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Abstract. Understanding how the structure of within-system interactions affects the dynamics of the system
is important in many areas of science. We extend a network dynamics modeling platform DSGRN,
which combinatorializes both dynamics and parameter space to construct finite but accurate sum-
maries of network dynamics, to new types of interactions. While the standard DSGRN assumes that
each network edge controls the rate of abundance of the target node, the new edges may control
either activity level or a decay rate of its target. While motivated by processes of post-transcriptional
modification and ubiquitination in systems biology, our extension is applicable to the dynamics of
any signed directed network.
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1. Introduction. Networks have become a paradigm for organizing relational information:
each node is associated with a particular object or quantity and edges indicate a relation
between these objects or quantities. In many cases these relations are meant to capture
causality, e.g., a directed edge from node m to node n indicates that the product associated
with node m has an impact on the product associated with node n. We refer to such a network
as a regulatory network. Our main goal is to identify possible dynamics of a given regulatory
network. In order to better specify the problem and make it relevant for applications the
following challenges need to be addressed.
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DSGRN WITH ACTIVITY CONTROL AND DECAY MODULATION 2097

C1. The network structure must encode a sufficiently broad range of meaningful causal inter-
actions so that the range of dynamics relevant to applications can be realized.

C2. The computational framework should take the network structure as input and output an
identification and characterization of global dynamics.

C3. There needs to be a theoretical framework that ties the outputs of the computations back
to the dynamics of the application of interest.
While the focus of this paper is on C2, the motivation for this work is the analysis of

regulatory networks arising from systems biology. Thus, we will partially address C1 in the
context of gene regulatory networks that include post-transcriptional modifications such as
phosphorylation and ubiquitination. The theoretical validation of our approach, i.e., C3, is
based on previous and ongoing work [20, 5, 14, 11, 13] and is discussed at relevant points in
the paper.

We make two assumptions that are maintained throughout the paper.
A1. An ordinary differential equation (ODE) provides an adequate model for the dynamics.
A2. Let xn denote the quantity of product associated with node n. Then, the rate of change

of xn can be expressed as

(1.1) − Γn(x)xn + Λn(x),

where Γn(x) and Λn(x) quantify the rate of decay and the rate of production of xn,
respectively. The network encodes the coordinates of the state x upon which Γn and Λn

are dependent, but we do not assume a particular functional form for this dependency.
Observe that we have refrained from writing (1.1) in the form of an ODE. This is to emphasize
the fact that we use explicit functions for Γ and Λ only for computational purposes, but we
are not interested in the dynamics in the traditional sense, e.g., trajectories or equilibria of
the resulting differential equations. Instead, the appropriate interpretation of the dynamics
obtained via our computations should be derived indirectly from associated lattice structures
and algebraic topology, which is part of C3.

Our approach to C2 is an extension to an earlier approach based on a combinatorial rep-
resentation of the dynamics [5]. At its foundation lies the perspective that because we do
not know the precise nonlinearities we should not try to identify dynamics on the level of
trajectories. Instead the goal is to provide a computationally efficient robust combinatorial
representation of the dynamics that, at a minimum, is capable of accurately identifying exis-
tence and structure of attractors. Furthermore, since the dynamics that can be exhibited by
a network is parameter dependent, it is desirable that there is a clear correspondence between
parameters and global dynamics. With this in mind we developed the Dynamic Signatures
Generated by Regulatory Networks (DSGRN) software [5, 4, 13] that takes a network as input,
creates an appropriate parameter space along with an explicit finite decomposition thereof,
and for each region of parameter space computes a combinatorial/algebraic topological de-
scription of the global dynamics (see section 2 for further details).

This approach has been applied to a variety of regulatory networks associated with ques-
tions and challenges from systems and synthetic biology including identification of oscillatory
behavior in a simple model of the p53 network [5], identification of minimal models for the
switching behavior of the mammalian Rb-E2F system [14], EMT [27], oocyte [7], and design
of optimal 3 node hysteretic switches [11]. This variety of applications suggests that DSGRN
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is a potentially powerful tool for the global analysis of networks. However, in the above men-
tioned biological contexts the current version of DSGRN imposes two significant constraints.
The first is that the decay rate Γn is assumed to be constant, i.e., not controlled by other
nodes (representing protein concentrations) within the network. However, the fact that the
2004 Nobel Prize in Chemistry was awarded for the discovery that ubiquitination leads to
protein decay [18, 22] indicates that this is a rather severe assumption. The second limitation
is that, once produced, a protein has a constant efficacy with which it controls the activation
or repression of its targets. This ignores the common phenomenon of protein-protein inter-
actions that can have a dramatic effect on the regulatory capabilities of the targeted protein
and a decisive effect on network function [23]. In other words, the current DSGRN does not
allow for general enough interpretations/expression of both Γn and Λn, i.e., it is lacking with
respect to C1.

Observe that the abovementioned biochemical constraints are associated with how the
output of one node affects the activity of another node and thus are expressed via edges
within the regulatory network. With this in mind in this paper we extend the DSGRN
framework and the corresponding software to allow for regulatory networks with edges of
the form described in Figure 1. More detailed descriptions of the meaning of this notation
are provided in sections 2 and 3. For the moment it is sufficient to know that the diagrams
indicate edges with the following properties.

1. The solid (type 0) edges of Figure 1(a) indicate that an increase in x1 leads to a higher
rate of production of x2, while an increase in x3 leads to a decrease in production of
x4. Regulatory networks consisting only of these types of edges can be handled by the
original DSGRN software.

2. The dashed (type I) edges indicated in Figure 1(b) indicate that an increase in x1
increases the decay rate of x2, while an increase in x3 decreases the decay rate of x4.

3. The type II edges are pairs of edges where one edge connects a node to the other edge.
A solid dot on the edge in Figure 1(c) indicates that the product from node 1 needs to
be modified to become active. The pointed arrow from node 3 to the edge indicates
that an increase in x3 leads to an increase in the fraction of x1 that is modified, while
the blunt arrow from node 2 indicates that an increase in x2 leads to a decrease in the
fraction of x1 that is modified. The pointed arrow from node 1 indicates that once the
modification occurs the product of 1 acts as an activator. The blunt arrow from node
1′ indicates that once modified the output from node 1′ acts as a repressor.

4. The empty dot on the receiving edge in Figure 1(d), also type II edges, indicates that
the product from node 1 is active, but that it can be modified to be deactivated. In
particular, the blunt edge of node 3 indicates that x3 decreases the fraction of x1 that
is modified, while the pointed arrow of node 2 indicates that x2 maintains or increases
the fraction of x1 that is modified.

5. We conclude the description by noting that activity modifications described in Fig-
ures 1(c)–(d) can also be applied to dashed arrows from Figure 1(b). That is, the solid
and empty dots can also be placed on dashed edges.

The biologically minded reader may wish to identify Figure 1(b) with the process of ubiqui-
tination and processes in Figures 1(c) and (d) with phosphorylation and dephosphorylation,
or other post-transcriptional and post-translational protein modification.
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(a)

1 2

3 4

(b)

1 2
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(c)
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3′

4′

1′ 4′

(d)
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2′

3′

4′

1′ 4′

Figure 1. (a) Type 0 edges. Direct up-regulation of 2 by 1 and direct down regulation of 4 by 3. (b)
Type I edges. Node 1 increases decay rate of 2 and 3 decreases decay rate of 4. (c) Type II edges. Output
of 1 has two states, unmodified and modified. The solid dot indicates that the product from node 1 needs to be
modified to become active. The pointed arrow from 3 leads to modification of 1 (thus activates) and 2 leads to
demodification of 1 (thus represses). (d) Type II edges. Output of 1 has two states, unmodified and modified.
The hollow dot indicates that the product from node 1 is active, but it can be modified to be deactivated. The
blunt arrow from 3 leads to modification of 1 (thus represses) and 2 leads to demodification of 1 (thus activates).

Keeping in mind that the focus of this paper is on C2, the outline for this paper is as follows.
In section 2 we review the mathematics and combinatorics that provide the foundation for
the current version of the DSGRN software. As explained in this section, the most significant
constraint on the software is the number of in-and out-edges, as well as their interaction type
at any given node. The interaction type describes how the inputs at each node are combined to
inform the node’s output. In section 3 we describe the extension to DSGRN and via Tables 1
and 2 we indicate the interaction types that the extended software can currently handle. In
principle these two sections provide sufficient information for a user to have a conceptual
understanding of how the DSGRN software functions.

Of course, the DSGRN software has been constructed with the aim of being a useful tool in
the analysis of regulatory networks that arise from applications. Thus in section 3 we consider
C1 and discuss ODE models arising from post-transcriptional regulation of gene regulatory
networks and demonstrate how the computations that DSGRN performs can be identified
with a singular limit of these systems. In section 4 we compare the range of global dynamics
for networks based on edges of the type in Figure 1(a) against similar networks that allow for
the full range of edge interaction, i.e., including Figures 1(b)–(d).

2. DSGRN. The computational utility of the DSGRN software arises from two distinct
combinatorial abstractions. The first is a combinatorial representation of the dynamics. Fur-
thermore, the expansion of DSGRN presented in this paper requires no adjustments to the
previous versions regarding the representation of the dynamics and therefore we refer the
reader to [5, 11] for details on the DSGRN approach. The second is an explicit decomposi-
tion of parameter space into a finite collection of semialgebraic sets, with the property that
the combinatorial dynamics is constant for all parameters within each such semialgebraic set.
A key point of this paper is the derivation of the proper decompositions for networks that
contain edges of the form in Figures 1(b)–(d), and thus we review the decomposition in this
section.
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(a)

1

2

(b)

θ1,2

θ2,1

x2

x1

(c)

1

2

3

n

Figure 2. (a) A 2-node network. (b) Decomposition of phase space of the network in (a) into four domains
by thresholds. (c) Nodes 1, 2, and 3 affect node n (see text for details).

To explain how the DSGRN software decomposes parameter space we begin by considering
the particularly simple network in Figure 2(a) (for complete details the reader is referred to
[5, 11, 21]). Notice that the edges are type 0 edges shown in Figure 1(a). As indicated in the
introduction and compatible with the discussion of Figure 1, the decay rate for xn in (1.1)
is assumed to be a positive constant that we denote by γn. The rate of production of x1 is
given by Λ1(x2) since the unique in-edge to node 1 comes from node 2. Similarly, the rate of
production of x2 is given by Λ2(x1). The edge 2 ⊣ 1 indicates that x2 represses the production
of x1, while the edge 1 → 2 indicates that x1 activates the production of x2. Step functions
provide the simplest characterization of these phenomena, thus we introduce the functional
expressions
(2.1)

λ+
n,m(xm) :=

{

ℓn,m if xm < θn,m,

ℓn,m + δn,m if xm > θn,m,
and λ−

n,m(xm) :=

{

ℓn,m + δn,m if xm < θn,m,

ℓn,m if xm > θn,m,

where the parameters θn,m, ℓn,m, and δn,m are assumed to be positive. In particular, for the
regulatory network of Figure 2(a) the rate of production of x1 and x2, given by (1.1), takes
the form

(2.2)
−γ1x1 + λ−

1,2(x2),

−γ2x2 + λ+
2,1(x1).

We associate four positive parameters to each node: (γ1, θ2,1, ℓ1,2, δ1,2) to node 1, and (γ2, θ1,2,
ℓ2,1, δ2,1) to node 2.

Thus, the parameter space is (0,∞)8 = (0,∞)4 × (0,∞)4. The phase space is (0,∞)2.
The functions λ−

1,2 and λ+
2,1 are constant off the hyperplanes x1 = θ2,1 and x2 = θ1,2, and

thus there is a natural decomposition of phase space into rectangular regions (see Figure 2(b)).
We focus for the moment on the behavior of x1, restricting our attention to whether within
one of these regions x1 is increasing or decreasing, i.e., on the sign of

−γ1x1 +

{

ℓ1,2 + δ1,2 if x2 < θ1,2,

ℓ1,2 if x2 > θ1,2.
(2.3)
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Note that since the first term is linear in x1 it is sufficient to determine this at the threshold
x1 = θ2,1. Therefore, the answer depends entirely on the parameters, i.e., on one of the three
possible relationships between parameters,

(2.4) γ1θ2,1 < ℓ1,2 < ℓ1,2 + δ1,2, ℓ1,2 < γ1θ2,1 < ℓ1,2 + δ1,2, ℓ1,2 < ℓ1,2 + δ1,2 < γ1θ2,1.

Remark 2.1. As will be made clear shortly, it is useful to derive the relations of (2.4) by
beginning with the linear order ℓ1,2 < ℓ1,2 + δ1,2 and then considering all possible relative
values of γ1θ2,1.

Observe that (2.4) provides an explicit decomposition of (0,∞)4, the parameter space
associated with node 1, that we codify as a graph:

(2.5)
γ1θ2,1 < ℓ1,2 < ℓ1,2 + δ1,2 ℓ1,2 < γ1θ2,1 < ℓ1,2 + δ1,2 ℓ1,2 < ℓ1,2 + δ1,2 < γ1θ2,1

The nodes (represented by the rectangles) represent the regions in parameter space and edges
indicate a single equality that defines adjacency of the regions. We refer to this graph as the
factor graph associated to node 1 and denote it by PG(1). There is a similar factor graph for
node 2 and the full parameter graph is given by PG := PG(1) × PG(2). Observe that this
provides a decomposition of the full parameter space (0,∞)8 into 9 parameter domains.

We now consider a general regulatory network with edges of the form of Figure 1(a). The
most significant difference is that a node may have multiple in-edges. For the sake of notational
simplicity assume that node n has K in-edges coming from nodes 1, . . . ,K, in which case by
(1.1) we are interested in

−γnxn + Λn(x1, . . . , xK).

We make use of the following definition to express the allowable form of Λn.

Definition 2.2. Following [21, Definition 1.1], an interaction function of order K is a poly-
nomial in K variables z = (z1, . . . , zK) of the form

f(z) :=

q
∏

j=1

fj(z),

where each factor has the form

fj(z) =
∑

i∈Ij

zi

and the indexing sets {Ij | 1 ≤ j ≤ q} form a partition of {1, . . . ,K}. The interaction type of
f is (k1, . . . , kq) ∈ N

q, where kj denotes the number of elements of Ij with kj ≤ kj+1.

Remark 2.3. We denote the interaction type (k1, . . . , kq) with the convention that kj ≤
kj+1 to match with the indexing used by DSGRN ([21] uses the convention kj ≥ kj+1).

We assume that the function Λn is given by

(2.6) Λn(x1, . . . , xK) = f
(

λ±
n,1(x1), λ

±
n,2(x2), . . . , λ

±
n,K(xK)

)

,
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where f is an interaction function of order K and the sign of λ±
n,j is determined by the edge

from node j to node n.
In a slight abuse of notation, we sometimes also refer to the polynomial expression of

the interaction function f as its interaction type. As an example for the interaction function
f(z) = z1(z2 + z3) of type (1, 2), we denote this interaction type as z1(z2 + z3). This notation
conveys the same information in a less compressed format and will be useful when describing
type I and II edges.

Consider the following example. Let node n have three in-edges as shown in Figure 2(c).
Given that 1 ⊣ n, 2 → n, and 3 → n, a biologically motivated choice for Λn is

Λn(x1, x2, x3) = λ−
n,1(x1)

(

λ+
n,2(x2) + λ+

n,3(x3)
)

=

({

ℓn,1 + δn,1 if x1 < θn,1

ℓn,1 if x1 > θn,1

)({

ℓn,2 if x2 < θn,2

ℓn,2 + δn,2 if x2 > θn,2
+

{

ℓn,3 if x3 < θn,3

ℓn,3 + δn,3 if x3 > θn,3

)

.

The associated interaction function of type (k1, k2) = (1, 2) is

f(z) = z1(z2 + z3).

Observe that the values that Λn can assume are given by the following eight polynomials
in parameters ℓ and δ:

p0 = ℓn,1(ℓn,2 + ℓn,3), p4 = ℓn,1(ℓn,2 + ℓn,3 + δn,3),

p1 = (ℓn,1 + δn,1)(ℓn,2 + ℓn,3), p5 = (ℓn,1 + δn,1)(ℓn,2 + ℓn,3 + δn,3),

p2 = ℓn,1(ℓn,2 + δn,2 + ℓn,3), p6 = ℓn,1(ℓn,2 + δn,2 + ℓn,3 + δn,3),

p3 = (ℓn,1 + δn,1)(ℓn,2 + δn,2 + ℓn,3), p7 = (ℓn,1 + δn,1)(ℓn,2 + δn,2 + ℓn,3 + δn,3).

To put this into proper perspective we return to Remark 2.1. For Λ1, arising in the case
where node 1 has a single in-edge, we have the polynomials

p0 = ℓ1,2 and p1 = ℓ1,2 + δ1,2.

Observing that p0 < p1 is the only admissible linear order for the values of these polynomials
allows us to determine the decomposition of parameter space. The reader can check that the
complete list of admissible linear orders associated with Λn is exactly

(0, 1, 2, 3, 4, 5, 6, 7)

(0, 1, 2, 3, 4, 6, 5, 7)

(0, 1, 2, 4, 3, 5, 6, 7)

(0, 1, 2, 4, 3, 6, 5, 7)

(0, 4, 2, 6, 1, 5, 3, 7)

(0, 1, 2, 4, 6, 3, 5, 7)

(0, 1, 4, 2, 5, 3, 6, 7)

(0, 1, 4, 2, 5, 6, 3, 7)

(0, 1, 4, 2, 6, 5, 3, 7)

(0, 4, 1, 5, 2, 6, 3, 7)

(0, 1, 4, 5, 2, 3, 6, 7)

(0, 1, 4, 5, 2, 6, 3, 7)

(0, 2, 1, 3, 4, 6, 5, 7)

(0, 2, 1, 4, 3, 6, 5, 7)

(0, 4, 2, 1, 6, 5, 3, 7)

(0, 2, 1, 4, 6, 3, 5, 7)

(0, 2, 4, 1, 6, 3, 5, 7)

(0, 2, 4, 6, 1, 3, 5, 7)

(0, 4, 1, 2, 5, 6, 3, 7)

(0, 4, 1, 2, 6, 5, 3, 7)

where (0, 1, 2, 3, 4, 5, 6, 7) corresponds to p0 < p1 < p2 < p3 < p4 < p5 < p6 < p7. To
determine the associated factor graph we consider all possible values of {γnθm,n}m relative to
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each linear order where m ranges over all out-edges of node n. This produces the factor graph
PG(n).

As indicated in [5] and [21, Table 1] the complete list of admissible linear orders have been
determined for Λn associated with interaction functions of type (k1, . . . , kq) given by

(1)

(1, 1), (2)

(1, 1, 1), (1, 2), (3)

(1, 1, 1, 1), (1, 1, 2), (2, 2), (1, 3), (4)(2.7)

(1, 1, 1, 1, 1), (1, 1, 1, 2), (5)

(1, 1, 1, 1, 1, 1), (6)

Thus, the DSGRN software can, in principle, take as input any network consisting of
edges of type 0 in Figure 1(a) with the restriction that at any node n the production function
Λn is given by one of the interaction functions of the type listed above. Using precomputed
factor graphs PG(n), DSGRN software constructs the parameter graph as the product PG =
∏N

n=1 PG(n). In applications, the most serious restriction is that size of the factor graphs
grows rapidly as a function of the number of variables, e.g., for a node with interaction
function of type (6) with one out-edge the factor graph has 89,414,640 elements.

A goal of this paper is to identify the factor graphs, and hence make the DSGRN software
applicable, for networks that involve edges of type Figures 1(b)–(d).

Remark 2.4. There is an alternative characterization of parameter nodes in a factor pa-
rameter graph as collections of Boolean functions. Any input polynomial to node n can be
represented as a Boolean string of length k—the number of inputs to node n. As an example
consider node n with three in-edges as shown in Figure 2(c) and discussed above. Then each of
the polynomials p0, . . . , p7 can be represented as a Boolean string (b1, b2, b3), bi ∈ B = {0, 1}
by assigning bi = 0 if p contains ℓn,i and bi = 1 if p contains ℓn,i+δn,i. Since for each threshold
θm,n of node n, the parameter node contains a linear order

p0 < · · · < pi < θm,n < pj < · · · < p7,

we can associate to it a Boolean function gm,n : B3 → B by setting gm,n(ps) = 0 if and only
if ps < θm,n. Therefore a node of a factor parameter graph that corresponds to a node n of
a regulatory network with k inputs and m outputs corresponds to a collection of m Boolean
functions with k inputs. For a more detailed description see [3].

2.1. State transition graph. To close the review of DSGRN, we discuss how dynamics is
associated to each parameter node. This association is the same for new types of interactions
presented in this paper. As indicated in (2.3), for all parameters that belong to a domain in the
parameter space represented by a parameter node, each xn is either increasing or decreasing
on the boundaries of domains bounded by thresholds θj,n. This leads to a construction of a
state transition graph that represents the dynamics of the system.

To simplify the explanation we assume that the gene regulatory network does not contain
repressing self-edges, as was assumed in the original DSGRN [5]. This ensures that the state
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transition graph, as we describe below, is well defined. However, this is not an essential
limitation. In [11] this problem was fully resolved by replacing the threshold corresponding
to a repressing self-edge by two thresholds and thus extending the state transition graph. In
this paper we apply the same method used in [11] to replace the thresholds corresponding to
all self-edges in the network (both repressing and activating) by two thresholds.

We also allow networks with multiple edges between pairs of nodes and use the DSGRN
extension described in [12] to construct the state transition graph in that case.

The collection of hyperplanes {xm = θ∗,m}, m = 1, . . . , N , provides a cubical decomposi-
tion of the phase space (0,∞)N . We refer to the associated N -dimensional cubes as domains,
and these domains define the vertices of the state transition graph F . To define the edges of
F , let κ be a domain, with an (N − 1)-dimensional face σ that is a subset of the hyperplane
xn = θm,n. The sign of −γnθm,n + Λn(κ) determines whether σ points into or away from κ.
Note that for all parameters belonging to a parameter node of PG this sign is the same and
thus the following construction produces the same F . The edges of the state transition graph
F are now defined by the following two rules.
R1. If all the faces of κ point into κ, then κ has a self-edge.
R2. If σ is an (N − 1)-dimensional face of two domains κ and κ′ and σ points away from κ′

and into κ, then there is an edge from κ′ to κ.
Given a directed graph F , the condensation graph FSCC can be identified in linear time

[2]. Recall that FSCC is a directed acyclic graph with one node for each strongly connected
component (SCC) of F and hence a poset. We define an SCC to be nontrivial if it contains
at least one edge. We define (M(F),≤), the Morse poset of F , to be the subposet of FSCC

consisting of the nontrivial SCCs. The Haase diagram for M(F) is called the Morse graph.
An obvious question about the DSGRN state transition graph dynamics, characterized by

Morse graphs, is whether this characterization applies to network ODE models where smooth
nonlinearities approximate the piecewise constant functions Λn(x). The correspondence be-
tween individual solutions of such a smooth perturbed system and a system generated by
ODEs with right-hand sides (1.1) was studied by Ironi et al. [19]; the correspondence between
the lattices of attractors for ODEs in R

2 was established in [15]. As is demonstrated in [9] there
is a close correspondence between equilibria and their stability for the smooth perturbed sys-
tems and the characterization provided by DSGRN. Finally, bifurcations of DSGRN equilibria
within a class of ramp function perturbations have been examined in [8].

We conclude this section with a summary:
1. For a given regulatory network and a type of interaction between inputs at each node

of the network, there is a finite decomposition of the parameter space, encoded as the
parameter graph PG, such that all parameters in a single parameter node admit the
same state transition graph.

2. The long-term dynamics of the state transition graph is represented by its Morse
graph.

3. The parameter graph PG with a Morse graph at each vertex encodes a finite repre-
sentation of the dynamics of the regulatory network.

3. Extension of DSGRN. In this section we consider three generalizations of the param-
eter space decomposition (PSD) problem originally described in [21] which we review briefly.
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Suppose that node n has K input edges which are labeled {1, . . . ,K} and assume that
the rate expression for xn is given by −γnxn + Λn(x), which we refer to as a classical rate
expression. Assume that f is an interaction function as defined in Definition 2.2 with order
K and type (k1, . . . , kq), and Λn is given by the formula (2.6). Observe that the image of Λn

consists of 2K values

P := {f(z1, . . . , zK) | zj ∈ {ℓn,j , ℓn,j + δn,j}, 1 ≤ j ≤ K},

regardless of the sign of λ±
n,j for 1 ≤ j ≤ K, and independent of the interaction type of f .

The elements of P are polynomial expressions in the 2K parameters {ℓn,j , δn,j | 1 ≤ j ≤ K}.
The PSD problem associated with f is to compute all possible linear orders of P subject

to the constraints ℓn,j , δn,j > 0 for all 1 ≤ j ≤ K. In [21] it is shown that given a solution
of the PSD problem, the factor graph PG(n) can be recovered with a trivial amount of post-
processing. In general, rigorously solving the PSD problem is difficult, but it needs to be
solved only once for each interaction type and the results stored; see (2.7).

In the remainder of this section we introduce the generalization of the PSD problem for
the type I and type II edges defined in section 1. These new rate expressions give rise to new
PSD problems which we define below. Then, we demonstrate that the solutions of these new
PSD problems can be obtained by creatively using classical PSD solutions.

3.1. Type I edges. We start with the PSD for a rate expression that includes type I
edges shown in Figure 1(b). As is the case throughout this paper the mathematical expression
governing the production of xn has the form (1.1) with x = (x1, . . . , xN ) ∈ R

N .
However, to emphasize that we assume that a type I edge impacts decay as opposed to

production we highlight the distinction of the variables and write

(3.1) − Γn(x̃)xn + Λn(x),

where Λn has the form (2.6) and involves only type 0 edges, that is, it is defined by an
interaction function f of order K and depends on the state variables x1, . . . , xK . We will
refer to Λn as the classical production rate expression. The function Γn also has the form
(2.6), but involving only type I edges, that is, it is an interaction function composed of step
functions that depend on the state variables x̃j ∈ {x1, . . . , xN} for j = 1, . . . , K̃, where the
state variables {x1, . . . , xK} and {x̃1, . . . , x̃K̃} form disjoint sets. Specifically,

Γn(x̃) = f̃
(

λ̃±
n,1(x̃1), λ̃

±
n,2(x̃2), . . . , λ̃

±

n,K̃
(x̃K̃)

)

,

where f̃ is an interaction function of order K̃, and interaction type (k̃1, . . . , k̃q̃). For 1 ≤ j ≤ K̃,
λ̃±
n,j is a step function depending on parameters {ℓ̃n,j , δ̃n,j} and the sign of λ̃±

n,j is determined
by the type of edge in Figure 1(b). By a similar observation as in the classical rate expression
we note that Γn is a simple function which takes the values

P̃ :=
{

f̃
(

z1, . . . , zK̃
)

| zj ∈
{

ℓ̃n,j , ℓ̃n,j + δ̃n,j

}

, 1 ≤ j ≤ K̃
}

,

regardless of signs of each step function or the interaction type of f̃ .
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Analogous to the classical rate expression, we are interested in determining the sign of a
type I rate expression of the form

(3.2) − Γn(x̃)θ∗,n + Λn(x)

where θ∗,n is an arbitrary threshold associated to an outgoing edge whose source is node n.
A crucial observation is that the sign determination of (3.2) depends only on the value of

θ∗,n relative to the expression Λn(x)/Γn(x̃). The problem of sign determination for (3.2) over
all parameter values can be reduced to the problem of determining all possible linear orders
of the finite set

(3.3) R :=

{

p

p̃
| p ∈ P, p̃ ∈ P̃

}

,

subject to the constraints ℓn,i, δn,i > 0 for 1 ≤ i ≤ K and ℓ̃n,j , δ̃n,j > 0 for 1 ≤ j ≤ K̃. This is
the joint PSD problem associated to the pair (f̃ , f) with a joint interaction type denoted by
(k̃1, . . . , k̃q̃; k1, . . . , kq). As in the classical case, given a solution of the joint PSD problem the
sign of (3.2) can be determined for the entire parameter space with trivial postprocessing.

Similarly to the case of a type 0 rate expression, we use a shorthand notation to describe
the interaction type of a type I rate expression. In this case we put the polynomial expression of
f̃ within ⟨·⟩ and add to that the polynomial expression of f , that is, we denote the interaction
type by ⟨f̃⟩ + f . As an example, assuming we are using a rate expression with interaction
type (1; 2) for node n in Figure 3(a), we express this fact by saying that the interaction type
of node n is

⟨x⟩+ y + z.

Before presenting the general result, we demonstrate how to obtain the linear orders of a
type I rate expression in a simple example.

3.2. Example. Consider the simplest possible type I rate expression for xn,

−Γn(x1)xn + Λn(x2),

where x1 and x2 are state variables. For simplicity, we suppress the dependence on n which
usually appears in parameter subscripts and assume that x1 and x2 are both promoters of xn
so that we have the formulas

Γn(x1) =

{

ℓ1 + δ1 if x1 < θ1,

ℓ1 if x1 > θ1,
Λn(x2) =

{

ℓ2 if x2 < θ2,

ℓ2 + δ2 if x2 > θ2,

where {ℓ1, δ1, θ1, ℓ2, δ2, θ2} are positive parameters. The interaction type associated with this
example is (1; 1) and it is denoted by ⟨z1⟩+ z2.

The associated joint PSD problem is to determine all admissible linear orders of the
rational expressions

R :=

{

ℓ2
ℓ1
,
ℓ2 + δ2

ℓ1
,

ℓ2
ℓ1 + δ1

,
ℓ2 + δ2
ℓ1 + δ1

}

subject to the constraints that all parameters must be strictly positive.

D
o
w

n
lo

ad
ed

 0
1
/0

9
/2

3
 t

o
 1

5
3
.9

0
.2

3
3
.2

2
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DSGRN WITH ACTIVITY CONTROL AND DECAY MODULATION 2107

Define the polynomials

p0 = ℓ2, p1 = ℓ2 + δ2, p̃0 = ℓ1, p̃1 = ℓ1 + δ1,

which we collect into distinct subsets P := {p0, p1} and P̃ := {p̃0, p̃1}. We let the set R inherit

this indexing by writing R =
{

rij | rij =
pi
p̃j
, 0 ≤ i, j,≤ 1

}

. Let µ = (ℓ1, δ1, ℓ2, δ2) denote an

arbitrary parameter vector and observe that for any µ ∈ (0,∞)4 we have

r01(µ) < r00(µ) < r10(µ) and r01(µ) < r11(µ) < r10(µ),

which induces a partial order on R given by r01 ≺ {r00, r11} ≺ r10. One easily checks that µ
can be chosen such that either linear order of the set {r00(µ), r11(µ)} is possible. Thus, there
are exactly two admissible linear extensions of (R,≺) given by

(3.4) (r01, r00, r11, r10), (r01, r11, r00, r10).

We compare this result to a PSD problem for interaction type (1, 1) which corresponds to
a classical rate expression of the form

−γnxn + Λn(x1, x2),

where γn is a positive parameter and Λn is given by the formula

Λn(x1, x2) = λ+
1 (x1)λ

+
2 (x2).

The classical PSD is to determine all possible linear orders of the polynomials

Q := {ℓ2ℓ1, ℓ2(ℓ1 + δ1), (ℓ2 + δ2)ℓ1, (ℓ2 + δ2)(ℓ1 + δ1)} = {p0p̃0, p0p̃1, p1p̃0, p1p̃1}.

In the previous version of DSGRN these four polynomials are endowed with a partial order
by assigning labels via the indexing

q0 := ℓ1ℓ2, q1 := (ℓ1 + δ1)ℓ2, q2 := ℓ1(ℓ2 + δ2), q3 := (ℓ1 + δ1)(ℓ2 + δ2)

with the partial order q0 ≺ {q1, q2} ≺ q3. One easily checks that both possible orders between
q1 and q2 can be satisfied. Thus, the solution to this classical PSD problem is the two possible
linear orders

(3.5) (0, 1, 2, 3), (0, 2, 1, 3),

which are stored in DSGRN. However, if instead we indexed the same four polynomials as

q̄0 := p0p̃0, q̄1 := p1p̃0, q̄2 := p0p̃1, q̄3 := p1p̃1,

then we observe that

q̄1(µ) < q̄2(µ) ⇐⇒
p1(µ)

p̃1(µ)
<

p0(µ)

p̃0(µ)
⇐⇒ r11(µ) < r00(µ).
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It follows that finding all admissible linear orders of R is equivalent to finding all admissible
linear orders of Q with respect to the new indexing. However, this has already been computed
and stored in DSGRN and we only require the correct change of indexing on these polynomials
in order to reuse it and this is trivial to store in a table and look up as needed.

Intuitively, choosing the relative order of the two “free” polynomials for the (1, 1) PSD
problem is equivalent to choosing the relative order of the two “free” rational expressions
for the (1; 1) PSD problem. Moreover, given the two possible linear orders for Q, the two
admissible orders for R are immediately recovered.

Next, we prove that solving any joint PSD problem is equivalent to solving a related
classical PSD problem. In particular, the joint PSD problem can be solved using the algorithms
described in [21].

Theorem 3.1. Suppose xn is governed by a type I rate expression −Γn(x̃)xn + Λn(x) with
associated interaction functions f̃ and f of orders K̃ and K and interaction types (k̃1, . . . , k̃q̃)
and (k1, . . . , kq), respectively, with {x1, . . . , xK} and {x̃1, . . . , x̃K̃} disjoint sets of state vari-
ables.

Then, the joint PSD problem associated to (f̃ , f) is equivalent to the classical PSD problem
associated to the interaction function f · f̃ in the following sense.

1. There is bijection between solutions of the joint PSD problem for (f̃ , f) and solutions
of the classical PSD problem associated with f · f̃ .

2. This bijection can be efficiently and explicitly constructed, i.e., the admissible linear
orders for the joint PSD problem can be efficiently recovered given the admissible linear
orders for the classical PSD problem.

Proof. Let g = f · f̃ and observe that g is an interaction function of order K + K̃ and
interaction type (k1, . . . , kq, k̃1, . . . , k̃q̃).

Observe that this interaction type need not satisfy our previously stated convention that
the summand sizes are in increasing order. For instance, it is possible that k̃1 < kq. However,
this convention is simply a notational convenience since any interaction function is invariant
under permutation of the summands. In particular, the set of admissible linear orders for an
interaction type depends only on the summand sizes and does not depend on their order in
the vector defining the interaction type.

The PSD problem associated with g is to determine all possible linear orders for a collection
of 2K+K̃ polynomials denoted by

Q ⊂ R

[

ℓn,1, . . . , ℓn,K , δn,1, . . . , δn,K , ℓ̃n,1, . . . , ℓ̃n,K̃ , δ̃n,1, . . . , δ̃n,K̃

]

,

subject to the constraint that each of the 2(K + K̃) indeterminates is positive. Observe that
from the construction of g and the definition of the classical PSD problem, each q ∈ Q admits
a unique factorization of the form q = p · p̃ where

p ∈ P := {f(z1, . . . , zK) | zi ∈ {ℓn,i, ℓn,i + δn,i}, 1 ≤ i ≤ K},

p̃ ∈ P̃ :=
{

f̃
(

z1, . . . , zK̃
)

| zj ∈
{

ℓ̃n,j , ℓ̃n,j + δ̃n,j

}

, 1 ≤ j ≤ K̃
}

.

We note that the collection of polynomials defining Q is closely related to the rational expres-
sions appearing in the PSD problem associated to (f̃ , f). Specifically, the joint PSD problem
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associated to (f, f̃) is to determine all possible linear orders for the collection of 2K+K̃ rational
functions defined over the same 2(K + K̃) indeterminate parameters denoted by

(3.6) R :=

{

p

p̃
| pi ∈ P, p̃j ∈ P̃

}

⊂ R

[

ℓn,1, . . . , δn,K , ℓ̃n,1, . . . , δ̃n,K̃

]

,

subject to the same positivity constraints on the parameters.
In order to establish the bijection between linear orders of Q and R we note the following

useful fact. Suppose (ξ, ξ̃) ∈ (0,∞)2K × (0,∞)2K̃ where

ξ := (ℓn,1, . . . , δn,K) and ξ̃ :=
(

ℓ̃n,1, . . . , δ̃n,K̃

)

.

Then for any p1, p2 ∈ P and p̃1, p̃2 ∈ P̃ we have the equivalence,

(3.7)
p1(ξ)

p̃1(ξ̃)
<

p2(ξ)

p̃2(ξ̃)
if and only if p1(ξ) · p̃2(ξ̃) < p̃1(ξ̃) · p2(ξ).

The proof of this claim is a trivial consequence of the fact that elements of P, P̃ have only posi-
tive coefficients due to Definition 2.2 and all coordinates of ξ, ξ̃ are strictly positive. Therefore,
the quantities p1(ξ), p̃1(ξ̃), p2(ξ), p̃2(ξ̃) are strictly positive for any choices of ξ ∈ (0,∞)2K and

ξ̃ ∈ (0,∞)2K̃ and the equivalence claimed in (3.7) follows.
To complete the proof we assume that P and P̃ are indexed by unspecified but fixed

indexing maps onto the integers I :=
{

0, . . . , 2K − 1
}

and J :=
{

0, . . . , 2K̃ − 1
}

, respectively.

We use subscripts to denote these indices so that the sets P and P̃ can be expressed as

P = {pi | i ∈ I}, P̃ = {p̃j | j ∈ J}.

These indices induce associated indexing maps on Q and R defined by

qij := pi · p̃j ∈ Q, rij :=
pi
p̃j

∈ R,

for any i ∈ I, j ∈ J . Observe that with these indices for Q and R fixed, any linear order of
Q or R can be uniquely identified with a permutation on 2K+K̃ symbols, i.e., an element of
S
2K+K̃ . Consequently, the solution to the PSD problems associated with either g or (f̃ , f) can

be identified with subsets of S
2K+K̃ denoted by Tg and T(f,f̃), respectively.

Let us consider σ ∈ Tg which defines a linear order on Q which we interpret as a function,

σ :
{

0, . . . , 2K+K̃ − 1
}

→ I × J . The assumption that σ defines an admissible linear order

implies there exists a witness

µ =
(

ℓn,1, . . . , ℓn,K , δn,1, . . . , δn,K , ℓ̃n,1, . . . , ℓ̃n,K̃ , δ̃n,1, . . . , δ̃n,K̃

)

∈ (0,∞)2(K+K̃)

such that
qσ(0)(µ) < qσ(1)(µ) < · · · < q

σ(2K+K̃−1)
(µ),

or equivalently,

qσ(m−1)(µ) < qσ(m)(µ) for all 1 ≤ m ≤ 2K+K̃ − 1.
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Fix an arbitrarym ∈
{

1, . . . , 2K+K̃ − 1
}

and assume that σ(m−1) = (i, j) and σ(m) = (i′, j′).

We split µ as

µ = (ξ, ξ̃) ∈ (0,∞)2K × (0,∞)2K̃

and recalling that P, P̃ are polynomials over disjoint parameters, we have

(3.8) qσ(m−1)(µ) = pi(ξ) · p̃j(ξ̃) < pi′(ξ) · p̃j′(ξ̃) = qσ(m)(µ)

and applying (3.7) we conclude that

(3.9) rij′(µ) =
pi(ξ)

p̃j′(ξ̃)
<

pi′(ξ)

p̃j(ξ̃)
= ri′j(µ).

Applying the same argument for each 1 ≤ m ≤ 2K+K̃ − 1 yields a distinct linear order
on the elements of R. Observe that this is not the same linear order as σ, but it is induced
directly by σ and the same µ is a witness for both. In other words, the existence of σ ∈ Tg
implies existence of a related linear order τ ∈ T(f̃ ,f) such that

rτ(0)(µ) < rτ(1)(µ) < · · · < r
τ(2K+K̃−1)

(µ),

where µ is any witness for σ. It follows that #Tg ≤ #T(f̃ ,f). However, a similar argument
shows that any linear order τ ∈ T(f̃ ,f) yields a distinct admissible linear order on Q by applying

the converse of (3.7) to successive pairs of elements ordered by τ , which completes the proof
of the first claim.

To prove the second claim, we simply observe that if Tg has been computed and stored,
then T(f̃ ,f) is recovered by a small number of trivial lookup operations. Specifically, for each

σ ∈ Tg, the inverse indexing map for Q which decomposes qσ(m) into factors as in (3.8) must
be evaluated, followed by an evaluation of the indexing map for rτ(m) as in (3.9). This must

be done for each 1 ≤ m ≤ 2K+K̃ , in order to completely construct τ ∈ T(f̃ ,f) from a given
linear order σ ∈ Tg.

Theorem 3.1 demonstrates that solving the PSD problem for type I rate expressions is
equivalent to solving the PSD problem for a related classical rate expression. In particular,
for many network topologies of interest these classical PSD problems have already been solved
and implemented in the current version of DSGRN, implying that the implementation of type
I rate expressions often requires only minor modifications to the existing DSGRN library. See
Table 1 for a list of all interaction types available.

3.3. Type II edges. Type II edges are pairs of edges where one edge connects a node to
the other edge as shown in Figures 1(c)–(d); however, they are implemented as pairs of edges
from the source node to the target node. For example, the pair of type II edges in Figure 3(b)
is implemented as the pair of edges from nodes 1 and 2 to node 3 as shown in Figure 3(c) and
the type II edges in Figure 3(d) are implemented as depicted in Figure 3(e).

The mathematical expression governing the production of xn that includes type II edges
is called a type II rate expression and has the form

(3.10) − γnxn + Λn(w̃1, . . . , w̃K̃ , x1, . . . , xK),
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Table 1

Complete list of available type I interaction types involving type I and type 0 edges (first column). The
size of the parameter factor graph for each of the interaction types is the same as the size of the corresponding
original DSGRN interaction types listed (middle column). PTM = post-transcriptional modification.

PTM interaction type DSGRN interaction type Interaction type

⟨x⟩+ y xy (1; 1)

⟨x⟩+ yz xyz (1; 1, 1)
⟨xy⟩+ z xyz (1, 1; 1)

⟨x⟩+ y + z x(y + z) (1; 2)
⟨y + z⟩+ x x(y + z) (2; 1)

⟨x⟩+ yzw xyzw (1; 1, 1, 1)
⟨xy⟩+ zw xyzw (1, 1; 1, 1)
⟨xyz⟩+ w xyzw (1, 1, 1; 1)

⟨x⟩+ y(z + w) xy(z + w) (1; 1, 2)
⟨xy⟩+ z + w xy(z + w) (1, 1; 2)
⟨z + w⟩+ xy xy(z + w) (2; 1, 1)
⟨x(z + w)⟩+ y xy(z + w) (1, 2; 1)

⟨x+ y⟩+ z + w (x+ y)(z + w) (2; 2)

⟨x⟩+ y + z + w x(y + z + w) (1; 3)
⟨y + z + w⟩+ x x(y + z + w) (3; 1)

⟨x⟩+ yzuw xyzuw (1; 1, 1, 1, 1)
⟨xy⟩+ zuw xyzuw (1, 1; 1, 1, 1)
⟨xyz⟩+ uw xyzuw (1, 1, 1; 1, 1)
⟨xyzu⟩+ w xyzuw (1, 1, 1, 1; 1)

⟨x⟩+ yz(u+ w) xyz(u+ w) (1; 1, 1, 2)
⟨xy⟩+ z(u+ w) xyz(u+ w) (1, 1; 1, 2)
⟨xyz⟩+ u+ w xyz(u+ w) (1, 1, 1; 2)
⟨u+ w⟩+ xyz xyz(u+ w) (2; 1, 1, 1)
⟨x(u+ w)⟩+ yz xyz(u+ w) (1, 2; 1, 1)
⟨xy(u+ w)⟩+ z xyz(u+ w) (1, 1, 2; 1)

⟨x⟩+ yzuvw xyzuvw (1; 1, 1, 1, 1, 1)
⟨xy⟩+ zuvw xyzuvw (1, 1; 1, 1, 1, 1)
⟨xyz⟩+ uvw xyzuvw (1, 1, 1; 1, 1, 1)
⟨xyzu⟩+ vw xyzuvw (1, 1, 1, 1; 1, 1)
⟨xyzuv⟩+ w xyzuvw (1, 1, 1, 1, 1; 1)

where x1, . . . , xK represent nodes 1, . . . , k connected to node n by type 0 edges and w̃1, . . . , w̃K̃

represent pairs of nodes connected to n by type II edges, that is, w̃k = (x̃ik , ỹjk), with x̃ik , ỹjk ∈
{x1, . . . , xN}, represents a pair of type II edges for k = 1, . . . , K̃. We assume that {x1, . . . , xK},
{x̃i1 , . . . , x̃iK̃}, and {ỹi1 , . . . , ỹiK̃} are disjoint sets.

The production rate function Λn is given in terms of an interaction function f as defined
in Definition 2.2 as follows.

In contrast to type 0 and I edges, to a pair of type II edges we associate a single ℓ and
δ. More precisely, if (x̃ik , ỹjk) represents a pair of type II edges terminating at the node n, to
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this pair we associate the positive parameters ℓ̃n,(ik,jk), δ̃n,(ik,jk). We still, however, associate

one threshold per edge, that is, we associate θ̃n,ik and θ̃n,jk to the edges from ik and jk to n,
respectively.

To simplify the presentation we denote

[x̃ik , ỹjk ] := min{λ±
n,ik

(x̃ik ; ℓ̃n,(ik,jk), δ̃n,(ik,jk), θ̃n,ik), λ
±
n,jk

(ỹjk ; ℓ̃n,(ik,jk), δ̃n,(ik,jk), θ̃n,jk)},

where λ±
n,ik

(x̃ik ; ℓ̃n,(ik,jk), δ̃n,(ik,jk), θ̃n,ik) and λ±
n,jk

(ỹjk ; ℓ̃n,(ik,jk), δ̃n,(ik,jk), θ̃n,jk) are regular step
functions (see (2.1)) corresponding to the edges from ik and jk to n, respectively. When
convenient we also use the notation [λ±

n,ik
(x̃ik), λ

±
n,jk

(ỹjk)] := [x̃ik , ỹjk ].

Note that we included the parameters to emphasize that ℓ̃ and δ̃ are the same between the
functions λ±

n,ik
and λ±

n,jk
. As a consequence, both have values in the set {ℓ̃n,(ik,jk), ℓ̃n,(ik,jk) +

δ̃n,(ik,jk)}, and therefore

(3.11) [x̃ik , ỹjk ] =

{

ℓ̃n,(ik,jk) if λ±
n,ik

(x̃ik) = ℓ̃n,(ik,jk) or λ
±
n,jk

(ỹjk) = ℓ̃n,(ik,jk),

ℓ̃n,(ik,jk) + δ̃n,(ik,jk) otherwise.

Therefore [x̃ik , ỹjk ] acts like an AND operation on the values of λ±
n,ik

and λ±
n,jk

, that is, [x̃ik , ỹjk ]
is high if and only if both of those values are high.

The signs are determined by the type of edges as follows. Let (x̃ik , ỹjk) represent a pair
of type II edges. If the pair of edges interact as in Figure 1(c) denoted by a solid dot, then

(3.12) λ±
n,ik

(x̃ik) =

{

λ+
n,ik

(x̃ik) if ik → n,

λ−
n,ik

(x̃ik) if ik ⊣ n,
and λ±

n,jk
(ỹjk) =

{

λ+
n,jk

(ỹjk) if jk → n,

λ−
n,jk

(ỹjk) if jk ⊣ n.

If the pair of edges interact as in Figure 1(d) denoted by an open dot, then the sign of the
second function is flipped, that is,

(3.13) λ±
n,ik

(x̃ik) =

{

λ+
n,ik

(x̃ik) if ik → n,

λ−
n,ik

(x̃ik) if ik ⊣ n,
and λ±

n,jk
(ỹjk) =

{

λ−
n,jk

(ỹjk) if jk → n,

λ+
n,jk

(ỹjk) if jk ⊣ n.

Let f(z̃1, . . . , z̃K̃ , z1, . . . , zK) be an interaction function of type (k1, . . . , kq) and define

(3.14) Λn(w̃1, . . . , w̃K̃ , x1, . . . , xK) = f([x̃i1 , ỹj1 ], . . . , [x̃iK̃ , ỹjK̃ ], λ
±
n,1(x1), . . . , λ

±
n,K(xK)).

Since Λn is given in terms of a classical interaction function of type (k1, . . . , kq), solving the
PSD problem for type II rate expressions reduces to solving the PSD problem corresponding
to this classical interaction function.

Before presenting the general result, let us consider some examples. Consider the pair of
type II edges from nodes 1 and 2 terminating on node 3 in Figure 3(b). The rate expression
for node 3 is the result of an AND operation on the incoming values of nodes 1 and 2, that
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is, the incoming value to node 3 is high if and only if the incoming values from nodes 1 and 2
are both high. More precisely,

(3.15) Λ3(x1, x2) = [λ+
3,1(x1), λ

+
3,2(x2)] =

{

ℓ3,(1,2) if x1 < θ3,1 or x2 < θ3,2,

ℓ3,(1,2) + δ3,(1,2) otherwise,

where ℓ3,(1,2) and δ3,(1,2) are the parameters corresponding to the pair (x1, x2). Note that
while the network in Figure 3(b) is asymmetric, the net effect on the rate of change of node
2 is symmetric, as expressed in Figure 3(c).

The factor graph of a node having one or more pairs of type II edges as input is computed
from a partial order on the input polynomials computed directly from the original DSGRN
total orders. Consider, for example, the network in Figure 3(d). The inputs to node 4 are
nodes 1, 2, and 3, and the rate expression for node 4 is given by

Λ4(x1, x2, x3) = [λ+
4,1(x1), λ

+
4,2(x2)]λ

−
4,3(x3)

=

({

ℓ4,(1,2) if x1 < θ4,1 or x2 < θ4,2

ℓ4,(1,2) + δ4,(1,2) otherwise

)({

ℓ4,3 + δ4,3 if x3 < θ4,3

ℓ4,3 if x3 > θ4,3

)

,

which takes the following values:

{

ℓ4,(1,2)ℓ4,3, (ℓ4,(1,2) + δ4,(1,2))ℓ4,3, ℓ4,(1,2)(ℓ4,3 + δ4,3), (ℓ4,(1,2) + δ4,(1,2))(ℓ4,3 + δ4,3)
}

.

Notice that these are the values of an interaction function of type (1, 1) for the original DSGRN
for which the PSD problem has been solved. In particular, define the polynomials

p0 :=ℓ4,(1,2)ℓ4,3, p1 :=(ℓ4,(1,2) + δ4,(1,2))ℓ4,3,

p2 :=ℓ4,(1,2)(ℓ4,3 + δ4,3), p3 :=(ℓ4,(1,2) + δ4,(1,2))(ℓ4,3 + δ4,3);

then for an arbitrary parameter µ = (ℓ4,(1,2), δ4,(1,2), ℓ4,3, δ4,3) ∈ (0,∞)4 one of the following
orders must be satisfied:

(3.16) p0(µ) < p1(µ) < p2(µ) < p3(µ) or p0(µ) < p2(µ) < p1(µ) < p3(µ).

Hence, the admissible linear orders are given by

(0, 1, 2, 3) and (0, 2, 1, 3),

which is identical to the solution of the classical PSD problem for interaction type (1, 1).
Even though the choice of identical parameters in λ+

4,1 and λ+
4,2 reduces the number of

values of Λ4(x1, x2, x4) from 8 to 4, in order to compute the state transition graph we need
to be able to determine in which domains these values are attained. In other words, in order
to construct the state transition graph we need to be able to determine the sign of (3.10) for
the parameter combinations corresponding to all phase space domains. Therefore we need to
keep track of all combinations of the values of λ+

4,1(x1), λ
+
4,2(x2), and λ−

4,3(x3) and for each
determine the value of Λ4(x1, x2, x3). We refer to these combinations as the input polynomials
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corresponding to Λ4(x1, x2, x3). Since [λ+
4,1(x1), λ

+
4,2(x2)] = min{λ+

4,1(x1), λ
+
4,2(x2)}, the input

polynomials corresponding to Λ4(x1, x2, x3) are

q0 := [ℓ4,(1,2), ℓ4,(1,2)]ℓ4,3 = ℓ4,(1,2)ℓ4,3,

q1 := [ℓ4,(1,2) + δ4,(1,2), ℓ4,(1,2)]ℓ4,3 = ℓ4,(1,2)ℓ4,3,

q2 := [ℓ4,(1,2), ℓ4,(1,2) + δ4,(1,2)]ℓ4,3 = ℓ4,(1,2)ℓ4,3,

q3 := [ℓ4,(1,2) + δ4,(1,2), ℓ4,(1,2) + δ4,(1,2)]ℓ4,3 = (ℓ4,(1,2) + δ4,(1,2))ℓ4,3,

q4 := [ℓ4,(1,2), ℓ4,(1,2)](ℓ4,3 + δ4,3) = ℓ4,(1,2)(ℓ4,3 + δ4,3),

q5 := [ℓ4,(1,2) + δ4,(1,2), ℓ4,(1,2)](ℓ4,3 + δ4,3) = ℓ4,(1,2)(ℓ4,3 + δ4,3),

q6 := [ℓ4,(1,2), ℓ4,(1,2) + δ4,(1,2)](ℓ4,3 + δ4,3) = ℓ4,(1,2)(ℓ4,3 + δ4,3),

q7 := [ℓ4,(1,2) + δ4,(1,2), ℓ4,(1,2) + δ4,(1,2)](ℓ4,3 + δ4,3) = (ℓ4,(1,2) + δ4,(1,2))(ℓ4,3 + δ4,3).

Since these polynomials only attain the four values p0, p1, p2, p3, from the linear orders
(3.16) we get the following list of partial orders:

{q0, q1, q2} < q3 < {q4, q5, q6} < q7 and {q0, q1, q2} < {q4, q5, q6} < q3 < q7.

From these partial orders we can compute the factor graph of node 4 as before by considering
all possible values of the thresholds {γ4θj,4} relative to each of these partial orders, with the
added restriction that valid configurations cannot have thresholds between q0, q1, q2 or between
q4, q5, q6. Observe that the parameter decomposition is symmetric with respect to the input
edges of the type II pair of edges.

We now present the general result for type II edges. The proof is a simple generalization
of the ideas presented in the above example and it is left to the reader.

Theorem 3.2. Suppose node n is governed by a type II rate expression defined by an interac-
tion function f of order K and type (k1, . . . , kq) as defined in (3.14). Then, the PSD problem
associated to Λn is equivalent to the classical PSD problem of type (k1, . . . , kq) associated to
the interaction function f .

Observe that the parameter decomposition and the DSGRN computations are symmetric
with respect to the input edges to a type II pair of edges. For this reason internally DSGRN
represents pairs of type II edges as in Figure 3(c) and (e).

(a)

3

2

1

n

(b)

1

2

3

(c)

1

2

3

(d)

1

2

3

4

(e)

1

2
3

4

Figure 3. (a) Example of type I regulation. (b) Type II edges terminating on node 3. (c) Implementation of
interaction between type II edges starting from nodes 1 and 2 to node 3. (d) More complex interaction between
type II and type 0 inputs to node 4. (e) Implementation of (d).
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For type II edges we refer to the polynomial expression of f as the interaction type of a
type II rate expression. In addition, we enclose the pairs of type II edges in between square
brackets [ · ] to denote the pair of edges used to define the rate expression (3.14). Notice
that the notation [x, y] is symmetric for a pair of type II edges x and y. As an example, the
interaction type of the incoming edges to node 4 in Figure 3(e) is denoted by

[x1, x2]x3.

Observe that the linear orders for this structure are the same as the linear orders (3.16)
for the regular DSGRN interaction type

z1z2.

By (3.12) and (3.13), the only effect of an open dot interaction, compared to full dot
interaction, between a pair of type II edges is to change the sign of the second edge, that is,
it changes the second edge from i → j to i ⊣ j or from i ⊣ j to i → j. In DSGRN this change
of sign is denoted by

[x1,∼x2].

We can compute a complete list of interaction types involving type II edges supported
by DSGRN by the following procedure: Take any interaction type from [21, Table 1] or from
Table 1 (which in turn is derived from [21, Table 1]) and replace one or more nodes by a pair
of nodes representing type II edges (see also section 3.4). The size of the factor graph thus
generated is the same as the size of the factor graphs of the corresponding interaction type in
the original DSGRN.

For example, the original DSGRN interaction type xy can be used to generate the type I
interaction type

⟨x⟩+ y

and from these we can derive the following interaction types involving type II edges

[x1, x2]y, [x1, x2][y1, y2], ⟨[x1, x2]⟩+ y, ⟨x⟩+ [y1, y2], ⟨[x1, x2]⟩+ [y1, y2],

all of which have factor graphs of the same size as xy.
Table 2 presents a complete list of the interaction types derived from x(y + z) as well as

some additional examples of interaction types involving type I and type II edges supported
by DSGRN.

3.4. Combination of type I and type II edges. As indicated in the introduction, type I
and II edges can be combined. In particular, a pair of type II edges can affect the decay of a
node. As a result in a rate expression of type I we can replace one or more of the type I edges
by pairs of type II edges. To solve a PSD problem and hence find the linear orders for this
type of expression, we first get the linear orders for the corresponding type I expression and
then apply the procedure described in section 3.3 that computes the partial orders for the type
II edges. Consider, for example, the following interaction type involving type I expression:

⟨u+ z⟩+ vw.
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Table 2

Complete list of the interaction types derived from x(y+z) (top) and some additional examples of interaction
types with type I and type II edges supported by DSGRN. The sizes of the factor graphs for each of the interaction
types are the same as the size of the corresponding original DSGRN interaction type listed.

PTM interaction type DSGRN interaction type

[x1, x2](y + z) x(y + z)
x([y1, y2] + z) x(y + z)
[x1, x2]([y1, y2] + z) x(y + z)
x([y1, y2] + [z1, z2]) x(y + z)
[x1, x2]([y1, y2] + [z1, z2]) x(y + z)
⟨x⟩+ ([y1, y2] + z) x(y + z)
⟨x⟩+ ([y1, y2] + [z1, z2]) x(y + z)
⟨[x1, x2]⟩+ (y + z) x(y + z)
⟨[x1, x2]⟩+ ([y1, y2] + z) x(y + z)
⟨[x1, x2]⟩+ ([y1, y2] + [z1, z2]) x(y + z)
⟨y + z⟩+ [x1, x2] x(y + z)
⟨[y1, y2] + z⟩+ x x(y + z)
⟨[y1, y2] + z⟩+ [x1, x2] x(y + z)
⟨[y1, y2] + [z1, z2]⟩+ x x(y + z)
⟨[y1, y2] + [z1, z2]⟩+ [x1, x2] x(y + z)

[x, y] + z x+ z

[x, y]z xz

⟨x⟩+ [y, z] xy

⟨x⟩+ [y, z]w xyw

⟨x⟩+ [y, z]uw xyuw

⟨x⟩+ [y, z][u, v]w xyuw

xy([z, w] + u) xy(z + u)
⟨xy⟩+ [z, w] + u xy(z + u)
⟨xy⟩+ [z, w] + [u, v] xy(z + u)

We can apply the procedure described in section 3.3 to the linear orders of this interaction
type to get the partial orders of the interaction type where we replace the edge u by the type
II pair [x, y] to get the partial orders for the interaction type

⟨[x, y] + z⟩+ vw.

In a similar way we can obtain the linear orders for interaction types involving all three
types of edges such as

⟨[x, y] + z⟩+ u[v, w].

4. Computational examples. In this section we present three examples of small networks
with type I and type II edges; see the top row of Figure 4. The bottom row of Figure 4 shows
the corresponding networks where type 1 and 2 edges were replaced by type 0 edges.

In Figure 4(a) the 3 → 1 and 3 ⊣ 2 are type 0 edges. The edge 1 → 2 is a type I edge
where node 1 up-regulates the decay of 2. Node 2 changes activity of 1 via a type II edge.
The fact that the edge 1 → 3 is up-regulating means that the active version of 1 up-regulates
3; the fact that the node on this edge is filled means that the effect of 2 is to change 1 from
its inactive form to an active form.

D
o
w

n
lo

ad
ed

 0
1
/0

9
/2

3
 t

o
 1

5
3
.9

0
.2

3
3
.2

2
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DSGRN WITH ACTIVITY CONTROL AND DECAY MODULATION 2117

(a)

1 3

2

(b)

1 3

2

(c)

1 3

2

(d)

1 3

2

(e)

1 3

2

(f)

1 3

2

Figure 4. In each column the top network has type I and type II edges and at the bottom is the same
network interpreted with type 0 edges preserving the sign of the interaction. A dashed edge indicates that its
end effect is on the decay rate of the receiving network node.

In Figure 4(b) is the network from (a) with only type 0 edges that captures the same
overall effect between the nodes. In particular, since type 1 edge 1 → 2 in (a) up-regulates
decay, it is replaced by a negative type 0 edge. The type II edges from 1 and 2 that affect (3)
are replaced by a pair of positive type 0 edges.

In Figure 4(c) the only change in comparison to (a) is that the node in the 1 → 3 edge
is empty, which means that 2 facilitates transition from active to inactive form of 1. As a
result, the overall effect from 2 to 3 is negative and therefore in Figure 4(d) this influence is
represented by a negative type 0 edge.

The last pair of networks is in Figures 4(e) and (f). In (e) node 2 up-regulates the
transition from the inactive to the active form of 1, which promotes decay of 3. Therefore the
corresponding network in Figure 4(f) has two negative edges 2 ⊣ 3 and 1 ⊣ 3.

As described above for each network we compute the decomposition of parameter space
into domains (i.e., parameter nodes) and for each of them we compute the state transition
graph and the Morse graph. We characterize Morse nodes by their dynamic phenotypes:

• When a Morse node consists of a single domain κ with a self-edge, we designate it FP
(for “Fixed Point”).

• When a Morse node consists of a set of domains with a path such that along that
path at least one threshold θ∗,i is crossed for every regulatory network vertex i, we
designate the Morse node FC (for “Full Cycle”).

• If the only paths within a Morse node are such that a proper subset of variables cross
thresholds along a path, we designate such Morse node PC (for “Partial Cycle”).

We are most interested in describing attractors in dynamics and therefore we concentrate on
Morse nodes that are leaves in the Morse graph; we call such Morse nodes stable. Table 3
presents basic statistics on the number of stable Morse nodes (FC, PC, and FP) for the
networks in Figure 4.

Comparing paired networks (a)–(b), (c)–(d), and (e)–(f), we observe that the size of the
parameter graphs differs. In addition, the number of parameter nodes with stable FC, stable
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Table 3

Computations for the networks in Figure 4. The second row from the top shows the number of parame-
ter nodes in the parameter graph of the corresponding network. The remaining rows show the percentage of
parameter nodes with the type of dynamics indicated in the first column.

Network Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) Fig. 4(e) Fig. 4(f)

Number of parameters 864 2880 864 2880 21600 305424

Stable FC 1.39% 4.58% 0% 0% 0% 1.49%
Stable PC 4.17% 9.17% 0% 0% 3.83% 7.85%

0 stable FP 5.55% 13.19% 0% 0% 3.07% 7.62%
1 stable FP 90.74% 78.89% 87.04% 74.72% 61.59% 56.41%
2 stable FP 3.70% 7.92% 12.96% 23.61% 33.0% 31.16%
3 stable FP 0% 0% 0% 1.67% 2.33% 4.81%

PC, zero stable FP, one stable FP, bistability, and tristability between FPs are all different. In
addition, if these counts are expressed as a percentage of all parameter nodes, the percentages
are also all different.

We conclude that the new modality of DSGRN of modeling type I and type II edges in
addition to type 0 edges can lead to different results in characterization of network dynamics.
When the type I and type II edges describe more closely the underlying biological system,
these results may offer a more detailed understanding of the network function.

5. Singular limits of ODE models. Up to this point in the paper we have consciously
avoided writing down explicit ODE models. The motivation for this is twofold: (i) the focus of
the paper is on the challenge C2, developing a computational framework in which to identify
the global dynamics of complex regulatory networks, and (ii) to emphasize that the results
are independent of specific models or applications. However, as indicated in the introduction
in the context of applications we must also address the challenge C1. Our primary motivation
for developing the DSGRN software has come from systems biology and therefore we return
to this subject to identify how a user may make use of the extended DSGRN tools to analyze
networks involving transcriptional and post-transcriptional regulation.

Recall that a common ODEmodel describing the up-regulation of production of the protein
of gene n by the protein of gene m has the form

(5.1) ẋn = −γnxn + ℓn,m + δn,m
xhm

θhn,m + xhm
,

where the nonlinearity is the classical Hill function. Even this minimal model has a multitude
of parameters γ, θ, ℓ, δ, and h. In the search for qualitative insight, it makes sense to sacrifice
functional form for ease of analysis. One direction is to consider the limit h → ∞ that results
in an equation of the form

ẋn = −γnxn +

{

ℓn,m if xm < θn,m

ℓn,m + δn,m if xm > θn,m
= −γnxn + λ+(xm; ℓn,m, δn,m, θn,m),(5.2)
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where notation λ+ extends definition (2.1) by including explicit parameter values in the ar-
gument. Similarly, a limit h → ∞ of the equation

(5.3) ẋn = −γnxn + ℓn,m + δn,m
θhn,m

θhn,m + xhm

results in an equation

(5.4) ẋn = −γnxn +

{

ℓn,m if xm > θn,m

ℓn,m + δn,m if xm < θn,m
= −γnxn + λ−(xm; ℓn,m, δn,m, θn,m).

Models of regulatory networks using equations of the form of (5.2)–(5.4) are typically called
switching systems and have been analyzed and applied [24, 10, 6, 25] since their introduction by
Glass and Kaufmann [16, 17]. The development of the current version of the DSGRN software
was motivated by switching systems. However, there is a fundamental difference in that we
are not interested in and do not solve for trajectories of switching system ODEs. Instead, as
indicted in section 1 we retreat to a combinatorial model that only makes use of the sign of the
right-hand side, e.g., (2.2). The more general Λn described in section 2 can all be obtained in
a similar manner, by starting with a product of sums of Hill functions, each of which expresses
an edge interaction, and allowing the Hill exponents h to become arbitrarily large.

As discussed in [11] and [7] the dynamics captured by the DSGRN computations is highly
suggestive of the dynamics exhibited by the ODEs even for moderate levels of exponent h in
the Hill functions.

To provide motivation for the expressions for the extended version of DSGRN developed
in this paper we turn to the theory of multisite protein control. For simplicity of notation
we assume that the protein being controlled is produced by node 1 and that the associated
protein, Protein 1, is controlled by Proteins 2 and 3.
P1. Protein 1 has M sites and the activity level of Protein 1 is governed by how many sites are

filled. In particular, Protein 1 is off if less than K of the sites are occupied and Protein
1 is on if K or more sites are occupied.

P2. Protein 2 and Protein 3 act as enzymes, with Protein 2 filling sites and Protein 3 emptying
sites.

A guiding example for this arrangement may be multisite phosphorylation by a kinase (Protein
2) and dephosphorylation by a phosphatase (Protein 3). We denote the concentration of

Proteins 1–3 by x1, x2, and x3, respectively. To be more precise we let x
(m)
1 , m = 0, . . . ,M ,

denote the concentration of Protein 1 that has m sites filled. Motivated by assumption P1 we
set

xoff1 =

K−1
∑

m=0

x
(m)
1 and xon1 =

M
∑

m=K

x
(m)
1 .

We model assumption P2 by the system of chemical reactions

x
(m)
1 + x2

k+
−−⇀↽−−
k−

x2x
m
1

k
−→ x

(m+1)
1 + x2

x
(m+1)
1 + x3

l+
−⇀↽−
l−

x3x
m+1
1

l
−→ x

(m)
1 + x3
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and set

α =
kk+(l + l−)

ll+(k + k−)
.

Following the analysis in [26]1 we obtain that for K = 2M −1, the concentration of the active
version xon1 of x1 is given by

(5.5) xon1 =
(αx2

x3
)K

1 + (αx2

x3
)K

x1.

Finally, taking the limit as M → ∞ while keeping M = 2K − 1 allows us to write xon1 as a
function of the variable αx2

x3
,

(5.6) xon1

(

α
x2
x3

)

= σ+

(

α
x2
x3

; 1

)

x1 = σ+

(

x2
x3

;
1

α

)

x1,

where

σ+(ξ; ζ) :=

{

0 if ξ < ζ,

1 if ξ > ζ.

5.1. Type I: Decay control edges. As indicated in the introduction we use the analysis
from the previous section to model the modulation of the decay rate; see Figure 1(b). In the
biological setting, the decay up-regulation is accomplished by ubiquitination by an enzyme
ubiquitin ligase, and decay down-regulation by deubiquitination by ubiquitin-specific protease.

Let x1 denote the total concentration of quantity associated to node 1 that is undergoing
up-regulation of its decay rate by x3 and down-regulation of its decay rate by x2. We restrict
our attention to processes where only one of x2 and x3 is actively controlled. We first focus
on control of the decay up-regulation and assume the following:
A3.1. The concentration of decay down-regulator x3 is a constant y.
Under assumptions A1, A2, and A3.1 we can rewrite (5.6) as

(5.7) xon1 (x2) = σ+(x2;β1,2)x1,

where β1,2 = y/α.
To incorporate this into DSGRN we assume that the decay rate for x1 in the absence of

x2 is γ1. Thus (5.2) becomes

ẋ1 = −γ1x1 + δ1,2σ
+(x2;β1,2)x1 + Λ1(x) = −

({

γ1 if x2 < β1,2

γ1 + δ1,2 if x2 > β1,2

)

x1 + Λ1(x)

= −λ+(x2; γ1, δ1,2, β1,2)x1 + Λ1(x).

We model decay down-regulation in a similar manner. We make an assumption:
A3.2. The concentration of decay up-regulator x2 is constant y.

1This paper also provides biological relevance for this modeling approach.
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Under assumptions A1, A2, and A3.2 can rewrite (5.6) as

(5.8) xoff1 (x3) =
(

1− σ+(x3;β1,3)
)

x1,

where β1,3 = αy. We rewrite (5.8) one more time as

(5.9) xoff1 (x3) = σ−(x3;β1,3)x1,

where

σ−(ξ; ζ) :=

{

1 if ξ < ζ,

0 if ξ > ζ.

To incorporate this into DSGRN we assume that the decay rate for Protein 1 in the absence
of x3 is γ1. Then (5.2) becomes

ẋ1 = −(γ1 + δ1,3σ
−(x3;β1,3))x1 + Λ1(x) = −

({

γ1 if x3 > β1,3

γ1 + δ1,3 if x3 < β1,3

)

x1 + Λ1(x)

= −λ−(x3; γ1, δ1,3, β1,3)x1 + Λ1(x).

5.2. Type II: Activity control edges. We now turn our attention to modeling modulation
of activity level; see Figures 1(c)–(d). In the biological context there are several modifications
that affect activity of a protein. This is often achieved by binding an additional molecule or a
group to an existing protein and modifying its properties. Examples include phosphorylation,
methylation, glycosylation, lipidation, and other modifications.

We will first consider interactions shown in Figure 1(c) where the xon1 is the active form
of x1. In the same way as we did for the decay control processes, we assume that only one
of the processes controlling the activation versus deactivation is actively controlled. We start
with the following:
A3.3. The concentration x3 remains constant.
Under assumptions A1, A2, and A3.3 we can rewrite (5.6) as

(5.10) xon1 (x2) = σ+(x2;β1,2)x1,

where β1,2 = x3/α. On the other hand, if we assume
A3.4. The concentration x2 remains constant,
then, under assumptions A1, A2, and A3.4 we can rewrite (5.6) as

(5.11) xon1 (x3) = σ+

(

1

x3
;

1

β1,3

)

x1,= σ−(x3;β1,3)x1,

where β1,3 = αx2.
To incorporate this into DSGRN we assume that the production rates for x4 by x1, when

x1 is in the inactive state off and active state on, are given by ℓ4,1 and ℓ4,1+ δ4,1, respectively.
Then (5.2) for n = 4 is

ẋ4 = −γ4x4 + Λ4(x1)

= −γ4x4 +

{

ℓ4,1 if x1 < θ4,1,

ℓ4,1 + δ4,1 if x1 > θ4,1.
(5.12)
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Under the assumption A3.3 this becomes

ẋ4 = −γ4x4 + Λ4(σ
+(x2;β1,2)x1)

= −γ4x4 +











ℓ4,1 if x2 < β1,2,

ℓ4,1 if x1 < θ4,1,

ℓ4,1 + δ4,1 if x1 > θ4,1 and x2 > β1,2,

= −γ4x4 + [λ+(x1), λ
+(x2)],

where notation [·, ·] has been introduced in (3.15).
On the other hand, under the assumption A3.4 we have

ẋ4 = −γ4x4 + Λ4(σ
−(x3;β1,3)x1)

= −γ4x4 +











ℓ4,1 if x3 > β1,3,

ℓ4,1 if x1 < θ4,1,

ℓ4,1 + δ4,1 if x1 > θ4,1 and x3 < β1,3,

= −γ4x4 + [λ+(x1), λ
−(x3)].

For the second type of interactions in Figure 1(c), (5.12) has reversed inequalities with
respect to threshold θ4,1,

ẋ4 = −γ4x4 +

{

ℓ4,1 if x1 > θ4,1,

ℓ4,1 + δ4,1 if x1 < θ4,1.

This change of inequality persists into the functions Λ4(σ
+(x2;β1,2)x1) under the assump-

tion A3.3 and to function Λ4(σ
−(x3;β1,3)x1) under the assumption A3.4, resulting in

ẋ4 = −γ4x4 + [λ−(x1), λ
+(x2)]

and
ẋ4 = −γ4x4 + [λ−(x1), λ

−(x3)],

respectively.
For interactions in the left side of Figure 1(d) it is the xoff1 form of x1 that activates

production of x4. Since xon1 + xoff1 = x1 under the assumption A3.3 we get

ẋ4 = −γ4x4 + Λ4(σ
−(x2;β1,2)x1) = −γ4x4 + [λ+(x1), λ

−(x2)],

and under the assumption A3.3

ẋ4 = −γ4x4 + Λ4(σ
+(x3;β1,3)x1 = −γ4x4 + [λ+(x1), λ

+(x3)].

Analogous to Figure 1(c), interactions indicated by the right half of Figure 1(d) will
produce functions

[λ−(x1), λ
−(x2)] and [λ−(x1), λ

+(x3)],

respectively.
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We close this section with a remark that when yon1 regulates activity, rather than abun-
dance, of protein y2, which in turn regulates activity of y3 along a chain of interactions until
yn−1, which eventually regulates transcription of yn, then the equation for yn will be

(5.13) ẏn = −γnyn + Λ((σ±
n−1 ◦ · · · ◦ σ

±
1 )(y

on
1 ;β1,2)yn),

where (σ±
n−1 ◦ · · · ◦ σ±

1 )(y
on
1 ;β1,2) is the (n − 1)-fold composition of functions σ+( · ;β1,2)

or σ−( · ;β1,2), as functions of the first argument for a fixed value of the parameter β1,2,
depending on the type of control in Figure 1(c) or (d).

We generalize the function

Γ(ζ1, . . . , ζn) := min{ζ1, . . . , ζn}

and (note identical values of ℓ and δ) set

[λ(z1), λ(z2), . . . , λ(zn))] := Γ(λ(z1, ℓ, δ, θ1), λ(z2, ℓ, δ, θ2), . . . , λ(zn, ℓ, δ, θn)).

Then (5.13) becomes

ẏn = −γnyn + [λ±(y1), λ
±(y2), . . . , λ

±(yn)],

where the sign of the function λ±(yj) matches the sign of σ±
j (yj ;βj,j+1) for j = 1, . . . , n−1, and

the sign of λ±(yn) matches the sign of the function Λ(yn). Similarly, the threshold parameters
θj , j = 1, . . . , n−1, are the activation parameters βj,j+1 and θn is the threshold of the function
Λ(yn).

6. Conclusions. Networks are a useful abstraction expressing partial knowledge about
internal correlation (undirected edges) or causal (directed edges) structure of complex systems.
In addition, in gene regulatory networks edges are directed and signed, where sign denotes up-
or down-regulation. While networks sometimes express static information like correlations,
often one is interested in the dynamical behavior of the system described by the network. One
of the ways to associate dynamics to a network is to represent each vertex by a continuous
variable with a linear decay rate and each edge by a (nonlinear) monotone function, where
the sign of the derivative matches the sign of the edge, and study a set of ODEs with this
structure. One can view such a system as one where variables represent abundance with
a rate of change responding to associated in-edges. In the context of gene regulation, this
type of model corresponds to transcriptional regulation of genes, where an increase in the
concentration of activators increases the rate of production from a particular gene, and an
increase in the concentration of repressors decreases such a rate.

Understanding the dynamics of such systems, especially in systems with several to dozens
of variables, is notoriously difficult. In particular, the dynamics of network models can vary
widely with selection of nonlinearities as well as parameters, which are mostly unknown and
lie in high dimensional space. Motivated by gene networks, and building on previous work on
Boolean networks and switching systems [1, 17, 24, 19, 10, 6], we developed DSGRN. DSGRN
assigns combinatorial dynamics to a network, of a type depending on a finite decomposition
of the parameter space [5, 4, 15, 11, 13, 14]. The finiteness of this calculation allows complete
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enumeration of types of dynamics compatible with the network. However, in spite of the
finiteness of representation, the computed invariant, the Morse graph, is valid for a large class
of ODE models. In particular, it has been shown that the Morse graph provides information
about a Morse decomposition of nearby smooth systems of differential equations in two di-
mensions [15]; the generalization of this result to higher dimensions is forthcoming. In the
case where the Morse nodes indicate the presence of stable equilibria, these equilibria do exist
for nearby smooth differential equations [9, 8].

Again motivated by gene regulation, this paper extends the combinatorial DSGRN ap-
proach to a significantly larger class of network interactions. In cellular regulatory networks,
the abundance of a particular protein may be constant, but its activity may be carefully
regulated by, say, phosphorylation, methylation, or other type of post-transcriptional or post-
translational regulation. In addition, the decay of a protein may be actively regulated as well.
We use modeling work on multisite phosphorylation and ubiquitination to derive an appro-
priate combinatorial model for activity and decay regulation. DSGRN relies on precomputed
logic files that encode all linear orders of a set of polynomials associated to a network vertex
with a particular number of in- and out-edges. Based on our analysis we show how we modify
and then use these precomputed logic files to support combinatorial model for activity and
decay regulation.

Finally, we provide a comparison of dynamics between networks that include either activity
or decay regulation, and the corresponding networks with the same types of edges but that
only regulate abundance. It is clear from these results that the dynamics can be very different
and therefore the new capability will allow a more precise delineation of network dynamics in
a wide range of applications.

Acknowledgments. B.C. and T.G. acknowledge the Indigenous nations and peoples who
are the traditional owners and caretakers of the land on which this work was undertaken at
Montana State University.
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