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Equilibria and their Stability in Networks with Steep Sigmoidal Nonlinearities∗
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Abstract. In this paper we investigate equilibria of continuous differential equation models of network dynamics.
The motivation comes from gene regulatory networks where each directed edge represents either
down- or up-regulation, and is modeled by a sigmoidal nonlinear function. We show that the existence
and stability of equilibria of a sigmoidal system are determined by a combinatorial analysis of the
limiting switching system with piecewise constant nonlinearities. In addition, we describe a local
decomposition of a switching system into a product of simpler cyclic feedback systems, where the
cycles in each decomposition correspond to a particular subset of network loops.
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1. Introduction. Analysis of large systems of ordinary differential equations is difficult,
especially when we seek to understand changes in dynamics when parameters change. To
set the stage, we are interested in systems of O(10) differential equations with the same
order of magnitude of the number of parameters; big enough to be complicated but not so
large that statistical approaches may be applicable. Systems of this size are important in
systems biology, in particular, in models of gene regulation. Here variables usually represent
concentrations of chemical species (mRNA, proteins) in the cell, and the interactions between
variables are represented in a form of a network with signed directed edges. Nodes represent
concentrations and directed edges monotone interactions; positive edges indicate activation
and negative edges repression. The interactions are nonlinear, both on the level of the pairwise
effect of xi on xj which is usually modeled by a saturating function, and also on the level of how
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effects from different inputs combine together to influence xj . The choice of the nonlinearity
that models the effect of xi on xj is not given by any fundamental law of physics; the usual
choices are Hill functions, but other sigmoid functions and threshold (switching) functions are
used as well. This ambiguity, coupled with technical challenges related to the simultaneous
measurement of the time evolution of multiple chemical species in a single cell, necessarily
limits the expectation of fidelity of the model simulations to the experimental data. The model
should not be expected to reproduce measurements in fine detail, but still answer qualitative
questions on the number and types of stable equilibria that are present, or the capacity of the
network to admit oscillations. Taking into consideration the ever present noise in molecular
systems, there is always a need to address a question of how robust these qualitative features
are under parameter changes in the model.

In this paper we concentrate on the existence and stability of equilibria in networks where
the pairwise interaction is modeled by sigmoidal nonlinearities. Extending results [22, 28, 19],
we show that the equilibria in a network modeled by sufficiently steep sigmoidal functions are
in a one-to-one correspondence with a collection of so called regular and singular equilibria
of a model of the same network using switching functions. Switching functions are piecewise
constant functions with a single threshold and range with two values {L,U}, which can be
interpreted as two rates of expression (L for lower, and U for upper) of the target gene based
on whether the controlling gene is below, or above, the threshold θ. These models have been
used for gene regulatory networks since the 70s [15, 16, 6, 25, 7, 5, 19, 11]. However, using
these functions as the right-hand side of an ODE system presents several technical challenges,
especially in how to deal with the fact that the vector field is not defined at thresholds θ. One
approach to extend switching systems so that they are defined at thresholds is to view them
as differential inclusions rather than ODEs. Stability of singular equilibria of the switching
systems from this point of view were studied by [2]. Convergence of switching systems dy-
namics was studied also by [21] who formulated conditions that are needed to construct a
global Lyapunov function for a switching system by piecing together local Lyapunov func-
tions. The idea of the new DSGRN (dynamic signatures generated by regulatory networks)
approach [5, 12, 11], supported by a suite of corresponding software [4], is to capture informa-
tion about the network dynamics given by switching system models in a form of combinatorial
(finite) data, and then use these data to rigorously establish results about well-defined dynam-
ics of ODEs with continuous right-hand side that are a small perturbation of the switching
functions. We emphasize that the distinction in the two approaches is that the Filippov ex-
tension approach is concerned with the dynamics of switching systems whereas the DSGRN
approach only uses switching systems as a computational tool for the study of the dynamics
of sigmoidal systems.

While we describe the combinatorial data in greater detail below, for the purpose of this in-
troduction it is sufficient to note that the switching system ODE only contains stable equilibria
(which we call regular), because unstable equilibria of sigmoidal systems limit to intersections
of thresholds of switching systems. In this paper we show that the intersections, the inter-
sections that appear as such limits of unstable equilibria, which we call loop characteristic
equilibrium cells, can be precisely characterized using combinatorics of the switching system.
In particular, we add to the DSGRN approach by showing how to use the combinatorial data
from a switching system to predict the existence and stability of all equilibria for all sigmoidal
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functions that arise as perturbations to the switching functions. The combinatorial data only
use the type (i.e. positive feedback or negative feedback) and the number of feedback loops
in the network. To obtain these results we show that switching systems can be locally (in
phase space) decomposed into a product of simpler cyclic feedback systems. Each such cyclic
system can be associated with a unique oriented loop in the gene regulatory network.

A potential application of the description of equilibria and their stability in sigmoidal
systems is in the recurrent artificial neural networks. These models were introduced by Hop-
field [18] and Grossberg [17] almost 40 years ago, but they found their newest incarnation as
echo state networks [20]. There is a great variety of implementations but at the core there
are network nodes (i.e., neurons) that are connected by weighted directed edges. Each node
processes the input through a nonlinear function (binary, sigmoidal, or a ramp). Our work
provides a characterization of the number of stable equilibria for steep sigmoidal functions
baased on the combinatorics of the switching system, which is ultimately tied to the structure
of the connections in the network.

1.1. Organization of the paper. In section 2, we define sigmoidal functions and switching
functions. In section 3, we define the combinatorial data associated with switching functions
and show how these data can be used to identify all equilibria of steep sigmoidal systems.
The proofs for these results are in section 6. In section 4, we use the results of section 3 to
characterize the equilibria of cyclic feedback networks and then analyze their stability. The
proofs can be found in section 7. In section 5, we show that all switching systems can be
locally (in phase space) decomposed as a product of cyclic feedback systems and use this
decomposition to generalize the stability results of section 4 from cyclic feedback systems to
general networks. Finally, in section 8, we conclude with a discussion of our results.

2. The regulatory network and switching systems.

Definition 2.1 (see [5]). A regulatory network RN = (V,E) is an annotated finite directed
graph with vertices V = {1, . . . , N} called network nodes and directed edges E ⊂ V × V ×
{1,−1}. An annotated edge (j, i,+1) represents an activation of node i by node j and is
denoted j → i; annotated edge (j, i,−1) represents repression of node i by node j and is
denoted j ⊣ i. We write sij = 1 if j → i and sij = −1 if j ⊣ i. We indicate either j → i or
j ⊣ i without specifying which by writing (j, i) ∈ E. We allow self-edges, but admit at most
one edge between any two nodes. The set of sources and targets of a node are denoted by

S(k) = {j | (j, k) ∈ E} and T(k) = {j | (k, j) ∈ E}

and we require that every node has a target.

We remark that the assumption that every node has a target is not a serious constraint.
If a node j does not have a target, then the dynamics of the remaining nodes are independent
of j. Once the dynamics of the remaining nodes are understood, the dynamics of node j can
be treated as a nonautonomous system driven by the remaining nodes.

With an RN we associate a switching system of the form

ẋ = −Γx+ Λ(x),(2.1)
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where Γ is a diagonal matrix with entries Γjj = γj and Λ is a nonlinear function of the form

Λi(x) :=

pi∏

ℓ=1

∑

j∈Iℓ

σij(xj)(2.2)

with I1, . . . , Ipi a partition of S(i). Each σij is a switching function of the form

σij(xj) :=





Lij , sij = 1 and xj < θij or sij = −1 and xj > θij ,

Uij , sij = 1 and xj > θij or sij = −1 and xj < θij ,

undefined if xj = θij .

(2.3)

The parameter Z = (L,U, θ,Γ), where L := (Lij), U := (Uij), θ := (θij) are vectors indexed
by (ij), is the switching parameter. We denote a switching system parameterized by Z by
SWITCH(Z).

To an RN we also associate a sigmoidal system, S(Z, ε), where Z is a switching parameter
and ε ∈ RN×N is a perturbation parameter. We say ε′ ≤ ε or ε′ < ε when the componentwise
comparisons ε′ij ≤ εij or ε′ij < εij hold for each (j, i) ∈ E, respectively. The pair (Z, ε) is the
sigmoidal parameter. The dynamics of S(Z, ε) are given by

ẋ = −Γx+ Λ(x; ε),(2.4)

where Λ(x; ε) is obtained from Λ by replacing the switching functions σij with sigmoidal
perturbations σij(·; εij), which we define below.

Definition 2.2. σij(·; εij) is a family of sigmoidal perturbations of σij at a parameter Z if
for each εij ∈ R+,

1. σij(·; εij) is continuously differentiable and monotone nonincreasing or monotone non-
decreasing;

2. supx σij(x; εij) = Uij and infx σij(x; εij) = Lij;
3. there is a neighborhood U1(εij) ⊂ R of θij such that U1(εij) → {θij} as εij → 0 and a

constant C1 > 0, such that if x ∈ R \ U1(εij), then |σ′
ij(x; εij)| ≤ C1εij;

4. there is a neighborhood U2(εij) ⊂ R of θij such that U2(εij)) → {θij} and
σij(U2(εij); εij) → (Lij , Uij) as εij → 0 and a constant C2 > 0 such that if x ∈ U2(εij),
then |σ′

ij(x; εij)| ≥ C2ε
−1
ij .

Given a perturbation parameter ε, we will write σij(·; ε) instead of σij(·; εij) to simplify
notation. Note that as ε → 0, the sigmoidal perturbation σij(·; ε) converges pointwise to the
step function σij . Given a switching parameter Z and perturbation parameter ε ≥ 0, we
denote the Jacobian of (2.4) at x by J(x; ε) or J(ε) when x is implied from context.

Example 2.3. Throughout the paper we will illustrate the concepts on a simple example
of a two node network we call the positive toggle plus, where two nodes activate themselves
and mutually activate each other, i.e.,

RN = (V,E) = ({1, 2}, {(1 → 1), (2 → 2), (1 → 2), (2 → 1)}).

The name “positive toggle” refers to the network without self-loops and was chosen for its
resemblance to the toggle switch introduced in [10], in which the nodes mutually repress each
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other rather than activate. The “plus” modifier refers to the addition of the self-loops. The
associated switching system has the form

ẋ1 = −γ1x1 + σ11(x1)σ12(x2),

ẋ2 = −γ2x2 + σ22(x2)σ21(x1),

and we note s11 = s22 = s12 = s21 = 1. We will consider this system with a switching
parameter satisfying

L11L12 < L11U12 < γ1θ21 < U11L12 < γ1θ11 < U11U12, and

L22L21 < γ2θ12 < L22U21 < U22L21 < U22U21 < γ2θ22.

3. Equilibria of regulatory networks. As observed in [5], the thresholds θij of a switching
system impose a gridlike structure on phase space RN

+ . In this section we characterize where
the equilibria lie in phase space relative to this structure. We begin by defining the structure.

Definition 3.1.
1. For each j ∈ V , we define θ−∞j := 0, θ∞j := ∞, and

Θj(Z) := {θij > 0 | i ∈ T(j)} ∪ {θ∞j , θ−∞j}.

The threshold set is the collection Θ(Z) := (Θ1(Z), . . . ,ΘN (Z)). We say θi1j , θi2j ∈
Θj(Z) are consecutive thresholds if θi1j < θi2j and there does not exist θi3j ∈ Θj(Z)
such that θi1j < θi3j < θi2j.

2. A cell, τ , associated with a threshold set Θ, is a product of k ≤ N thresholds and
N − k open intervals whose endpoints are consecutive thresholds. By renumbering the
variables we write

τ =

k∏

j=1

{θijj} ×
N∏

j=k+1

(θajj , θbjj).

We write πj(τ) for the projection of τ onto the jth direction. A cell is regular if k = 0
and singular otherwise. The cell complex, χ(Θ), is the collection of all cells associated
with the threshold set Θ. The cell complex associated with the switching system (2.1)
at parameter Z is χ(Θ(Z)). When the switching parameter Z and the threshold set
Θ(Z) are clear from context we drop the argument Θ(Z) and write χ.
Figure 1(a) depicts the cell complex χ for the positive toggle plus. The concept of
neighboring cells is described below.

Observe, that in the switching system, the function Λ is only defined on regular cells and
not on singular cells. Therefore, equilibria of SWITCH(Z) can only be contained in regular
cells. Equilibria in singular cells can be understood if (2.1) is replaced with its Filippov
extension wherein the differential equation is replaced by a differential inclusion. This was
done in [2] where existence and stability of these singular equilibria were studied. However,
our goal is to understand equilibria of the sigmoidal systems S(Z, ε) which are perturbations
of the switching system SWITCH(Z), and not the equilibria of SWITCH(Z). For this reason,
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∞
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τ
′

τ
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(a) (b)

Figure 1. The cell complex χ, neighbors, and the labeling map in the positive toggle plus network. The
network and switching system are defined in Example 2.3. (a) Each box, line, and point is a cell in the cell
complex χ. The cell κ = {θ21} × (θ12, θ22) is indicated by the dashed line. For κ, the direction 1 is singular
and the direction 2 is regular. The 2-neighbors of κ (see Definition 3.5), κ+

2 and κ−
2 , are indicated by the gray

circles while the 1-neighbors, κ−
1 and κ+

1 , are the labeled two dimensional cells. (b) The loop characteristic cells
τ and τ̃ are indicated by the gray circles and the regular cells τ ′ and τ ′′ are labeled. The dotted arrow represents
L(τ, 1,−) for which 1 is a singular direction and, at the same time, it represents L(τ ′, 2,+) and L(τ ′′, 2,−)
for which 2 is a regular direction. See Example 3.10 for details. These values are equal to −1 so the arrow
points down. The arrows on the outside cell complex boundary are not drawn because they point inwards for all
choices of parameters. The arrows of the labeling map imply that Φ1(τ) = Φ2(τ

′) = 0. The arrows on the top
and bottom boundaries of τ ′′ indicate that Φ2(τ

′′) = −1.

in the next definition we define an equilibrium cell to be a cell which a sigmoidal equilibrium
converges to as ε → 0. It is straightforward to see that regular equilibrium cells contain a
unique stable equilibrium of SWITCH(Z).

Definition 3.2. Let Z be a switching parameter and τ ∈ χ. If there is an A ∈ RN×N
+ so

that for all ε < A, S(Z, ε) has a fixed point xε satisfying xε → τ as ε → 0, then τ is an
equilibrium cell. If τ is a singular cell, then xε is a singular stationary point.

Theorem 3.13 characterizes equilibrium cells using combinatorial information about
SWITCH(Z) only. That is, information about the switching system is necessary and suffi-
cient to characterize the equilibria of the sigmoidal system S(Z, ε) when ε is small enough. To
state the theorem precisely, we need some additional definitions to describe the cell complex
and a notion of a flow direction map on the cell complex.

3.1. Cell complex.

Definition 3.3.
1. Given τ ∈ χ, the singular directions of τ , denoted sd(τ), correspond to the set of

indices, s, such that πs(τ) = {θiss}. An index is a regular direction if it is not
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singular. We define ρτ : V → V by

ρτ (j) :=

{
ij , j ∈ sd(τ),

j, otherwise.

The set of cells with k singular directions is denoted χ(N−k). The map ρτ depends on
the cell τ , but when τ is fixed and clear from the context, we will use ρ instead of ρτ .

2. If s is a singular direction of τ ∈ χ we denote the neighboring thresholds by θρ−(s)s

and θρ+(s)s, where θρ−(s)s < θρ(s)s < θρ+(s)s are consecutive thresholds in Θs(Z). If r
is a regular direction of τ we write πr(τ) = (θarr, θbrr).

Definition 3.4. A cell, τ ∈ χ, is a loop characteristic cell if ρτ is a permutation on sd(τ).
We denote the set of loop characteristic cells by LCC. Note that all N -dimensional cells κ are
automatically loop characteristic cells, since sd(κ) = ∅. Therefore χ(N) ⊂ LCC.

A loop characteristic cell is a cell in which some number of disjoint loops of the network
are active. For example, the loop characteristic cells of the positive toggle plus network (see
Example 2.3) include {θ21} × {θ12}, where the loop 1 → 2 → 1 is active, {θ11} × (θ12, θ22),
where the loop 1 → 1 is active, and θ11 × θ22, where the loops 1 → 1 and 2 → 2 are
both active. The concept of loop characteristics was introduced in [22] where it was shown
singular equilibria of switching systems are contained in loop characteristic cells. This was
later extended to sigmoidal systems by [28] who showed that equilibrium cells are a subset
of loop characteristic cells when the sigmoidal perturbations are taken to be Hill functions.
Theorem 3.13 extends this work by considering a more general class of sigmoids and providing
necessary and sufficient conditions for a loop characteristic cell to be an equilibrium cell.

In the following definition we introduce notation to describe the neighbor of a cell. By a
neighbor to τ we mean a cell which is directly adjacent to τ .

Definition 3.5. Let τ ∈ χ and j ∈ V .The left j-neighbor (see Figure 1) of the cell τ is a
cell τ−j , defined by

πk(τ
−
j ) :=





πj(τ), j ̸= k,

(θρ−(j)j , θρ(j)j), j = k, k ∈ sd(τ),

{θajj}, j = k, k /∈ sd(τ).

Similarly, the right j-neighbor, τ+j , is defined by

πk(τ
+
j ) :=





πk(τ), j ̸= k,

(θρ(j)j , θρ+(j)j), j = k, k ∈ sd(τ),

{θbjj}, j = k, k /∈ sd(τ).

A j-neighbor of τ is either a left or right j-neighbor of τ . A neighbor of τ is any j-neighbor.

On a diagram of the cell complex, the left j-neighbor of τ , τ−j , is the cell directly below τ

in the jth direction and the right j-neighbor of τ , τ+j , is the cell directly above τ in the jth
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direction. If j is a singular direction of τ , then j is a regular direction of τ±j . If j is a regular

direction of τ , then j is a singular direction of τ±j . See Figure 1(a) for an example.
In the remainder of the paper we assume that the thresholds θij are positive. This reflects

that our motivation comes from biological networks in which activities or concentrations of a
reactant are always nonnegative. We also assume that thresholds corresponding to the same
node are not equal. This holds generically, greatly simplifies our analysis, and is typical in
the literature on switching systems [22, 2, 8, 28, 19, 5, 21]. These assumptions are captured
in the following definition.

Definition 3.6. The switching parameter Z is threshold regular if
• for all (j, i) ∈ E, θij > 0, and
• for all j ∈ V , i1, i2 ∈ T(j), θi1j ̸= θi2j.

Definition 3.7 (see [5, Definition 4.6]). Consider a threshold regular switching parameter
Z. For j ∈ V , denote the ordering of the thresholds {θij | i ∈ T(j)} by Oj(Z). The order
parameter of Z is the collection of these orders, O(Z) = (O1(Z), . . . , ON (Z)).

3.2. Flow direction map. The goal of this section is to define a flow direction map on the
cell complex χ(Θ(Z)), which is induced by the right-hand side of the switching system (2.1).
We start by introducing some notation. Observe that if j is a singular direction of τ ∈ χ and
thus πj(τ) = {θij} for some i, then by (2.3) the function σij(xj) is not defined on τ . However,
if j is a regular direction of τ and thus πj(τ) = (θi1j , θi2j), then σij(xj) is constant on τ .
We denote its value by σij(τ). It follows that for τ ∈ χ(N) which has no singular directions
sd(τ) = ∅, the value of Λi(τ) is well defined and constant for every i. The vector Γ−1Λ(τ)
is sometimes called the focal point of τ because any trajectory of the switching system with
initial condition in τ will converge to this value until the trajectory reaches the boundary of τ
[2]. In the following definition we give nondegeneracy conditions for the switching parameter
Z which we will assume throughout.

Definition 3.8 (see [5, Definition 2.7]). The switching parameter Z is regular if
• Z is threshold regular,
• for all (j, i) ∈ E, 0 < Lij < Uij,
• for all k ∈ V , γk > 0, and
• for all κ ∈ χ(N) and (j, i) ∈ E, γjθij ̸= Λj(κ) for each threshold θij which defines κ.

The last condition expresses the requirement that the focal point of each regular cell κ
does not lie in the boundary of κ, which holds generically. This is a typical assumption for
switching systems because it implies that the right-hand side of the switching system (2.1)
has a well-defined crossing direction on all the boundaries of cells κ ∈ χ(N) [2, 8, 5, 21]. We
will use this to define a labeling map that collects information about these crossing directions.
We then use the labeling map to define the flow direction map which indicates the direction
in which the flow of the corresponding system crosses the threshold. The flow direction map
can be viewed as a multivalued map and represented as a state transition graph that is a
combinatorial summary of the flow information given by the switching system. The labeling
map, defined below, generalizes the concept of wall labeling (see [5, Definition 3.1]) in switching
systems from regular cells to loop characteristic cells.
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Definition 3.9. Let Z be a regular switching parameter
1. The labeling map L : LCC×V ×{−,+} → {−1, 1} describes the sign of the right-hand

side of the switching system on the cells that are neighbors of τ ∈ LCC in a particular
direction. Letting ρ = ρτ , we first consider regular directions j /∈ sd(τ). Here we look
at the sign of the jth equation of the switching system (2.1) on the boundary in the
jth direction:

L(τ, j, β) :=

{
sgn(−γjθaτj j + Λj(τ)), j /∈ sd(τ), β = −,

sgn(−γjθbτj j + Λj(τ)), j /∈ sd(τ), β = +.

For singular direction j ∈ sd(τ), we look at a j-neighbor of τ and ask for the sign
of the ρ(j)th equation of the switching system because Λρ(j) is guaranteed to be well
defined on a j-neighbor (see Lemma 6.1):

L(τ, j, β) :=

{
sgn(−γρ(j)θρ2(j)ρ(j) + Λρ(j)(τ

−
j )), j ∈ sd(τ), β = −,

sgn(−γρ(j)θρ2(j)ρ(j) + Λρ(j)(τ
+
j )), j ∈ sd(τ), β = +.

2. The flow direction map, Φ : LCC → {−1, 0, 1}N summarizes the degree of agreement
in the labeling map between the neighbors of τ in a given direction. It is defined
componentwise by

Φj(τ) :=





1, L(τ, j,−) = 1 = L(τ, j,+),

−1, L(τ, j,−) = −1 = L(τ, j,+),

0, L(τ, j,−) = −L(τ, j,+).

Example 3.10. Consider the positive toggle plus system of Example 2.3. Let τ ′ = (0, θ21)×
(0, θ12) be the lower left regular cell of the cell complex as in Figure 1(b). Then Λ2(τ

′) = L22L21

and θb22 = θ12 so that

L(τ ′, 2,+) = sgn(−γ2θa22 + Λ2(τ
′)) = sgn(−γ2θ12 + L22L21) = −1

which is represented by the dotted down arrow originating from the upper boundary of τ ′ in
Figure 1(b). This indicates the flow of the switching system in the x2 direction is downward
when x ∈ τ ′ is close to the upper boundary of τ ′. We also have θa22 = 0 so that

L(τ ′, 2,−) = sgn(−γ2θa22 + Λ2(τ
′)) = sgn(0 + L22L21) = 1

and Φ2(τ
′) = 0 since L(τ ′, 2,−) = −L(τ ′, 2,+). This indicates that ẋ2 = 0 for some x ∈ τ ′.

The cell τ = {θ21}×{θ12} is a loop characteristic cell with ρ(1) = 2 and ρ(2) = 1. We compute

L(τ, 1,−) = sgn(−γρ(1)θρ2(1)ρ(1) + Λρ(1)(τ
−
1 )) = sgn(−γ2θ12 + L22L21) = −1,

which is the direction of the flow on the left neighbor of τ . This is also represented by the
dotted down arrow in Figure 1(b).
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In general, L(τ, j,±) is represented on a diagram of the cell complex by an arrow origi-
nating from τ±j pointing in direction ρ(j) either positively or negatively according to the sign
of L(τ, j,±). As suggested by Figure 1, the flow direction map gives rise to a state transi-
tion graph which represents admissible transitions between the states that are represented by
κ ∈ χ(N). The state transition graph is explicitly constructed in [5].

Note that the flow direction map depends on the choice of parameter Z. A key observation
is that it only depends on inequalities between parameters. We define an equivalence relation
on all parameters Z that satisfy the same inequalities and therefore produce the same flow
direction map. These equivalence classes, which we now proceed to define, will be called
combinatorial parameters.

Definition 3.11 (see [5, Definitions 4.5 and 4.6]). Consider a regular switching parameter
Z.

1. The input combinations of the ith node are the Cartesian product

Ini :=
∏

j∈S(i)

{off, on}.

The indicator function, 1i : R
S(i)
+ → Ini, is defined componentwise by

1ij(x) :=





off, sij = 1 and xj < θij or sij = −1 and xj > θij ,

on, sij = 1 and xj > θij or sij = −1 and xj < θij ,

undefined otherwise.

The σ-valuation function, vij : Ini → R is defined by

vij(A) :=





Lij , A = off,

Uij , A = on,

undefined otherwise.

Note that σij = vij ◦ 1ij. The Λ-valuation function, ωi : Ini → R, is defined by

ωi(A) :=

pi∏

ℓ=1

∑

j∈Iℓ

vij(Aj).

Note that Λi = ωi ◦ 1i.
Define Lj : Inj ×T(j) → {−1, 1} by

Lj(A, i) := sgn(−γjθij + ωj(A)).

The logic parameter is the collection L(Z) := (L1(·, ·), . . . , LN (·, ·)).
2. We define an equivalence relation Z ∼ Z ′ whenever (L(Z ′), O(Z ′)) = (L(Z), O(Z)).

The combinatorial parameter is an equivalence class of this relationship. In other
words, Z ′ ∈ P(Z) whenever (L(Z ′), O(Z ′)) = (L(Z), O(Z)).
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The notion of combinatorial parameter P(Z) was introduced in [5]. Each combinatorial
parameter is defined in terms of inequalities between real-valued parameters of Z. Therefore
each combinatorial parameter corresponds to an open domain in the real-valued parameter
space of parameters Z. The key observation from [5] is that any two parameters Z1, Z2 ∈ P(Z)
define identical labeling maps and therefore identical flow direction maps. This is because the
logic parameters Lj that enter the definition of combinatorial parameters represent the same
signs of the switching differential equations that define the labeling map.

Example 3.12. Consider the positive toggle plus system of Example 2.3. We will reference
τ ′ and τ ′′ from Figure 1(b). The input combinations for the first node are

In1 = {off, on} × {off, on}

because the first node has two inputs. The indicator function depends only on the order
parameter O(Z). The second component of the indicator function 11 satisfies

112(x) =

{
off, x ∈ τ ′,

on, x ∈ τ ′′.

The σ-valuation function v12 satisfies v12(off) = L12 and v12(on) = U12 so that

σ12(x) = v12(112(x)) =

{
L12, x ∈ τ ′,

U12, x ∈ τ ′′.

The Λ-valuation function ωi satisfies

ω1((off, off)) = v11(off)v12(off) = L11L12, and

ω1((off, on)) = v11(off)v12(on) = L11U12

so that

Λ1(x) = ω1(11(x)) =

{
ω1((off, off)) = L11L12, x ∈ τ ′,

ω1((off, on)) = L11U12, x ∈ τ ′′.

The first component of the logic parameter L(Z) satisfies

L1((off, off), 2) = sgn(−γ1θ21 + ω1((off, off))) = sgn(−γ1θ21 + L11L12) = −1, and

L1((off, on), 2) = sgn(−γ1θ21 + ω1((off, on))) = sgn(−γ1θ21 + L11U12) = 1.

These values are related to the labeling map via L(τ ′, 1,+) = L1((off, off), 2) and L(τ ′′, 1,+) =
L1((off, on), 2).

3.3. Characterization of equilibrium cells. We now provide a theorem which characterizes
the equilibrium cells of the switching system SWITCH(Z) and shows that there is a unique
equilibrium of S(Z, ε) which converges to each equilibrium cell. The proof for the theorem
can be found in section 6.
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Theorem 3.13. Let Z be a regular switching parameter.
(a) τ ∈ χ is an equilibrium cell if and only if

(a) τ is a loop characteristic cell, and
(b) Φj(τ) = 0 for each j.

(b) Furthermore, there is an 0 < A ∈ RN×N so that for ε < A any sigmoidal system
S(Z, ε) has a unique equilibrium xεsuch that xε → τ as ε → 0.

The theorem in the case of regular cells is implied by [5, Proposition 3.6]. It was shown in
[28] that loop characteristic cells are a subset of equilibrium cells in the case that the sigmoidal
perturbations σij(·, ε) are Hill functions. This theorem extends these results by providing a
necessary and sufficient condition for the identification of all equilibrium cells, enlarging the
class of functions for which it applies, and giving uniqueness of the equilibrium xε.

By Theorem 3.13, an equilibrium cell κ has a unique equilibrium xε of S(Z, ε) associated
with it. We associate the stability of this equilibrium with the cell through the following
definition.

Definition 3.14. An equilibrium cell κ is stable if the associate equilibrium xε of S(Z, ε) is
stable for all ε > 0 small enough and unstable otherwise.

The equilibrium cells of a switching system can be computed using the DSGRN software
[4]. We show in section 5 that the analysis of their stability can be reduced to the problem of
stability of multiple cyclic feedback systems that are associated with each singular equilibrium
cell. We therefore first discuss the stability of equilibrium cells in cyclic feedback systems.

4. Equilibrium cells and their stability in cyclic feedback networks. This section con-
centrates on a particular type of network, a cyclic feedback network, and characterizes the
equilibrium cells and the stability of the equilibria they contain. In the following section, we
generalize these results to arbitrary networks.

Definition 4.1. A cyclic feedback network (CFN) is a regulatory network RN = (V,E)
such that E = {(1, 2), (2, 3), . . . , (N − 1, N), (N, 1)}. A cyclic feedback system (CFS) is a
switching or sigmoidal system associated with a CFN.

Throughout this section we will assume that RN is a CFN. Since each node j has exactly
one target, j + 1, and one source, j − 1, the node j is associated with exactly one threshold,
θ(j+1)j , and Λj = σj(j−1). This implies the combinatorial parameter, and thus the flow direc-
tion map, is determined by the ordering of numbers within the sets {γjθ(j+1)j , Lj(j−1), Uj(j−1)},
j = 1, . . . , N mod N . This observation informs the following definition.

Definition 4.2. Given a regular switching parameter Z = (L,U, θ,Γ) for a CFS, a node j
is essential if Lj(j−1) < γjθ(j+1)j < Uj(j−1) and inessential otherwise.

Another consequence of having exactly one threshold for each node is that there is only
one singular loop characteristic cell, τ , for which all the directions are singular, i.e., sd(τ) = V .
The permutation ρ for this cell is defined by ρτ (j) = j+1. Throughout this section, τ always
denotes this cell and ρ = ρτ will denote the associated permutation. We associate a sign with
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ρ which describes whether the net effect of the cycle is positive or negative:

sgn(ρ) :=

N∏

i=1

s(i+1)i.

We say RN is a positive CFN if sgn(ρ) = 1 and a negative CFN if sgn(ρ) = −1.

4.1. Equilibrium cells. This section identifies equilibrium cells of a CFN. To simplify
notation, we observe as in [14] that by changing variables we may assume without loss of
generality that if RN is a positive CFN, then every edge is activating, and if RN is a negative
CFN, then every edge is activating except the edge (N, 1). This change of variables is of the
form

xj → αj(xj − θ(j+1)j) + θ(j+1)j ,

where αj = ±1.
The following lemma specifies the equilibrium cell for a CFS at a parameter Z for which

it has an inessential node.

Lemma 4.3. If at a switching parameter Z = (L,U, θ,Γ) the CFS has at least one inessen-
tial node, then SWITCH(Z) has a unique equilibrium cell κ and this cell is regular. The cell κ
is defined as follows. If j is an inessential node, the jth projection is

πj(κ) =

{
(0, θ(j+1)j) if Uj(j−1) < γjθ(j+1)j ,

(θ(j+1)j ,∞) if γjθ(j+1)j < Lj(j−1).

If j is essential, let k be the inessential node which forms the shortest path of the form k →
k + 1 → · · · → j, where nodes k + 1, . . . , j − 1 are essential. We have two cases:

If sgn(ρ) = 1, then

πj(κ) =

{
(0, θ(j+1)j) if Uk(k−1) < γkθ(k+1)k,

(θ(j+1)j ,∞) if γkθ(k+1)k < Lk(k−1).

If sgn(ρ) = −1, then

πj(κ) =





(0, θ(j+1)j) if Uk(k−1) < γkθ(k+1)k and 1 ≤ k < j, or γkθ(k+1)k < Lk(k−1)

and j < k ≤ N,

(θ(j+1)j ,∞) if γkθ(k+1)k < Lk(k−1) and 1 ≤ k < j, or Uk(k−1) < γkθ(k+1)k

and j < k ≤ N.

When N = 2, and for a parameter Z where all nodes are essential, the value of the labeling
map on the neighbors of τ for a positive CFS is depicted in Figure 2(a), and for a negative
CFS in Figure 2(b). It is apparent that the positive CFS has two regular equilibrium cells and
the negative CFS has no regular equilibrium cells. In either case τ is a singular equilibrium
cell. The next lemma shows that this is true for all N .
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0
0

θ21

θ12

∞

τ

∞

κ
L

κ
H

0
0

θ21

θ12

∞

τ

∞

κ

(a): Positive CFS (b): Negative CFS

Figure 2. Labeling map for the two node CFSs with no inessential nodes. The labeling map on the
boundary of R

2
+ points inward (not shown). (a) RN = (V,E) = ({1, 2}, {(1 → 2), (2 → 1)}. The arrows

indicate Φi(κ
L) = Φi(κ

H) = Φi(τ) = 0, i = 1, 2, so that κL, κH , and τ are equilibrium cells. (b) RN =
(V,E) = ({1, 2}, {(1 → 2), (2 ⊣ 1)}. The arrows indicate that Φ2(κ) = 0 but Φ1(κ) = 1 so that κ is not an
equilibrium cell. However, Φ1(τ) = Φ2(τ) = 0 so τ is an equilibrium cell. There are no regular equilibrium
cells.

Lemma 4.4. If at a switching parameter Z = (L,U, θ,Γ) the CFS has no inessential nodes,
then τ is an equilibrium cell of SWITCH(Z). Furthermore,

1. if RN is a positive CFN, then SWITCH(Z) has exactly two regular equilibrium cells
defined by

κL =
N∏

j=1

(0, θ(j+1)j) and κH =
N∏

j=1

(θ(j+1)j ,∞);

2. if RN is a negative CFN, then τ is the unique equilibrium cell.

The proofs for these lemmas can be found in section 7.1.

4.2. Stability of equilibria in sigmoidal CFSs. To determine stability of equilibria of
S(Z, ε), we compute the characteristic polynomial of the Jacobian J(ε). The structure of a
CFS imposes structure on J . In particular, we have

J =




−γ1 σ′
1N

σ′
21 −γ2

. . .
. . .

σ′
N(N−1) −γN


 .(4.1)

Before computing the characteristic polynomial we first note that we can obtain stability of
any regular equilibrium cell κ from J .

Proposition 4.5. If κ is a regular equilibrium cell, then it is stable.
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Proof. If xε is an equilibrium of S(Z, ε) which converges to κ, then σ′
j(j−1)(x

ε; ε) converges
to 0. Therefore, for ε small enough J is strictly diagonally dominant with negative diagonal
entries and thus all eigenvalues have a negative real part.

We now give the characteristic polynomial of J , which can be computed using the Leibniz
formula for the determinant. For the proof of the following lemma and remaining results of
this subsection, see section 7.2.

Lemma 4.6. Let S(Z, ε) be a CFS. The characteristic polynomial of the Jacobian J(x; ε)
is given by

det(J(x; ε)− λI) = (−1)N

(
N∏

i=1

(γi + λ)− sgn(ρ)M(x, ε)

)
,

where M(x, ε) :=
∏N

i=1 |σ
′
i(i−1)(x; ε)|.

The sign of the CFS plays a significant role in the stability of equilibria. First we address
positive CFSs.

Proposition 4.7. Let RN be a positive CFN and x be an equilibrium of S(Z, ε). Stability
of x can be determined as follows.

1. If M(x, ε) <
∏

j γj, then x is asymptotically stable.
2. If M(x, ε) >

∏
j γj, then x is unstable.

3. If M(x, ε) =
∏

j γj, then S(Z, ε) has a steady state bifurcation at x.

If an equilibrium xε of S(Z, ε) converges to the singular loop characteristic cell τ , then
condition (2) of Proposition 4.7 is satisfied if ε is small enough. Therefore, we have the
following.

Proposition 4.8. Let RN be a positive CFN. If τ is a singular equilibrium cell, then it is
unstable.

Now we discuss negative cycles. When there are N ≤ 2 nodes, we can compute eigenvalues
at an equilibrium and show that τ is stable.

Proposition 4.9. Let RN be a negative CFN with N ≤ 2. If τ is a singular equilibrium
cell, then it is stable.

To address negative CFSs with N > 2 we make an additional assumption that the γ’s are
identical, that is Γ = I. This allows us to explicitly compute all the eigenvalues of J .

Lemma 4.10. Let RN be a CFN. Consider switching parameter Z with Γ = I. Let λk(x, ε)
for k = 0, . . . , N − 1 be the eigenvalues of the Jacobian J(x; ε) evaluated at x. Then

λk(x, ε) =




−1 + (e2πikM(x, ε))

1
N , sgn(ρ) = 1,

−1 + (eπi+2πikM(x, ε))
1
N , sgn(ρ) = −1.

(4.2)
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An eigenvalue with the largest real part is

λ0(x, ε) =

{
−1 +M(x, ε)

1
N , sgn(ρ) = 1,

−1 + (eπiM(x, ε))
1
N , sgn(ρ) = −1.

(4.3)

The next proposition, often referred to as the secant condition for negative feedback sys-
tems [27, 26, 23, 24, 9], follows immediately from the computation of the eigenvalues.

Proposition 4.11. Let RN be a negative CFN, Z = (L,U, θ,Γ) be a switching parameter
with Γ = I, and x be an equilibrium of S(Z, ε). If N > 2, then stability can be determined as
follows.

1. If M(x, ε) < sec
(
π
N

)N
, then x is asymptotically stable.

2. If M(x, ε) > sec
(
π
N

)N
, then x is unstable.

3. If M(x, ε) = sec
(
π
N

)N
, then S(Z, ε) has a Hopf bifurcation at x.

If N > 2 and an equilibrium xε converges to the singular loop characteristic cell τ , the
second condition of Proposition 4.11 holds when ε is small enough and we have the following.

Proposition 4.12. Let RN be a negative CFN with N > 2 and and Z = (L,U, θ,Γ) be a
switching parameter with Γ = I. If τ is a singular equilibrium cell it is unstable.

We remark that while Proposition 4.12 is a statement about sigmoidal CFSs, [8] proves
a stronger statement for switching CFSs. In [8] it was shown that a negative switching CFS
with N > 2 and no inessential nodes has a stable periodic orbit and that the singular loop
characteristic cell τ is an unstable source. This was proven even for Γ ̸= I. We suspect
Proposition 4.12 holds for Γ ̸= I as well but do not pursue it here. We also suspect that for
small ε the sigmoidal CFS with N > 2 has a stable periodic orbit. This is consistent with
Proposition 4.11 which suggests the existence of a supercritical Hopf bifurcation as ε increases.

5. Equilibria, stability, and bifurcations in general networks. To characterize the equi-
librium cells, stability, and bifurcations of a network RN which is not a CFN, we decompose
SWITCH(Z) locally on a neighborhood of an arbitrary loop characteristic cell into CFSs and
then apply the results of section 4. Before proceeding to describe the decomposition, we define
the neighborhood of a cell on which the local decomposition is valid.

Definition 5.1. For τ ∈ χ, the cell neighborhood of τ , denoted N (τ), is defined by

N (τ) := {κ ∈ χ | τ ⊂ κ},

where κ is the closure of κ.

We will write x ∈ N (κ) to denote x ∈ τ for some τ ∈ N (κ). Note that the cell neigh-
borhood of a regular cell κ consists only of κ. In Figure 1(a), the cell neighborhood of the
singular cell κ is given by N (κ) = {κ, κ−1 , κ

+
1 }. The cell neighborhood of the singular cell τ̃ of

the positive toggle plus system consists of all cells contained in the interior of the gray shaded
region of Figure 3(a).
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5.1. Local decomposition of SWITCH(Z) into CFSs. The idea behind the decompo-
sition is to examine the values of Λ on the cell neighborhood of a loop characteristic cell τ .
Using the next lemma we will show that for any regular direction r of τ , Λr is constant on
N (τ). This will be used to show that regular directions enter trivially into the decomposition.
On the other hand, for any singular direction s of τ , the lemma will be used to show that
Λρ(s) takes one of two possible values. Furthermore, the value of Λρ(s) can only change in the
s direction. This will ultimately lead to the decomposition into CFSs along the cycles in the
permutation ρτ . See section 6 for the proof of the lemma.

Lemma 5.2. Let τ ∈ χ and (j, i) ∈ E. If j is a regular direction of τ or j ∈ sd(τ) and
i ̸= ρτ (j), then

• σij(τ) is well defined;
• for all κ ∈ N (τ), we have σij(κ) = σij(τ) is independent of κ.

Consequently if i ̸∈ {ρτ (j) | j ∈ sd(τ)}, then
• Λi(τ) is well defined;
• for all κ ∈ N (τ) we have Λi(κ) = Λi(τ) is independent of κ.

Let τ ∈ χ be a loop characteristic cell, ρ = ρτ be the corresponding permutation. By
Lemma 5.2, for each x in a cell neighborhood of τ , x ∈ N (τ), and each regular direction r,
the value of ẋr in the switching system (2.1) is independent of every other variable.

Also by Lemma 5.2, σsj(κ) = σsj(τ) is well defined for each singular direction s and
j ∈ S(s) \ {ρ−1(s)} on any cell κ ∈ N (τ). Therefore, the value of ẋs in the switching system
(2.1) for any singular direction s is independent of the regular directions. We conclude that
on N (τ), the switching system SWITCH(Z) decomposes into two independent systems: one
corresponding to the singular directions and one corresponding to the regular directions. Since
for each regular direction r, ẋr in (2.1) depends only on xr itself, the regular directions system
consists of a collection of uncoupled one dimensional systems.

The dynamics of the singular directions decomposes according to the cycles that generate
the permutation ρ. Let ρ|sd(τ) = (c1, . . . , cn) be the cycle decomposition of ρ restricted to
the singular directions. Let ℓd = length(cd) and sd =

∑
j<d ℓj . We reorder the variables

so that cd acts on {sd + 1, sd + 2, . . . , sd + ℓd} and cd(sd + i) = sd + i + 1 for i < ℓd and
cd(sd + ℓd) = sd + 1. On N (τ), the dynamics of the variables xd = (xsd+1, . . . xsd+ℓd) are
independent of the value of all other variables so that the dynamics of the singular directions
can be written as n independent systems. Within each system, ẋs depends only on ρ−1(s) so
each of these n systems is a CFS.

We conclude that the switching system SWITCH(Z) restricted to N (τ) decomposes into
d CFSs and a diagonal system corresponding to regular directions. The sign of the cycle

sgn(cd) :=

sd+ℓd∏

j=sd+1

scd(j)j

determines whether the dth system is a positive or negative CFS.
To explicitly write the decomposition we define ℓn+1 := N − sn+1 to be the number of

regular directions. For d = 1, . . . , n + 1 we define the projections of the cell neighborhood
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N (τ) and cells κ ∈ N (τ):

N d(τ) :=

sd+ℓd∏

j=sd+1

πj(N (τ)) and κd :=

sd+ℓd∏

j=sd+1

πj(κ).

We set Λ(·; τ) := Λ|N (τ) to be the restriction of Λ onto N (τ). We then define

Λd(·; τ) := (Λsd+1(·; τ), . . . ,Λsd+ℓd(·; τ))

to be the projection of the resulting function onto the directions in the dth subsystem.
Further, let Γd be the ℓd × ℓd diagonal matrix with entries Γii = γsd+i for i = 1, . . . , ℓd.

The dynamics for the dth subsystem is given explicitly by

ẋd = −Γdxd + Λd(xd; ε, τ), xd ∈ N d(τ ; ε),(5.1)

which we denote by SWITCHd(Z; τ). On the collection of cells N (τ), the system is

SWITCH(Z; τ) := (SWITCH1(Z; τ), . . . , SWITCHn(Z; τ), SWITCHn+1(Z; τ)).

We denote the CFN associated with SWITCHd(Z; τ) by RNd(τ).

Example 5.3. Consider the positive toggle plus system of Example 2.3. For the loop
characteristic cell τ̃ = {θ11} × {θ22} pictured in Figure 1(b), the singular directions of τ̃ are
both directions 1 and 2 and the cycle decomposition is given by ρ = (c1, c2), where c1(1) = 1
and c2(2) = 2. The cycle decomposition corresponds to the disjoint loops 1 → 1 and 2 → 2 in
the network. The cell neighborhood of τ̃ , N (τ̃), is the gray shaded region in Figure 3(a). For
x ∈ N (τ̃), x1 > θ21 and x2 > θ12 so that

ẋ1 = −γ1x1 + Λ1(x) = −γ1x1 + U12σ11(x1),

ẋ2 = −γ1x2 + Λ2(x) = −γ2x2 + U21σ22(x2).

The decomposition at τ̃ , SWITCH(Z) = (SWITCH1(Z; τ̃), SWITCH2(Z; τ̃)) is defined by x1 =
x1, x

2 = x2, Γ
1 = γ1, Γ

2 = γ2, Λ
1(x1; τ̃) = U12σ11(x1), and Λ2(x2; τ̃) = U21σ22(x2). Note that

the superscripts index the cycles, not the directions.

Next we show every regular cell in χ lies in a neighborhood of at least one singular loop
characteristic cell. This implies that every regular cell will be in at least one neighborhood
N (τ) on which decomposition into CFSs is applicable. Therefore, in spite of being local,
the decomposition into CFSs affects all the cells in χ. In particular, all equilibrium cells of
SWITCH(Z) are contained in at least one neighborhood N (τ).

Lemma 5.4. Suppose that every node of RN has an out-edge. Then for every regular cell
κ ∈ χ(N), there is a singular loop characteristic cell τ ∈ χ so that κ ∈ N (τ).

Proof. Let κ be a regular cell. Recall that for every j, πj(κ) = (θaκj j , θbκj j), where aκj , b
κ
j ∈

V ∪{−∞,∞}. Since every j has an out-edge and hence a target node ij , there is a threshold θijj
so that θijj is a boundary of πj(κ). In particular, since ij is a network node, ij /∈ {θ−∞j , θ∞j}.D
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The selection of such a threshold for every j ∈ V defines a map σ : V → V by σ(j) = ij . Note
that since σ(V ) ⊂ V and V is finite, the set

U :=
∞⋃

k=1

σk(V )

is nonempty and satisfies U = σ(U). Then a cell τ defined by

πj(τ) =

{
πj(κ), j /∈ U,

{θσ(j)j}, j ∈ U,

is a loop characteristic cell with κ ∈ N (τ).

5.2. Equilibrium cells. First, we generalize section 4.1 and characterize the equilibrium
cells of SWITCH(Z) in N (τ). We will take advantage of the decomposition

SWITCH(Z) = (SWITCH1(Z; τ), . . . , SWITCHn(Z; τ), SWITCHn+1(Z; τ))

which is valid on N (τ) = N 1(τ)×· · ·×N n(τ)×N n+1(τ) (5.1). However, the lemmas of section
4.1 are only valid for CFSs which are defined on the whole positive orthant. We therefore
extend SWITCHd(Z; τ) to all of Rℓd

+ for d ≤ n. The regular directions do not form a CFS on
N (τ) so we do not need to extend SWITCHn+1(Z; τ).

The dynamics of SWITCHd(Z; τ) are given by

ẋd = −Γdxd + Λd(xd; τ), xd ∈ N d(τ).

To extend the domain of definition of SWITCHd(Z; τ) on Rℓd
+ , we need to define Λd(·; τ) on

Rℓd
+ , while ensuring SWITCHd(Z; τ) remains a CFS. To do so, we make the following definition.

Definition 5.5. Given a loop characteristic cell τ ⊂ RN
+ with permutation ρ = ρτ , the cone

C(κ; τ) rooted in τ and induced by a cell κ ∈ N (τ) is defined by its N projections. For a
regular direction, r, of τ ,

πr(C(κ; τ)) := πr(τ).

For a singular direction, s ∈ sd(τ),

πs(C(κ; τ)) :=





{θρ(s)s} if πs(κ) = {θρ(s)s},

(θρ(s)s,∞) if πs(κ) = (θρ(s)s, θρ+(s)s),

(0, θρ(s)s) if πs(κ) = (θρ−(s)s, θρ(s)s).

For σ ∈ N d(τ) define a d-cone in Rℓd
+ by

Cd(σ; τ) :=

sd+ℓd∏

j=sd+1

πj(C(σ; τ)).
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0
0

θ21 θ11

τ̃

∞

θ12

θ22

∞

κ1κ2

κ3 κ4

0
0

θ11

τ̃

∞

θ22

∞

C(κ2; τ̃)

C(κ3; τ̃)
C(κ4; τ̃)

C(κ1; τ̃)

0

τ̃2θ22

∞

π2(τ̃
−
2 )

π2(τ̃
+
2 )

(a) (b) (c)

0 θ11 ∞

τ̃1π1(τ̃
−
1 ) π1(τ̃

+
1 )

(d)

Figure 3. The decomposition of the positive toggle plus system at a loop characteristic cell τ̃ . The switching
parameter is chosen as in Example 2.3. (a) The cell complex χ and the labeling map. The cell neighborhood
N (τ̃) consists of all cells in the shaded gray region. The regular cells in the cell neighorhood are labeled. (b)
The cell complex and labeling map formed by the product of switching systems (SWITCH1(Z; τ̃), SWITCH2(Z; τ̃))
after extending their domains. The cell complex is formed by the cones rooted in τ̃ . The cones induced by the
regular cells are labeled. (c) The cell complex χ2(τ) and labeling map L2 for SWITCH2(Z; τ̃). The cell τ̃−

2 is a
2-candidate equilibrium cell because C2(τ̃−

2 ; τ̃) is an equilibrium cell of SWITCH2(Z; τ̃). It is also 2-consistent.
(d) The cell complex χ1(τ) and labeling map L1 for SWITCH1(Z; τ̃). Each of τ̃ , τ̃−

1 , and τ̃+
1 are candidate

equilibrium cells. The cells τ̃ and τ̃+
1 are 1-consistent, while τ̃−

1 is not. See Example 5.12 for more details on
(a) and (b).

The cones for a loop characteristic cell τ in a two node network are depicted in Figure 3.
We now proceed to extend the function Λd from N d(τ) to Rℓd

+ . Take xd ∈ Rℓd
+ . If

xd /∈ N d(τ), then xd ∈ Cd(σ; τ) for some σ ∈ N d(τ). We define the value of Λd on Cd(σ; τ) to
be the value of Λd on σ. Explicitly,

Λd(xd; τ) := Λd(σ), xd ∈ Cd(σ; τ).

Given this extension, SWITCHd(Z; τ) is a switching system defined on Rℓd
+ with an asso-

ciated cell complex, labeling map, and flow direction map which we denote χd(τ), Ld(·, ·, ·; τ),
and Φd(·; τ), respectively. Here, the threshold set which generates χd(τ), Θd :=
(Θd

sd+1, . . . ,Θsd+ℓd), is defined by

Θd
j :=

{
{0, θρ(j)j ,∞}, j ∈ sd(τ),

{θaτj j , θbτj j}, otherwise.

Lemmas 4.3 and 4.4 can be used to determine the equilibrium cells of SWITCHd(Z; τ). Since
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the cell complex is formed by the cones (see Figures 3(c) and (d))

χd(τ) = {Cd(σ; τ) | σ ∈ N d(τ)},

there is a straightforward identification between cells of SWITCHd(Z; τ) and cells σ ∈ N d(τ).

Definition 5.6. The d-candidate equilibrium cells of τ are defined by

Eqd(τ) := {σd | σ ∈ N (τ) and Cd(σ; τ) is an equilibrium cell of SWITCHd(Z; τ)}.

The candidate equilibrium cells of τ are Eq(τ) :=
∏n+1

d=1 Eq
d(τ).

See Figure 3 and Example 5.12 for examples of candidate equilibrium cells in the positive
toggle plus system. The next lemma justifies the name candidate equilibrium cell.

Lemma 5.7. If κ ∈ N (τ) is an equilibrium cell, then κ ∈ Eq(τ).

Before proving the lemma, we isolate a part of the proof that will be useful later.

Lemma 5.8. Let κ ∈ N (τ). If r is a regular direction of τ , then Φr(κ) = Φn+1
r (C(κ; τ); τ).

For any singular direction s of κ that belongs to {sd + 1, . . . , sd + ℓd} we have Φs(κ) =
Φd
s(C(κ; τ); τ).

Proof. First consider the case that r is a regular direction of τ . Then r is also a regular
direction of κ and πr(κ) = πr(τ) = (θaτr ,r, θbτr r). Further, by Lemma 5.2, Λr(τ) = Λr(κ).
Finally we have Λn+1

r (C(κ; τ); τ) = Λr(κ) = Λr(τ). These observations allow us to compute
the labeling map of κ in the rth direction. We have

Ln+1(C(κ; τ), r,−) = sgn(−γrθaτr r + Λn+1
r (C(κ; τ); τ)) = sgn(−γrθaτr r + Λr(τ)) = L(τ, r,−)

and

Ln+1(C(κ; τ), r,+) = sgn(−γrθbτr r + Λn+1
r (C(κ; τ); τ)) = sgn(−γrθbτr r + Λr(τ)) = L(τ, r,+).

Since the labeling maps agree and the flow direction maps are defined via the labeling maps
(see Definition 3.9), we have Φr(τ) = Φn+1

r (C(κ; τ); τ).
Now suppose s ∈ {sd + 1, . . . , sd + ℓd} is a singular direction of κ for some d = 1, . . . , n.

Then

L(κ, s,−) = sgn(−γρ(s)θρ2(s)ρ(s)+Λρ(s)(κ
−
s )) and L(κ, s,+) = sgn(−γρ(s)θρ2(s)ρ(s)+Λρ(s)(κ

+
s )).

Since Λρ(s)(κ
±
s ) = Λd

ρ(s)(C(κ±s ; τ); τ), we have Ld(C(κ; τ), s,−) = Ld(C(κ; τ), s,−) and

L(κ, s,+) = −Ld(C(κ; τ), s,+), or Φs(κ) = Φd
s(C(κ; τ); τ).

Proof of Lemma 5.7. Let κ ∈ N (τ) be an equilibrium cell. By Theorem 3.13 we have
Φj(κ) = 0 for every j ∈ V . By Lemma 5.8, we have

Φn+1
r (C(κ; τ); τ) = Φr(κ) = 0 and Φd

s(C(κ; τ); τ) = Φs(κ) = 0

both for regular directions r of τ and singular directions s of κ for some d = 1, . . . , n. This
implies κn+1 ∈ Eqn+1(τ) and κd ∈ Eqd(τ), where s ∈ {sd + 1, . . . , sd + ℓd}.D
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Suppose j ∈ {sd + 1, . . . , sd + ℓd} is a singular direction of τ but a regular direction of κ.
Assume without loss of generality that πρ(j)(κ) = (θρ−(j)j , θρ(j)j). Then we have

1 = L(κ, j,−) = sgn(−γjθρ−(j)j + Λj(κ)) = − sgn(−γjθρ(j)j + Λj(κ)) = −L(κ, j,+).

Now, Ld(C(κ; τ), j,+) = L(κ, j,+) so we only need to check L(κ, j,−) = 1 = Ld(κd, j,−).
Since Θd

j = {0, θρ(j)j ,∞}, we have

Ld(C(κ; τ), ρ(j),−) = sgn(−γρ(j) · 0 + Λρ(j)(κ
d)) = 1

so that Φd(κd; τ) = 0 and κd ∈ Eqd(τ). Since κd ∈ Eqd(τ) for each d, κ ∈ Eq(τ).

Once we have identified a candidate equilibrium cell κ ∈ Eq(τ), there is one more property
to check to ascertain that it is an actual equilibrium cell. Since κd ∈ Eqd(τ), the cell Cd(κd; τ)
must be an equilibrium cell of SWITCHd(Z; τ). However, Cd(κd; τ) is a super set of κd, so this
equilibrium may not be contained in κd.

Definition 5.9. Let σ ∈ Eqd(τ) and d ≤ n. If the equilibrium of SWITCHd(Z; τ) in Cd(σ; τ)
is contained in σ, then we say σ is a d-consistent candidate equilibrium cell.

The next proposition shows how to check if σ is a d-consistent candidate equilibrium
cell. Notice that the condition of the proposition is vacuously satisfied when σ is a singular
equilibrium cell of SWITCHd(Z; τ). In other words, if the singular loop characteristic cell τd is
an equilibrium cell, it is always d-consistent. It is also important to note, that while seemingly
complicated, this condition is readily algorithmically checkable.

Proposition 5.10. Let d ≤ n and σ ∈ Eqd(τ). Then σ is a d-consistent candidate equilib-
rium cell if and only if for each j ∈ {sd + 1, . . . , sd + ℓd}, if πj(σ) is equal to the ith value in
the first column, and πj−1(σ) is equal to the kth value in the first row, then the inequality in
entry (i, k) of the following table is satisfied:

πj(σ)
πj−1(σ) (θρ−(j−1)(j−1), θj(j−1)) (θj(j−1), θρ+(j−1)(j−1))

(θρ−(j)j , θ(j+1)j) γjθρ−(j)j < Λj(τ
−
j−1) γjθρ−(j)j < Λj(τ

+
j−1)

(θ(j+1)j , θρ+(j)j) Λj(τ
−
j−1) < γjθρ+(j)j Λj(τ

+
j−1) < γjθρ+(j)j

Here sd + ℓd + 1 is identified with sd + 1 and (sd + 1)− 1 is identified with sd + ℓd.

Proof. Let Φd denote the flow direction map for the CFS SWITCHd(Z; τ). We show that
Φd(σ) = 0 if and only if the conditions are satisfied. Applying Theorem 3.13 then completes
the proof.

We first assume that σ is the singular loop characteristic cell of SWITCHd(Z, τ). Then
σ = Cd(σ; τ). Since σ ∈ Eqd(τ), Cd(σ; τ) is an equilibrium cell of SWITCHd(Z; τ) so that

Φd(σ) = Φd(Cd(σ; τ)) = 0.

If σ is not the singular loop characteristic cell, then σ must be a regular cell of SWITCHd(Z; τ)
by Lemmas 4.3 and 4.4. Since σ ∈ N (τ),

πj(σ) = (θ(j+1)j , θρ+(j)j) or πj(σ) = (θρ−(j)j , θ(j+1)j)

for each j.
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Fix j and suppose σ satisfies πj(σ) = (θ(j+1)j , θρ+(j)j). Since σ ∈ Eqd(τ), we have

Φd
j (C(σ; τ)) = 0. Since πj(σ) and πj(C(σ; τ)) have the same left boundary (by the assumption

on σ), we have

1 = Ld(C(σ; τ), j,−; 0) = Ld(σ, j,−; 0).

Therefore, Φd
j (σ) = 0 if and only if Ld(σ, j,+; 0) = −1. This is equivalent to

sgn(−γjθρ+(j)j + Λj(σ)) = −1 or Λj(σ) < γjθρ+(j)j .(5.2)

If πj−1(σ) = (θρ−(j−1)(j−1), θj(j−1)), then σ ∈ N (τ−j−1) and if πj−1(σ) = (θj(j−1), θρ+(j−1)(j−1)),

then σ ∈ N (τ+j−1). Notice that j− 1 is the only singular direction of τ that maps to j under ρ

and j−1 is not a singular direction of τ−j−1 or τ
+
j−1. Therefore, by Lemma 5.2, Λj(σ) = Λj(τ

−
j−1)

or Λj(σ) = Λj(τ
+
j−1) according to the value of πj−1(σ). Together with (5.2), this observation

proves the proposition in the case πj(σ) = (θ(j+1)j , θρ+(j)j). A similar argument applies to the
case πj(σ) = (θρ−(j)j , θ(j+1)j)).

See Example 5.12 for an example application of Proposition 5.10. The next theorem
shows that any equilibrium cell in N (τ) can be written as a product over consistent candidate
equilibrium cells.

Theorem 5.11. Let κ ∈ N (τ). Then κ is an equilibrium cell of SWITCH(Z) if and only if
• κ ∈ Eq(τ), and
• for every d, κd is a d-consistent candidate equilibrium cell.

Proof. Let κ ∈ N (τ). By Lemma 5.7, κ ∈ Eq(τ) is a necessary condition for κ to be an
equilibrium cell. We may therefore assume κ ∈ Eq(τ).

By Theorem 3.13, κ is an equilibrium cell if and only if Φj(κ) = 0 for every j ∈ V .
Lemma 5.8 shows that if r is a regular direction of τ , then Φr(κ) = Φn+1

r (C(κ; τ); τ) and if
s ∈ {sd+1, . . . , sd+ℓd} is a singular direction of κ, then Φs(κ) = Φd

s(C(κ; τ); τ). It remains to
show that Φj(κ) = 0 if and only if κd is d-consistent when j ∈ {sd+1, . . . , sd+ ℓd} is a regular
direction of κ but singular direction of τ . There are four cases determined by the values of
πj(κ) and πj−1(κ) indicated by the table in the statement of Proposition 5.10. We prove the
case πj(κ) = (θρ−(j)j , θρ(j)j) and πj−1(κ) = (θρ−(j−1)(j−1), θj(j−1)). The remaining cases are

similar. Since πj−1(κ) = (θρ−(j−1)(j−1), θj(j−1)) we have Λj(κ) = Λj(τ
−
j ) so that

L(κ, j,−) = sgn(−γjθρ−(j)j + Λj(τ
−
j )).

Therefore L(κ, j,−) = 1 if and only if κd is d-consistent. Since κd ∈ Eqd(τ),

Ld(C(κd; τ), j,−) = sgn(−γj · 0 + Λd
j (C(κd; τ))) = 1 = −Ld(C(κd; τ), j,+).

But Ld(C(κ; τ), j,+) = sgn(−γjθρ(j)j + Λd
j (C(κ; τ)) = L(κ, j,+) since Λd

j (C(κ; τ)) = Λj(κ).

Therefore Φj(κ) = 0 if and only if κd is d-consistent, completing the proof of the theorem.

Example 5.12. Consider the decomposition of the positive toggle plus system described in
Example 5.3. The cell complexes χ1(τ̃) and χ2(τ̃) with corresponding labeling maps L1 and
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L2 are pictured in Figures 3(c) and (d). SWITCH1(Z; τ̃) admits three 1-candidate equilibrium
cells given by τ̃ , τ̃−1 , and τ̃+1 . Applying Proposition 5.10, we have τ̃ is a consistent equilibrium
cell vacuously, τ̃−1 is not a consistent equilibrium cell since Λ1(τ̃

−
1 ) = L11U12 < γ1θ21, and τ̃+1

is a consistent equilibrium cell since Λ1(τ̃
+
1 ) = U11U12 < γ1θ∞1 = ∞. SWITCH2(Z; τ̃) admits

one 2-candidate equilibrium cell, τ̃−2 . Since Λ2(τ̃−2 ) = L22U21 > γ2θ21, it is a consistent
equilibrium cell. By Theorem 5.11, the equilibrium cells of SWITCH(Z) which are contained
in N (τ) are given by a product over projection of the consistent equilibrium cells, namely,
τ̃−2 = π1(τ̃)× π2(τ̃

−
2 ) and κ4 = π1(τ̃

+
1 )× π2(τ̃

−
2 ).

5.3. Stability of equilibria. The decomposition in Theorem 5.11 implies that the Jacobian
J(ε) for S(Z, ε) has a block structure up to order ε. In particular, we have that there is a
B ∈ RN×N such that

J(ε) =




J1(ε)
J2(ε)

. . .

Jn(ε)
Jn+1(ε)




+ εB,

Jn+1 =




−γsn+1

−γsn+2

. . .

−γN


 ,

and Jd(ε) for 1 ≤ d ≤ n has the same structure as (4.1) although the entries σ′
(j+1)j are re-

placed with ∂
∂xj

Λj+1(x; ε). The block Jd(ε) is the Jacobian for the sigmoidal system Sd(Z, ε; τ)

obtained from perturbing the switching system SWITCHd(Z; τ). This implies that the stabil-
ity of an equilibrium xε associated with an equilibrium cell κ ∈ N (τ) is determined by the
stability of κd as an equilibrium cell of SWITCHd(Z; τ) for d = 1, . . . , n+1. We formally state
this observation as a theorem after the following definition.

Definition 5.13. An equilibrium cell κ ∈ N (τ) is d-stable if κd is stable as a cell of
SWITCHd(Z; τ), and d-unstable otherwise.

Theorem 5.14. An equilibrium cell κ ∈ N (τ) is stable if and only if κ is d-stable for each
d.

As a result of Theorem 5.14, we can immediately generalize the stability results given by
Propositions 4.5, 4.8, 4.9, and 4.12, which results in the following theorem.

Theorem 5.15. Let Z = (L,U, θ,Γ) be a switching parameter, τ be a loop characteristic
cell, and κ ∈ N (τ) be an equilibrium cell. Then d-stability of κ can be determined as follows.

1. If κd is a regular cell, then κ is d-stable.
2. If κd is a singular cell and cd is positive, then κ is d-unstable.
3. If κd is a singular cell, cd is negative, and ℓd ≤ 2, then κ is d-stable.
4. If Γ = I, κd is a singular cell, cd is negative, and ℓd > 2, then κ is d-unstable.
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We remark that an equilibrium cell κ is always d = (n+1)-stable since the only equilibrium
cell of SWITCHn+1(Z; τ) is regular.

Example 5.16. Consider the decomposition of the positive toggle plus system at τ̃ pic-
tured in Figure 3. The equilibrium cell κ4 is 1-stable because π1(κ4) = C1(κ4; τ̃) = C1(τ̃+1 ; τ̃)
is stable in SWITCH1(Z; τ̃) as can be seen in Figure 3(d). κ4 is also 2-stable because
π2(κ4) = C2(κ4; τ̃) = C2(τ̃−2 ; τ̃) is stable in SWITCH2(Z; τ̃) as can be seen in Figure 3(c).
The equilibrium cell τ̃−2 is 1-unstable because π1(τ̃

−
2 ) = τ̃1 is unstable in SWITCH1(Z; τ̃).

6. Proof of Theorem 3.13. Before proving the theorem, we will prove some technical
lemmas. We begin by proving Lemma 5.2.

Proof of Lemma 5.2. Let τ ∈ χ be a cell, κ ∈ N (τ) be a cell in the cell neighborhood
N (τ) of τ (see Definition 5.1), and (j, i) ∈ E be an edge. Suppose j is a regular direction of
τ with πj(τ) = (θi1j , θi2j). Then σij(τ) is well defined. Since τ ⊂ κ,

(θi1j , θi2j) = πj(τ) ⊂ πj(κ) = [θi′1j , θi′2j ].

Because θi′1j < θi′2j are consecutive thresholds we must have θi1j = θi′1j and θi2j = θi′2j .
Therefore πj(κ) = πj(τ). This implies σij(κ) = σij(τ).

Now suppose j ∈ sd(τ), and πj(τ) = {θi0j}. Assume i0 ̸= i. This implies that σij(θi0j)
is defined and σij(τ) = σij(θi0j). Let θi1j < θi0j < θi2j be consecutive thresholds. Then
either πj(κ) = (θi1j , θi0j), πj(κ) = (θi0j , θi2j), or πj(κ) = {θi0j}. Since θij /∈ (θi1j , θi2j),
σij(xj) = σij(τ) for all xj ∈ (θi1j , θi2j) and σij(κ) = σij(τ).

Since Λi is a product of sums of switching functions σij , Λi(κ) is well defined whenever
σij(τ) is well defined for all j ∈ S(i). That is, Λi(κ) is well defined whenever i /∈ ρ(sd(τ)) =
{ρ(j) | j ∈ sd(τ)}.

Recall that τ±s denotes an s-neighbor of a cell τ ∈ χ (see Definition 3.5). A consequence of
Lemma 5.2 is that the labeling map L, and thus the flow direction map Φ (see Definition 3.9),
are well defined because Λρ(s)(τ

±
s ) is well defined for every singular direction s of a loop

characteristic cell τ .

Lemma 6.1. Let τ ∈ χ be a loop characteristic cell. If s is a singular direction of τ then
Λρ(s)(τ

±
s ) is well defined.

Proof. Since s is the unique singular direction of τ which maps to ρ(s), we have ρ(s) /∈

ρτ
±
s (sd(τ±s )) since s is a regular direction of τ±s . Lemma 5.2 then implies Λρ(s)(τ

±
s ) is well

defined.

Having confirmed that L and Φ are well defined on their domain, we now prove Theo-
rem 3.13.

6.1. Proof of Theorem 3.13. Let τ ∈ χ be an equilibrium cell and xε be an equilibrium
of S(Z, ε) such that xε → x∗ ∈ τ as ε → 0+. Let ρ = ρτ .

First suppose that statement (a) does not hold. Then there is a singular direction s ∈ sd(τ)
so that ρ(j) ̸= s for all j ∈ sd(τ). By Lemma 5.2, Λs(τ) is well defined and Λs(κ) = Λs(τ) for
all κ ∈ N (τ). Therefore, for all x ∈ N (τ), Λs(x; ε) → Λs(τ) as ε → 0. Since xε → x∗ ∈ τ ,
there is an A > 0 so that for ε < A, xε ∈ N (τ). Therefore, Λs(x

ε, ε) → Λs(τ) as ε → 0.
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Finally, since πs(τ) = {θρ(s)s}, we have xεs → θρ(s)s so that the sth component of x∗ satisfies
x∗s = θρ(s)s. These arguments imply that taking the limit of the expression

lim
ε→0+

−γsx
ε
s + Λs(x

ε; ε) = 0

results in
−γsθρ(s)s + Λs(τ) = 0.

But this contradicts the fact that Z is a regular parameter. This proves (a).
To prove (b) we consider regular and singular directions separately. For a regular direction,

r, let x∗r = limε→0 x
ε
r. We have

lim
ε→0+

−γrx
ε
r + Λr(x

ε; ε) = −γrx
∗
r + Λr(τ) = 0.

Since x∗r ∈ (θarr, θbrr), we must have −γrθarr+Λr(τ) > 0 and −γrθbrr+Λr(τ) < 0. Therefore,
Φr(τ) = 0.

For a singular direction, s, let η = min{
θρ+(s)s−θρ(s)s

2 ,
θρ(s)s−θρ−(s)s

2 }. Note that η is inde-
pendent of ε. With this η, define the sample points x±η,ε by

x±η,ε
j =

{
xεj , j ̸= s,

xεs ± η, j = s.

Note that x±η,ε → τ±s as ε → 0+. Using the fact that xε is an equilibrium of the sigmoid
system S(Z, ε), we have

0 =− γρ(s)x
ε
ρ(s) + Λρ(s)(x

ε; ε)

=− γρ(s)x
ε
ρ(s) + Λρ(s)(x

ε; ε)− Λρ(s)(x
±η,ε; ε) + Λρ(s)(x

±η,ε; ε)

=− γρ(s)x
ε
ρ(s) +




ps∏

ℓ=1
s/∈Iℓ

∑

j∈Iℓ

σρ(s)j(x
ε
j ; ε)


 (σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε)) + Λρ(s)(x

±η,ε; ε).

Rearranging the resulting equality, we get

sgn(−γρ(s)x
ε
ρ(s) + Λρ(s)(x

±η,ε; ε)) = − sgn
(
(σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε))

)
(6.1)

The left-hand side of (6.1) is L(τ, s,±) in the limit of ε → 0. To see this notice that since
ρ is a permutation, there is no j ∈ sd(τ±s ) so that ρτ (j) = ρτ (s). By Lemma 5.2, for every
x ∈ N (τ±s ), the function values Λρ(s)(x; ε) → Λρ(s)(τ

±
s ) as ε → 0+. Since in the same limit

x±η,ε → τ±s , there is an A > 0 such that for ε < A, we have x±η,ε ∈ N (τ±s ). Therefore,
Λρ(s)(x

±η,ε; ε) → Λρ(s)(τ
±
s ) as ε → 0+. Because the projection πρ(s)(τ) = {θρ2(s)ρ(s)} we

conclude that xερ(s) → θρ2(s)ρ(s). To summarize, we have shown

lim
ε→0+

sgn(−γρ(s)x
ε
ρ(s) + Λρ(s)(x

±η,ε; ε)) = sgn(−γρ(s)θρ2(s)ρ(s) + Λρ(s)(τ
±
s )) = L(τ, s,±).(6.2)
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To show that L(τ, s,+) = −L(τ, s,−), we study the right-hand side of (6.1). By properties
1 and 4 of sigmoidal perturbations, there is a neighborhood U ⊂ R+ of θρ(s)s such that
σρ(s)s(·; ε) is monotone increasing on U when sρ(s)s = 1 and decreasing when sρ(s)s = −1.
Since σρ(s)s is monotone nonincreasing or nondecreasing according to sρ(s)s, this implies

− sgn
(
(σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε)

)
= − sgn

(
xεs − x±η,ε

s

)
sρ(s)s

= −(∓1)sρ(s)s = ±sρ(s)s.

We have shown

L(τ, s,±) = lim
ε→0+

sgn(−γρ(s)x
ε
ρ(s) + Λρ(s)(x

±η,ε; ε))

= lim
ε→0+

− sgn
(
(σρ(s)s(x

ε
s; ε)− σρ(s)s(x

±η,ε
s ; ε))

)
= ±sρ(s)s,

where the first equality follows from (6.2) and the second equality follows from (6.1). Therefore
L(τ, s,+) = −L(τ, s,−) so that Φs(τ) = 0. This finishes the proof of (b) and thus the forward
implication in statement (a). We now proceed with the backward implication in (a).

For a singular direction s ∈ sd(τ), let U2,s(ε) be the neighborhood of θρ(s)s defined for σρ(s)s
in property 4 of sigmoidal perturbations (Definition 2.2). For a regular direction r /∈ sd(τ),
we have Φr(τ) = 0 or

sgn(−γrθarr + Λr(τ)) = − sgn(−γrθbrr + Λr(τ)).

Since Λr(x; ε) → Λr(τ) for x ∈ τ , we may choose ηr > 0 small enough so that

sgn(−γr(θarr + ηr) + Λr(τ)) = − sgn(−γr(θbrr − ηr) + Λr(τ)).(6.3)

We now define a closed neighborhood τ(ε) of τ by

πj(τ(ε)) :=

{
U2,j(ε), j ∈ sd(τ),

[θarr + ηr, θbrr − ηr], j /∈ sd(τ).

Note that τ ⊂ τ(ε). By properties 3 and 4 of sigmoidal perturbations we may choose A ∈
RN×N so that for ε < A and x ∈ τ(ε)

∣∣∣∣
∂

∂xs
Λρ(s)(x; ε)

∣∣∣∣ ≥ 2γρ(s) and

∣∣∣∣
∂

∂xr
Λr(x; ε)

∣∣∣∣ ≤
1
2γr.(6.4)

Property 4 implies that the image of Λρ(s)(·; ε) on τ(ε) converges, as ϵ → 0, to the interval
with endpoints Λρ(s)(τ

−
s ) and Λρ(s)(τ

+
s ), i.e., Λρ(s)(τ(ε); ε) → (Λρ(s)(τ

−
s ),Λρ(s)(τ

+
s )). Here we

have assumed without loss of generality that Λρ(s)(τ
−
s ) < Λρ(s)(τ

+
s ). Since Φs(τ) = 0, we have

γρ(s)θρ2(s)ρ(s) ∈ (Λρ(s)(τ
−
s ),Λρ(s)(τ

+
s )). Therefore, we may further refine our choice of A so

that γρ(s)θρ2(s)ρ(s) ∈ Λρ(s)(τ(ε); ε) for each ε < A. That is, for each s ∈ sd(τ), there is an
x ∈ τ(ε) so that

fρ(s) := −γρ(s)xρ(s) + Λρ(s)(x; ε) = ẋρ(s)|x = 0.
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For a regular direction r, we also have that there is an x ∈ τ(ε) with

fr := −γrxr + Λr(x; ε) = ẋr|x = 0

by (6.3).
By (6.4), if x ∈ τ(ε) and s ∈ sd(τ) is a singular direction or r is a regular direction, then

∣∣∣∣
∂fρ(s)

∂xs
(x)

∣∣∣∣ > γρ(s) > 0 and
∂fr
∂xr

(x) < −1
2γr < 0.

In either case, the derivatives are bounded away from zero so we may apply the implicit
function theorem to get a function

Xj :
∏

i ̸=j

πi(τ(ε)) → πj(τ(ε))

so that

fρ(j)((x1, . . . , Xj(x1, . . . , xj−1, xj+1, . . . , xN ), . . . , xN )) = 0.

Define g : τ(ε) → τ(ε) by

g(x1, . . . , xN ) := (X1(x2, . . . , xN ), . . . , XN (x1, . . . , xN−1)).

By Brouwer’s fixed point theorem, g has a fixed point x in τ(ε) so that we can simultaneously
solve ẋj = 0 for all j.

To prove part (b) and show that the fixed point is unique, we apply the inverse function
theorem. Let xε be an equilibrium of S(Z, ε). We note that except forO(ε) terms, the Jacobian
J(ε) has a block diagonal structure with blocks Jd(ε) corresponding to the cyclic feedback
decomposition of SWITCH(Z) at τ (see section 5.1). Each block corresponding to singular
directions of τ has the form of (4.1) while the block corresponding to regular directions is
diagonal. Therefore the determinant is given by

det(J(x; ε)) =

n∏

d=1

(−1)ℓd




sd+ℓd∏

s=sd+1

γs − sgn(cd)M
d(x, ε)



(

N∏

r=sn+1

−γr

)
+O(ε),(6.5)

where Md(x, ε) =
∏sd+ℓd

s=sd+1 |σ
′
ρ(s)s(xs, ε)|. Since Md(x, ε) → ∞ for x ∈ τ we have that for

small enough ε, J(x; ε) is nonsingular on τ(ε). The inverse function theorem then implies
that the equilibrium xε of S(Z, ε) in τ(ε) is unique.

7. Proof of CFS results. In this section, we prove the results of section 4. The section is
organized into subsections which correspond to the subsections of section 4. Recall that the
edges of a CFN are of the form (j, j + 1), where j + 1 is computed modulo N (see Definition
4.1). Furthermore, by changing variables we may assume without loss of generality that all
edges of a positive CFN are activating and the edges of a negative CFN are all activating
except for the edge N ⊣ 1 which is repressing (see section 4.1).
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7.1. Equilibrium cells.

Proof of Lemma 4.3. Let κ′ be a regular equilibrium cell. We will show that κ′ = κ, where
κ is the claimed unique equilibrium cell defined in the statement of the lemma. Recall that
for each j ∈ V , θ−∞j = 0 and θ∞j = ∞ (see Definition 3.1). We have

sgn(−γjθ−∞j + Λj(κ
′)) = sgn(0 + Λj(κ

′)) = 1, and

sgn(−γjθ∞j + Λj(κ
′)) = sgn(−∞+ Λj(κ

′)) = −1.

If j is inessential and γjθ(j+1)j < Lj(j−1), then

sgn(−γjθ(j+1)j + Λj(κ
′)) = −1.

If j is inessential and Uj(j−1) < γjθ(j+1)j , then

sgn(−γjθ(j+1)j + Λj(κ
′)) = 1.

In either case, Φj(κ
′) = 0 if and only if πj(κ

′) = πj(κ).
Now suppose that k is essential and k + 1 is inessential. If πk(κ

′) = (0, θ(k+1)k), then,
using the assumption on the sign of the edges,

Λk+1(κ
′) =

{
L(k+1)k, sgn(ρ) = 1 or k < N,

U(k+1)k, sgn(ρ) = −1 and k = N.

This implies

sgn(−γk+1θ(k+2)(k+1) + Λk+1(κ
′)) =

{
−1, sgn(ρ) = 1 or k < N,

1, sgn(ρ) = −1 and k = N,

so that Φk+1(κ
′) = 0 if and only if πk+1(κ

′) = πk+1(κ). A similar argument shows πk+1(κ
′) =

πk+1(κ) when πk(κ
′) = (θ(k+1)k,∞). An induction argument then shows that for every essen-

tial node j, πj(κ
′) = πj(κ).

We have shown that the only regular equilibrium cell is κ. Since equilibrium cells are
a subset of loop characteristic cells, to complete the proof we need only show that the only
singular loop characteristic cell τ =

∏
{θ(j+1)j} is not an equilibrium cell. Let j be a node so

that j + 1 is inessential. Assume U(j+1)j < γj+1θ(j+2)(j+1). Then

L(τ, j,+) = L(τ, j,−) = −1

since sgn(−γj+1θ(j+2)(j+1) + Λj+1(τ)) = −1. Similarly,

L(τ, j,+) = L(τ, j,−) = 1

when γj+1θ(j+2)(j+1) < L(j+1)j . This shows Φj(τ) ̸= 0 so that τ is not an equilibrium cell.
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Proof of Lemma 4.4. Let RN be a CFN and Z be a switching parameter so that the
corresponding CFS SWITCH(Z) has no inessential nodes. First we show that the singular
loop characteristic cell, τ =

∏
{θ(j+1)j}, is an equilibrium cell. Using the assumption on the

sign of the edges, for every j ∈ V we have

Λj+1(τ
−
j ) =

{
L(j+1)j , sgn(ρ) = 1 or j < N,

U(j+1)j , sgn(ρ) = −1 and j = N,

and

Λj+1(τ
+
j ) =

{
U(j+1)j , sgn(ρ) = 1 or j < N,

L(j+1)j , sgn(ρ) = −1 and j = N.

Since L(j+1)j < γj+1θ(j+2)(j+1) < U(j+1)j , this implies Φj(τ) = 0. τ is therefore an equilibrium
cell by Theorem 3.13.

Now consider the case RN is a positive CFN. Since πj(κ
L) = (0, θ(j+1)j) and all edges are

activating, Λj+1(κ
L) = L(j+1)j . We therefore have

L(κL, j + 1,+) = sgn(−γj+1θ(j+2)(j+1) + Λj+1(κ
L)) = −1.

A similar argument shows L(κH , j + 1,−) = 1 for all j. Since

sgn(−γj+1θ−∞j + Λj+1(κ)) = 1 and sgn(−γj+1θ∞j + Λj+1(κ)) = −1

for all cells κ, this implies Φj+1(κ
L) = Φj+1(κ

H) = 0 so that both cells are equilibrium cells.
Let κ be a regular cell different from κH and κL. Then there is a j so that πj(κ) =

(θ(j+1)j ,∞) but πj+1(κ) = (0, θ(j+2)(j+1)). πj(κ) = (θ(j+1)j ,∞) implies Λj+1(κ) = U(j+1)j .
But πj+1(κ) = (0, θ(j+2)(j+1)) implies

L(κ, j + 1,+) = sgn(−γj+1θ(j+2)(j+1) + U(j+1)j) = 1

so that Φj(κ) = 1 and κ is not an equilibrium cell.
Finally, consider the case that RN is a negative CFN. Let κ be a regular cell. Suppose

there is a j < N such that

πj(κ) = (0, θ(j+1)j) and πj+1(κ) = (θ(j+2)(j+1),∞).

Then Λj+1 = L(j+1)j so that

L(κ, j + 1,−) = sgn(−γj+1θ(j+2)(j+1) + L(j+1)j) = −1.

This implies Φj+1(κ) = −1 so that κ is not an equilibrium cell. Similarly, if

πj(κ) = (θ(j+1)j ,∞) and πj+1(κ) = (0, θ(j+2)(j+1)),

then Φj+1(κ) = 1 and κ is not an equilibrium cell. Suppose that πj(κ) = (0, θ(j+1)j) for each
j. Then since N ⊣ 1 is repressing,

L(κ, 1,+) = sgn(−γ1θ21 + U1N ) = 1

and Φ1(κ) = 1. Similarly, Φ1(κ) = −1 if πj(κ) = (θ(j+1)j ,∞) for each j. Therefore there are
no regular equilibrium cells. Since τ is the only singular loop characteristic cell and equilibrium
cells are loop characteristic cells, τ is the unique equilibrium cell.
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7.2. Stability of equilibria. We begin by providing the calculation of the characteristic
polynomial of the Jacobian J(x; ε). The Jacobian is given in (4.1).

Proof of Lemma 4.6. Let J̃ = J(ε) − λI. Let SN be the set of permutations of order N .
For η ∈ SN let par(η) denote the parity of η, i.e., par(η) = 1 if η is even and par(η) = −1 if η
is odd. The Liebniz formula gives

det(J̃) =
∑

η∈SN

par(η)
N∏

i=1

J̃η(i)i.

The only nonzero derivative of Λi is the derivative with respect to xi−1. Therefore, the only
nonzero entries of J̃ are the diagonal entries Jii = −γi − λ and the entries

J̃i(i−1) =
∂

∂xi−1
Λi = σ′

i(i−1).

The only nonzero entries in the sum then correspond to the identity permutation, id, and the
permutation, ρ. Since par(id) = 1 and par(ρ) = (−1)N−1,

det(J̃) =

N∏

i=1

(−γj − λ) + (−1)N−1
N∏

i=1

σ′
i(i−1)

= (−1)N

(
N∏

i=1

(γi + λ)−
N∏

i=1

σ′
i(i−1)

)

= (−1)N

(
N∏

i=1

(γi + λ)− sgn(ρ)

N∏

i=1

M

)
.

To determine stability of positive CFSs, we apply Descartes’ rule of signs and the fact
that J is a Metzler matrix (off diagonal entries are nonnegative) so that the eigenvalue with
the largest real part is real (see [1, Theorem 4]).

Proof of Proposition 4.7. Let p(λ) := (−1)N det(J − λI) be the characteristic polynomial
of J(x, ε) normalized so that the leading coefficient is positive. Notice that p(λ) has all
positive coefficients except for possibly the coefficient of λ0 which is given by (−1)N det(J) =∏

j γj − M(x, ε). If M(x, ε) >
∏

j γj then by Descartes’ rule of signs, p has a positive real
root so that x is unstable. If M(x, ε) <

∏
j γj , then by Descartes’ rule of signs, M(x, ε) has

no positive real roots. Theorem 4 of [1] says that J has a real eigenvalue with largest real
part. Since J has no positive real roots, this eigenvalue must be negative, implying that x is
asymptotically stable. If M(x, ε) =

∏
j γj , then det(J) = 0 so that S(Z, ε) has a bifurcation

at x.

The stability of equilibria of negative CFSs when N ≤ 2 involves only a simple computa-
tion.
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Proof of Proposition 4.9. If N = 1, then x = x1 and ẋ = −γ1x+ σ11(x; ε). Since σ11(x; ε)
is nonincreasing we have J(x; ε) = −γ1 + σ′

11(x; ε) ≤ −γ1 so that the equilibrium of S(Z, ε)
is stable. If N = 2, then det(J(x; ε)) = γ1γ2 − σ′

21(x; ε)σ
′
12(x; ε) ≥ γ1γ2 > 0 since σ12 is

nondecreasing and σ12 is nonincreasing. We also have that the trace of J(x; ε) is negative.
Since det(J(x; ε) > 0 and Tr(J) < 0, the eigenvalues of J have a negative real part.

Proof of Propositions 4.8 and 4.12. In proving Theorem 3.13, we showed that for ε small
enough the equilibrium xε which converges to τ satisfies xε ∈ Uj(ε), where Uj is defined as in
property (4) of Definition 2.2. Therefore M(x, ε) → ∞ as ε → 0. Applying Proposition 4.7
or 4.11 as appropriate then proves the propositions.

8. Discussion. In this paper we present explicit and direct correspondence between equi-
libria of systems of differential equations with sigmoidal nonlinearities and equilibrium objects
that are associated with a switching system. ODE models associated with switching systems
are not well defined for points that lie on the family of thresholds associated with these func-
tions. Because of the difficulties that this presents for construction of a well-defined flow, we
prefer to think of a switching system not as an ODE model, but as a source of combinatorial
(i.e., finite) data that can be used to study sigmoidal systems. Following this philosophy
we build upon the work of others [28, 19] to show that all equilibria and their stability for
sufficiently steep sigmoidal functions can be determined from the data associated with the
corresponding switching system. Dissecting further this rigidity, the sufficient data consist
of a network structure and a discrete description of parameter regime in the terms of a set
of monotone Boolean functions [3]. To facilitate this work, we realize that the dynamics in
a neighborhood of loop characteristic cells, that contain so called singular equilibria of the
switching system, can be fully understood as a product of CFNs. These, in turn, have a
simpler structure that can be fully analyzed.

There are several natural extensions of the present work. One set of questions involves
asking how far the switching system can be perturbed while maintaining its predictions.
Given a switching parameter, how steep must the sigmoidal functions be so that the equilibria
given by the switching system data are maintained in the sigmoidal system? How can the
switching parameter be chosen so that the equilibria are maintained for the shallowest possible
sigmoids? We are currently working on this problem in the context of ramp systems, wherein
the sigmoidal functions are replaced by continuous piecewise linear functions. In this setting,
explicit analytic results to these questions can be given.

Another set of questions involves nonstationary dynamics. The switching system dynam-
ics can be represented by a state transition graph that has information not only about the
equilibria, but also about recurrent and global dynamics of sigmoidal systems. What is the re-
lationship between recurrent dynamics, say periodic trajectories, in the state transition graph,
and periodic orbits and their stability in sigmoidal systems? We have already shown that the
global dynamics of the state transition graph is closely related to global dynamics of sigmoidal
perturbations in two dimensional systems [13]. We are currently working on a generalization
of this result to higher dimensions. We believe that the results of this paper present only a
first step in establishing a firm connection between dynamics of sigmoidal models of network
dynamics and combinatorial dynamics of state transition graphs of switching systems.
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