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ABSTRACT

This paper focuses on low latency detection of cyberattacks in smart grids with deep reinforcement learning
(DRL). The objective of low latency detection is to minimize detection delay while ensuring high detection
accuracy. This is different from conventional detection methods that focus mainly on detection accuracy and
pay little attention to detection delay. A lower detection delay can reduce recovery time, thus minimizing
service interruption or economic losses due to cyberattacks. Since detection delay is the main design metric,
the algorithm is developed by using a non-linear dynamic AC system model with an extended Kalman filter
(EKF) to capture power grid state transitions in real-time, while many other works in the literature use a
simplified linear DC model. The DRL detection algorithm is developed by using a continuous state space deep
Q-network (DQN) on the framework of a Markov decision process (MDP). The new DQN design has two main
innovations. First, the MDP state is designed as a sliding window of Rao-statistics of the AC dynamic state
estimation residues. The proposed state formulation can accurately capture dynamic power state transitions in
real-time. Second, a new reward function is designed to allow a flexible trade-off between detection delays and
detection accuracy. The delay-accuracy trade-off can be adjusted by tuning a single parameter in the reward
function. Simulation results show that the proposed DQN-based DRL detection algorithm can achieve very low

detection delays with high detection accuracy.

1. Introduction

The ever-increasing power demands along with growing penetration
rates of renewable energy necessitate designs of smart grids that are
reliable, resilient, and secure [1]. An important component of a smart
grid is the supervisory control and data acquisition (SCADA) system,
which monitors and controls power grid operations with the help of
remote terminal units (RTUs). However, SCADA systems are prone to
cyberattacks. For instance, cyberattacks on the SCADA system in the
power grid of Kiev, Ukraine on December 23, 2015 led to a wide range
blackout [2].

There are various types of cyberattacks on smart grids. One of
the most common cyberattacks is false data injection (FDI) attack,
which can target different layers and systems in the smart grid [3]. A
classic FDI attack is designed to change some SCADA measurements
to decrease the accuracy of state estimation (SE), which results in
unreliable power system operations [4]. Another type of cyberattack

is denial-of-service (DoS) attack. The DoS attack can negatively impact
SCADA system operations by blocking the communication links among
devices or making some measurement devices unavailable [5].

A plethora of algorithms have been developed for cyberattack detec-
tion by using power system state estimations, where the measurement
results can be compared to estimation results to identify the presence
of anomalies. Many algorithms are developed by using static state
estimation (SSE) with a simplified DC system model due to its low com-
putational complexity [6-8]. However, SSE cannot capture the dynamic
state transitions in power systems, and it is in general not suitable
for real-time monitoring of power system operations. Dynamic state
estimation (DSE) with Kalman filter (KF) and its derived algorithms are
widely used for power system estimation and intrusion detection [9]. A
KF-based DSE algorithm is used to detect FDI in automatic generation
control (AGC) system in [10]. Distributed Kalman filter (DKF) was used
in [11] to reduce the computation complexity for attack detection, and
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extended Kalman filter (EKF) was used in [12,13] to model the non-
linear measurement function of AC power system model for FDI attack
detection. A robust Cubature Kalman Filter (RCKF) based approach is
proposed for systems with power generators under cyberattacks [14].
In [15], a correlation-based DSE is proposed to detect DoS attacks.

With the recent rapid advances in artificial intelligence (AI) and ma-
chine learning (ML), there have been growing interests in applying ML
algorithms for intrusion or cyberattack detection in smart grids. In [16],
a real time FDI detection algorithm is developed by performing robust
principal component analysis (PCA). Various deep learning algorithms,
such as deep belief network (DBN) [17,18], recurrent neural network
(RNN) [19], and deep neural network (DNN) [20], are developed for
FDI detection. Reservoir computing (RC) is an extension framework of
NN. It consists of three parts: a feed-forward NN as the input layer,
an RNN as the middle layer, and a weighted adder as the output
layer [21]. A delayed feedback RC is used for detecting dynamic attacks
in smart grids [22,23]. These algorithms utilize a data-driven approach,
that is, the input to the neural networks are measurements from the
power system, and the output are detection results. Preprocessing of the
measurements can be done to make the training more efficient, such
as the wavelet transform in [24]. A state—action-reward-state-action
(SARSA) algorithm based on reinforcement learning (RL) is developed
for FDI detection in [25]. A Q-Learning method with nearest sequence
memory is adopted to detect FDI attack to automatic voltage control
(AVC), where the values of the Q-function are discretized and stored in
a lookup table [26]. In [27], a deep Q-network (DQN) is designed to
defend FDI in power grids, and it utilizes a DNN with discrete states to
approximate the Q-function required for Q-learning.

Despite a large number of research works on cyberattack detection
in smart grids, most existing methods aim at improving detection
accuracy yet paid little or no attention to detection delay. Detection
delay is critical for sustaining the reliability and security of power grids.
A low detection delay can ensure the timely recovery from cyberat-
tacks, which can provide uninterrupted grid operations and minimize
economic losses. Sequential quickest change detection algorithms such
as cumulative sum (CUSUM) [28] can minimize the detection delay.
However, the CUSUM algorithm requires perfect knowledge of the
statistical distributions of the data before and after the attack, and this
information is usually not readily available in practical systems.

We propose to address this problem by developing a low latency
detection algorithm that aims at minimizing the detection delay while
maintaining good detection accuracy. The proposed algorithm adopts
a hybrid model- and data-driven approach that relies on both the
physical model of the power grid and the measurement data collected
from the grid. In the model-based analysis, an AC model with an
extended Kalman filter (EKF) is used to estimate and track the dynamic
transitions of the power system. The data-driven analysis is performed
by developing a deep reinforcement learning (DRL) based detection
algorithm with a deep Q-network (DQN) on the framework of the
Markov decision process (MDP). The new DQN design has two main
innovations. First, the MDP state is designed as a sliding window of the
Rao-statistics of the AC dynamic state estimation residuals. Such a state
representation can accurately capture the dynamic state transitions
in power systems over certain time periods, thus enabling real time
detection. Second, a new reward function is proposed to enable flexible
trade-offs between the detection delay and detection accuracy. The
combination of the new MDP state and reward function allows us to
achieve low latency attack detection in real time with high detection
accuracy, and it can be used to detect both FDI and DoS attacks. In
addition, the proposed DQN algorithm utilizes a continuous state space
instead of the discrete state space used by most existing RL algorithms.
The adoption of continuous state space can reduce detection complexity
and improve detection accuracy, and it makes the algorithm less likely
to suffer from the curse of dimensionality.

The rest of this article is organized as follows. The AC system
model of a smart grid is introduced in Section 2. The dynamic state
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estimation of the power grid is described in Sections Section 3. The
problem formulation along with the models of both FDI and DoS attacks
are given in 4. Section 5 provides the proposed low latency detection
algorithm with DQN. Simulation results are presented in Section 6, and
Section 7 concludes the paper.

2. System model

We consider a power system with N buses. Without loss of general-
ity, the first bus is chosen to be the slack (reference) bus, which means
the phase of the voltage at this bus is regarded as 0. The magnitudes and
phases of voltages on the N —1 remaining buses are states of the system.
Define the state vector of the system as x = [x,X,...,x,]T € D1
where n = 2N —1, and AT is the matrix transpose operator. Denote the
active and reactive power injected to bus i as P, and Q;, respectively,
and the number of buses that are connected to bus i is ¢;. Denote the
active and reactive power flow from bus i to bus j as P; and O
respectively.

Each bus is equipped with a smart meter that collects the active
and reactive power injections and power flows. The system provides
m = m; + m, + 1 measurements in total, where m; = 2N is the number
of active and reactive power injections, and m, = Z,Ii | ¢; is the number
of active and reactive power flows. To fully observe the power system,
the voltage magnitude at the slack bus ¥, is also collected. Denote the
measurement vector as z = [zy,2,...,Z,]] € D"™!. The power and
voltage results at time ¢ can be modeled as nonlinear functions of the
state vector x; as h(x;,) = [h;(X,), hr(X,), ..., hm(x,)]T. The measurement
vector can then be represented by

ijs

z, =h(x,) +e, H

where e, is the measurement error at time ¢, and it is modeled with
a zero-mean Gaussian distributed random vector with length m and
covariance matrix R. Denote the estimated state vector with a dynamic
state estimation at time ¢ as %,. Define a residual vector v, as

v, =1z, — h(x)). (@)
3. Dynamic state estimation

There are various DSE methods used for power system estimation
based on Kalman filters (KF). Most follow a two-step structure: state
prediction followed by state estimation, but with different prediction
models and KF models. In this section, we present a DSE using Holt’s
linear trend method for state prediction, and extended Kalman filter
(EKF) for state estimation.

3.1. Holt’s linear trend method

The state vector {x,}, is a non-linear time series. We propose to
model the state vector by using Holt’s linear trend method, which uses
exponential smoothing to forecast a non-linear dynamic time series
with a trend [29]. It involves a forecast equation and two smoothing
constants, a and f.

Consider a dynamic time series {y,},. The h-step forecast equation
for the time series is

yt+h|t =1, + hb, (3)
where J,,, denotes the h-step forecast from y,, and /, and b, are
the estimations of the level and trend (slope) of the series at time f,
respectively. The values of /, and b, are iteratively updated as

L=ay,+ (1 =¥y =ay, + (1 =),y +b_y) 4
by =pU; =)+ A= P)b,_, (5)
where both « and g are smoothing parameters between 0 and 1. The

level Eq. (4) shows that /, is a weighted average of observation y,
and one-step-ahead forecast ,,_;. The trend Eq. (5) shows that b, is a
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weighted average of the estimated trend and the first order difference
of the estimated level. The initial values /, and b, are estimated by
minimizing the sum of squared errors for the one-step training errors.
Since the level and trend are updated for each 7, the forecasting method
is dynamic. Applying (3)-(5) with h = 1 to the power system state
vector x,, we can express the forecast state vector X,,; from x, as

%, =Fx +g (6)

where
F, =a(l+pI,, )
g =0+p(-a% —pl_ +(1—-pb,_, (8)

In the above equations, I, is a size-n identity matrix, 1, and b, are the
estimates of the level and trend vectors, respectively.

With the predictive model given in (6), The dynamic transition of
the state vector x in the power system can be modeled as

X =Fx +g +w, ©))

where F, € D™" is a diagonal matrix, g, € D"™! is a non-zero column
vector, and w, is a white Gaussian noise vector with zero mean and
covariance matrix Q,, accounting for model uncertainties.

In practical systems the true values of the state vector x, is unknown,
and a state estimation %, is utilized. Denote the error covariance matrix
of % as B, = E[(x,—%)(x, —%)7], where E[] is the expectation
operator.

The state forecasting at time 7+ 1 from the estimated state %, can be
written as

X4 =E [Xr+1 Ix, = ’A‘r] =FX +g (10)

The corresponding error covariance matrix of state forecasting can then
be calculated as

M, =E [(XH—I = %) (X1 = iz+1)T Ix, = ﬁt]

=F,2ZF, +Q,. (11
3.2. State estimation

The state estimation at time 7 + 1, denoted as %, ;, can be obtained
by minimizing the following objective function,

1 _
I (Xp41) = 2 [zt+| _h(xr+l)]TRr+ll [ZH-' —h(x,+|)]

! % - ~
* 2 [(X”’l _x’+])TMt+ll (X141 —x,+1)] s 12)

where %,,, is the forecast state vector in (10), and z,,, is the newly
received measurement at time 7 + 1.

The optimum %, that minimizes J (x,,,) can be obtained through
an iterative EKF as [30]

D =20 4+ ZOHTEO)R [z - h&D)]
-Mg@ - g1, 13)

where i denotes the iteration counter, H(x) = % is the Jacobian
matrix, and @ is the error covariance matrix of the estimation %
as

20 = [H'GOHRTHED) + M—l]‘1 . (14)
It should be noted that the subscript ¢+ 1 was omitted in (13) and (14)
for simplicity.

The EKF is initialized with f(i?l = X,,;. Under the assumption that
state forecasting has a high accuracy, that is, |x,,; — X, is very small,
the EKF initialized with %,,; will converge very fast. Thus we only
consider the estimation result after one EKF iteration. Performing the
iteration in (13) and (14) once yields

X =% K viyg, (15)

~ — ~ _11-1
2= [H Gy DR HE, )+ M, (16)
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where K, is the Kalman gain matrix defined as,

Ky = Z‘t+lHT(’~‘t+l)R—1 (17

1+1°
and

Vil =2 —h&y ), (18)
is the residual vector.
The results from DSK with EKF will be used to facilitate the design
of low latency cyberattack detection algorithms.

4. Problem formulation

Two types of attacks are considered in this paper: false data injec-
tion (FDI) attack, and denial of service attack (DoS). The detection of
these two types of attacks can be formulated as a hypothesis test.

4.1. Attack models

Assume that measurement elements in index 7 C {1,2,...,m} are
attacked at time 7. The attack models of FDI and DoS are given as
follows.

(1) False Data Injection (FDI): The measurement vector is injected
with a random attack vector a = [a;,4,, ...,4a,]7 € D™, with
a,=0ifi ¢ I:

Zt={ h(x,) +e,, t<rt (19)

h(x)+e +a, t>7

(2) Denial of Service (DoS): In the DoS attack, a subset of the
elements in the measurement vector are changed to zero. The
DoS attack can be represented by using a diagonal matrix A with
the main diagonal being a binary vector d = [d,,d,,...,d,]T €
{0, 1}™, that is A = diag(d), where

0, iel
= ’ 2
d; {1’ g1 (20)

The DoS attack is modeled as:

{ h(x,) + e, <t
7, =

Ahx)+e], 127 @h

DoS attack can happen on different layers in the smart grid. Lack
of measurements might cause the system to shut down in some
cases.

In this paper the DoS attack is modeled by setting the unavailable
measurements as zero. In this case, the DoS attack can be considered as
a special case of FDI attack, because the DoS attack on 7 is equivalent
to an FDI attack with an attack vector:

-z, i€l
- 2
4 { 0, ig¢l @2)

Thus model (19) will be used in this paper for both attacks.
4.2. Hypotbhesis test

The attack detection problem can be formulated in the form of a
hypothesis test, where the null and alternate hypotheses correspond to
the status of normal operation and attack, respectively.

Define the null hypothesis H,, and alternate hypothesis H, at time
t+1as

Hy iz =h&y ) +eqy, (23)
Hy @z = h(Xpy) + €+

Based on the assumption of high forecast accuracy, the nonlinear
measurement function h(x,, ;) at time 7+1 can be approximated by using
its first order Taylor series expansion around point %, as,

h(x,, ) =h& )+ HE D& — Xyy)- (24)
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Combining (18), (19), and (24) yields
Vert = H& o D&y = Xip) + €04 (25)
The covariance matrix of v,,; in the above equation is
St = HE o DM H Ry + Ry (26)

The residual vector after attack can be obtained in a similar manner.
Then the hypothesis test given in (23) can be equivalently expressed in
the form of the residual vector v, as

Hy @ Vi = HE DX — X)) + €4,

Hy i vy =HE DX — %) + ey +a

(27)

The residual v,,; is assumed to be Gaussian distributed, with its
mean vector being zero and a under the null and alternate hypothesis,
respectively [31]. The covariance matrix remains S,,; with or without
attacks. Thus the hypothesis test can be equivalently written as

Hy @ Vi ~ N (0,84,

(28)
Hy Vg ~ N@Spy).

To further simplify the detection process, we perform the eigen-
decomposition of S, as

Sip1 = U,Y;.IDr+lUt+l' (29
Define a whitened residual vector

Vier = Wi Vigy (30)

-1
where W, = D, +21U, +1 is the whitening matrix. Then the hypothesis

test on V,,; can be alternatively expressed as
Hy : V41 ~ N(O,1,),
0 _t+1 m (31)
My 2V~ N(Wipa L)

5. Quickest attack detection with DQN

Based on the hypothesis test formulated in the previous section, the
proposed quickest attack detection method with DQN is presented in
this section.

In quickest attack detection, the objective is to minimize the average
detection delay (ADD) subject to an upper bound of the probability of
false alarm (PFA). Denote the attack time identified by the detector as
#. Then the ADD and PFA can be evaluated as

ADD = E[# — 7|£ > 7] (32)
PFA =P(? < 1) (33)

The design of optimum quickest attack detection algorithm usually
requires the knowledge of the attack vector a, which is not available
in practical systems. We propose to solve this problem by using the
Rao-test statistic of the whitened residual as [32,33]

Y, =¥¥, (34)

With the Rao-test statistic given in (34), we propose to model the
system as a MDP and solve it by a using an RL algorithm.

5.1. MDP formulation

The MDP is a tuple of (O, A,T,r,£,y), where O is the state space,
A is the action space, T is the conditional transition probability be-
tween states, r is the reward function, 2 is the conditional transition
probability between observations, and y € [0, 1] is the reward discount
factor [34]. Next we will formulate the attack detection problem into
the MDP framework.
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« State

The state of the system should be able to reveal the status change
of the power grid before and after an attack. The system mea-
surement vector z, is in general not a good candidate for state,
because it is possible to obtain the same measurement before
and after a carefully designed attack. Various system operation
and measurement statistics have been used as state in the lit-
erature, such as the state estimation residual [27], the negative
log-likelihood function of the DC dynamic state estimation [25],
etc. Motivated by the Rao-CUSUM method presented in [33], we
propose to represent the state at time ¢ by using a size-w sliding
window of Rao-test statistics as

o) = Yi—yi1> Yimipr2s -+ Y- (35)

The state at time ¢ contains the Rao-test statistics calculated from
the current and the past w — 1 measurements. The time evolution
of the state can then be used to detect the presence of attacks.
Action

Since the objective of the system is attack detection, the action at
time ¢ can be simply defined as:

alt) = { 1, attack detected 36)

0, no attack detected

Reward function

Denote the reward function of taking action a(r) from state o(r) as
r(o(t), a(t)). The design of the reward function plays an important
role in the accuracy, efficiency, and convergence of the learning
algorithm. The reward function should take into considerations
of both detection accuracy and detection delay. The function
will give rewards to correct detection and low detection delays,
while false alarms and long detection delays should be penalized.
Considering both detection accuracy and detection delay, we
propose a new reward function as follows

%[1 —at)], t<r,
r(o(t), a(t)) = %a(l), t=r, 37
—¢[l —a(®)], t>r,

where ¢ € [0, 1] is a parameter adjusting the trade-off between
ADD and PFA. If ¢ is close to 0, then there is a very small penalty
to delayed detection, which leads to a long ADD but a low PFA.
On the other hand, a larger ¢ will lead to a severe penalty to
long detection delays, which results in low ADD at the cost of
potentially higher PFA. The stage transitions related to various
actions and the corresponding reward functions are illustrated in

Fig. 1.
Assume the attack is detected at time %, that is, a(f) = 0 for
t < 7 and a(f) = 1. Define an episode £ as a sequence of

state and action pairs between ¢+ € {1,2,...,%}, that is, & =
{(o(1), a(1)), (0(2), a(2)), ..., (o(%),a())}. Then the accumulated
episode reward function is

ré&) = Z r(o(), a(t)). (38)
=1
An action of a = 1 will always lead to the terminal stage, that is,
the end of an episode. The reward function in (37) is designed to
have an accumulated episode reward of 1 for perfect detection,
that is, (&) = 1 if a(z) = 1. The reward function will be strictly
less than 1 for false alarm or delayed detection. For excessive
long delays, the reward function will be negative. In (38), the
accumulated episode reward will be negative if the detection
7—1

delay is larger than o



Y. Li and J. Wu

Terminal

Fig. 1. Stage transitions.

5.2. DQN training

Based on the MDP formulation, we can formulate the quickest attack
detection problem under the framework of DQN. In the proposed DQN
method, we adopt a deterministic detection policy, that is, the action
a(t) is a deterministic function of the state o(¢) as a(t) = u(o(t)). Define
the discounted cumulative future reward starting from ¢ as

(8]
R, =y~ r(oi), a(i)) (39)
i=t
where y € (0, 1] is a discount factor, and the reward function r(o(i), a(i))
is defined in (37).
DON and general Q-Learning methods use an action-value function,
Q(o(2), a(?)), to estimate the expected cumulative future reward starting
from ¢ after taking action a(t) = u(o(r)) from the state o(r) as

0(0(1), a(t)) = Eyi5yy o1 [ Ril0(0), u(o(1))] 40)

where the expectations are performed with respect to future states
o(i > t) and future step rewards r(i > 7).

The action-value function can be written in a recursive form as the
well-known Bellman equation as

Q(o(1), a(1) = r(o(1), a(1))
+ 7Eo)[Q0( + 1), u(o(t + 1)))] 41

If the optimal action-value function Q*(o,a) is known, then the
optimal solution of Eq. (41) is a greedy policy

u*(0) = argmaxa € AQ*(0, a), (42)

where A is the action space, that is, the set containing all possible
actions.

In practice, the Q-function is unknown. In Q-learning methods, the
Q-function along with the policy are learned and updated in an iterative
manner.

For a given Q-function at time 7, the policy used in Q-learning is the
greedy policy that chooses the best estimated cumulative future reward,

u(o(1)) = argmax a(t) € AQ(o(1), a(?)). 43)

The Q function at time 7 is updated with a learning rate a € [0, 1]
as

Q(0(1), a(1)) «(1 — a)Q(0(1), a(1)) + alr(o(?), a(t))
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+y rnaxA O(o(t + 1), a(t + 1))]. (44)

a(t+1)e

In conventional Q-learning methods, the Q-function can be updated
in a Q-table that stores all state-action pairs. The size of the table
becomes prohibitively large when the state and action spaces are large.
DON replaces the Q-table with a neural network, Q-network, which
approximates the Q-function by updating the weights 6 in the neural
network. The inputs to the O-network are o(f) and a(f) and the output
is Q(o(1), a(1)).

Due to the trade-off between exploration and exploitation, a direct
implementation of (43) and (44) in the iterative Q-learning process
might not lead to the desired results, mainly due to the fact that
the learning environment is not sufficiently explored with the simple
greedy policy in (43). In order to improve the stability and convergence
rate of the learning process, we adopt several modifications to DQN,
including e-greedy policy in action selection, target network, and replay
buffer with mini-batch [35]. Details of the proposed DQN learning
process are given as follows.

Assume the entire DQN training time horizon is divided into multi-
ple sequential training episodes. Each episode has at most T time steps.
A training episode ends if an attack is detected before 7' time steps,
or no attack is detected in T time steps. For each new episode, the
power grid is initialized to the same normal operating condition, but
with different random attack vectors applied at different time steps.
The entire training process consists E training episodes.

In order to stabilize the training process and avoid big swings from
step to step, we adopt a target network Q’(o, a), which is built along the
main network Q(o, a). The weights of the main network, 6, are updated
every step, yet the weights of the target network, ', are copied from
the main network every C steps, with C being an integer. The action
selection is performed by using the target network Q’(o, a).

In order to broaden the exploration of the action space, we adopt
an e-greedy policy in action selection. In the e-greedy policy, a given
probability parameter e € [0, 1] is chosen. During the action selection
process, we either select a random action with probability ¢, or greedily
select an action by using (43) with probability 1 —e. Such a randomized
action selection approach can broader the search space and avoid being
trapped in a local optimum early during the training process.

Experience replay is used to improve the sample efficiency and
stability of the learning process. In experience replay, we can obtain
in each time step an experience tuple, e(t) = {o(?),a(?), r(t),0(t + 1)},
which is stored in a replay buffer D. The weights of the main network
are updated by randomly sample a mini-batch B C D experience tuples
from the replay buffer. For each experience tuple in the mini-batch, we
first calculate the corresponding target value as

o
4 #(i) + y max,e 4, Q' (o(i + 1),a:0"),

ifi=T

4
otherwise “3)

Then the weights of the main network can be updated by minimizing
the mean squared error between the main network and the target values
of the mini-batch as

1

B & - 0. a0 6)

rrgn
e(ieB

The minimization can be performed by using gradient descent. With
experience replay, the main network weights are updated by using
a random subset of experience tuples. Such an approach allows the
algorithm to learn from uncorrelated experiences from the past, recall
rare occurrences, and learn from individual experiences multiple times.
As a result, it can learn more efficiently from the past experience with
better stability.

Details of the DON training procedure are shown in Algorithm 1.
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Algorithm 1 DQN Learning

Require: Bus number N, measurement size m, window size w, attack
time r, initial action-value network parameter 6, empty replay
buffer D

1: Initialization: Set target network weights: §' < 6.
2: fore=1to E do
Initialization: Set ¢+ « 1; calculate o(1) by dynamic state
estimation.

4: while r < T do

5: Select action a(f) by following the e-greedy policy.

6: if a(r) = 1 then

7: t<T+1

8: else

9: Calculate reward r(r) by using (37).

10: Calculate o(r + 1) by dynamic state estimation.

11: Store experience tuple (o(?), a(?), (1), o(t + 1)) in the replay
buffer D.

12: Randomly sample a mini-batch of || experience tuples
B = {(o(i), a(i), (i), o(i + 1))} from D.

13: Calculate the target value y(i) for all experience tuples in
B by using (45).

14: Update the main network weights # by minimizing the
cost function in (46).

15: if mod (¢,C) = 0 then

16: Update the target network weights 6’ < 0.

17: end if

18: te—t+1

19: end if

20: end while

21: e—e+1

22: end for

Ensure: Target network parameters 6

5.3. Complexity analysis

The computation complexity of the proposed algorithm comes from
two sources: the dynamic state estimation (DSE) with extended Kalman
filter (EKF), and the DQN algorithm.

During DSE with an AC system model, the EKF is used to estimate
and track the dynamic state transition of the power grid. The estimation
results are then used to calculate the Rao-statistics to form the state
vector for the DQN. This procedure is performed at each time step
during the training and testing process.

Consider a power system with N buses and M lines. The size of
the state vector x is n X 1, where n = 2N — 1. The dimension of the
measurement vector z is mx 1, where m = 2(M + N)+1. The Holt’s linear
trend method in Section 3.1 requires 2 vector add (VA) in (8), and
multiple scalar multiplications in (7) and (8). The computational cost
of scalar multiplication is much lower than matrix operations such as
VA, matrix—vector product (MVP), matrix-matrix product (MMP), and
matrix inversion (MI). Therefore, only VA, MVP, MMP, MI are counted
during the complexity analysis. The state forecasting in (10) has 1 VA
and 1 MVP, the calculation of error covariance matrix in (11) has 2
MMPs and 1 VA.

The state estimation is obtained from one EKF iteration in (15),
which has 1 MVP and 1 VA. The calculation of the residual vector
requires 1 VA in (18). The Kalman gain matrix requires 2 MMPs in
(17) and 2 MMPs, 1 VA, and 2 MI in (16). A summary of vector and
matrix operations of the DSE-EKF is given in Table 1. Given M > N in
most cases, the DSE has a computation complexity of O(N(M + N)?).

Regarding the DQN algorithm, we only need to consider the com-
plexity of the online detection process, because the training is per-
formed offline. The computational complexity of the online DQN algo-
rithm comes from the computation cost in the target network. During
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Table 1
Number and complexity of vector and matrix
operations.
Operation Number Complexity
VA 7 O(M + N)
MVP 2 O(N(M + N))
MMP 6 O(N(M + N))
MI 2 O(N?)
Area 1 Area 2
20 120
Gen 1 1 10 3 101 13 10 11 Gen 11
Gen 2 2 12 Gen 12
4 14

Fig. 2. 13-bus Two Area System [36].

the online DQN detection process, the target network takes an input
o(t) of dimension w. It has two hidden layers with dimension k each,
and generates an output of dimension 2, Q(o(?),0;6") and Q(o(?), 1;0’).
The target network has 4 layers with a total of w + 2k + 2 (w, k, k,2)
neurons. For each layer, an MVP and an activation function are com-
puted. Thus the online DQN detection requires 3 MVPs with complexity
O(wk), O(k?), and O(k), respectively, and activation computation with
complexity O(k). Given k > w in the DQN, the complexity of the online
DQN algorithm is @(k?) and it is independent of the size of the power
grid.

6. Simulation results
6.1. System setup

The simulations are performed on a 13-bus system with two areas as
shown in Fig. 2 using MATLAB Power System Toolbox (PST V3.0) [37].
Bus 1 is used as the reference bus. The measurement vector consists
of m = 55 components, including the voltage magnitude of bus 1, the
active and reactive power injections at all 13 buses, and the active
and reactive power flows at all 14 lines. The state vector consists of
n = 25 components, which are the voltage magnitudes at all 13 buses
and the phase angles at the 12 non-reference buses. The time interval
of the simulation is 47 = 0.01s, which corresponds to a sampling rate
of 100 Hz. The maximum length of each episode is T = 200 samples,
which corresponds to a time duration of 2 s. The measurement and state
vectors are considered as the true values of z and x, respectively. For
the AC system DSE parameters, the covariance matrix of measurement
error is set as R = diag(10~>,107°, ..., 107%). The parameters for Holt’s
linear trend method are a = 0.95 and g = 0.001. The covariance matrix
of state transition error is Q, = 107°L,.

The DQN algorithm is implemented in Python using Stable Base-
lines [38], with which we built a customized power system environ-
ment for our simulations. Hyperparameters are tuned manually based
on the episode reward curve and state distributions in Tensorboard.
The Q-network and the target network each have two hidden layers
with 32 nodes per layer. The discount factor is y = 1, and the learning
rate for updating 6 in (46) is 0.0005. The size of the buffer D is 50,000.
The exploration probability of the e-greedy policy is ¢ = 0.1, and the
number of transitions in a mini-batch is |B| = 32. The frequency of the
target network update is C = 500.
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Fig. 3. Learning curve for ¢ = 0.1 and different w.

6.2. Training results

During the training stage, the number of buses under attack is
generated by uniformly sampling from {1,2,...,m}. Once the number
of buses under attack is determined, the set of indices of buses under at-
tack, 7, are sampled uniformly without replacement from the index set
of all buses. The attack time 7 is uniformly sampled from {1,2,...,T =
200}. The elements of the attack vector a are uniformly sampled from
[-2,2] p.u. for FDI attacks. The system is only trained for FDI attacks.
The model trained with FDI attacks will be tested against both FDI
and DoS attacks during the testing stage. In addition to cyberattacks,
the normal system dynamic and state transitions of the power grid are
simulated by increasing the active load at bus 4 by 0.5 per unit (p.u.)
at + = 0. Model trained under such a deterministic load change will
be tested against systems with random load changes during the testing
stage. The length of the sliding window used in the MDP state o(r)
in (35) is w € {1,2,4}. The trade-off parameter ¢ used in the MDP
reward function in (37) is chosen from {0.01,0.02,0.05,0.1,0.2,0.5,1}.
Each agent with a given set of parameters is trained for E = 10°
episodes, which takes about 4 h on a workstation with a 6-core Intel
Core i7-5820 K CPU operating at 3.3 GHz and 32 GB of random access
memory (RAM).

Fig. 3 shows the episode reward curves for w € {1,2,4} and ¢ = 0.1.
The shadow lines are the real episode rewards and the solid lines are
the episode rewards after a Gaussian-weighted moving average over
20 consecutive samples. Only the positive episode reward is shown
in the figure. The agent with w = 1 failed to reach a high episode
reward after being trained for E = 10° episodes, thus it failed to learn a
useful detection strategy. This is due to the fact that it makes decisions
based on the Rao-test statistic from only the current measurement while
ignoring all previous measurements. The training results for agents with
w = 2 and w = 4 successfully reached an episode reward that is close
to 1 after being trained for 2 x 10* episodes. The models obtained from
the training stage are then used during the testing stage.

6.3. Testing results

The DQN models are tested on the same power system but with
different system dynamics and random cyberattacks. For FDI attacks,
the attack indices, attack time, and attack vector values are all ran-
domly generated by following the same distributions as described in the
training stage. For DoS attacks, the attack indices are generated as the
same way as FDI attacks, and the attack matrix A is generated according
to (20). Each agent is tested for 1,000 Monte Carlo simulations, the PFA
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Algorithm 2 DQN Testing: Online Detection

Require: Target Q-network parameters 8 obtained from Algorithm 1,
network measurements, episode length 7.
1: Initialization: ¢t < 1; £ = oo.
2: whiler < T do
3: Calculate o(?).
4: Update a(r) as

a(t) « argmax Q(o(r), a; 6

5 if a(r) = 1 then
6: Tt

7: Break

8 end if

9: te—t+1
10: end while

Ensure: ©
Table 2
FDI testing results (PFA, ADD).
Parameters ¢$=0.5 $=1
w=1 0.993, 0 0.999, 0
w=2 0.029, 2.0974e-2 0.034, 2.0768e—-2
w=4 0.033, 4.0513e—-2 0.036, 4.0156e—-2

and ADD are calculated from the simulated detection results according
to (32) and (33).

During one testing episode (Monte Carlo trial), the agent works as
an online detector. At the tth time-step, it obtains the real measurement
z, and then calculates the MDP state o(¢) from z, and historical data. The
optimal action is made according to a(t) = argmax, Q(o, a;0"), where
0’ are the target network parameters obtained through the training
stage. The testing episode ends if an attack is detected or the end of the
episode is reached. Detailed testing procedures in each testing episode
are presented in Algorithm 2.

The testing results of FDI attacks for agents with w € {1,2,4} and
¢ € {0.5,1} are given in Table 2, where each entry represents the
(PFA, ADD) pair obtained for a given configuration. As discussed in
Section 5.1, the parameter ¢ can be used to tune the trade-off between
ADD and PFA, with a larger ¢ leading to a bigger penalty for detection
delay. Such a trade-off relationship can be observed in Table 2, where
increasing ¢ from 0.5 to 1 leads to a shorter ADD but a slightly larger
PFA. As shown in Fig. 3, the agent with w = 1 fails to learn during the
training phase, thus the testing PFA is close to 1. The agent with w =1
is just a one-shot soft threshold detector without utilizing historical
data. Increasing w from 1 to 2 or 4 leads to systems with considerably
better performance. The agents with w = 2 slightly outperform their
w = 4 counterparts in terms of both PFA and ADD. In addition, the
model complexity of w = 2 is lower than that of w = 4 due to the lower
dimension of o(7).

The performances of the proposed DQN-based detector under FDI
and DoS attacks are shown in Figs. 4 and 5, respectively, where the
ADD is plotted as a function of the PFA. In the simulations we have
w = 2, and the results are compared to that from the Rao-CUSUM
detector [33]. The multiple points on the ADD-PFA trade-off curve of
the DQN detectors are obtained by setting ¢ € {0.01,0.02,0.05,0.1,0.2,
0.5,1}. The trade-off curve of the Normalized Rao-CUSUM detector
is obtained by choosing different values for detection threshold as
described in [33]. Every point on the curves is obtained by 1,000 Monte
Carlo trials. The proposed DQN-based detector outperforms the Rao-
CUSUM detector in terms of both PFA and ADD under both FDI and
DoS attacks. Note that the ADD for both detectors are based on the time
interval of the simulation. In practice, the SCADA updates every 2-5 s,
the computation time of DSE in our detector is within 5s for a system
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Fig. 4. Performance of DQN detector (w = 2) and Normalized Rao-CUSUM
detector [33] under FDI attack.
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Fig. 5. Performance of DQN detector (w = 2) and Normalized Rao-CUSUM

detector [33] under DoS attack.

with 200 buses or less [39], and the complexity of online the online
DQN detection process is much smaller compared to that of DSE. Since
the DQN model is trained under FDI attacks, systems with FDI attacks
slightly outperform those with DoS attacks.

Fig. 6 shows the real power at bus 14 under FDI attacks. In case of
FDI attacks, the real power measurement at bus 13 is falsely decreased
by 1.5 p.u. and that at bus 14 is falsely increased by 1 p.u. between 0.25
and 0.6 s. The proposed DQN-based detector can correctly detect the
presence of FDI. Upon detection of FDI, we can remove the false data
and replace them with estimated and predicted power values, which
are very close to their true values.

7. Conclusion

A DQN-based deep reinforcement learning algorithm has been pro-
posed for the low latency detection of cyberattacks, such as FDI and
DoS attacks, in smart grids. Unlike conventional detection methods
that focus solely on detection accuracy, the proposed algorithm aims at
minimizing the average detection delay while maintaining a low proba-
bility of false alarm. The design objective was achieved by developing a
DQN-based reinforcement learning algorithm with dynamic AC power
system models, which can accurately model dynamic state transients
in power systems and identify cyberattacks in real time. The DQN-
based reinforcement learning algorithm was developed by following
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Fig. 6. The real power at bus 14 with FDI at 0.25 < < 0.6.

an MDP framework. The MDP state was formulated by using a sliding
window of Rao-statistics that can accurately capture the dynamic state
evolution of the power grid in real time. A new reward function was
designed to allow a flexible trade-off between ADD and PFA. Simulation
results demonstrated that the DQN-based RL detection algorithm can
achieve very low detection delays while maintaining good PFA per-
formance, and it can achieve considerable performance gains over the
existing Rao-CUSUM algorithm. For future works, we plan to apply and
improve the proposed algorithm to more sophisticated cyberattacks,
e.g., cyberattacks generated by using machine learning algorithms such
as generative adversary network (GAN).
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