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Abstract. The problem of long-tailed recognition, where the number
of examples per class is highly unbalanced, is considered. While train-
ing with class-balanced sampling has been shown effective for this prob-
lem, it is known to over-fit to few-shot classes. It is hypothesized that
this is due to the repeated sampling of examples and can be addressed
by feature space augmentation. A new feature augmentation strategy,
EMANATE, based on back-tracking of features across epochs during
training, is proposed. It is shown that, unlike class-balanced sampling,
this is an adversarial augmentation strategy. A new sampling proce-
dure, Breadcrumb, is then introduced to implement adversarial class-
balanced sampling without extra computation. Experiments on three
popular long-tailed recognition datasets show that Breadcrumb training
produces classifiers that outperform existing solutions to the problem.
Code: https://github.com/BoLiu-SVCL/Breadcrumbs

1 Introduction

The availability of large-scale datasets, with many images per class [4], has been
a major factor in the success of deep learning for computer vision. However,
these datasets are manually curated and artificially balanced. This is unlike most
real world applications, where the frequencies of examples from different classes
can be highly unbalanced, leading to skewed distributions with long tails. These
datasets are composed by a few popular classes and many rare classes. This class
imbalance has been observed in image classification [31], face identification [13,
18], object detection [15,40], and many other applications. Researchers have
tackled it from various angles, including zero-shot learning [5, 33, 34], few-shot
learning [29, 25, 6], and more recently long-tailed recognition [19].

In this work, we focus on the long-tailed recognition setting, where classes
are grouped into three types that differ in training sample cardinality: many-
shot (> 100 samples), medium-shot (between 20 and 100 samples), and few-shot
(< 20 samples). Performance is evaluated over each group independently, in
addition to the overall classification accuracy. While training data is highly un-
balanced, the test set is kept balanced so that equally good performance on all
classes is a requisite for high accuracy. One of the insights from the long-tailed
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Fig. 1. (a)Upper-Left: Random sampling is sample-balanced. The number of examples
per class has a long-tailed distribution. This leads to under-fitting in few-shot classes.
Lower-Left: Class-balanced sampling duplicates few-shot samples in feature space and
can leads to over-fitting for these classes. Right: Breadcrumb produces trails of features
by back-tracking through training epochs. This is shown to be an adversarial augmen-
tation technique, which mitigates the over-fitting problem. (b) Adversarial nature of
EMANATE. The loss increase, between two epochs, due to feature augmentation by
EMANATE is never smaller than half of the training gain (loss decrease) between
them.

recognition literature is that techniques targeting specific dataset limitations, e.g.
few-shot learning by data augmentation [2, 30], predicting classifier weights [22],
prototype-based non-parametric classifiers [25], and optimization with second
derivatives [6], are frequently harmful to classes that do not suffer from those
limitations, e.g. many-shot. Hence, it is important to address the problem holis-
tically, considering all types of classes simultaneously.

Since long-tailed recognition datasets have a continuous coverage of the num-
ber of samples per class, they are best addressed by training a model on the entire
dataset, in a way robust to data imbalance. Standard classifier training follows
the sample-balanced sampling setting of Figure 1(a). This consists of sampling
images uniformly to create batches for network training. In result, as shown in
the figure, few-shot classes (red) are under-represented and many-shot classes
(blue) are over-represented in each batch. Hence, learning typically under-fits
less populated classes. This has motivated procedures to fight class imbalance
with data re-sampling [37] or cost-sensitive losses [15] that place more training
emphasis on examples of lower populated classes. One of the more successful
approaches is to decouple the training of feature embedding and classifier [14].
While the embedding is learned with image-balanced training, the classifier is
trained with class-balanced sampling. As illustrated in Figure 1(a), this consists
of sampling classes uniformly and then sampling uniformly within the class.
However, for few shot classes, this approach leads to repeated sampling of the
same examples. In result, the classifier can easily over-fit on few-shot classes.

In this work, we adopt the decoupled training strategy but seek to avoid
over-fitting in the classifier training stage. For this, we propose to enrich the
training data in the feature space at the output of the embedding, without extra
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computation. The idea is to back-track features to access the large diversity of
feature vectors that are available per training image in prior epochs. This can
be exploited to generate more diverse training data than simply replicating ex-
isting features. We refer to this procedure as feature back-tracking. As shown in
Figure 1(a), it allows the sampling of large numbers of feature vectors from the
few-shot classes without duplication. Since the embedding changes across train-
ing epochs, an alignment is necessary to simplify network training. We show that
a simple alignment of class means suffices to accomplish this goal and propose
the fEature augMentAtioN by bAck-tracking wiTh alignmEnt (EMANATE) pro-
cedure. This consists of augmenting the feature vectors collected at an epoch
with aligned replicas of the vectors that emanate from them by back-tracking.

A theoretical analysis shows that, unlike class-balanced sampling, EMANATE
is an adversarial feature augmentation technique, in the sense that it is guaran-
teed to increase the training loss for any convergent training scheme. This places
EMANATE in the realm of feature augmentation methods popular in the few-
shot literature [2, 30]. However, these require extra computation to generate new
examples and sometimes introduce convergence problems. EMANATE requires
no extra computation and can be applied differently to each class, according to its
number of samples. For classes with enough samples, only features from the last
epoch are used, i.e. no resampling is performed. For those without, features are
back-tracked over previous epochs, until there are enough features. This results
in a new training feature set of higher variance for few-shot classes but forces
no change on many-shot classes. In result, it is possible to improve classification
accuracy for the former without degrading performance for the latter.

A new sampling scheme, denoted Breadcrumb Sampling is then proposed
to leverage the feature trails extracted by EMANATE, in the context of the
two-stage training of class-balanced sampling. Breadcrumb Sampling relies on
EMANATE to collect these feature trails in a first stage, when the embedding is
trained with image-balanced sampling. In the second stage, the classifier is then
learned with class-balanced training based on these trails. Two sampling variants
are considered. Weak Breadcrumb Sampling only uses feature trails collected at
the end of stage 1, i.e. once the embedding has converged. Strong Breadcrumb
Sampling uses trails collected throughout stage 1 training, i.e. as the embedding
evolves. This tends to create an even more adversarial training set

Overall, this work makes several contributions. First, we point out that class-
balanced sampling is not an adversarial augmentation technique, which limits
its ability to combat over-fitting in few-shot classes. Second, we propose EM-
ANATE, a data augmentation technique that addresses this problem by fea-
ture back-tracking with alignment. Third, we show theoretically that, unlike
class-balanced sampling, EMANATE is an adversarial technique. Fourth, we
propose two variants of a new sampling scheme, Breadcrumbs, which leverage
EMANATE to enable long-tailed recognition with state of the art performance.
All of this is achieved with no extra computation and no performance degrada-
tion for classes with many examples.
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Fig. 2. EMANATE. Left: features from embeddings learned in previous epochs are
back-tracked to compose a class-balance training set. Middle: Class alignment aligns
the means of features from different epochs. Right: different classes have different
back-tracking lengths. Many-shot classes only collect features from the current epoch;
medium-shot classes back-track for a few epochs; and few-shot classes from many.
When the number of samples exceeds npg, the earliest epoch is randomly sampled to
meet this target.

2 Related Work

Long-tailed recognition has recently received substantial attention [32, 21, 15,
37,19, 31]. Several approaches have been proposed, including metric learning [21,
37], loss weighting [15], or meta-learning [31]. Some methods propose dedicated
loss functions to mitigate the data imbalanced problem. For example, lift loss [21]
introduces margins between many training samples. Range loss [37] encourages
data from the same class to be close and different classes to be far away in the
embedding space. The focal loss [15] dynamically balances weights of positive,
hard negative, and easy negative samples. As reported by Liu et al [19], when
applied to long-tailed recognition, many of these methods improved accuracy of
the few-shot group, but at the cost of lower accuracy for many-shot classes.

Other methods, e.g. class-balanced experts [24] and knowledge distill [35],
try to mitigate this problem by artificially dividing the training data into sub-
sets, based on number of examples, and training an expert per subset. However,
experts learned from arbitrary data divisions can be sub-optimal, especially for
few-shot classes, where training data is insufficient to learn the expert model.

More recent works [14, 39] achieve improved long-tailed recognition by train-
ing feature embedding and classifier with separate sampling strategies. The pro-
posed Breadcrumbs approach follows this strategy, learning the embedding in a
first stage with sample-balanced (random) sampling and the classifier in a sec-
ond stage with class-balanced sampling. In fact, Breadcrumbs can be seen as a
data augmentation method tailored for this strategy, improving its long-tailed
recognition performance over all class groups.

Another related work is LEAP [17], a method mostly tested on person re-
identification and face recognition problems, where datasets usually have long-
tailed distributions. LEAP augments data samples from tail (few-shot) classes by
transferring intra-class variations from head (many-shot) classes. This assumes
a shared intra-class variation across classes, which can hold for person re-ID and
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face recognition but may not be applicable for general long-tailed recognition
tasks. Besides, LEAP is technically orthogonal to Breadcrumbs and the two
methods could potentially be combined for further improvement.

Few-shot learning focus solely on the data scarcity problem. A large group
of approaches is based on meta-learning, using gradient based methods such
as MAML and its variants [6,7], or LEO [23]. These methods take advantage
of second derivatives to optimize the model from few-shot samples. Another
group of methods, including matching network [29], prototypical network [25],
and relation network [26],aims to learn robust metrics. Since these methods are
designed specifically for few-shot classes, they often under-perform for many-shot
classes, which makes them ineffective for long-tailed recognition.

Similarly to Breadcrumbs, some few-shot methods have proposed to aug-
menting training data by combining GANs with meta-learning [30], synthesizing
features across object views [16] or using other forms of data hallucination [10].
All these method introduces non-negligible extra computation to generate the
new data samples. The application of GAN-based methods to few-shot data
without external large-scale datasets can also create convergence problem. In
Breadcrumbs, data samples are augmented with saved feature vectors from prior
epochs and no extra computation.

3 EMANATE

In this section, we introduce the data augmentation method that underlies
Breadcrumbs.

3.1 Data Sampling and Decoupling Training

Consider an image recognition problem with training set D = {(x;,y:);¢ =
1,..., N}, where z; is an example and y; € {1,...,C} its label, where C is the
number of classes. A CNN model combines a feature embedding z = f(x;60) €
R?, implemented by several convolutional layers of parameters 6, and a classifier
g(z) € [0,1]¢ that operates on the embedding to produce a class prediction
§ = argmax; ¢;(z). Standard (image-balanced) CNN training relies on mini-
batch SGD, where each batch is randomly sampled from D. A class j of n;
training example has probability "WJ of being represented in the batch. Without
loss of generality, we assume classes sorted by decreasing cardinality, i.e. n; < ny,
Vi > j.

In the long-tail setting, where ny > n¢, the model is not fully trained on
classes of large index j (tail classes) and under-fits. This can be avoided with
recourse to non-uniform sampling strategies, the most popular of which is class-
balanced sampling. This samples each class with probability %, over-sampling
tail classes, and is particularly successful when the training of embedding and
classifier are decoupled [14], which is also simple to implement. The embedding
is first trained with image-balanced sampling, and different sampling and struc-
tures can then be used for the classifier. In this work, we adopt the popular linear
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classifier g(z) = v(Wx+b), where v is the softmax function, and class-balanced
sampling.

3.2 Augmentation by Feature back-tracking

Class-balanced sampling over-samples classes of few examples. For a class j with
n; < N/C the over-sampling factor is p = CLnJ In the long-tail setting, p is usu-
ally larger than 10. This heavily resamples the few available samples and can
lead to over-fitting, impairing generalization for tail classes. While over-fitting
can be combated with data augmentation, traditional image-level methods, such
as random cropping, horizontal flipping, or color jittering, make little difference
in feature space, because the embedding is trained to be invariant to such trans-
formations. Feature-level augmentations have been investigated in the few-shot
setting [30, 16, 10], but typically require training of additional models, which add
complexity and sometimes have convergence problems. Ideally, the augmenta-
tion technique should be adversarial, i.e. increase training difficulty, and require
little extra computation. One possibility is to rely on adversarial examples [9].
However, these require optimization at each training iteration and have large
computational cost. In our experience, standard adversarial attacks are also not
effective at improving generalization for tail classes, because they are too close
to the few available examples.

In this work, we propose a different adversarial feature-level augmentation
strategy, based on feature backtracking. The idea is that the embedding f(x;80),
obtained after training converges, is simply the final element in the family of
embeddings f(x;6¢) learned from epochs e € {1,..., E}, where E is the number
of training epochs. It follows that a particular image x; produces a sequence of
feature vectors

Bi = {z¢ = f(x;;0°)e € {1,..., E}} (1)

during the optimization. We equate B; to a trail of bread crumbs that can be
backtracked, as illustrated in Figure 1(a,right). These bread crumbs can be used
to perform data augmentation without added computation. It suffices to store,
at epoch e the set of features

2° = {2 = [(xi:0°)|x; € D) (2)

produced by the embedding learned at the end of the epoch. This is denoted as
the training set snapshot at epoch e.

Since the embedding f(x;6°) changes with e, features from different epochs
are usually not aligned in feature space. This may lead to bread crumb trails that
are “all over the place,” e.g. because the space has been translated or rotated
between epochs. Hence, when feature vectors collected at different epochs are
to be used together, a class alignment is recommended to simplify the training.
On the other hand, this alignment cannot be too strong, so as not to defeat the
purpose of data-augmentation. In particular, the alignment operation should
not jeopardize the adversarial nature of the latter. A simple operation, which is
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shown to satisfy this property in the following section, is to align the mean feature
vectors synthesized per class during back-tracking. This consists of splitting Z¢
into a set of class snapshots, where

Z, ={z € 2l =y} 3)
is the snapshot of class y, compute the mean of each class

.

_ 1 &

Zy = o D @
j=1

where z ; is the 4t element of Zy, and apply

e'—e _ e se | se
Zy; =2y~ 2% 2 ()
where zf/’?e is the alignment, with respect to snapshot e, of the j feature vector
z,, ; of class y from epoch e’. This produces a snapshot transferred from epoch
e toe ) ) ) )
2 = 5 € 21 ©)

This snapshot can then be combined with Z to produce an augmented snapshot
of class y for epoch e

A=zl Jzg e (7)

This process is denoted fEature augMentAtioN by bAcktracking wiTh alignmEnt
(EMANATE), as Aj, backtracks the breadcrumb trails that emanate from class
y at epoch e.

3.3 Theoretical justification

In this section, we provide theoretical motivation for EMANATE as an adver-
sarial data augmentation technique. Let v(W¢z + b®) be the linear classifier
learned at the end of epoch e, i.e. from the snapshots Z = {z{ ;} of (3). The
corresponding cross-entropy loss is

L(Z°, W, b%) =) " L,(Z;, W*,b) (8)
Yy

where )

Ly(Z2,, W b = —@Ei log v, (W*z;, ; + b°), (9)
is the loss of class y and v, the y'!' element of the softmax output. It is assumed
that the classifier is optimal for the training data under this loss, i.e.

Ly(Z5,W*,b%) < L,(Z5,W,b), Vy,W,b. (10)

A feature augmentation procedure adds new features to Z. It is denoted adver-
sarial when the augmented training set is more challenging than the original.
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Definition 1 Consider the augmentation Aj of the training set snapshot Z7
from epoch e and class y. The augmentation is adversarial with respect to class

y if
Ly(AZ,Weybe) > Ly(Z§7W57b€) (11)
where L, (.) the loss of (9).

For low-shot classes y, class-balanced sampling replicates the features of Z,
creating the augmented feature set Ay = Z7 U Z/. Since, from (9)

€ € € 1 e e e

Ly (A;, We,b¢) = — ———=23; log v,(W°z; , + b°),
2|z¢|

= L, (25, W*,b°) (12)

we obtain the following corollary.

Corollary 1 Class-balanced sampling is not an adversarial feature augmenta-
tion strategy.

We next consider augmentation with EMANATE. The following lemma es-
tablishes a lower bound for the increase of the training loss under this augmen-
tation technique.

Lemma 1 Consider the augmentation of Z, with the snapshot transferred from
epoch ¢’ < e by EMANATE, i.e. A =Z, U Z;l_w, where Z;l_’e s as defined
in (6). Then
LH(A‘;v Wev be) - Ly(Zgja Wea be) >
Ly(2¢ ,W¢ ,b¢) — L, (25, We,be)
2 )
where (W€, b¢) is the classifier of (10).3

(13)

The lemma shows that the adversarial increase of the loss due to the aug-
mentation (L, (Aj, W€, b®) — L, (25, W¢,b?)) is at least half of decrease in the
loss of the trained classifier between epochs e’ (loss L(ZZ/ ,W¢ b)) and e (loss
Ly(Z;,W¢,b¢)), i.e. half of what has been gained by training the classifier from
epochs €’ to e. This is illustrated in Figure 1(b) and leads to the following the-
orem.

Theorem 1 EMANATE is an adversarial feature augmentation strategy for any
convergent training scheme, i.e. whenever Ly (Z7 , W ,b®) > L, (Z;, W€, b°)Ve' <
e.

Since successful training requires a convergent training scheme, EMANATE is
an adversarial feature augmentation technique for most training procedures of
practical interest.

3 Proof is provided in supplementary material.
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Fig. 3. t-SNE visualizations of feature snapshots at different epochs. Many-shot (a)
and medium-shot (b) features compose a well-defined geometry that does not change
along epochs. Due to the scarcity of data, few-shot features (c, left) fail to hold a
consistent geometry along epochs. After augmentation with EMANATE (c, right), the
features have more variety and the geometry changes less among epochs.

3.4 Assembling feature trails

So far, we have considered the augmentation of Z; with the transferred snapshot

Zj”e. The augmentation can obviously be repeated for several transferred snap-
shots €', in order to meet any target number np of samples per class at epoch
e. This is done as follows. Consider a class j with n; samples. The features in
Z7 are first selected. If there is a differential to np, the transferred snapshot
Z;ﬁlﬁe is selected next. The procedure is repeated until number of the feature
vectors reaches np. If the addition of the final set places the feature cardinality
above np, the necessary number of feature vectors is sampled randomly. The
augmented set of features that emanate from class j at epoch e is then

K;—2
> e—k—e se—(K;—1)—e
A= Uz Uz : (14)
k=0

K;i—1

s5e—K;j—1—e . e— —e .
where K; = {"—B-‘ ,and Z. is a random sample from Z; of size

n; J

np — Kjn;. The complete training set of epoch e is A® = U7, AS.

The number of snapshots in A depends heavily on the number of examples
n; of the class. As shown in Figure 2 (a, right), many-shot classes use a single
snapshot, medium-shot classes require snapshots from a few epochs, and few-shot
classes require many snapshots to assemble enough training features. However,
in all cases, because all feature vectors are already computed during the opti-
mization of the embedding, the only computation required is the mean alignment
of (5). This is negligible when compared to the back-propagation computations,
making EMANATE nearly computation free, if the necessary snapshots are kept
in memory. In fact, it only necessary to keep in memory the snapshots of classes
with n; < np. Furthermore, the number K of snapshots to be stored adapts to
n;, as shown in (14). The larger the class, the fewer snapshots are required. In
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summary, EMANATE has no computational overhead and adapts the memory
requirements to the class cardinalities, never requiring more than np examples
per class. This is the complexity of class-balanced sampling.

Figure 3 shows t-SNE [20] of training set snapshots collected at different
epochs. While the geometry of many- and medium shot classes (Figure 3(a,b))
is fairly stable across epochs, that of few-shot classes (Figure 3(c) left) can change
significantly, due to data scarcity. EMANATE produces larger clusters with more
stable geometry, enabling a more robust training set for the classifier.

4 Breadcrumbs

In this section, we investigate two sampling mechanisms based on EMANATE,
which are denoted as Breadcrumb sampling. The two mechanisms differ in how
the sets A? are collected. In both cases, the two stage training procedure of [14]
is adopted. In the first stage, the feature extractor f(x;#) and the classifier
v(Wx+b) are trained with image balanced sampling. The sets A%, e = {1,..., E'}
of class snapshots are collected at each epoch of this stage. In the second stage,
the feature extractor f(x;0) is kept fixed and the classifier v(Wx + b) retrained
using these sets. As shown in Figure 4, the two augmentation schemes differ in
the classifier update step.

4.1 Weak Beadcrumb Sampling.

In the first approach, EMANATE is only applied after convergence of the first
stage training. That is, only the sets Af assembled in the final epoch E of the
first stage are used to retrain the classifier in the second stage. This is illustrated
in the left of Figure 4, for the case where E = 3 and augmentation sets span two
epochs. We refer to this sampling technique as Weak Beadcrumb Sampling, since
all snapshots emanate from the feature set produced by the optimal embedding
f(x,6F). While this creates some diversity, feature snapshots from neighboring
epochs are likely to be similar. This makes the sampling technique less adversarial
and therefore “weak”.

4.2 Strong Beadcrumb Sampling.

Strong Beadcrumb Sampling aims to increase feature diversity, so as to create a
more adversarial data augmentation. Rather than the augmentation Af of the
final epoch E' of the first stage training, all augmentations Af, e = {1,...,E}
are saved in that stage, as illustrated in the right of Figure 4. The classifier
retraining of the second stage is then run for E epochs, using the the feature
trail sets A; collected at epoch e of the first stage to train the classifier in epoch
e of the second stage. Since each epoch of classifier training contains new data,
increasing the difficulty of the classification task, this sampling method is more
adversarial and therefore ”strong”. Since the classifier is trained on an evolving

feature set A°,
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Fig. 4. (a) Breadcrumb Sampling relies on EMANATE to collect augmented snapshots
Aj$ (in red) in a first stage, when the embedding is trained with image-balanced sam-
pling. In a second stage, the classifier is learned with class-balanced training based on
these snapshots. In this example E = 3 and snapshots have length K; = 2 (a single
class is shown for simplicity). Left: Weak Breadcrumb Sampling only uses snapshots
collected at the end of stage 1. Right: Strong Breadcrumb Sampling uses snapshots
collected throughout stage 1 training. (b) Number of hard examples (loss larger than
5) in few-shot classes during training, for ResNet-10 on ImageNet-LT. Strong Bread-
crumb sampling increases the number of hard examples during training, compared to
the weak one. The plot starts at epoch 100 because early epochs have too many hard
examples and dominate the scale.

This setting yields a natural selection of the target number ng of samples
per class. To keep the pace of classifier training the same as the embedding
training, the size of the dataset should be approximately the same, i.e. ng =

[% Zf:l nj—‘. Figure 2(b), shows that Strong Breadcrumb Sampling increases

the number of hard examples in few-shot classes per epoch, when compared to
Weak Breadcrumb Sampling. This confirms that it is a more adversarial data
augmentation strategy.

5 Experiments

5.1 Experimental set-up

Datasets. We consider three long-tailed recognition datasets, ImageNet-LT [19],
Places-LT [19] and iNatrualist18 [28]. ImageNet-LT is a long-tailed version of
ImageNet [4] by sampling a subset following the Pareto distribution with power
value @ = 6. It contains 115.8K images from 1000 categories, with class cardi-
nality ranging from 5 to 1280. Places-LT is a long-tailed version of the Places
dataset [38]. It contains 184.5K images from 365 categories with class cardinality
in [5,4980]. iNatrualist18 is a long-tailed dataset, which contains 437.5K images
from 8141 categories with class cardinality in [2, 1000]. Following [19], we present
classification accuracies for both the entire dataset and three groups of classes:
many shot (more than 100 training samples), medium shot (between 20 and 100),
and few shot (less than 20 training samples).
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Baselines. Following [19], we consider three metric-learning baselines, based on
the lifted [21], focal [15], and range [37] losses, and one state-of-the-art method,
FSLwF [8], for learning without forgetting. We also include long-tailed recogni-
tion methods designed specifically for these datasets, OLTR [19] and Distill [35],
plus the recent state of the art Decoupling method [14]. The model with stan-
dard random sampling and end-to-end training is denoted as the Plain Model
for comparison.

Training Details. ResNet-10 and ResNeXt-50 [11, 36] are used on ImageNet-
LT; ResNet-152 is used on Places-LT; and ResNet-50 is used on iNatrualist18.
The model is trained with SGD, using momentum 0.9, weight decay 0.0005,
and a learning rate that cosine decays from 0.2 to 0. Each iteration uses class-
balanced and random sampling mini-batches of size 512. One epoch is defined
when the random sampling iterates over the entire training data. Under Strong
Breadcrumb Sampling, class-balanced sampling is applied in the initial classifier
training epochs, when there are not enough previous epochs to back-track. Codes
are attached in supplementary.

Table 1. Ablation of Breadcrumb components, on the ImageNet-LT. For many-shot
t > 100, for medium-shot ¢ € (20, 100], and for few-shot ¢ < 20, where ¢ is the number
of training samples.

Method Overall Many-Shot Medium-Shot Few-Shot
Decoupling [14] 41.4 51.8 38.8 21.5

+ back-tracking 41.2 50.4 38.5 23.8

+ class-specific 41.3 50.8 38.1 24.6
Weak Breadcrumb — 43.2 53.6 39.8 25.1
Strong Breadcrumb 44.0 53.7 41.0 26.4
Breadcrumb 44.0 53.7 41.0 26.4
Breadcrumb(var.) 43.9 53.8 40.8 26.0
Breadcrumb(agn.) 38.5 47.3 35.6 24.0

Table 2. Results on ImageNet-LT and Places-LT. ResNet-10/152 are used for all
methods. For many-shot ¢ > 100, for medium-shot ¢ € (20,100], and for few-shot
t < 20, where t is the number of training samples.

ImageNet-LT, ResNet-10 Places-LT, ResNet-152

Method Overall Many-Shot Medium-Shot Few-Shot|Overall Many-Shot Medium-Shot Few-Shot
Plain Model 23.5 41.1 14.9 3.6 27.2 45.9 22.4 0.36
Lifted Loss [21] 30.8 35.8 30.4 17.9 35.2 41.1 35.4 24.0
Focal Loss [15] 30.5 36.4 29.9 16.0 34.6 41.1 34.8 22.4
Range Loss [37] 30.7 35.8 30.3 17.6 35.1 41.1 35.4 23.2
FSLwF [8] 28.4 40.9 22.1 15.0 34.9 43.9 29.9 29.5
OLTR [19] 35.6 43.2 35.1 18.5 35.9 44.7 37.0 25.3
Distill [35] 38.8 47.0 37.9 19.2 36.2 39.3 39.6 24.2
Decoupling(c¢RT) [14]| 41.4 51.8 38.8 21.5 37.9 37.8 40.7 31.8

Breadcrumb | 44.0 53.7 41.0 26.4 | 39.3 40.6 41.0 33.4
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Table 3. Results on ImageNet-LT, ResNeXt-50. For Table 4. Results on the iNat-
many-shot ¢ > 100, for medium-shot ¢ € (20,100], aralist 2018. All methods are
and for few-shot ¢ < 20, where ¢ is the number of implemented with ResNet-50.
training samples.

Method Accuracy

Method |Overall Many-Shot Medium-Shot Few-Shot CB-Focal [3] 61.1
OLTR [19] 41.9 51.0 40.8 20.8 IBDAM";,DRWR%}] 14 gi-g
Decoupling(NCM) [14]| 47.3 56.6 45.3 28.1 DECO“F’I?“E(C 1)4[ ] e
Decoupling(cRT) [14] | 49.6 61.8 46.2 27.4 ecoupling(r) [S ] 69.3
Decoupling(r) [14] 19.4 59.1 16.9 30.7 g?“‘ff‘f’l‘“g(LW ) [14] 695
Decoupling(LWS) [14] | 49.9 60.2 47.2 30.3 ausal [27] 64.4

: LADE [12] 70.0
Causal [27] 50.6 62.3 16.9 30.6 LanE ro.0
LADE [12] 51.9 62.3 49.3 31.2 [39] :
Breadcrumb | 51.0 62.9 ar.2 30.9 Breaderumb 70.3

5.2 Ablation Study

Several ablations were performed to study the effectiveness of the various compo-
nents of Breadcrumb. In this study, all models are trained and evaluated on the
training and test set of ImageNet-LT, respectively, using a ResNet-10 backbone.
Component ablation. Starting from the baseline Decoupling (¢cRT) [14] method,
we incrementally add feature back-tracking, class-specific augmentation, class
alignment (leading to Weak Breadcrumb Sampling), and Strong Breadcrumb
Sampling. Results are shown in Table 1. When only back-tracking is applied,
all snapshots are collected from the last 10 epochs of image-balanced training
(first stage), and the classifier trained (in the second stage) using this feature
set and class-balanced sampling. No class alignment is applied. Compared to the
baseline, back-tracking gives a reasonable gain on few-shot classes but harms
many-shot performance. This can be explained by the fact that, for many-shot
classes, features from the final epoch are replaced by those from prior epochs.
Since the corresponding embeddings are sub-optimal, the augmented features
are inferior to the final ones. This, however, is not the case in few-shot, where
augmented features replace duplicated features.

The combination of back-tracking and class-specific augmentation, where
different classes have different back-tracking lengths, is denoted as “+ class-
specific” in Table 1. Surprisingly, without class alignment, the performance on
many-shot does not improve, even though no augmented features are introduced
into those classes. We believe this is due to the fact that when few-shot features
are augmented without alignment, those augmented features take up position
in feature space that should not be assigned to them. This decreases the accu-
racy of many-shot classes. When class-alignment is applied (Weak Breadcrumb
Sampling) we observe an improvement over all class partitions, with gains of
1.8% (Many), 1% (Medium), and 3,6% (Few-Shot) and an overall improvement
of 1.8% over the baseline. Finally, Strong Breadcrumb Sampling enables another
0.8% overall gain, for a total gain of 2.6% over the baseline.

Class alignment ablation. Since alignment makes a significant difference, we
considered three different alignment choices. In Sec 3.2, only class-specific mean
alignment is presented. It is also possible to align the feature variances. This is
denoted as Breadcrumb(var.) in Table 1 and has a negligible difference. Hence,



14 B. Liu et al.

we only apply mean alignment unless otherwise noted. Another possibility is
class-agnostic alignment, where only one mean is computed over all classes. This
is listed as Breadcrumb(agn.) in Table 1. Its poor performance implies that
class-agnostic alignment cannot fully eliminate the differences between epochs.

5.3 Comparison to the state of the art

Table 2 presents a final comparison to the methods in the literature on ImageNet-
LT, using a ResNet-10, and Places-LT, using a ResNet-152. In these exper-
iments we use Strong Breadcrumb Sampling, which is shown to outperform
all other methods on both datasets. It achieves the best performance on 5
of the 6 partitions and is always better than the next overall best performer
(Decoupling(cRT)). It is only outperformed by the Plain Model on the Many-
Shot split of Places-L'T, where this model severely overfits to the Many-Shot
classes, basically ignoring the Few-Shot ones, and achieving overall performance
12.1% weaker than Breadcrumb. Compared to the best models Breadcrumb also
achieves significant gains on few-shot classes, especially on ImageNet-LT, where
it beats the next best method by 4.9%. This suggests that previous methods
over-fit for few-shot classes, a problem that is mitigated by the introduction of
EMANATE and Strong Breadcrumb Sampling. Table 3 shows that these results
are fairly insensitive to the backbone network. Breadcrumb achieves the best
overall performance and the best performance on all partitions with a ResNeXt-
50 backbone. Finally Table 4 shows that Breadcrumb again achieves the overall
best results for a ResNet-50 on iNaturalist.

6 Conclusion

This work discussed the long-tailed recognition problem. A new augmentation
framework, Breadcrumb, was proposed to increase feature variety and classifier
robustness. Breadcrumb is based on EMANATE, a feature back-tracking proce-
dure that aligns features vectors produced across several epochs of embedding
training, to compose a class-balanced feature set for training the classifier at
the top of the network. It is inspired by the the recent success of class-balanced
training schemes. However, unlike previous schemes, it is shown to be an ad-
versarial sampling scheme, a property that encourages better generalization. A
comparison of two sampling schemes based on EMANATE confirmed this prop-
erty, resulting in best performance for the Strong Breadcrumb Sampling tech-
nique, where feature snapshots are collected while the embedding is evolving.
Breadcrumb was shown to achieve state-of-the-art performance on three popular
long-tailed datasets with different CNN backbones. Furthermore, Breadcrumb
introduces no extra model, which means that it adds no computational overhead
or convergence issues to the baseline model.
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