Downloaded from https://www.pnas.org by IOWA STATE UNIVERSITY on November 22, 2022 from IP address 72.89.201.150.

PHYSICS

PNAS

Check for
updates

Accelerating the discovery of novel magnetic materials
using machine learning-guided adaptive feedback

Welyi Xia®® Masahiro Sakurai“d@®, Balamurugan Balasubramanian®”, Timothy Liao“&

Kai-Ming Ho?, James R. Chelikowsky“&* @ David . Sellmyer®"?, and Cai-Zhuang Wang®®'

, Renhai Wang®"

, Chao Zhang'®, Huaijun Sun'@,

Edited by Erio Tosatti, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy; received March 14, 2022; accepted October 5, 2022

Magnetic materials are essential for energy generation and information devices, and
they play an important role in advanced technologies and green energy economies.
Currently, the most widely used magnets contain rare earth (RE) elements. An out-
standing challenge of notable scientific interest is the discovery and synthesis of novel
magnetic materials without RE elements that meet the performance and cost goals for
advanced electromagnetic devices. Here, we report our discovery and synthesis of an
RE-free magnetic compound, Fe;CoB,, through an efficient feedback framework by
integrating machine learning (ML), an adaptive genetic algorithm, first-principles calcu-
lations, and experimental synthesis. Magnetic measurements show that Fe;CoB, exhibits
a high magnetic anisotropy (K; = 1.2 MJ/m’) and saturation magnetic polarization
(i = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our
ML-guided approach presents a promising paradigm for efficient materials design and
discovery and can also be applied to the search for other functional materials.

magnetic materials | materials discovery | machine learning | methodology development

Computational-driven discovery of novel materials with targeted functionalities is a highly
active research area owing to rapid advances in computer and communication technologies,
machine learning (ML) algorithms, and data sciences. For accelerating the speed of materi-
als discovery, it is essential to efficiently establish the relationships among chemical compo-
sitions, crystal structures, and physical properties. In the past few decades, several efficient
computational algorithms including an adaptive genetic algorithm (AGA) have been devel-
oped to predict stable crystal structures based on given chemical compositions (1—4). These
algorithms and methods are very useful in guiding materials discovery (5-7). However, the
number of possible combinations of different elements with different compositions, and
the crystal structures that they may adopt, is enormous, especially for compounds with
three or more chemical species. Using existing structural search algorithms to examine all
possible compositions is not realistic, and the chance to discover desired materials by con-
ventional methods can be extremely low. Complementary high-throughput computational
approaches for materials discovery have also been developed. Such approaches can cover a
wide range of compositions through exploring a large number of compounds obtained by
the substitution of various chemical species into known crystal-structure lattices. First-
principles calculations in combination with ML analyses are then performed to identify
compounds with desired functionalities. Successful examples of such approaches have been
reported in the literature (8-15). A disadvantage of such high-throughput approaches is
that most of the substitutional structures are not energetically favorable, and first-principles
calculations on these uninteresting structures are costly and ineffective.

An outstanding challenge is to develop a robust strategy to effectively guide a rapid
selection of promising compositions that can yield stable crystal structures with targeted
physical properties. We develop an ML-guided framework that can efficiently accelerate
the discovery of materials, as outlined in Fig. 1. The framework was initiated with an
ML model trained using existing first-principles density functional theory (DFT) calcu-
lation data from popular public databases. This ML model will provide the rapid
prediction of chemical compositions and crystal structures that are likely to exhibit
desirable energetic stability (i.e., formation energies) and functionalities. Plausible can-
didates obtained from the ML screening are validated by first-principles calculations
before promising ones are selected for further crystal structure searches using an AGA
to discover more lower-energy structures based on the selected chemical compositions.
Moreover, new low-energy structures and their properties obtained from AGA and
first-principles calculations can be used to adaptively refine the ML model, with the
success rate of the prediction improved adaptively.

We demonstrate the efficiency of this ML-guided feedback framework for materials
discovery by searching for novel RE-free magnetic materials. Although there have been
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Fig. 1. The ML-guided material discovery framework.

a number of studies on high-throughput calculations in combi-
nation with ML for magnetic materials (16-24), an efficient
ML-guided framework for greatly accelerating the discovery
and synthesis of novel materials is still highly desired. Specifi-
cally, we consider an Fe-Co-B system. Our aim is to find new
ternary compounds with favorable energetic stability and
desired magnetic properties, such as high magnetization and
high magnetocrystalline anisotropy energy (MAE), like RE
magnets such as Nd,Fe;4B and SmCos. Fe-based magnetic
materials are attractive, owing to the abundance of Fe and its
large atomic magnetic moment. Fe-Co binary alloys are good
candidates for ferromagnetic materials. However, they are gen-
erally stabilized in cubic structures and exhibit low magnetic
anisotropy. Considerable effort has been devoted to combine a
third element with Fe and Co to stabilize noncubic ternary
structures with a high magnetocrystalline anisotropy. For exam-
ple, an incorporation of N in FeCo thin films and nanoparticles
leads to tetragonal structures with improved magnetocrystalline
anisotropies (25, 26). Unfortunately, Fe-Co-N compounds can
decompose at higher temperatures of above 500 K (26, 27).
The synthesis of bulk Fe-Co-N compounds remains challeng-
ing and has yet to be realized. Binary or ternary compounds
formed by combining Fe, Co, or FeCo with transition metals
such as Zr, Hf, Ti, and Nb also exhibit appreciable magneto-
crystalline anisotropies, but their saturation magnetizations are
significantly reduced compared to those of Fe and Co (5, 7).
For the Fe-Co-B system, no stable ternary structures with
desired magnetic properties for permanent-magnet applications
have been discovered.

Prior to performing an AGA search, we utilize an ML model
to select promising compositions for stable magnetic Fe-Co-B ter-
nary compounds. Our ML model provides a rapid screening over
a wide range of possible compositions and crystalline structures to
select chemical compositions and crystal structures with desirable
formation energies. Consequent DFT optimizations based on the
short list of candidate structures selected by ML screening pro-
vides information on the magnetic properties of the candidate
structures. Here, we adopt the crystal graph convolutional neural
network (CGCNN) method (28). In CGCNN, a crystal struc-

ture is represented by a crystal graph that encodes both atomic
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information and bonding interactions between atoms. A CNN is
added on top of the crystal graph to construct the proper descrip-
tors, which are optimal for predicting target properties. In this
way, composition—structure—property relationships can be effi-
ciently learned and predicted by CGCNN. The training data in
CGCNN are primarily generated by first-principles calculations,
which enables a sufficient volume for the supervision training,

We first adopt the parameters in the CGCNN model devel-
oped for formation energy predictions of compounds (28).
This CGCNN model was trained by using the available struc-
tures and DFT-calculated formation energies of 28,046 struc-
tures from the Materials Project (MP) database (29). We refer
to this model as the first-generation (1G) CGCNN model. We
then extract 11,916 known ternary structures from the MP
database and replace the three elements with Fe, Co, and B to
predict the formation energies of ternary Fe-Co-B compounds
using the CGCNN ML model. There are six ways to shuffle
the order of three elements into a given ternary structure. We
also allow the volume of the crystals to vary by a scaling factor
between 0.96 and 1.04 with an interval of 0.02. Therefore, a
total of 357,480 hypothetical Fe-Co-B structures are investigated
by CGCNN. Noting that the CGCNN model does not have
the interatomic forces to relax the bond lengths of the structure,
the use of a scaling factor for the volume here allows the
CGCNN model to differentiate the energetic stability of the
same structure with different bond lengths. The formation
energy distribution from the 1G CGCNN prediction for this set
of structures is shown in Fig. 24, where our CGCNN screening
suggests that 435 Fe-Co-B structures have negative formation
energies. After removing very similar structures, 400 structures
from this short list are selected for subsequent DFT calculations.

We also train a CGCNN ML model specifically for predicting
Fe-Co-based ternary compounds using DFT formation energies
of the 400 Fe-Co-B structures from the 1G CGCNN model and
those of 3,469 Fe-Co-X X = C, N, Si, and S) ternary structures
from our magnetic materials database (30). We refer to this
CGCNN model as the second-generation (2G) CGCNN model.
We apply the 2G CGCNN model to the set of 357,480 struc-
tures generated from the MP database discussed above and to
another set of 12,755 ternary structures generated by a random
generation algorithm (31). The formation energy distribution
from the 2G-CGCNN model on these two sets of structures are
shown in Fig. 2 Band C, respectively. Additional 2,125 structures
that have negative formation energies from the 2G-CGCNN ML
model are selected for subsequent DFT structure optimizations.
We note that the existing FeCoB, FeCoB,, and Fe;CosB, com-
pounds reported in previous work (32) and the FeCo,B com-
pound in an earlier study (33) are all captured from our 1G and
2G-CGCNN predictions.

After carrying out DFT structure optimizations, we obtain
147 and 570 fully relaxed distinct Fe-Co-B structures from the
1G- and 2G-CGCNN screening, respectively. These 717 struc-
tures cover 175 different Fe-Co-B compositions.

We note that the formation energy Erused in the CGCNN is
defined with respect to the elementary Fe, Co, and B crystal
phases. A negative (positive) formation energy means that the
structure is unlikely (likely) to be decomposed into the three ele-
mentary crystalline phases. To further assess the energetic stabil-
ity of the relaxed structures at different compositions, the DFT
formation energy with respect to the known convex hull
(denoted as ) is also calculated for the CGCNN-predicted
717 ternary structures, as shown in Fig. 34. The Ej,; of any
given phase on the ternary convex hull is calculated by compar-
ing its formation energy with respect to the nearby three known
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Fig. 2. Formation energy distribution from our CGCNN ML predictions. (A) Formation energies from the 1G CGCNN ML model for structures generated

using the MP database. (B) Formation energies from the 2G CGCNN ML model for structures generated from the MP database. (C) Formation energies from
the 2G CGCNN ML model for structures generated by random space groups.

phases on the convex hull (ternary, binary, or elementary crystal-
line phases), and the chemical compositions of these three phases
are located at the vertexes of a triangle (the Gibbs triangle), which
enclose the composition of the phase of which Ej,; is being cal-
culated. We use £, to assess the thermodynamic stability of the
given phase against decomposition into the nearby three known
phases.

We can see from Fig. 34 that many of these Fe-Co-B ternary
structures exhibit a formation energy very close to the convex
hull. Such energetically favorable metastable structures could be
synthesized by experiments using nonequilibrium synthesis
methods. In Fig. 3B, we also show the magnetization of these
structures from DFT calculations.
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Fig. 3.

In the present study, only ferromagnetic configurations are
used for the DFT calculations. This should be a reasonable
choice used to quickly select promising candidate structures for
permanent magnets. The magnetic polarization is obtained by
dividing the total magnetic moment in the unit cell from the
DFT calculations by the volume of the unit cell. Many of these
structures, especially those with rich Fe or/fand Co composi-
tions, exhibit high magnetization /; larger than 1 T.

To assess which structure has both favorable energetic stability
and magnetization, we construct a scatterplot with magnetization
shown as the horizontal axis and formation energy with respect
to the convex hull as the vertical axis (Fig. 30). From ML
screening with the CGCNN models we discover 36 promising
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Energetic stability and magnetic polarization of the Fe-Co-B compound predicted from our ML-guided framework. (A) The energy distance from the

convex hull, E,,y, and (B) magnetic polarization for the 717 DFT optimized structures selected from the two generations of CGCNN ML models. These struc-
tures cover 175 Fe-Co-B compositions. (C) DFT formation energy above the convex hull versus the magnetic polarization, Js, for structures from the 1G and
2G CGCNN models. Dotted lines indicate the region of interest (Exuy < 0.1 eV/atom and Js > 1 T). (D) DFT results of £y, and Js for the structures from two gen-
erations of CGCNN models (blue) are compared with those for the structures obtained by AGA (red).
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structures (Ej,; < 0.1 eV/atom and j; > 1 T) in Fig. 3C (Righs,
Bottom) based on the results from DFT calculations.

We also find that the 36 promising structures predicted with
the guidance from CGCNN cover 22 compositions out of 175
compositions examined by CGCNN. We therefore select these
22 compositions for further investigation by AGA, thus sub-
stantially narrowing the number of compositions to be explored
in AGA scarches. Based on the 22 compositions, we generate
1,817 structures using AGA. After DFT optimizations, we
obtain 557 new metastable structures with £}, < 0.1 eV/atom
and a high magnetization, J; > 1 T, as shown in Fig. 3D.
Compared to 36 structures discovered through ML screening as
discussed in the paragraph above, more new promising struc-
tures are discovered by AGA, as shown in Fig. 3D. Therefore,
with the guidance from ML to select promising compositions,
AGA plays an important role in discovery of novel materials
in our framework. With our combined ML+AGA+DFT
approach, we can efficiently retrieve almost every possible low-
energy structure over a wide range of compositions in this ter-
nary system. As shown in Fig. 3D, we discover 593 Fe-Co-B
structures with £, < 0.1 eV/atom. Such low-energy metasta-
ble structures could be synthesized by experimentation, espe-
cially under nonequilibrium synthesis conditions. Moreover,
more than 90% of the AGA-derived structures have a high
magnetization (f; > 1 T).

We perform DFT calculations with the spin-orbit interactions
to estimate the MAE for noncubic structures from the candidate
593 structures with Ej,; < 0.1 eV/atom and J, > 1 T. As dis-
cussed above, among these 593 structures, 36 are from CGCNN
and 557 are from AGA. We find that seven structures possess a
large MAE of K; > 1 MJ/m’. Among them, three compounds
(shown in Fig. 4 C D, and F) are from the CGCNN prediction
and four compounds including the best Fe;CoB, (shown in Fig.
4 A, B, E, and G) are found by the AGA searches. Six of them
have a tetragonal or orthorhombic lattice, exhibiting uniaxial
anisotropy. Uniaxial anisotropy plays a key role in yielding mag-
netic coercivity, a measure of a resistance to being demagnetized.
The seven Fe-Co-B structures predicted from our scheme have an
MAE substantially larger than that of hexagonal close packed Co
(0.44 MJ/m?), which is favorable for permanent-magnet applica-
tions. In particular, as shown in Fig. 4 and Table 1, the Fe;CoB,
compound exhibits the lowest formation energy above the convex
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hull (22.8 meV/atom) as compared to other high-MAE com-
pounds. The FesCoB, compound is an orthorhombic structure
with a space group Cmmm and lattice parameters of @ = 4.211,
b=7.078, and c = 7.149 A, as schematically shown in Fig. 44.
We performed phonon dispersion calculations for this structure.
Obur results indicate that the structure is dynamically stable.

To validate and verify our theoretical findings, we employ a
nonequilibrium technique involving a rapid quenching of mol-
ten alloys to fabricate the new Fe3CoB, compound (see Materials
and Methods), which exhibits comparatively lower energy above
the convex hull as mentioned in the paragraph above. The exper-
imental X-ray diffraction (XRD) pattern of the Fe;CoB, com-
pound is compared with the simulated XRD pattern of the
orthorhombic structure noted in the paragraph above as shown
in Fig. 5A. The positions and intensities of the experimental
XRD peaks are in good agreement with the calculated ones. We
confirm the formation of the predicted Fe;CoB, compound
with the orthorhombic structure. Fig. 5B shows the field-
dependent magnetization measured at 10 K, which indicates a
high J; for the new compound as predicted by theory, along
with a coercivity of H, = 0.22 kOe (Fig. 5B, Insef). We have
used the law-of-approach-to-saturation method to determine the
magnetic anisotropy constant Kj and the saturation magnetiza-
tion M, (34). By following this approach, we fit the magnetiza-
tion data measured at 10 K and 300 K near saturation (Af)
in the field range of 30 to 70 kOe using the equation M = A
(1 — A/H?) + yH as shown in the inset of Fig. 5B, where y is
the high-field susceptibility and the constant 4 depends on X as

given by A = %%‘; This analysis yields K; = 1.0 MJ/m’ and
Jo=1.35T at 300 K and K; = 1.2 MJ/m’ and J, = 1.39 T at
10 K, which are in excellent agreement with the calculated values
of Ky = 1.34 MJ/m® and J, = 1.40 T, respectively.

Our results demonstrate that the theoretical guidance by an
ML-assisted material search and DFT calculations are crucial in
accelerating materials discovery. Our approach quickly identi-
fies magnetic compounds with desired magnetic properties and
avoids a time-consuming and expensive experimental optimiza-
tion process. The room-temperature magnetic properties of
Fe;CoB, (K; = 1.0 MJ/m® and J, = 1.35 T) yield an anisot-
ropy field of H, = 2K/M, = 1.86 T. For potential permanent-
magnet materials, Hirayama et al. have proposed that the
anisotropy field (B, = poH,) must be larger than 1.35 J; by

C Fe,CoB D FesCoB;

4 Syl

Space group: Pnma Space group: C2/m

Ehun = 66.7 meV/atom Epun = 72.2 meV/atom
Js=16T, Ki=1.3MIm* Jg=1.1T,K;=1.1 MJ/m3

Space group: Pmmn
Epun = 92.4 meV/atom
Js=1.2T, K;= 1.2 MJ/m3

Fig. 4. The crystal structures of seven promising Fe-Co-B compounds for permanent magnet obtained from our ML-AGA-DFT predictions. Among these seven
structures, four compounds (A) (B) () (G) are discovered by AGA searches, and three compounds (C) (D) (F) are obtained in the ML screening.
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Table 1. Space group, formula units per unit cell [Z], formation energy [E], En,i, and magnetic properties (magnetic
polarization [Js], magnetic anisotropy energy [K;], magnetic easy axis, and T.) of the seven promising Fe-Co-B
compounds discovered through our combined ML-AGA-DFT scheme.

E¢ Magnetic Properties
Formula Space Group (No.) V4 Es (meV/atom) Enun (meV/atom) Js(T) Ki (MJ/m3) Easy Axis T(K)
Fe Im3m (229) 1 0 0 2.15 1043
Co P63/mmc (194) 2 0 0 1.81 0.41 c 1388
FesCoB, [Fig. 4B] Cmmm (65) 4 —283.7 22.8 1.40 1.34 a 1252
FeCoB [Fig. 4B] Pbcm (57) 4 —274.1 26.7 1.34 1.07 c 928
Fe,CoB [Fig. 4(C] Pnma (62) 4 -180.3 66.7 1.55 1.32 b 881
FesCoBs [Fig. 4D] 2/m (12) 4 —288.2 72.2 1.08 1.12 c 643
Fe,CoB; [Fig. 4E] Immm (71) 2 —258.4 92.4 1.15 1.96 b 789
Fe,CoB, [Fig. 4F] Pmmn (59) 2 —258.4 92.4 1.25 1.24 c 997
Fe,CoB, [Fig. 4G] P4m?2 (115) 4 —257.8 92.9 1.22 1.48 c 870

Crystallographic data, such as lattice constants and atomic coordinates, of these compounds can be found in the Magnetic Materials Database (30). For comparison, experimental data

for bcc Fe and hep Co are given in italics.

considering intrinsic B, and nanostructural details (35). Such
materials may exhibit energy products as high as /%/4, if appro-
priate nanostructuring and alignment of grains are achieved.
Fe;CoB, fulfills the above-mentioned criteria for the anisotropy
field (B, > 1.35 J). Thus, the new compound or its modifica-
tion will be important for next-generation critical-materials
issues in energy systems.

In summary, we illustrate an effective feedback loop through
a combination of ML, AGA, and first-principles DFT calcula-
tions. The efficient ML screening provides fast predictions of
promising chemical compositions and crystal structures. The
subsequent DFT calculations and AGA search yield a good esti-
mation for the energetic stability and magnetic properties of
candidate structures. This combination enables efficient materi-
als discovery with desirable stability and properties by experi-
ments. We note that our ML-guided approach is different
from common high-throughput approaches in the literature
(9, 13, 15, 36) in two aspects. First, in our approach, the high-
throughput screening is done much faster with an efficient ML
model. Only a small fraction of the structures are checked by
first-principles calculations to provide the promising composi-
tions for AGA search. Another notable advantage of our
approach is that new structures (beyond known structures) are
continuously added to the structure pool by the AGA search.
The feedback from AGA is critical since AGA can provide rele-
vant new structures to significantly increase the likelihood for
the new materials discovery, especially for ternary and quater-
nary compounds where available structures from known data-
bases are limited.

Only 2,525 structures (which is less than 0.7% of the total
structures screened by ML) predicted by ML and 1,817 struc-
tures by AGA are required to be optimized by DFT calculations.
According to the timing from our calculations, we estimate that
such calculations can be done within a week on a cluster com-
puter of 200 nodes (24-32 cores per node). Our approach effi-
ciently discovered seven Fe-Co-B ternary compounds suitable for
permanent-magnet applications. Among them, the lowest-energy
Fe3CoB; structure has been synthesized by experiment. With the
guidance from our computational study that pinpointed the
promising composition, it took only a few days to successfully
synthesize the new Fe;CoB, compound and characterize the
structural and magnetic properties. Our ML-AGA-DFT experi-
mental framework thus provides timely feedback between com-
putation and experiment to greatly accelerate new materials
exploration and discovery.

PNAS 2022 Vol. 119 No.47 2204485119

In this work, we chose B with Fe-Co to demonstrate a
“proof of principles” of our proposed ML-guided feedback
framework. Discovery of RE-free magnetic materials with other
elements is also possible and will be investigated in follow-up
work. We believe more new structures for this system or other
systems can be discovered by further adaptive iterations to
refine our ML model using this framework. We also note that
further understanding regarding why Fe;CoB, can have good
energetic stability and high magnetization and magnetic anisot-
ropy will also provide useful insights for accelerating the design
and discovery of magnetic materials. In general, magnetization
comes from transition metal elements (Fe and Co). Therefore,
rich composition in Fe and Co will provide high magnetiza-
tion. However, the origin of magnetic anisotropy is much more
complex. While previous work has endeavored to develop a
relationship between composition, crystal structure, and mag-
netic anisotropy (37, 38), a quantitative theory for making such
predictions is lacking. Even with the same composition, the
symmetry of the crystalline structure, the arrangement, and the
local environment of Fe and Co atoms will have significant
impact on the magnetic properties, especially the magnetic
anisotropy. Future work including using ML to explore such
relationships will be interesting and desirable.

Materials and Methods

Computational Methods. The CGCNN model is built with CNNs on top of a
arystal graph consisting of convolutional layers and pooling layers (28). Crystals
are converted to crystal graphs with nodes representing atoms in the unit cell
and edges representing atom connections. The 1G-CGCNN model is trained
using the structures and energies of 28,046 compounds from DFT calculations
in the MP database (29) following the instructions provided in previous research
(28). The nodes of the crystal graph are represented by nine atomic properties of
the elements: group number, period number, electronegativity, covalent radius,
valence electrons, first ionization energy, electron affinity, block, and atomic
volume. The graph edges are characterized by neighboring bonds for each
atom/node. R convolutional layers and L1 hidden layers are built on top of these
nodes, resulting in a new graph with each node representing the local environ-
ment of each atom. After pooling, a vector representing the entire crystal is
connected to L2 hidden layers, followed by the output layer to provide the pre-
diction. The mean absolute error of the validation for the 1G-CGCNN model is
0.039 eV/atom. The 1G-CGCNN model is used to perform the screening of the
hypothetical structures as described in the main text. Then the 2G-CGCNN model
is trained based on the DFT formation energies for the structures from 1G screen-
ing and from those Fe-Co-based structures from our magnetic materials data-
base (30) as discussed in the main text. The dataset is divided into a training set
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Fig. 5. Structural and magnetic properties of Fe3CoB,. (A) A comparison of the experimental XRD pattern with the simulated diffraction pattern of the pre-
dicted orthorhombic structure (a.u. stands for atomic unit). (B) Field-dependent magnetization curve measured at 10 K, where the top inset is the corre-
sponding enlarged magnetization curve to show coercivity H.. The bottom inset shows the fitting of experimental magnetization data (open circles) in the
high-field region at 300 K and 10 K using the law-of-approach-to-saturation method (lines) (emu stands for electromagnetic unit).

(80%), validation set (10%), and test set (10%), respectively. We perform
40 epochs of the learning process and select the best model as our 2G-CGCNN
model, with the lowest mean absolute error of the validation set (0.104 eV/atom)
and the test set (0.136 eV/atom).

The DFT calculations are performed using VASP package (39-41). The
Perdew-Burke-Ernzerhof function(42) combined with the projector-augmented
wave method (43) and a cutoff energy of 500 eV are used. We use a k-point

grid with a mesh size of 27 x 0.025 A generated by the Monkhorst-Pack
scheme. This mesh size is fine enough to sample the first Brillouin zone for
achieving better k-point convergence (44). On top of self-consistent spin-polar-
ized calculations, we carry out non-self-consistent noncollinear calculations
including the spin-orbit coupling effects for MAE calculations (41). When the
spin-orbit couplings are taken into account, symmetry operations are completely
turned off and we set the spin-quantization axis to be along different directions.
MAE is calculated by taking the energy differences between different spin orien-
tations, while the direction with lowest energy is referred as the easy axis; Ky is
then obtained by the energy difference between the easy axis and the axis with
the second-lowest energy £ — Eeg,. The Curie temperature (T;) is evaluated
within mean-field approximation by taking the energy difference between
ferromagnetic (FM) and antiferromagnetic (AFM) configurations via the simple
formula 7, ~ 2 &t (45)

We employ an AGA (2, 6, 46) to further search for possible lower-energy
structures based on the chemical compositions selected from the ML and DFT
calculations. In addition to the conventional genetic algorithm (GA) loop, the
AGA adds in an adaptive loop to adaptively adjust the auxiliary interatomic
potential used in the conventional GA process. The most time-consuming
structure relaxation and energy evaluation step in the conventional GA loop is
done efficiently by using the auxiliary interatomic potential. The adaptive
loop adjusts the auxiliary interatomic potential from iteration to iteration
guided by the accurate results from DFT calculations on the structures selected
from the previous interaction of the GA search. Only single-point DFT calcula-
tions on a small subset of candidate structures obtained from the previous GA
loop (using the auxiliary interatomic potential) are needed at each iteration to
guide the adjustment of the potential. The auxiliary interatomic potential for
the Fe-Co-B system is expressed according to the embedded atom method
(47) with some adjustable parameters. Energies, forces, and stresses of these
structures from first-principles DFT calculations are used to update the param-
eters of the auxiliary interatomic potentials by, e.g., the force-matching
method with a stochastic simulated annealing algorithm as implemented in
the potfit code (48, 49). Another cycle of GA search is then performed using
the newly adjusted interatomic potential, followed by the readjustment of the
potential parameters, and the AGA iteration process is then repeated. In this
way, for a given composition of the Fe-Co-B ternary, the auxiliary interatomic
potential can help in fast sampling of the configuration space through GA
and expensive DFT calculations are kept at the minimal without losing the
accuracy of the structure search.
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Experimental Methods. To fabricate the Fe;CoB, compound, appropriate
amounts of high-purity Fe, Co, and B elements are melted using a conventional
arc-melting process to obtain alloys with a Fe;CoB, composition. The arc-melted
alloys are remelted to a molten state in a quartz tube and subsequently ejected
onto the surface of a water-cooled rotating copper wheel to form nanocrystalline
ribbons of approximate width 2 mm and thickness 40 pm. The cooling rate dur-
ing the melt-spinning process is of the order 10¢ K/s, which facilitates the stabil-
ity of the metastable structures without decomposition or transformation into
equilibrium/ground-state structures. The magnetic properties for the Fe3CoB,
compound are measured using the superconducting quantum interference
device magnetometer from Quantum D.

Data, Materials, and Software Availability. Some study data are available:
New crystallographic data and the computational results for Fe-Co-B ternary com-
pounds, such as the formation energy and magnetic properties, obtained from
this work is made available to the public through our NovoMag database ,
https://www.novomag.physics.iastate.edu/structure-database (50). Other data are
all included in the manuscript.
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