassis )

+k(6,

hassis
0.vehiclepitchm =q-Ccos ¢vehiclerollrs — r-sin ¢vehiclerollm (22)

Where the subscript TS denotes transient state. The observer feedback term

(k(8,,,,,;; — Ocnassis )), basically consists of a measurement estimation error, i.e., difference

hassis

and estimated Geussis chassis roll angles. Here 6 is obtained

chassis

between actual 6,

chassis

using a 1DOF roll dynamics model in conjunction with a Kalman filter (details given in

Section 2.2). Bcnassis , 1S obtained using information about the lateral load transfer ratio
(LTR), where the LTR is estimated using dynamic tyre load estimates (details given in
Section 2.7). To fuse the steady state and transient state estimates, an index known as the
vehicle transient state factor (VTSF) is defined, which represents the state of the vehicle
(i.e., VISF =1 (Transient State); VTSF = 0 (Steady State)).

The vehicle transient state factor (VTSF) is characterised as a function of the vehicle
roll rate, derivative of the steering wheel angle and yaw rate. Finally, the vehicle roll
angle is estimated using the vehicle steady state and transient state roll angles based on
the vehicle state index switching (Figure 11) as:
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'tan(é’

¢vehicle roll =

m%ﬁ

chassis

+k(9

p + (q -sin ¢veh1'c1e rollrg + r-cos ¢vehicle rollrg )

vehicle pitchyg )

— chassis j

*
+(¢ vehicle rollsg )

347

(23)

+ [(1 - VTSF) . ¢vehiclemllsg ]

Where ¢

vehicle rollgg

is the vehicle steady state roll angle when the state index switches

from 1 to 0. It is used as an initial condition for the vehicle transient roll angle estimator.
An updated estimate of the vehicle pitch angle is derived using the following

expression:

0 vehicle pitch = q - Cos ¢vehicle roll 7-sm vehicle roll

(24)

Figure 11 Schematic diagram of the proposed vehicle roll/pitch angle estimation process

(see online version for colours)
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2.4.3 Estimator performance

The performance of the designed roll/pitch angle estimator was evaluated for a range of

different simulations cases (Table 2).
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Table 2 Simulation cases
Road
Vehicle Friction coefficient Test bank Road grade
speed (Kph) (W manoeuvre angle (°) angle (°)

Case 1 140 0.85 Double lane 0° 0°
change

Case 2 140 0.85 Double lane 0°-18°- 0° 0°
change

Figure 12 shows that the proposed observer can estimate the vehicle states (roll/pitch
angle) successfully even for challenging (aggressive manoeuvring) operating conditions.

Figure 12 Vehicle roll/pitch angle estimator performance (ref Table 2 for a description of the
simulation conditions) (see online version for colours)
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2.5 Bias Compensation

The measured lateral/longitudinal acceleration has both lateral/longitudinal dynamics
components and gravity components due to road bank/grade and chassis angles. Using
the real-time vehicle roll and pitch angle estimates (as described in Section 2.4), the
measured acceleration signals are compensated for the gravity components using:

ax,a = ax,m + g ' Sin(evehic/epilch) (25)
ay,c = ay,m - g ' Sin (¢vehicle roll) : Cos(evehicle pitch ) (26)

Vehicle sideslip angle is estimated using a simple integration method to verify whether
the compensation of the lateral acceleration is useful to estimate the side-slip angle. The
integration method to estimate the side-slip angle is as follows:

v _ J' ay,m - (g : Sin(¢vehiclemll ) : cos(e\fehiclepitch) ) -r vx

v 1%

X X

dr 27)

% a, —r-v
or ﬂ:_y:J'Ld, (28)
vX v):

The simulation results show (Figure 13) that the compensated lateral acceleration can be
used directly to estimate the vehicle side-slip angle.
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Figure 13 Vehicle sideslip angle estimation using a simple integration method: (a) double lane
change steering/high mu(0.85/120 kph/bank(0 — 18- 0 deg) and (b) fishhook
steering/high mu (0.85/80kph/flat surface) (see online version for colours)
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2.6 Vehicle longitudinal velocity estimator

2.6.1 Estimation methodology

An integrated state estimation scheme (refer Figure 1) requires reliable vehicle speed
information. It is much harder to estimate the vehicle speed during braking than in
traction, since in the former case all four wheels are slipping. The proposed vehicle speed
estimation algorithm (Figure 14) is based on the measurement of the four-wheel
rotational speed and longitudinal vehicle acceleration.

Figure 14 Estimation algorithm data flow chart
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The estimator uses a structure based on the work of reference (Tanelli et al., 2006). The
main advantage of this approach is the low computation burden, as compared to some of
the previous work proposed in literature (Jiang and Gao, 2000; Watanabe et al., 1992;
Klein et al., 1996; Kobayashi et al., 1995), which suffer from high computational
complexity. The longitudinal acceleration signal is supposed to have been properly
corrected according to the discussion given in Section 2.5 as:

ax,c = ax,m + g : Sin(ewhic/epitch ) (29)
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The effective tyre radius (7,) required to estimate the linear wheel speed can be

determined using the tyre vertical load information (load estimation methodology
described in Section 2.7) as:

V4 =r— 2 (30)

At each sampling instant, the following auxiliary signals are computed:

v . average of the four wheel speeds

average

v averageofthe two non — driven wheel speeds.

non—driven average *

The estimation algorithm behaviour changes according to the status of the vehicle, which
is represented by the following four states:

State 1: Low Speed

State 2: Accelerating

State 3: Constant speed or is softly braking

State 4: Braking.

The status of the vehicle is determined using the following threshold values:

v vehilespeed threshold

min *

a._: vehicleacceleration threshold

acc

a,. . vehicledecceleration threshold

When the vehicle has very low or constant speed, the estimated vehicle speed is obtained
as the average of the four-wheel speeds. When the car is accelerating, instead, as the
driving wheels have a non—null longitudinal slip due to traction force, the estimated
vehicle speed is obtained as the average of the non—driving wheels. During an extreme
braking manoeuvre, the estimated vehicle speed is obtained via an open-loop integration
of the corrected accelerometer signal, augmented with a backward integration phase to
cope with initialisation errors (Table 3).

Table 3 Estimation algorithm rules

Rule chart: Vehicle status and velocity estimation

Case 1 Case 2 Case 3 Case 4
F vaperage < Vmmn o Viverage ® Vmun T Vaversge ® Vmm o Yaverage ¥ Vmun
& & &
G ™ Qgpp Bdee & Bx 4 Gaee G & Qe
Vehicle status: Low Vehicle status: Vehicle status: Constant Vehicle status: Braking
speed Acceleration speed or softly braking speed is estimated using

a recursive rule
by = Varerage Ve = Vewn t e #dt

U = Viverage P

ne 3T N
min = 2=t Agge = Ul oy, = -08—
F N e

Thresholds: Y
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2.6.2 Estimator performance

The performance of the velocity estimator was evaluated for an aggressive straight-line
braking manoeuvre (Figure 15).

According to these encouraging results (Figure 15(a)), the output of the longitudinal
vehicle speed estimation algorithm could also be employed for reliably computing the
longitudinal wheel slip (Figure 15(b)).

Figure 15 (a) Estimated vehicle speed compared with the reference vehicle speed and
(b) estimated wheel slip (top) and absolute error (bottom) compared with the reference
wheel slip (see online version for colours)
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2.7 Tyre vertical load estimator

The vertical tyre forces can be estimated by the summation of longitudinal load transfer,
lateral load transfer and the static normal force. The estimates of the vertical tyre forces
can be represented as follows:

F _ Fz front axle W
z n= T T " Lateral Load Transfer — " Longitudinal Load Transfer
F _ Fz front axle W, W
zZ = —2 Lateral Load Transfer Longitudinal Load Transfer
. (€1))
rear axle
Fz T T - WLatL’ral Load Transfer + WLH"gimdi""I Load Transfer
Fz
rear axle
Fer - T + VVLazem/ Load Transfer + VVLOng[ludfna/ Load Transfer

Where the axle load distribution is strictly a function of the vehicle geometry and is given
as:

b
a+b (32)

Fz =mg-

front axle

FZrearuxIe =mg-

a+b
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The vehicle mass (m) can be estimated adaptively using an estimation scheme described
in Section 2.3.2. The lateral and longitudinal load transfer terms can be estimated using
the vehicle’s roll model (Figure 2(a)) and longitudinal models (Figure 6(a)) as:

-h -h
[(ms » + mu a ) . a},’aJ

t
+ kroll i ¢chassis + crall ) ¢.cha5sis
P (33)
WLate)'aI Load Transfer = 2
mg - hcg

VVLongitudinaILoad Transfer = z(a +b) : ax,c

The roll sates required to estimate the lateral load transfer term can be obtained using a
vehicle roll state estimator, as described in Section 2.4.

2.7.1 Effect of grade angle on the load distribution

In this case, the lower tyres (rear tyres, going up and front tyres, going down) become
more heavily loaded. Load distribution can be determined by summing the moments
around the tyre-road contact points, leading to equations:

— g :
szront axle — mg - a+ - Cos eroad grade —mg- a+ -Sin eraad grade
4 (34)
— cg .
Fzrwrmﬁle - mg ' a+ : Coseroad grade + mg : a+ b -sin Q‘oad grade

2.7.2 Effect of bank angle on the load distribution

A bank causes the load on the interior (lower) tries to increase, while the load on the
exterior (upper) tyres decreases. The formulas for the change in loads on the tyre are:

Fz, = FZ.fmmwcle FZ./i'U"f axle h“é’ :
Z,= *COSD,ohicie roil “SIMP, hicte ron
Fz, = B2 o ate FZpomate Py .

Zfr =——F¢Co8 vehicle roll “Sin vehicle roll

(35)

F —_ Z rear axle Zrearwrle : cg .

Z, =———"CO08D i ron — SO, icie ron
F _ rear axle F Zrearaxle : hcg

z,= —2 - COS Vehicle roll P : V¢veh[c/e roll

2.7.3 Estimator performance

To investigate the performance of the proposed vertical load estimator, simulations have
been conducted for wide range of driving manoeuvres (Table 4), without including any
road disturbances.
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Table 4 Simulation cases
Vehicle Friction Test Road Bank Road Grade
Speed (Kph) Coefficient (1) manoeuvre Angle (°) Angle (°)
Case 1 140 Varying Double lane 0° 0°
(high-low-high) change
Case 2 80 0.85 Fishhook 3° 3¢

The comparison of the estimated vertical forces using the algorithm described in Section
2.7 and actual forces using the CarSim software is presented in Figures 16 and 17.
Results show that the estimated vertical forces match the simulated forces well.

Figure 16 Test condition: double lane change manoeuvre (varying p condition) (see online version
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Figure 17 Test condition: fishhook manoeuvre (constant p, banked (3°) and graded road (2°)
condition) (see online version for colours)
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2.8 Tyre longitudinal and lateral force estimator

2.8.1 Longitudinal force estimator

In the case of a normal driving situation, longitudinal force estimators designed at the
previous time instant (i.e., wheel dynamics based observer) show good performance.
However, during extreme manoeuvring conditions, where the slip-ratio is large, the
performance of the estimator is not satisfactory, since the longitudinal tyre-force
estimator based on wheel dynamics model does not take into consideration the effects of
deformation slip or wheel slip. To overcome this drawback (unsatisfactory performance
under high-slip conditions) of a wheel dynamic based observer, a tyre model based
closed-loop feedback observer is proposed. It is possible to use the commonly used tyre
models such as the Magic Formula (MF for short) tyre model for accurate modelling, but
this would result in heavy computation work which is usually beyond the computation
authority of the on-board microprocessors. The estimator concept used here relies on a
physically derived tyre model called the Dugoff tyre model. In its simplest formulation,
the model describes the relationship between the tyre force and the slip as a function of
two parameters, the tyre stiffness (C, ) and the tyre to road friction coefficient (p). The

tyre stiffness describes the inclination of the force-slip relation at small slips whereas the
friction coefficient describes its curvature and peak value.
Dugoff-tyre model can be expressed as follows:

F=C,—— f(d) (36)
1+s

F=c. @ .o (37)
! 1+s

where A is related to tyre-road friction coefficient (u); 4 and function f{1) are defined, as
follows:

A= U-F -(1+5) (38)
2,/(C,5)* +(C,taner)’
2-A)A,A<1
)= ( ’ 39
AC) { LAzl (39)
Under pure longitudinal slip conditions, the above equations simplify to:
F=Co——f(}) (40)
I+s

f(/t):{(z_/l)ﬂ’ if A<l @

1, otherwise
ot Fo(45)

42
2Cx | S | ( )
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L (43)
max(w-r,,v,)

w

Figure 18(a) shows the comparison between the longitudinal forces calculated by the
Dugoff and MF tyre models. This comparison shows that there is no peak point in the
Dugoff model, and the peak value is much smaller than the MF model. Also, the
difference in the two models is larger when the slip-ratio is high (i.e., a larger difference
in the unstable/saturation region can be seen). Previous publications (Ding and Taheri,
2010) have shown that the above stated discrepancies between Dugoff-tyre and MF-tyre
models can be reduced if different tyre/road friction coefficients are taken for different
magnitudes of slip-ratio.

Figure 18 (a) tyre forces calculated by the dugoff and MF model and (b) tyre forces calculated by
the modified dugoff and MF model (see online version for colours)
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The slip-dependent friction coefficient is expressed as (Ding and Taheri, 2010):
Ho =ty (=) + fs

for pure longitudinal slip, where (44)
_a

H, I,

u, = O.5545,u){p3 - 0.9697,uw2 +1.04244,, (45)

where ¢, =1.125 and k, =0.925. ¢, and k, are compensation factor and attenuation

factor, respectively. Force calculations based on the modified Dugoff tyre model are
shown in Figure 18(b). The results are seen to be coincident to the MF tyre model. The
modified Dugoff model has the virtues of the original model, and the precision in
nonlinear condition is much improved. Hence, the estimator concept proposed here is
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based on the modified Dugoff tyre model. As mentioned previously, the Dugoff model
describes the relationship between the tyre force and the slip as a function of two
parameters, the tyre stiffness and the tyre to road friction coefficient. In the small slip
range, the longitudinal force increases proportional to the slip and the gradient of the
force-slip curve is defined as the tyre longitudinal stiffness. Thus, the longitudinal force
model in the small-slip range can be expressed as follows:

F.=C, -4, for|A]<3% (46)

Satisfactory performance of the wheel dynamics based observer in the small slip region
(|£| <3%) provides us with an opportunity to adaptively estimate the longitudinal

stiffness of the tyre using an online parameter estimation algorithm. Equation (46) can be
rewritten into a standard parameter identification form as follows:

(0)=¢" (1)-0(1) (47)

where y(7)=F, is the system output (from the wheel dynamics based observer),
(t)=C,, is the unknown parameter, and @' (f)=A4 is the measured slip ratio. The

unknown parameter () can be identified in real-time using parameter identification

approach. The recursive least squares (RLS) algorithm (Sastry, 1989) provides a method
to iteratively update the unknown parameter at each sampling time to minimise the sum
of the squares of the modelling error using the past data contained within the regression
vector, (). The performance of the RLS algorithm is evaluated with simulations

where the road surface is designed to have sudden friction coefficient changes, and the
vehicle manoeuvre is straight driving with intermittent gas pedal presses.

From Figure 19, it can be see that the estimator shows delayed estimation at the first
change due to lack of excitation at that time. Once excitation occurs at 2.2 seconds, the
estimator updates the longitudinal stiffness.

Figure 19 (a) road surface condition (bottom) and the tyre slip-ratio (top) during the simulation
and (b) longitudinal stiffness estimation result (bottom) and corresponding activation
signal (top) (see online version for colours)
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The second parameter of interest required to describe the relationship between the tyre
force and the slip using the Dugoff model is the tyre- road friction coefficient (u). As
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shown previously in Germann et al. (1994), Ray (1997), Gustafsson (1997), Muller et al.
(2003), Lee et al. (2004) and Li et al. (2007), there is a co-variation between the friction
coefficient and the longitudinal stiffness (C,) of a tyre. Hence a popular and in many

circumstances successful approach to assess the friction is to estimate the longitudinal
stiffness, i.e., the incline of the tyre force relative to slip at low slips and from this value
distinguishing between different surface conditions.

Contrary to this popular belief, some recent studies (Svendenius, 2007) show that the
longitudinal stiffness depends on many factors and a generic relation between the slope
and the exact friction coefficient is therefore not possible to obtain. The relation is
physically difficult to explain and does not always hold. The longitudinal stiffness has
been shown to be sensitive to many other factors, namely, tyre inflation pressure, vertical
load, wear and temperature, and a change of the stiffness might not guarantee a change in
friction. To develop a tyre-road friction coefficient (u) estimation technique robust
against these uncertainties, it is proposed here to use an observer based parameter
estimation scheme. The general formulation of the estimation scheme is as follows:

Consider the following nonlinear dynamic system and nonlinear measurement:

x = f(x,u,0)

v =h(x,u,0) “8)

where x is the state of the system, y is the measurement, u is the control input, and 0 is a
vector of constant parameters to be estimated. For the system shown in (61), the
following parameter and state estimation algorithm (Friedland, 1997) can be applied:

% = f(5a,0)+k (%,0,0) (y- )

. (49)
0 = kz(jeaﬁ’a)(y_j})

Where the observer gains (&, , k,) can be determined using an optimisation routine that

maximises robust stability against plant uncertainties. Applying the above design
methodology for our friction estimation problem, the estimation scheme proposed here is
based on equations for the longitudinal motion of the vehicle (Figure 6(a)). The equation
of motion can be derived by force equilibrium as shown in Figure 6(a) and the resulting
equation is:

(50)

grade - E’o/ling resistance

m vx = ZFK - F;zero drag - F

1 .
or mv, = (Fx,, +F, +F +F, )_EPC(/AMZ —mgsing,,, — f,mgcosb,,,.  (51)

Sl
or(FX” +F +F +F ) :mvx+EpCdAfvx2 +mgsinG,,,, + f,mgcos (52)

grade

The longitudinal force (ZF; =F +F _+F +F, ) evolution is modelled with a
random walk model, with derivative equal to random noise as:
F =0 (53)

Applying principles of sliding mode observer, an estimator can be designed as:
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1
(mv, +=pC,A,v> +mgsinb,, . + f.mgcos6,  vade)
tanh) 20 - ’ (54)

—(F, +F +F +F )

i =k,
1
(mv, +=pC,A4,v> +mgsin@, . + f.mgcos, )
tan/ 27 e g (55)
~(F, +E +F S F )
+ky - tanh(/ug -4
Where the system state and parameter to be estimated are ZF «and . F_ s the

longitudinal force estimate for the individual wheels obtained using the modified Dugoff
model, updated at each time step using the tyre stiffness and the tyre-road friction
coefficient estimate.

The performance of the observer was evaluated with simulations where the road
surface is designed to have sudden friction coefficient changes (Table 5).

Table 5 Simulation cases
Friction coefficient (1)
Case 1 Low mu
Case 2 Jump mu (high-low-high)

Figure 20 shows that the proposed observer can estimate the longitudinal forces
successfully even under high-slip conditions.

2.8.2 Lateral force estimator

A sliding mode observer (SMO) methodology is proposed to observe the tyre lateral
forces. The observer estimates lateral forces per axle (F F, ) and then calculates
lateral force on each tyre according to the distribution of the estlmated vertical forces as:

F

zy

F =———XF
Rl [:'7 + F‘Z Y front
Zn fi

Z”F (56)
<I——
Yr F‘z ’ + F'z Yrear
E
xXF
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The observer is built in such a way that it requires no tyre force model or prior
knowledge of road friction. The tyre forces (axle forces) are modelled with a random
walk model:

F.y/mm (57)

Yrear

The vehicle dynamics are described by the following state and measurement equations:

X = [x1’x29x3] = [Ftvfmm 7Fy/‘m/‘ 7r] (58)
Y=[y1»yz]=[aysr]

Vectors X =[xi,x2,x3] and Y =[y,,y,] represent the state and measurement

estimations. The measurement model is:
L XX,

h=—"—"n0 Xy (59)
m

where m is the vehicle mass. The estimation errors for states and measurements are
denoted respectively as:

e, =[x —X,x, —)Acz,x3 _553]

A A (60)
e, ==, =¥l

The state estimates evolve according to the four-wheel vehicle model, the force model
and the sign of the measurement estimation errors as:

fcl' :kllsigl'l(eyl )+ klzsign(eyu )
%, =kysign(e, ) +ky,sign(e, ) (61)

A1 . n
X, =[—[a *x,—b*X, +%((Fxﬂvcos5+ Fx )— (Fxﬂcosé'+ Fxr, ))} + k31sign(eyz )

z

where k,,k,,k,,,k,,,k;, are the observer gains. F,, is the longitudinal force estimate

for the individual wheels obtained using the estimation scheme proposed in Section 2.8.1.

The force balance equations also include any additional forces and moments
generated from longitudinal drive traction or braking forces at the wheels. The
longitudinal force terms should be included so the lateral estimation does not become
corrupted, especially in situations when the vehicle is undergoing significant acceleration
or braking. The drive and traction forces of the front wheels contribute to the lateral force
of the steered wheels, and any ESC differential braking produces an additional moment
that must be included in the moment equation. A complete study for the convergence of
the SMO is presented in (Baffet et al., 2007). The performance of the observer was
evaluated for a range of different simulations cases. From Figure 21 we see that the SMO
observer produces satisfactory estimations close to the actual value.
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Figure 20 Observer performance (ref. Table 5 for a description of the simulation conditions)
(see online version for colours)
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2.9 Vehicle lateral and longitudinal velocity estimator

2.9.1 Estimation concept

Longitudinal and lateral vehicle velocities are important information for active vehicle
stability control. But for both technical and economical reasons, these vehicle states
cannot be measured directly in a standard car. As a result, the problem of longitudinal
and lateral vehicle velocities estimation has attracted considerable attentions of many
researchers, and several works have already been conducted over the past few years.
Kalman filter based techniques (KF, EKF...) have become a standard technique, used in
many nonlinear estimation and machine learning applications. KF is only applied to
linear systems, and EKF is developed for state estimation in non-linear systems. But as
linearisation of EKF algorithm requires the evaluation of a Jacobian matrix at each time
step, the computational complexity is enlarged. To avoid this problem, Julier et al. (1995)
proposes Unscented Kalman Filter (UKF) (Wan and Van Der Merwe, 2000), which
avoids the linearisation errors and improves filtering accuracy. The UKF acts directly on
the nonlinear model and approximates the states by using a set of sigma points, avoiding
the linearisation made by the EKF (Julier and Uhlmann, 1997). This study proposes to
estimate longitudinal and lateral velocity based on UKF using vehicle dynamics model.
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Figure 21 Observer performance: case 1- double lane change, and case 2- slalom steering
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In most vehicle handling and stability studies, two degrees of freedom vehicle model is
usually used, which need to make a great linear hypothesis. To obtain a more realistic
simulation of vehicle performance, a nonlinear model with four wheels (coupled model
very largely used in simulation) is selected in this study. The different equations for the
calculation of longitudinal, lateral and yaw motion are as follows:

F _cosd+F, _cosd+F,_+F,
v - A fr rl "

* m
+r-v,—g-sin(,,,) (62)
-+
vy4 — y/ram Yrear —7- Vx _ g . Sin(¢r0”)
" (63)
a-F, —b-F, +((F, cosd+F, )

~(F, cos§ +F,)- -
o= - 2 (64)

z
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where, m is the vehicle mass; 0 is the steering angle of front wheel; a and b are the
distances from front and rear axle respectively to center of gravity; ¢ is the vehicle track-

width; v, is longitudinal velocity; v, is lateral velocity; r is yaw rate; 6, is the vehicle

pitch (global) angle; ¢, is the vehicle roll (global) angle; EY’_/ are tyre longitudinal

forces,and F, ~and F, are the lateral forces at the front and rear axles, respectively.

The nonlinear model can be transformed into standard state-space form with state vector
(x) composed of longitudinal speed, lateral speed and yaw rate:

x=[v,,v,,r] (65)
The input vector (#) comprises the measured steering angle, tyre forces (considered

estimated beforehand, see Section 2.7), and vehicle global roll and pitch angles
(considered estimated beforehand, see Section 2.4):

u= [59 Ecﬂ H F:c/, ’ F,'rl, > Ec,, ’ Fy/mm H F‘yﬁm 4 Hpilch H ¢ml/] (66)

The measure vector (y) comprises vehicle longitudinal velocity (considered estimated
beforehand, see Section 2.6), measured yaw rate, and lateral accelerations:

y=[v,r.a,,]l (67)

The process and measurement noise vectors are assumed to be white, zero mean and
uncorrelated. The schematic simulation block diagram is represented in Figure 22.

Figure 22 Schematic diagram of the vehicle longitudinal and lateral velocity estimation process
(see online version for colours)
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2.9.3 Simulation analysis

The performance of the observer was evaluated for a range of different simulations cases
(Table 6 and Figure 23).

Table 6 Simulation cases
Vehicle speed (Kph) Friction coefficient (1) Test manoeuvre
Case 1 140 0.85 Double lane change
Case 2 140 Varying (high-low-high) Double lane change

Figure 23 Observer performance (ref. Table 6 for a description of the simulation conditions)
(see online version for colours)
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2.10 Tyre slip-ratio and slip-angle estimator
2.10.1 Slip ratio estimator

As shown in Section 2.6, the output of the longitudinal vehicle speed estimation
algorithm could also be employed for reliably computing the longitudinal wheel slip.

Performance of the observer under extreme braking conditions (Table 7) is demonstrated
in Figure 24.

Table 7 Simulation cases
Vehicle Speed (Kph) Friction coefficient (1) Test manoeuvre
Case 1 100-0 0.5 Straight-line braking
Case 2 100-0 Varying Straight-line braking

2.10.2 Slip angle estimator
2.10.2.1 Estimation concept and observer update law

To estimate the tyre slip angle, an update equation for the front slip angle is derived as a
function of the tyre forces. A four-wheel vehicle model is employed to simulate the

vehicle rigid body dynamic. The dynamic equations of motion of the vehicle model are
presented in equations (68)—(70):
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F _cosd+F, cosd+F,_+F,
% fr X1

v, —+r-v,—g-sin(8,,,) (68)
m
. Fy front + Fym,r :
v, =——————r-v,—g-sin(g,) (69)
m
a-F, -b-F +(F, cosé+F, )
~(F, cos8 +F, )
. 2 (70)

1

where F, ~=(F, cosé+F, sind)+(F, cosé+F, sind) and F, =F, +F, are the

lateral forces at the front and rear axles, respectively.
Using kinematics, the front and rear tyre slip angles are linearised to be:

Vy+a~r
0!_/2——5 (71)
VX
v, —b-r
o =2 0" (72)
%

The update equation for the front slip angle is derived by taking the derivative of (72)

_ vy' +a-r _
o, =v——5 (73)

X

Substituting expressions for v‘ (equation (69)), and r (equation (70)) in equation (73),

we get:
F  +F
Y fiont Yrear
_ - r . V
m X
a F, o b- F, o+ ((F;ﬁ coso + F )
~(F, cos6+F,))- 4
+a 2
IZ
o = -5 (74)
y

x

Rearranging above equation, we get:
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where k& is the observer feedback gain and a, is the measured lateral acceleration. Once
a,
relationship described by equation (72).

From equation (76), we can see that an estimate of the tyre slip angle can be made,
provided we have real-time information about the tyre longitudinal/lateral forces. To
successfully achieve the objective of estimating the tyre slip angle, an integrated
estimation scheme is proposed (Figure 25). The estimation scheme consists of two key
blocks:

is updated, the rear slip angle estimate (&, ) can be updated using the kinematic

e tyre longitudinal force estimator

e tyre lateral force estimator.

2.10.2.2 Slip angle estimator performance

Using the tyre longitudinal/lateral force estimates (considered estimated beforehand, see
Section 2.8), the performance of the slip angle observer (equation (86)) was evaluated for
range of different aggressive steering manoeuvres. Figure 26 shows that the proposed
observer can estimate the tyre slip angle successfully even for challenging (aggressive
manoeuvring) operating conditions.

Figure 25 Schematic diagram of the tyre slip angle estimation process (see online version
for colours)
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Figure 26 Observer performance — slalom steering manoeuvre (55 deg/0.25 Hz) (see online
version for colours)
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3 Conclusion

Active safety systems such as the antilock braking system (ABS), traction control system
(TCS) or Electronic Stability Program (ESP) intervene before a crash occurs and
significantly contribute to the reduction in the number of crashes. For the future
development trend of these systems, a more complex and integrated control unit requires
additional information about the vehicle dynamics. Some fundamental parameters such as
tyre forces and sideslip angle are effective in describing vehicle dynamics, however, a
direct measurement of these variables is cost-prohibitive for automotive applications.
This study presents a method to estimate these parameters of interest using observer
technologies. The proposed observer consists of an integrated vehicle state estimator
comprising of a series of model based and kinematic based observers arranged in a
cascaded structure. It is assumed that a set of data obtained from a low-cost six-
dimensional inertial measurement unit is available. This includes the linear acceleration
of the vehicle and the angular rates of all axes. In addition, the observer exploits the data
from the wheel speed sensors and the steering-wheel angle, which are already available
for recent production cars. The estimator is implemented in the Matlab/Simulink and
CarSim® software environment. Results presented here show the ability of cascaded
estimators to provide accurate estimates of vehicle states.

The main contribution of this work is to estimate tyre forces and sideslip angle with
an acceptable accuracy using standard sensors which are available in most of the series
production vehicles today. Therefore, this method enables a cost-effective
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implementation for future real-time vehicle applications. The longitudinal/lateral tyre
forces provide important information on the computation of the optimised active
longitudinal and lateral tyre forces to be generated by the different control modules of an
integrated chassis control system typically consisting of individual modular chassis
control systems such as the ESC, active front steering (AFS) and continuous damping
control (CDC). An integrated chassis control ensures optimal tyre usage via an optimum
longitudinal and lateral tyre force distribution by four-wheel independent steering,
driving, and braking. Using an integrated state estimation approach also gives added
value in terms of more information, increased robustness and the opportunity to reduce
costs by allowing the use of fewer or lower resolution sensors.

These improved state estimates can be used to develop a more reliable and efficient
vehicle stability control algorithm. It is expected that a new control strategy aiming to use
all the information available from the vehicle state estimator would significantly enhance
vehicle stability during emergency evasive manoeuvres on various road conditions
ranging from dry asphalt to very slippery packed snow road surfaces. Another potential
advantage could be in terms of minimising false ESC interventions. In a situation where
an ESC is tuned to prioritise stability over handling for robustness reasons, brake
interventions may come too early and feel harsh to the driver. However, with knowledge
of the sideslip angle, the control engineer has more freedom to tune the ESC intervention
thresholds and prevent brake interventions occurring too early. It is noteworthy to
mention that the vehicle state information derived either from chassis mounted
accelerometer sensors or from engine/brake torque information are fraught with
reliability problems. The development of a sensorised smart/intelligent tyre system
(Singh et al., 2012, 2013; Morinaga, 2013; Yasushi Hanatsuka and Morinaga, 2013; Arat
et al., 2013, 2014; Singh and Taheri, 2015) is expected to eliminate some of the vehicle
sensors and provide accurate, reliable and real-time information about magnitudes,
directions and limits of force for each tyre. Future work will explore the possibility of
developing novel sensor signal fusion schemes combining the tyre sensed information
from an intelligent tyre and vehicle sensor information available on typical passenger cars
to further improve the accuracy of the vehicle state estimator.
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Nomenclature

In this section all symbols used in this work are listed.

Fy, Frontaxle lateral force(in vehicle body axis)

Fy, Rearaxle lateral force (in vehicle body axis)

Z Fy Summation of tirelongitudinal forces (in vehicle body axis)
1) Roll angle

o: Pitch angle

v Yaw angle
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Vo Longitudinal velocity at C.G

vy, Lateral velocity at C.G

a, Longitudinal acceleration measured at C.G
a, Lateral acceleration measured at C.G

a, Vertical acceleration measured at C.G

p Roll rate measured at C.G

q Pitch rate measured at C.G

r Yaw rate measured at C.G

m Total vehicle mass

my Sprung mass of the vehicle

my, Unsprung mass of the vehicle
g Gravitational constant

heg VehicleC.G. height

hy Eight of theroll center from the ground

F ot Height of the front roll center from the ground
- Height of the rear roll center from the ground

h, Height of the unsprung mass from the ground
heonr Height of thesprung mass from the roll axis
a Distance between C.G.and frontaxle

b Distance between C.G.and rearaxle

L Distance between front and rear axle

L Moment of inertia about z-axis/yaw axis

I Moment of inertia about x-axis/rollaxis

B Vehiclesideslipangle

é‘s o Suspension deflection

A Tyre slip-ratio

a Tyre slip-angle

Te Engine torque

T, Brake torque

T, Wheel torque

Wheel angular speed
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Rollstiffness

Roll damping coefficient
Vehicle chassisrollangle
Vehicle chassis pitchangle

road bank angle
Road gradeangle

Track width

Vehiclerollangle

Vehicle steady staterollangle
Vehicle transient staterollangle
Vehiclepitch angle
Vehiclesteady state pitch angle

Vehicle transient state pitch angle

Measured longitudinal acceleration of the vehicle

Measured lateral acceleration of the vehicle

Bias compensated longitudinal acceleration of the vehicle
Bias compensated lateral accelerationof the vehicle
Originial wheelradius

Effective wheelradius

Linear velocity of the four wheels
Average of the four wheel speeds

Average of the two non-driven wheel speeds
Vehilespeed threshold

Acceleration threshold

Decceleration threshold

Normal force of the frontaxle

Normal force of the rear axle
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W,

ateral Load Transfer

Longitudinal Load Transfer

LTR

Longitudinal force of the front-leftwheel
Longitudinal force ofthe front-rightwheel
Longitudinal force ofthe rear-leftwheel

Longitudinal force of the rear-rightwheel
Lateral force of the front-leftwheel

Lateral force of the front-rightwheel
Lateral force of the rear-leftwheel
Lateral force of the rear-rightwheel
Vertical force of the front-leftwheel
Vertical force of the front-rightwheel

Vertical force of the rear-leftwheel
Vertical force ofthe rear-rightwheel

Rolling resistance force
Vehiclelateralload transfer
Vehiclelongitudinal load transfer

Load transfer ratiod
Frontsuspension stiffness
Rearsuspension stiffness
Brake gain of the frontwheel
Brake gain of the rearwheel
Spin inertia for each wheel
Spring ratio of the tire
Tyresteerangle
Tyrelongitudinal stiffness
Tyre corneringstiffness
Tyreroad friction coefficient
Vehicledrag coefficient
Frontal area of the vehicle

Density of air




376 K.B. Singh and S. Taheri

4 State matrix

B Input matrix

C Output matrix

D Feedthrough matrix

p Covariance matrix
Appendix

In this appendix section, the effectiveness of the overall integrated scheme is validated
for a double lane change manoeuvre.

List of vehicle model parameters used in simulation:

m= 1570 Total mass of the vehicle (kg)

mg =1370 Sprung mass of the vehicle (kg)

1,=4192 Moment of inertia about the yaw axis (kg—mz)
a=1.11 Distance from the CG to the front axle (m)
b=1.66 Distance from the CG to the rear axle (m)
t.=1.6 Track width (m)

Steering gear ratio 17.25

h,=0.42 Height of the roll center (m)

h,=0.3 Unsprung mass from the ground (m)
h,=0.11 CG to roll center distance (m)

hcg =h, +h CG height from ground (m)

k, g = 29.661 Front suspension spring stiffness (N/mm)
kg, =20.082 Rear suspension spring stiffness (N/mm)
ko =29 Roll stiffness (N-m/deg)
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