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ABSTRACT Here, we report the impact of glyphosate on bacterial populations in
sediment microcosms, determined using 16S amplicon sequencing and shotgun
metagenomics with source material from a suburban creek. The 16S amplicon and
metagenomic data reveal that members of the genus Pseudomonas are increased by
the treatment.

he herbicide N-(phosphonomethyl)glycine, known as glyphosate, is a nonspecific

organophosphate herbicide used commonly to kill broadleaf weeds and grasses.
Although commonly applied to foliage, measurable quantities of the herbicide have
been detected in soil, groundwater, and surface waters (1-4). Several studies have
shown that bacterial communities are altered because of glyphosate application (5-8).

Glyphosate microcosms were created with sediment from suburban creek. Sediments
were exposed to various amounts of commercial herbicide (0.675% to 2.75% [vol/vol])
for 1 week. DNA was extracted from samples using the ZymoBIOMICS DNA/RNA mini-
prep kit. PCR was performed based on the Earth Microbiome Project’s 16S rRNA amplifi-
cation protocol (9). The amplification products were pooled and gel purified on a 2%
agarose gel using the Qiagen gel extraction kit. The purified library was quality checked
using an Agilent 2100 Bioanalyzer and an Agilent high-sensitivity DNA kit. Sequencing
was conducted by Wright Labs (Huntingdon, PA, USA) using lllumina MiSeq v2 chemistry
with paired-end 250-bp reads. Forward and reverse demultiplexed paired-end reads
were processed using QIIME2 v2021.2 (10). DADA2 (11) was used to generate amplicon
sequence variants (ASVs), with the reads trimmed based on Phred quality scores of <15.
Taxonomy was assigned using the Greengenes v13.8 database (12).

For shotgun metagenomics, libraries were constructed using the Nextera XT DNA
library prep kit from Illumina. The quality of the libraries was determined as described
previously. Sequences between 250 and 400 bp were selected via gel purification. The
pool was then sequenced at UC Davis Genome Center (Davis, CA, USA), using an
Illumina HiSeq 4000 instrument to produce 2 x 150-bp reads. FastQC (13) was used to
check the raw data, which were then filtered using fastp (14). Sequences identified as
belonging to Homo sapiens were removed using KneadData2 (15). The microbial and
functional features of the samples were determined by annotating the paired
sequence data using HUMANN3 (16). RPK (reads assigned per kilobase) normalization
was performed using HUMANN3 during the annotation process. The UniRef90 genes
from the functional annotation were mapped to KEGG orthologs (17). Descriptions of
all sequencing characteristics are provided in Table 1.

Our results revealed that the relative abundance of Pseudomonas increased with glypho-
sate treatment, regardless of the sample source (Table 1). Through metagenomic analyses,
we were able to determine that the Pseudomonas putida group represented the majority of
the pseudomonads in the treated samples (16.2% [Tappan], 81% [Marsh], 51% [Moturis],
0.81% [Rockleigh], and 33.5% [Sparkill]). This is in contrast to the relative abundances across
all sites and treatments for Enterobacter spp. (2.33% to 3.98%), Aeromonas spp. (23.5% to
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TABLE 1 Characteristics and SRA accession numbers of sequences obtained from glyphosate and control sediment samples

Treatment with Sequence Relative abundance
Sample name SRA accession no. glyphosate (%) type? No. of reads of Pseudomonas (%)°
PiermontMarshUnt2M SRR22193479 Untreated 16S 34,332 0.053
PiermontMarshUnt2A SRR22193478 Untreated 16S 45,703 0.074
PiermontMarshLoM SRR22193477 0.675 16S 40,981 0.64
PiermontMarshLoA SRR22193476 0.675 16S 40,270 0.15
PiermontMarshMedM SRR22193475 1.375 16S 36,432 2.00
PiermontMarshMedA SRR22193474 1.375 16S 48,113 1.74
PiermontMarshHiM SRR22193472 2.75 16S 50,141 9.28
PiermontMarshHiA SRR22193471 2.75 16S 11,969 1.36
TappanUnt2M SRR22193458 Untreated 16S 66,301 0.026
TappanUnt2A SRR22193457 Untreated 16S 62,317 1.36
TappanLoM SRR22193494 0.675 16S 92,765 483
TappanLoA SRR22193493 0.675 16S 43,101 2.53
TappanMedM SRR22193492 1.375 16S 67,067 6.57
TappanMedA SRR22193491 1.375 16S 11,665 16.21
TappanHiM SRR22193490 2.75 16S 20,293 3.79
TappanHiA SRR22193489 2.75 16S 18,029 12.72
RockleighUnt2M SRR22193488 Untreated 16S 39,542 0.11
RockleighUnt2A SRR22193487 Untreated 16S 43,365 0
RockleighLoM SRR22193486 0.675 16S 31,783 0.072
RockleighLoA SRR22193485 0.675 16S 21,324 0.77
RockleighMedM SRR22193483 1.375 16S 31,095 1.96
RockleighMedA SRR22193482 1.375 16S 21,414 0.57
RockleighHiM SRR22193481 2.75 16S 34,743 0.19
RockleighHiA SRR22193480 2.75 16S 29,505 0.33
MoturisUnt2M SRR22193496 Untreated 16S 48,809 6.215
MoturisUnt2A SRR22193495 Untreated 16S 69,827 0.12
MoturisLoM SRR22193484 0.675 16S 70,491 0.72
MoturisLoA SRR22193473 0.675 16S 72,277 0.77
MoturisMedM SRR22193462 1.375 16S 76,593 5.44
MoturisMedA SRR22193461 1.375 16S 3 NA
MoturisHiM SRR22193460 2.75 16S 105,557 51.5
MoturisHiA SRR22193459 2.75 16S 69,569 4.16
Sparkilluntam SRR22193470 Untreated 16S 45,738 1.13
Sparkillunt2A SRR22193469 Untreated 16S 39,689 0.12
SparkillLoM SRR22193468 0.675 16S 27,811 0.11
SparkillLoA SRR22193467 0.675 16S 13,643 2.16
SparkillMedM SRR22193466 1.375 16S 37,711 0.81
SparkillMedA SRR22193465 1.375 16S 65,204 4.95
SparkillHiM SRR22193464 2.75 16S 43,978 1.44
SparkillHiA SRR22193463 2.75 16S 22,753 2.15
Marsh control SRR22197666 Untreated MG 32,790,391 0
Marsh treated SRR22197661 2.75 MG 35,335,201 86.2
Tappan control SRR22197668 Untreated MG 34,107,107 0
Tappan treated SRR22197663 2.75 MG 36,162,594 40.5
Rockleigh control SRR22197667 Untreated MG 30,620,071 0
Rockleigh treated SRR22197662 2.75 MG 40,353,809 1.09
Moturis control SRR22197669 Untreated MG 36,371,761 0
Moturis treated SRR22197664 2.75 MG 50,053,512 56.2
Sparkill control SRR22197665 Untreated MG 26,080,480 0
Sparkill treated SRR22197660 2.75 MG 36,329,037 33.5

4 MG, metagenomic.
b NA, not applicable.

27.1%), or unclassified sequences (3.21% to 5.12%), which remained comparatively constant.
Pseudomonas spp. primarily mapped to the xenobiotic metabolism KEGG pathway in sam-
ples treated with glyphosate (56.1% [Tappan], 94.9% [Marsh], 64.8% [Moturis], 2.5%
[Rockleigh], and 37.5% [Sparkilll), whereas the unclassified sequences primarily mapped to
this KEGG pathway in untreated samples across all samples and sites.

Understanding these changes can help us develop genetic markers that may reveal
glyphosate contamination without the need to detect and quantify glyphosate itself, a
laborious procedure that is both costly and requires specialized equipment (18).
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Data availability. The raw sequencing data are available at the NCBI Sequence
Read Archive (SRA) under BioProject accession number PRJNA898361. The SRA acces-
sion numbers are listed in Table 1.
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