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A B S T R A C T   

Adverse pregnancy outcomes affect 54 million people globally per year, with at least 50% of these attributed to 
infection during gestation. These include inflammation of the membranes surrounding the growing fetus (cho-
rioamnionitis), preterm prelabor rupture of membranes (PPROM), preterm birth (PTB), early-onset disease 
(EOD) and late-onset disease (LOD), neonatal and maternal sepsis, and maternal or fetal demise. Although 
universal screening and implementation of intrapartum antibiotic prophylaxis (IAP) has improved EOD out-
comes, these interventions have not reduced the incidences of LOD or complications occurring early on during 
pregnancy such as PPROM and PTB. Thus, novel therapies are needed to prevent adverse pregnancy outcomes 
and to ameliorate disease risk in vulnerable populations. Lactoferrin has recently been explored as a potential 
therapeutic as it demonstrates strong antimicrobial and anti-biofilm activity. Lactoferrin is a glycoprotein 
capable of iron chelation found in a variety of human tissues and is produced in high concentrations in human 
breast milk. In recent studies, lactoferrin has shown promise inhibiting growth and biofilm formation of strep-
tococcal species, including Group B Streptococcus (GBS), a prominent perinatal pathogen. Understanding the 
interactions between lactoferrin and GBS could elucidate a novel treatment strategy for adverse pregnancy 
outcomes caused by GBS infection.   

1. Introduction 

1.1. Adverse pregnancy outcomes 

Over 50 million people experience an adverse pregnancy outcome 
each year according to the World Health Organization (WHO).1–7 These 
adverse pregnancy outcomes include chorioamnionitis, preterm birth 
(PTB), preterm prelabor rupture of membranes (PPROM), early-onset 
(EOD) and late-onset disease (LOD) neonatal sepsis, maternal sepsis, 
necrotizing enterocolitis and maternal or fetal demise. Often, these 
outcomes stem from Streptococcus agalactiae or group B Streptococcus 
(GBS) infection. GBS is often a commensal bacterium in healthy adults, 
but can become infectious in those that are pregnant, older, or 

immunocompromised. Treatment for GBS infection includes intra-
partum antibiotic prophylaxis (IAP) during labor as infants most often 
contract GBS through vertical transmission, although, they can also 
acquire GBS through skin-to-skin contact or from hospital settings. 
While implementation of vaginal and rectal GBS screening and IAP has 
improved statistics, there are still over half a million preterm births 
annually leading to about 100,000 neonatal deaths and 46,000 still 
births attributable to GBS infection.8 Additionally, with the rise in 
antibiotic resistance and the detrimental effects of antibiotics to the 
immature infant microbiota, novel remedies are desperately needed. 
Fig. 1. Fig. 2. Table 1. 
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1.2. Chorioamnionitis 

Chorioamnionitis is the acute inflammation of the amniochorionic 
membrane and is often associated with PPROM and PTB. Ureaplasma 
urealyticum, Chlamydia trachomatis, Neisseria gonorrhoea, Mycoplasma 
hominins, GBS, Trichomonas vaginalis, and some gram negative anaerobes 
are the usual culprits of this inflammation.9–13 This complication can 
cause significant maternal, perinatal, and long-term adverse effects. 
Poor patient outcomes include postpartum infections and sepsis while 
poor infant outcomes include stillbirth, PTB, neonatal sepsis, chronic 
lung disease, and brain injury.14–20 Current treatment methods include 
the use of broad-spectrum antibiotics. Most studies used intravenous 
ampicillin (2 g) every 6 hours for gram positive organisms, gentamicin 
(1.5 mg/kg) every 8 hours for gram negative organisms, and clinda-
mycin (900 mg) every 8 hours for additional coverage during any 
necessary caesarean sections.21–23 The utility of antibiotics is 
confounded as they can alter the infant’s gut microbiota, and are 
steadily being rendered ineffective with the emergence of multi-drug 
resistant bacteria.24–25 Although there is some deviation from this 
antibiotic regimen in the literature, consensus on the best protocol is not 
evident. Chorioamnionitis plays a role in approximately 40–70 % pre-
mature births, highlighting the need for alternative methods to prevent 
and treat this inflammation.26 

1.3. Preterm prelabor rupture of membranes (PPROM) 

PROM (prelabor rupture of membranes) is defined as the rupture of 
membranes before the start of labor. Furthermore, PPROM is the rupture 
of membranes before 37 weeks of gestation and is responsible for 3–4% 
of pregnancies and one-third of all preterm births.27–29 PPROM is a 
major contributor to perinatal mortality due, in part, to its immediate 
initiation of labor post rupture. Gestational age is the main variable that 
dictates the severity of complications after PPROM, but severity can 
increase with perinatal infection, placental abruption, and umbilical 
cord compression.27 The two most common complications after PPROM 
are respiratory syncytial virus (RSV) and PTB. Other morbidities, 
include sepsis, necrotizing enterocolitis, and intraventricular hemor-
rhage.27–29 There are several risk factors for PPROM, including PPROM 

in a prior pregnancy, chronic steroid therapy, cigarette smoking, low 
body mass index, low socioeconomic status, nutritional deficiencies, 
chorioamnionitis, and placental abruption.30 When the membranes 
rupture, it is recommended to deliver the baby immediately if the risk of 
ascending infection outweighs the risk of prematurity. If immediate 
delivery is unnecessary and the gestational age is less than 34 weeks, 
options include administering antenatal corticosteroids or broad- 
spectrum antibiotics.30–32 Although protocols to diagnose and treat 
PPROM exist, PPROM still affects 3–4% of all pregnancies and precedes 
40% to 50% of preterm births,33–34 demonstrating the need for novel 
therapeutic strategies. 

1.4. Preterm birth (PTB) 

PTB is a delivery that occurs prior to 37 weeks’ gestation. In 2018, 
PTB was the second leading cause of death in infants and in 2020, 1 in 
every 10 infants born in the U.S. were affected by PTB.35 Even more 
alarming are the racial and ethnic disparities amongst PTB rates. The 
PTB rate for African American women in 2020 was 13.8%, which is 
higher than the global PTB rate of 12%.35 Risk factors of PTB include 
race, socioeconomic background, maternal nutritional status, and the 
bacterial dysbiosis of the vaginal microbiome.36–41 Historically, the 
hallmark of vaginal health has consisted of a Lactobacillus-dominated 
vaginal microbiome and disruption of this dominance can cause bacte-
rial vaginosis, a higher risk for acquiring sexually transmitted infections, 
PTB, and pelvic inflammatory disease.42–44 For example, Lactobacillus 
crispatus prevalence has shown association with a lower risk of PTB.45–49 

The lifelong implications of PTB on the infant can include asthma, 
cerebral palsy, vision and hearing impairments, and some learning 
disabilities, such as attention deficit hyperactivity disorder (ADHD) and 
increased anxiety.50–52 Studies examining prevention of PTB include 
administering progesterone, a hormone that increases over the course of 
gestation. Progesterone protects fetal membranes, prevents uterine 
contractions, and has anti-inflammatory properties. Makena, an intra-
muscular injection of synthetic progestin hydroxyprogesterone caproate 
in oil, is the only current FDA approved drug for PTB prevention.53–55 

Due to several studies reporting mixed results on Makena, the Center for 
Drug Evaluation and Research (CDER) recommended that the Food and 
Drug Administration (FDA) withdraw Makena’s approval.56 Studies 
have been conducted to investigate the efficacy of vaginally and orally 
administered progesterone in preventing PTB, yet no FDA approved 
treatment has been made available.57–64 The use of aspirin to combat 
PTB has also been researched, but more trials are needed to better un-
derstand its potential benefits.65–66 Clearly, PTB is a serious complica-
tion of pregnancy and although extensive studies and trials have been 
conducted, novel methods are required to decrease the mortality and 
morbidity linked to PTB. 

1.5. Neonatal sepsis 

Sepsis is defined as a life-endangering infection caused by a dysre-
gulated host response to infection.67 Although difficult to determine, the 
global burden of sepsis in 2017 was estimated to consist of 48.9 million 
cases resulting in 11 million deaths with almost half of all cases occur-
ring among children.68 More alarming though, is that 2.9 million of 
these deaths are attributed to children under the age of five and roughly 
85% of sepsis cases occurred in low to middle income countries.68 Most 
commonly, Escherichia coli (E. coli) and GBS are the etiological patho-
gens of sepsis, but Listeria monocytogenes, non-typeable Haemophilus 
influenzae, gram negative enteric bacilli other than E. coli, Candida spp., 
coagulase negative staphylococci, Streptococcus pneumoniae, and Strep-
tococcus pyogenes have also been implicated in neonatal sepsis.69–74 Risk 
factors for neonatal sepsis include invasive medical devices, PROM, 
chorioamnionitis, PTB, maternal fever, and low birth weight.75–77 

Table 1 
Adverse pregnancy outcomes and how they manifest in the patient.  

Adverse Pregnancy Outcome Manifestation 

Chorioamnionitis • Inflammation and/or infection of the placenta 
and fetal membranes 
• Can result in stillbirth, PTB, PPROM, neonatal 
sepsis, and long-term brain and lung injury 

Preterm Birth (PTB) • Delivery before 37 weeks gestation 
• Often caused by chorioamnionitis or 
inflammation and/or infection of the placenta 
and fetal membranes 

Preterm Prelabor Rupture of 
Membranes (PPROM) 

• Rupture of membranes before 37 weeks 
gestation 
• Major risks include respiratory preterm birth, 
sepsis necrotizing enterocolitis, and syncytial 
virus (RSV). 

Early-Onset Disease (EOD) • Transmitted vertically from the mother during 
delivery through the birth canal 
• Can result in sepsis, pneumonia, and meningitis 

Late-Onset Disease (LOD) • Transmitted vertically, horizontally from 
hospital environment, or contaminated breast 
milk 
• Can result in meningitis, sepsis, bacteremia 

Neonatal Sepsis • Life-threatening blood infections during the 
first 90 days of life 

Necrotizing Enterocolitis  
Maternal Sepsis • Risk factors include Caesarean section, early 

labor, obesity, diabetes, and prolonged rupture of 
membranes  
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Recognition of sepsis, though, is difficult as the symptoms and signs are 
subtle. Although vague, some symptoms include hypothermia in pre-
term babies, fever in term babies, tachycardia, bradycardia, cool or pale 
extremities, respiratory symptoms, such as nasal flaring or grunting, 
neurological symptoms, such as seizures or abnormal primitive reflexes, 
gastrointestinal symptoms, such as vomiting or jaundice, and skin 
abnormalities.78 

Diagnostic testing is performed in any neonate with risk factors or 
any concerning symptoms to determine the need for antibiotics and 
observation. Such testing includes blood cell counts, blood cultures, 
swab cultures, placental cultures, polymerase chain reaction (PCR), and 
matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) 
mass spectrometry.78 All current treatment options require antibiotic 
interventions, underscoring the need for novel remedies to combat the 
rise in antibiotic resistance. 

1.6. Early-Onset disease (EOD) 

Most consistently, early-onset disease (EOD) is defined as occurring 
during the first 7 days of life and is typically caused by vertical trans-
mission of bacterial pathogens from mother to infant before or during 
delivery.79 Often, causative pathogens of EOD are colonizers of the 
maternal genitourinary tract, which leads to amniotic membrane 
rupture or an intra-amniotic infection that allows the transmission of the 
pathogen vertically to the infant.79–81 The most common colonizers of 
the maternal genitourinary tract that are responsible for EOD include 
GBS and Escherichia coli. Combined, these two pathogens account for 
over 70% of EOD cases worldwide. Among these, other causative bac-
teria include Enterococcus spp., Haemophilius influenzae, Listeria mono-
cytogenes, staphylococcus aureus, gram negative Enterobacter spp., and 
other streptococci. While historically GBS is the most common culprit 
for EOD, disease burden is increasingly becoming attributable to E. coli 
and other gram negative rods. In fact, gram negative neonatal sepsis is 
steadily increasing, which is worrisome due to difficulties in treating 
gram negative infections.82 

As previously mentioned, GBS remains the current, most frequently 
implicated bacteria causing EOD in infants.83 EOD accounts for 60–70% 
of GBS disease in infants with GBS serotypes Ia, III, and IV predomi-
nately associated with this outcome.84–85 Briefly, diagnosis of a GBS 
infection is done through a rectovaginal swab of the pregnant person 
between 36- and 37-weeks gestation. If GBS cultures are positive, 
treatment includes IAP during labor to prevent transmission. Antibiotic 
selection is based on any maternal allergies as well as GBS strain 
sequencing for resistance. Although IAP has been shown to prevent EOD 
with up to 90% efficiency,86 EOD is still associated with the highest rates 
of mortality for GBS infections. 

1.7. Late-Onset disease (LOD) 

Late-onset disease (LOD) occurs after the first 7 days of life and can 
be vertically or horizontally acquired. LOD is normally less fatal than 
EOD although it can be acquired horizontally several ways, including 
skin-to-skin contact with mothers during breast feeding or contact with 
external sources like infected surfaces, hospital settings, and contact 
with other adults and infants.87–89 The NICHD Neonatal Research 
Network shows that 70% of LOD infections are caused by gram positive 
bacteria. These bacteria include coagulase negative Staphylococcus spp. 
(CoNS), Staphylococcus aureus, Enterococcus spp. and GBS.90–91 Gram 
negative organisms, including E. coli, Klebsiella, and Pseudomonas spe-
cies, account for 18% of all LOD infections, with the remaining 12% of 
infections attributable to fungi and other non-culturable bacteria. 

While many LOD cases are caused by nosocomially acquired patho-
gens, studies have shown that GBS can be transmitted through breast 
milk, although the relationship between GBS colonization in infants 
from GBS-containing breast milk is not fully understood.92 While IAP 
has been highly effective in preventing EOD, rates of LOD have remained 

relatively constant. It is also important to note that while IAP has proven 
effective against GBS-induced EOD, it has also been linked to increased 
susceptibility to antibiotic resistant infections leading to LOD.93 

1.8. Necrotizing enterocolitis 

Necrotizing enterocolitis (NEC) is the most common etiology of 
gastrointestinal emergencies in infants.94 Characterized by mucosal and, 
in invasive cases, transmural necrosis of the gastrointestinal tract, spe-
cifically the intestines, NEC is the leading cause of neonatal mortality 
and morbidity.95 NEC infections begin with an impressive inflammatory 
cascade within the highly immunoreactive infant intestine and extend 
systemically, ultimately affecting other organs including the brain. 
While the pathophysiology of NEC is poorly understood, intestinal 
immaturity is a cornerstone of disease predisposition. As such, the pre-
term infant is at an increased risk. Further, very low birth weight infants, 
who are unable to breast feed, have less species diversity within their 
intestinal microbiota, often causing dysbiosis of the primitive micro-
biome. This dysbiosis opens the premature host up to numerous 
opportunistic infections and pathogenic bacteria ultimately increasing 
the risk of NEC. 

Because our current understanding of the molecular underpinnings 
of NEC is lacking, the current therapeutic strategies employed are more 
preventative in nature. These strategies include avoiding/withholding 
enteral feedings and administration of various probiotic agents to the 
premature infant. Recent therapeutic advances have explored a more 
immunological approach to treatment. This includes pharmacological 
modulation of toll-like receptor 4 (TLR4), a first line of defense against 
pathogens.96 Ultimately, these efforts have been futile and a larger un-
derstanding of NEC is required to strategize better treatment options. 

1.9. Maternal sepsis 

During pregnancy, the fetus is semi-allogenic to the maternal host, 
thus immune tolerance must be maintained for fetal development to 
progress. To maintain a tolerogenic state, anti-inflammatory signaling 
pathways are initiated, and this leads to higher susceptibility to in-
fections, including sepsis in pregnant patients compared to their non- 
pregnant counterparts. E. coli, beta-hemolytic streptococci, Staphylo-
coccus aureus, and Listeria monocytogenes are organisms associated with 
maternal sepsis.85,97 Roughly 11% of maternal deaths arise from infec-
tion.98 The risk factors for maternal sepsis differ depending on the 
availability of resources. In high-income countries, risk factors include 
delivery by Caesarean section, early labor, obesity, diabetes, and pro-
longed rupture of membranes.99–100 Risk factors in low-income coun-
tries include poverty, unhygienic birth conditions, lack of skilled birth 
assistants, unavailable medical supplies, distance to healthcare facility, 
young age, and HIV.101–102 Although the inequity is clear, sepsis is still a 
major contributor of maternal deaths in all countries and novel mech-
anisms of recognition and treatment are necessary. 

2. Novel chemotherapeutic strategies are desperately needed for 
these disease outcomes 

Although screening for GBS infection in the third trimester has 
significantly improved the EOD burden, disease outcomes that occur 
earlier in pregnancy are not alleviated by this screening. Furthermore, 
treatment with IAP has reduced the incidence of EOD, but cannot pre-
vent LOD. Other complications of IAP or any antibiotic regimen include 
the rise of antibiotic resistance and the potential devastating impact on 
the developing neonatal microbiome. Novel strategies are crucial for the 
reduction of these adverse pregnancy outcomes. Vaccine administration 
to women early in pregnancy could provide protection against adverse 
pregnancy outcomes attributed to GBS; however, no current vaccines 
are available due to the difficulties in this area of research. Most vaccine 
candidates to date were developed to target the streptococcal 
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polysaccharide capsule, but because of serotype variability and capsular 
switching, these vaccines have not proven functionally active.103–104 

3. Human breast milk components in protection against disease 

A large body of literature underscores the benefits of human breast 
milk nutrition in improving infant health, including protection against 
infectious diseases. Recent studies have supported that human breast 
milk components can prevent bacterial infections, including diarrheal 
diseases,105–106 urinary tract infections,107–108 and other diseases asso-
ciated with bacterial infection.109 More studies have revealed that 
components of human breast milk, including maternal immunoglobu-
lins, transforming growth factor beta (TGF-β), proteins and milk oligo-
saccharides aid in improving infant health.110–112 Components of human 
breast milk also influence the nascent microbiome to protect against 
invading pathogens,113 and many of these components can directly 
inhibit the pathogenic bacteria from establishing a replicative niche 
within the host. In fact, studies have shown that human milk compo-
nents can suppress bacterial growth and biofilm formation and enhance 
the efficacy of antibiotics.114–115 

One antimicrobial glycoprotein secreted in high concentrations (up 
to 20% of the proteinaceous composition) in human breast milk is 
lactoferrin.116–118 Lactoferrin concentrations within milk vary with 
gestational age at delivery and time since parturition.117 For example, 
lactoferrin concentrations are higher in the first milk called colostrum, 
which tapers in production as the infant matures. Generally, lactoferrin 
concentrations in colostrum at term parturition average 7–9 g/L and 
decrease to 1–3 g/L at 6–12 months after parturition.117–118 Addition-
ally, neonatal male sex has been associated with lower lactoferrin levels, 
a result that coincides with enhanced susceptibility to neonatal in-
fections, such as necrotizing enterocolitis.119–120 Interestingly, lacto-
ferrin levels in human breast milk from preterm infants are significantly 
higher and remain higher for up to 2 months post-parturition.118,121 

4. Lactoferrin: a glycoprotein in human breast milk 

4.1. Structure and function of lactoferrin 

Lactoferrin is an 80-kDa single-chain glycoprotein comprised of 703 
amino acids folded into two globular lobes. Because of its intrinsic 
ability to bind iron, lactoferrin can exist in two primary isoforms: an 
apo- form (lacking iron within its binding sites) or a holo- form (where 
iron inhabits the binding sites). 

Lactoferrin exerts antimicrobial activity against a wide range of viral, 
fungal, and bacterial pathogens.122–125 Lactoferrin has two high-affinity 
iron binding sites104 that participate in chelation of essential nutrient 
iron and starvation of an invading microorganism; a process commonly 
called “nutritional immunity”.122,126 Iron, in particular, is crucial for 
bacterial survival within the host niche by acting as a cofactor for en-
zymes driving bacterial DNA replication, transcription, and central 
metabolism.127 In addition to iron-scavenging activity, lactoferrin binds 
directly to bacterial cell walls causing destabilization in an iron- 
independent mechanism.128 Thus, due to its potent broad antimicro-
bial activity, several groups have studied lactoferrin for therapeutic use. 
In a systematic review of available literature, it was found that enteral 
lactoferrin supplementation decreases late-onset sepsis.117 Additionally, 
combining lactoferrin with probiotics may decrease necrotizing 
enterocolitis in preterm infants.129 Lactoferrin also shows promise as an 
agent against streptococcal infections,130 including a study demon-
strating lactoferrin decreases biofilm formation in Streptococcus 
mutans.131 Biofilms are multicellular structures that are critical for 
bacterial pathogenesis, specifically in GBS, to circumnavigate host de-
fenses and persist in the hostile environment.132–133 

In previous studies, lactoferrin has been purified from donor human 
breast milk and utilized to demonstrate that human milk lactoferrin has 
the capacity to inhibit bacterial growth, survival, and biofilm formation 
by GBS in vitro.134 Furthermore, human milk lactoferrin has the capacity 
to inhibit GBS adherence to primary human gestational membrane 

Fig. 1. Composition of human breast milk broken down into five main components, including lactose, fats, oligosaccharides, proteins, and cytokines, growth factors, 
and immunoglobulins. 
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tissues ex vivo, and the antimicrobial properties are enhanced when the 
glycoprotein is capable of binding iron (in the apo- isoform).135 

4.2. Lactoferrin and Escherichia coli 

E. coli is a gram negative, facultative anaerobic, rod-shaped bacte-
rium that is commonly found in the intestine of humans. Some strains 
can cause severe intestinal infections with complicating symptoms, 
while others are harmless. E. coli O157:H7 is a strain that infects in-
dividuals causing symptoms, such as severe abdominal cramps and 
bloody diarrhea, that can lead to renal malfunctions with prolonged 
infection. Transmission of this infectious bacterium often comes from 
eating contaminated food, or swimming in or drinking contaminated 
water.136 Although there are some methods to reduce the occurrence of 
infectious E. coli breakouts, they have not fully eliminated the risk of 
E. coli infection. 

In 1993, Dionysius, Grieve, and Milne studied the effects of apo- and 
holo- lactoferrin on enterotoxigenic strains of E. coli.137 It was observed 
that apo-lactoferrin inhibited growth of all strains at 1.0 mg/mL, while 
holo-lactoferrin had no effect on bacterial growth. Furthermore, 
Gnezda, Franklin, and McKillip found that lactoferrin from raw bovine 
milk inhibited the growth of E. coli O157:H7 at concentrations greater 
than 14.05 mg/mL.138 It has recently been discovered that oral admin-
istration of lactoferrin B, derived from lactoferrin in whey, protected 
mice against E. coli O157:H7 infection.139 In this study lactoferrin B 
improved epithelial barrier function, relieved inflammation, and 
induced regulation of gut microbiota. Many more studies exist in which 
lactoferrin inhibits the growth of pathogenic E. coli strains.140–142 

4.3. Lactoferrin and Acinetobacter baumannii 

Acinetobacter baumannii is a gram negative bacterium that causes a 
wide variety of diseases, such as sepsis, meningitis, and pneumonia.143 

Most often, A. baumannii infections are nocosomially acquired and seen 
in ventilated patients in intensive care unit facilities. A. baumannii is 
associated with 80% of all hospital-acquired pneumonia and ventilator- 
associated pneumonia exposing how threatening A. baumannii is in a 
hospital setting.144 The rise in multidrug resistant A. baumannii strains 
coupled with the lack of an available vaccine makes battling 
A. baumannii infection difficult. Since lactoferrin binds available iron, it 
has shown antimicrobial activity against A. baumannii and could be 
useful as a potential therapeutic. 

Our group has investigated bovine and human lactoferrin in com-
bination with A. baumannii.145 We found that both human and bovine 
lactoferrin inhibited bacterial growth of A. baumannii isolated from 
wounds at concentrations of 250 µg/mL and above. A. baumannii iso-
lated from sputum collected from patients with respiratory infections 
was inhibited by human lactoferrin at concentrations of 250 µg/mL and 
above and by bovine lactoferrin at concentrations of 500 µg/mL and 
above. Human lactoferrin at concentrations as low as 62.5 µg/mL and 
bovine lactoferrin at concentrations of 250 µg/mL and above inhibited 
growth of A. baumannii isolated from blood. Finally, isolates of 
A. baumannii from urinary tract or abdominal cavity infections were 
susceptible to growth inhibition by both human and bovine lactoferrin 
starting at 62.5 µg/mL. 

Mahdi et al. have also studied the combination of lactoferrin and 
A. baumannii.146 Using purified lactoferrin extracted from camel colos-
trum milk, this study investigated the antibacterial activity of lactoferrin 
against 14 isolates of multidrug resistant A. baumannii. They found that 
purified camel lactoferrin at concentrations of 8, 16, 32, and 64 µg/mL 
inhibited the growth of A. baumannii in vitro. Additionally, lactoferrin 
significantly reduced the number of bacteria in lung and blood cultures 
in a mouse model. With these two studies, it is apparent that different 
types of lactoferrin have inhibitory properties against A. baumannii and 
should be explored further. 

Fig. 2. Proposed mechanisms by which lactoferrin inhibits activity of GBS.  
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4.4. Lactoferrin and commensal microbes 

The hallmark of a normal or healthy vaginal microbiome includes 
the dominance of Lactobacillus species, especially, L. crispatus, L. gasseri, 
L. jensenii, and L. iners.147–149 Lactobacillus species protect the vaginal 
environment from pathogens through the production of lactic acid, 
resulting in a low pH of 3.5–4.5.150–153 Moreover, Lactobacillus species 
display antimicrobial activity by production of target-specific 
bacteriocins,154–155 which fend off the growth of pathogenic organisms. 

Several studies show the benefit of utilizing lactoferrin to enhance 
Lactobacillus spp. growth. Pino et al. found that lactoferrin modified the 
vaginal microbiota composition in patients with bacterial vaginosis.156 

The treatment group saw decreases in occurrence of bacteria associated 
with bacterial vaginosis, including Gardnerella, Prevotella, and Lachno-
spira. Further, lactoferrin increased the occurrence of Lactobacillus spe-
cies. One study by Otsuki and colleagues found that oral and vaginal 
administration of lactoferrin allowed a woman with three consecutive 
PPROMs to have a successful cesarean section.157 Lactobacillus spp. were 
dominant in the vaginal flora only until discontinuing the use of lacto-
ferrin after the delivery. In 2017, Otsuki & Imai conducted a study 
including six women with a history of adverse pregnancy outcomes.158 

The results showed that orally and vaginally administered lactoferrin 
allowed each of these women to have a successful birth. Lactobacillus 
spp. dominated the vaginal microbiomes of these women only after one 
month of the lactoferrin therapy. 

4.5. Immunomodulatory actions of lactoferrin 

Adverse pregnancy outcomes are frequently related to inflamma-
tion.159 One mechanism by which lactoferrin acts is by interfering with 
recognition of pathogens associated molecular patterns (PAMPs) by toll- 
like receptions (TLRs). A consequence of this receptor binding is the 
downregulation of proinflammatory cytokines by the immune cells. 
Lactoferrin has been shown to bind to bacterial LPS, the ligand for TLR4, 
thus mitigating TLR4 mediated pro-inflammatory cytokine production 
by macrophages.160 Another study revealed that lactoferrin can bind to 
soluble CD14 (sCD14), which normally complexes with LPS to induce 
production of IL-8, resulting in the inhibition of IL-8 production by 
epithelial cells and macrophages, ultimately reducing recruitment of 
neutrophils to the site of infection.161 Lactoferrin is also known to bind 
DNA, so internalization of the peptide into immune cells by receptors 
such as nucleolin162 can inhibit NF-κB binding to the TNF-α promoter 
and downregulate LPS-induced cytokine production.160 

The glycosaminoglycans of membrane proteoglycans on cell surfaces 
account for 80% of binding by lactoferrin with low affinity (10-5-10-6 

M).163 Proteoglycans are important because they interact with cytokines 
to activate its immune properties. For instance, IL-8 is a chemokine that 
activates LFA-1 integrins, therefore playing a role in cellular chemotaxis. 
Proteoglycans can bind IL-8, and other cytokines, therefore concen-
trating the local IL-8. Elass et al. in 2002 revealed that human lactoferrin 
disrupted the interaction between immobilized heparin and IL-8 in vitro, 
thereby modulating cell migration to the cite of inflammation.164 Pro-
teoglycans can also bind to other cytokines such as IL-2165 and IL-7.166 

As such, lactoferrin may disrupt the interactions between these cyto-
kines and the cell. 

In a study conducted by Wisgill and colleagues, lactoferrin demon-
strated weakening of the proinflammatory response of neonatal 
monocyte-derived macrophages.167 Specifically, human lactoferrin 
treatment on LPS-activated neonatal macrophages isolated from hepa-
rinized cord and peripheral blood resulted in a decrease production of 
cytokines, including TNF, IL-β, IL-6, IL-8, and IL-10. Furthermore, lac-
toferrin treatment reduced expression of activation marker and phago-
cytosis by these macrophages. Taken together, lactoferrin may be a 
prime candidate for improving adverse pregnancy outcomes not only by 
its antimicrobial activity, but also by its ability to modulate immune 
cells and reduce inflammation. 

5. Conclusions 

Millions of people suffer every year from adverse pregnancy out-
comes. Although universal screenings and antibiotic treatments are 
available, these only decrease the risk of some adverse pregnancy and 
birth outcomes, leaving many patients without proper care. While vac-
cine research is ongoing, it is imperative we look for alternative thera-
peutics for treating perinatal infections. As outlined here, utilizing the 
beneficial properties of lactoferrin could prevent or alleviate the risk of 
infections associated with microbial pathogenesis. 
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