
Glign: Taming Misaligned Graph Traversals in Concurrent
Graph Processing

Xizhe Yin
xyin014@ucr.edu

University of California, Riverside
USA

Zhijia Zhao
zhijia@cs.ucr.edu

University of California, Riverside
USA

Rajiv Gupta
gupta@cs.ucr.edu

University of California, Riverside
USA

ABSTRACT
In concurrent graph processing, di!erent queries are evaluated on
the same graph simultaneously, sharing the graph accesses via the
memory hierarchy. However, di!erent queries may traverse the
graph di!erently, especially for those starting from di!erent source
vertices. When these graph traversals are “misaligned”, the bene"ts
of graph access sharing can be seriously compromised. As more
concurrent queries are added to the evaluation batch, the issue
tends to become even worse.

To address the above issue, this work introduces Glign, a runtime
system that automatically aligns the graph traversals for concurrent
queries. Glign introduces three levels of graph traversal alignment
for iterative evaluation of concurrent queries. First, it synchronizes
the accesses of di!erent queries to the active parts of the graph
within each iteration of the evaluation—intra-iteration alignment.
On top of that, Glign leverages a key insight regarding the “heavy
iterations” in query evaluation to achieve inter-iteration alignment
and alignment-aware batching. The former aligns the iterations of
di!erent queries to increase the graph access sharing, while the
latter tries to group queries of better graph access sharing into the
same evaluation batch. Together, these alignment techniques can
substantially boost the data locality of concurrent query evaluation.
Based on our experiments, Glign outperforms the state-of-the-art
concurrent graph processing systems Krill and GraphM by 3.6×
and 4.7× on average, respectively.
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Figure 1: Last-Level Cache Misses (64 concurrent queries on
LiveJournal [3] and Twitter [12], measured by perf pro!ler).

1 INTRODUCTION
Although last decade witnessed signi"cant advances in developing
e#cient graph processing systems, supports for concurrent query
evaluation remain underexplored. Most existing graph processing
systems are designed to process one analytical query each time,
such as a single-source shortest path (SSSP) query. On the other
hand, as the demands of graph analytics grow, so do the needs for
concurrent evaluation of graph queries [34, 38, 42]. A prior study
on social network application shows that most graph query jobs are
executed concurrently [34]. To "ll this gap, several concurrent graph
processing systems [6, 20, 34, 38, 42] have been proposed in recent
years, including Seraph [34] for distributed platforms, CGraph [38]
and GraphM [42] with supports for out-of-core processing, and
Congra [20] and Krill [6] which focus on in-memory evaluation
of a batch of concurrent graph queries.
Opportunities and Challenges. By evaluating multiple queries
simultaneously on a graph, concurrent graph processing enables
graph access sharing across queries via the memory hierarchy, that
is, the graph data fetched to the cache(s) by one query may be used
directly by other queries. Intuitively, such sharing may reduce the
total cache misses, bene"ting the overall performance. However,
this work "nds that the actual cache miss reduction brought by
concurrent graph query evaluation could be quite limited.

Figure 1 reports the last-level cache (LLC) misses of evaluating
64 concurrent queries on two graphs using some representative
graph systems. As a baseline, Ligra-S evaluates the queries one by
one using Ligra [28], a well-known in-memory graph processing
framework that evaluates each query in parallel. In comparison,
Ligra-C evaluates all 64 queries simultaneously using an extended
Ligra with basic concurrency supports (see Section 4); Krill is a
state-of-the-art concurrent graph processing system just released
recently [6]. As the results show, even with a concurrency degree of
64 queries, the cache misses of Ligra-C and Krill are reduced by a
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limited fraction comparing to Ligra-S and sometimes, their cache
misses may even exceed that of the baseline (LJ-BFS and TW-BFS).

A primary reason causing the above unfavorable results lies in
the potential “misalignment” of underlying graph traversals among
concurrent queries. Though the above 64 queries are of the same
type, they may traverse the graph very di!erently due to their
vertex-speci"c nature (i.e., starting from di!erent source vertices).
For queries of di!erent types, their underlying graph traversals can
be even more diverse. When the traversals are misaligned—visiting
di!erent parts of the graph for most of the processing time, the
concurrent evaluation of queries will not bene"t much from the
shared memory accesses. Even worse, they may even “hurt” each
other by competing for the caches.
Solution of This Work. To address the above issue, this work
proposes a runtime system for in-memory graph processing on
multi-core platforms 1, namely, Glign 2. Glign can automatically
align di!erent graph traversals of concurrent queries to maximize
the graph access sharing. As a result, it can signi"cantly reduce
the cache misses compared to other systems (see Figure 1). Glign
primarily targets vertex-speci"c queries that employ iterative graph
algorithms for evaluation, such as SSSP and BFS. In addition, to
bene"t the most from Glign, the vertex function of the iterative
algorithms f (v) needs to be monotonic, a common property shared
by many vertex-centric graph query algorithms [11, 25, 31]. Next,
we brie$y introduce the key techniques behind Glign.

First, like most existing concurrent graph processing systems [6,
38, 42], Glign synchronizes the iterations of di!erent queries during
evaluation—the barriers used for iterative evaluation are shared
across queries. This design allows Glign to treat the iterations as a
logical timeline for aligning graph traversals. To distinguish them
from the iterations in single-query graph processing, we refer to
the iterations shared by queries as global iterations.

Based on the global iterations, Glign addresses the problem of
graph traversal misalignment at three levels:

• Intra-iteration alignment. In each iteration of the evaluation,
a query needs to access an active part of the graph (a.k.a.
frontier). Intuitively, the active parts of di!erent queries may
overlap. If the overlapped parts are accessed around the same
time, the evaluation will bene"t from temporal locality.

• Inter-iteration alignment. For a given batch of queries, Glign
allows their evaluation to start at di!erent global iterations,
thus making it possible to align the iterations across queries
based on their graph access sharing.

• Alignment-aware batching. At the high level, considering all
the concurrent queries available, which queries should be put
into the same evaluation batch? Di!erent batching strategies
may yield di!erent amounts of graph access sharing.

For intra-iteration alignment, existing designs [6, 32] require two
levels of frontiers to achieve synchronized frontier traversal. Instead,
Glign proposes query-oblivious frontier, a single-level frontier that
deliberately ignores the frontier di!erences across queries. This
is possible if the vertex function of the query is monotonic. On
the other hand, this may evaluate extra vertices due to its inability
to distinguish some inactive ones for certain queries. Overall, we

1Similar ideas could be applied to out-of-core and distributed processing scenarios.
2Pronounced as /gline/.
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Figure 2: Three Levels of Alignments in Glign.

found the bene"ts of reducedmemory (from the use of a single-level
frontier) easily outweighs the side e!ects of extra computations.

For inter-iteration alignment and alignment-aware batching,
Glign leverages an important insight revealed in this work:

the “heavy iterations” of concurrent queries
should be well aligned during the evaluation.

Here, “heavy iterations” refer to iterations that access a relatively
larger portion of the graph (i.e., a large frontier). The insight is
backed by two facts. First, heavy iterations often dominate the total
processing cost of a query; Second, larger frontiers often expose
more opportunities for intra-iteration alignments—a potentially
larger overlapping among the frontiers of di!erent queries.

The above insight reduces the two higher-level alignments into
the problem of alignment of heavy iterations. To solve the latter, this
work uses a simple yet e!ective heuristic to estimate the arrival
time of heavy iterations. Based on the estimation, two scheduling
techniques are proposed to improve the alignments:

• Delayed start. For a given batch of concurrent queries, this
technique postpones the start of the evaluation of certain
queries to later global iterations, based on the arrival time
di!erences of their heavy iterations;

• A"nity-oriented batching. Considering all the concurrent
queries received, it groups queries with closer arrival time
of heavy iterations (a#nity) to the same evaluation batch.

Figure 2 lists the above techniques. To con"rm their e!ectiveness,
this work evaluated Glign with commonly used graphs and query
benchmarks, and compared it with two state-of-the-art concurrent
graph systems: GraphM [42] and Krill [6]. The results show that
the proposed alignment techniques can reduce the LLC misses by a
signi"cant ratio. They also show that Glign achieves on average
3.6× speedup over Krill and 4.7× speedup over GraphM.

In summary, this work makes a three-fold contribution:

• First, it reveals a key performance issue in concurrent graph
processing—graph traversal misalignments, and categorizes
it at three levels of the graph processing system.

• Second, it proposes a series of techniques to address the
misalignments at each level: a new design of synchronized
frontier traversal and two scheduling techniques based on
the insight of heavy iterations.

• Finally, it integrates the above techniques in a system Glign

and compares it with the state-of-the-art systems.

Next, we start with some background of this work.
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(b)

/* single-source shortest path */
fsssp(v) {
for each out-neighbor n of v {
dist(n) = min { dist(n), dist(v) + w(v, n) };
if dist(n) changed
then add n to frontier;

}

(a)

Figure 3: Example Vertex Function and Graph.

2 BACKGROUND
This section introduces the basics of vertex-centric graph processing
and the idea of concurrent graph query evaluation.

2.1 Vertex-Centric Graph Processing
Following the idea of “thinking like a vertex” [18], vertex-centric
graph processing emerges as the de facto model for programming
graph applications. Many graph systems have been proposed in
recent years based on this model, such as Pregel [15], GraphLab [14],
Giraph [26], PowerGraph [9], and Ligra [28]. Under this model, a
vertex function f (v) needs to be speci"ed by developers, which
will be evaluated on every vertex in the graph or a selected subset
of vertices (i.e., frontier) iteration by iteration, to compute certain
vertex-speci"c properties, like the shortest distances from a source
vertex to every other vertex. The iterations stopwhen the properties
of all vertices stop changing (convergence) or some thresholds are
met, following the bulk synchronous parallel (BSP) model [30].

Take single-source shortest path (SSSP) as an example. The goal
is to "nd the shortest distance from a source vertex to every other
vertex in the graph. Figure 3-(a) shows its vertex function fsssp(v),
which updates the out-neighbors of vertex v based on its current
value. Considering the graph in Figure 3-(b), the evaluation process
of query sssp(v1) is given in Table 1, including the vertex values
and the frontier in each iteration.

Initially, the values of all vertices are set to ∞, except for the
source vertexv1, and onlyv1 is in the frontier (i.e., activated). After
applying the vertex function to v1, the (only) out-neighbor of v1,
which is v3, obtains a new value 4. As a result, v3 becomes the
new frontier. As the evaluation proceeds, the frontier is propagated
through the graph, along with new vertex values being generated
iteration by iteration, until the frontier becomes empty—the #xed
point. The resulted vertex values are the answer to the query.

Note that the vertex function in Figure 3-(a) needs to access and
update the out-neighbors of a vertex. This is known as the push
model. Alternatively, the vertex function might also be designed to
access and update the in-neighbors of a vertex, which is referred to
as the pull model. In this work, we assume a push model is chosen.

2.2 Concurrent Evaluation of Graph Queries
Recently, several graph processing systems have been proposed to
support concurrent graph query evaluation, such as Seraph [34],
CGraph [38], GraphM [42], Congra [20], and Krill [6], covering
distributed, in-memory, and out-of-core processing scenarios. As

Table 1: Iterative Evaluation of sssp(v1)

Iter# v1 v2 v3 v4 v5 v6 v7 v8 v9 Frontier

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ {v1}
1 0 ∞ 4 ∞ ∞ ∞ ∞ ∞ ∞ {v3}
2 0 ∞ 4 12 5 7 6 ∞ ∞ {v4, v5, v6, v7}
3 0 17 4 12 5 7 6 ∞ 10 {v2, v9}
4 0 17 4 12 5 7 6 22 10 {v8}
5 0 17 4 12 5 7 6 22 10 {}

to the execution model, Seraph, CGraph, and GraphM all treat each
concurrent query as a “job”. In Seraph, the minimum execution
unit is a task, consisting a bunch of vertices to be processed in
a job, while di!erent tasks are processed using a thread pool. In
comparison, CGraph maps each concurrent job to a core by default,
then balances the jobs across cores. GraphM is built on top of the out-
of-core graph processing system GridGraph [43], where edges are
partitioned into “blocks” and processed by worker threads. Finally,
Congra [20] and Krill [6] are both built on top of Ligra [28], a
state-of-the-art in-memory graph processing system. Under the
hood, Ligra exploits the vertex-level parallelism where the vertex
function is applied to the active vertices (in the frontier) in parallel,
guided by a work stealing scheduler (from Cilk [4]). So even for a
single query, the system can evaluate it in parallel with relatively
balanced workload across CPU cores.

Table 2: Graph Access Sharing between Two Queries.

Iter# Frontier(sssp(v2)) Frontier(sssp(v8))

0 {v2} {v8}
1 {v3, v8} {v4}
2 {v4, v5, v6, v7} {v2, v6}
3 {v9} {v3, v9}
4 {} {v5, v6, v7}
5 {} {v9}
6 {} {}

A key potential bene"t of concurrent graph query evaluation
is the sharing of graph accesses via the memory hierarchy, which
improves the overall data locality. Consider two queries, sssp(v2)
and sssp(v8), to the graph in Figure 3-(b). In fact, both queries
need to access the out-neighbors of vertices v2 - v9 during the
evaluation, as indictated by their frontiers in Table 2. If the graph
data fetched by one query still resides in the shared cache when
the other query tries to access it (i.e., temporal locality), the overall
cache misses could be dramatically reduced. However, for many
real-world graphs, their sizes are well beyond the cache capacity.
In order to bene"t from this temporal locality, the graph traversals
should be roughly aligned—visiting the same vertices (and their
out-neighbors) around the same time.

In fact, as reported earlier in Figure 1, the underlying graph
traversals on real-world graphs could be largely misaligned in the
existing concurrent graph processing systems, limiting the bene"ts
of shared graph accesses. In the following, wewill present a solution
to addressing the graph traversal misalignment issue—Glign.
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Figure 4: Overview of Glign.

3 Glign
Figure 4 illustrates the high-level design of Glign. First, assume a
bu!er consists of the concurrent queries to be evaluated, Glign uses
an alignment-aware batching strategy to group queries with higher
potential of a large amount of graph access sharing to the same
evaluation batch (see !). After a batch is formed, Glign performs
inter-iteration alignment across (global) iterations. In particular, it
"rst estimates the “heavy iterations” for each query in the batch,
then delays some of them to make the “heavy iterations” of di!erent
queries aligned (see "). Finally, within each global iteration, Glign
ensures that the frontiers of di!erent queries are traversed in a
synchronous manner so that the shared graph accesses (dictated
by the overlapping of frontiers) are accessed in a fully coalesced
way (see #). Next, we will present each of these key techniques in
detail. Due to their dependences, we will introduce them in reverse
order with respect to the number labels in Figure 4.

3.1 Global Iterations
First, we introduce the concept of global iterations, which serve as
the basis for some of the proposed alignments. Given a batch of
iterative graph queries, there are two ways to evaluate them:

• Synchronous evaluation evaluates queries in the batch in the
same pace with respect to iterations (see Figure 4). This is
ensured by a series of global barriers that are shared across
queries in the batch. Most existing concurrent graph systems
(CGraph [38], GraphM [42] and Krill [6]) follow this scheme.

• Asynchronous evaluation evaluates each query in the batch
independently, regardless of the evaluation pace of other
queries, that is, the iterations of evaluating di!erent queries
may be interleaved arbitrarily. Congra [20] uses this scheme.

Clearly, the asynchronous design has no control over the graph
traversals, so the traversals may or may not align well depending
on their interleaving in a speci"c evaluation. For this reason, Glign
follows the synchronous evaluation. To distinguish the iterations
in the synchronous batch evaluation from those in single-query
evaluation, we refer to the former as global iterations.

3.2 Intra-Iteration Alignment
A commonly used design for evaluating concurrent graph queries
is to keep a frontier for each query qi in the evaluation batch B. In

v1 vmax
0110011001001

1010011001000

1010011001001

1100001000001

(a) Separate frontiers

v1 vmax

Eval. batch qi+1

qi

qi+3

qi+2
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Figure 5: Di"erent Designs of Frontier Traversal.

a global iteration, the frontiers of di!erent queries are traversed
independently, as shown in Figure 5-(a). The frontier is designed
as a boolean array frontier[], where the i-th element shows the
activeness of vertexvi . If frontier[i]=1, the vertex function f (v)
needs to be evaluated on vi , including accessing the out-neighbors
of vi . In other words, the frontier traversal de"nes how graph data
is accessed in a global iteration. When these frontiers of di!erent
queries are traversed independently, there is no guarantee that the
commonly used graph data are accessed around the same time. As
a result, the data locality could become sub-optimal.

To ensure that di!erent frontiers are traversed in a synchronized
manner, some recent works (Krill [6] and SimGQ [32]) propose to
add an extra frontier, called uni#ed frontier, de"ned as follows:

Frontierunion =
∨

qi ∈B

Frontierqi (1)

where Frontierqi (a boolean array) is the frontier for evaluating
query qi and

∨
is the logical OR operator. This means that as long

as vertex vi is active for one query in the batch, Frontierunion(i) = 1.
To synchronize the frontier traversals, we can simply traverse the
uni"ed frontier: if its value for vertex vi is “1”, we further check
each individual frontier Frontierqi to "nd out the speci"c queries
for which vi needs to be evaluated (see Figure 5-(b)).

The above design ensures that the shared accesses to an active
vertex and its out-neighbors are perfectly aligned across queries.
However, there are some caveats associated with this design. First, it
increases thememory cost with an extra labeling array Frontierunion;
Second, it needs to check the frontiers at two levels. Overall, our
evaluation reports limited performance bene"ts (see Section 4).

To avoid the above caveats, this work proposes an alternative
design to the synchronized frontier traversal, called query-oblivious
frontier. This new design explores an interesting tradeo! between
computations and memory accesses, which to our best knowledge,
has not yet been discussed before by any prior work.

Query-Oblivious Frontier. Our key insight is to deliberately ignore
the di!erences among the frontiers of queries in the evaluation batch,
that is, when a vertex function f (v) is invoked, it is applied for
all queries in B. This eliminates the need of second-level frontiers
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(Frontierqi , qi in B) used in the prior design. Figure 5-(c) illustrates
this idea with a single frontier Frontierunion.

However, the above design immediately raises two concerns:

• Correctness. Does the evaluation based on a single uni"ed
frontier (Frontierunion) always produce the same results as
the one using two levels of (or seperate) frontiers?

• E"ciency. A vertex v would be evaluated for all queries in
the batch, as long as it is in the frontier of one query. This
introduces extra unnecessary computations.

First, for correctness, we have established a theorem for safely
adopting query-oblivious frontier for a range of iterative queries
based on the monotonicity property of their vertex functions.

De#nition 3.1. In vertex-centric programming, a vertex function
f (·) is monotonic i!. it always changes the values of vertices
monotonically (always increasing or decreasing) over iterations.

In fact, the monotonicity property has been widely exploited by
multiple existing graph systems for better e#ciency [14, 25] and it
serves as the basis for incremental query evaluation [11, 31].

Theorem 3.2. Evaluating a query batch using query-oblivious
frontier yields the same vertex values as the evaluation using separate
frontiers i!. the vertex function is monotonic.

Proof. Without loss of generality, assume the evaluation batch
consists of two queries q1 and q2, and the evaluation is in global
iteration i . Consider an arbitrary vertex vj . Assume vj is inactive
according to q1’s frontier, but active based on q2’s frontier. Thus,vj
is marked as an active one in the uni"ed frontier, as illustrated in
Figure 6. Next, we discuss the impacts of an extra evaluation of vj
with q1’s vertex function, that is, fq1 (vj ). There are two basic cases.
In the "rst case, at the time of evaluating fq1 (vj ), the value ofvj has
not been updated by any of its in-neighbors. As its value remains
the same as it was in the prior iteration i−1, this evaluation will not
change the value of any of its out-neighbors (like vt ). In the second
case, at the time of evaluating fq1 (vj ), the value of vj has been
updated by at least one of its in-neighbors in the current iteration i .
In this case, the evaluation may update the value(s) of some out-
neighbor(s) of vj , causing some side-e!ects. However, note that
even if separate frontiers are used, vj would be marked as an active
vertex and evaluated in the next iteration i + 1. That is, using query-
oblivious frontier might lead to some earlier evaluation of certain
vertices that are supposed to be evaluated in the next iteration—
a form of asynchronous evaluation. One su#cient condition for
the correctness of asynchronous query evaluation is that the query
evaluation should be monotonic. !

Second, as to the e#ciency concern, will the extra evaluation of
inactive vertices slow down the overall processing? Interestingly,
our evaluation (see Section 4) shows that using query-oblivious
frontier can substantially improve the overall performance despite
the extra evaluation of inactive vertices. This is due to fact that
query-oblivious frontier skips the maintenance and accesses to the
separate frontiers all together, dramatically reducing the memory
footprint of concurrent query evaluation (see Section 4).

So far, we have introduced the intra-iteration alignment which
addresses the potential misalignments among di!erent frontier
traversals in a global iteration. Next, we will shift the focus to more
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Figure 6: Correctness of Using Query-Oblivious Frontier.

coarse-grained misalignments, among the iterations of di!erent
queries and during the formation of query batches.

3.3 Inter-Iteration Alignment
We "rst use a simple example to motivate the alignment problem,
then formalize it and present a heuristic-based solution.

Motivation. In general, the evaluation of a graph query may access
di!erent parts of the graph in di!erent iterations, thus the amount
of graph sharing may vary depending on the interleaving of the
(local) iterations of di!erent queries. Revisit the examples in Table 2
(Section 2) and assume the two sssp queries are evaluated in the
same batch, then compare their frontier overlapping per iteration
with those in Table 3 where a di!erent alignment between the (local)
iterations of the two queries is used: sssp(v2) starts two iterations
later than sssp(v8). From the comparison, we can "nd that the latter
alignment exposes more overlapped active vertices than the former
(6 v.s. 2). As a result, when these active vertices are evaluated and
their (out-)neighbors are accessed, the latter alignment will yield
more shared graph accesses.

Table 3: A Better Alignment of Iterations.

Iter# Frontier(sssp(v2)) Frontier(sssp(v8))

0 – {v8}
1 – {v4}
2 {v2} {v2, v6}
3 {v3, v8} {v3, v9}
4 {v4, v5, v6, v7} {v5, v6, v7}
5 {v9 } {v9}
6 {} {}

Next, we formalize the above inter-iteration alignment problem.

Problem Formalization. First, we de"ne the alignment vector I
for a given batch of queries B as follows:

De#nition 3.3. Given a batch B of n queries [q1,q2, ...,qn ], its
alignment vector I is a vector of [a1,a2, ...,an ], where ai is the
global iteration number from which the evaluation of qi is started.

Considering the batch B=[sssp(v2), sssp(v8)], Table 3 shows
an alignment where the alignment vector I = [2, 0].
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Next, we introduce the concept of a"nity to quantify the amount
of graph access sharing, which is de"ned as follows:

De#nition 3.4. Given a query batch B and an alignment vector I ,
the a#nity of this evaluation is de"ned by the following equation:

A!nity(B, I ) = 1 −

∑K
j=0 |Frontier

j
union |

∑K
j=0

∑
qi ∈B |Frontier

j
qi |

(2)

where Frontier junion and Frontier
j
qi are the uni"ed frontier and the

separate frontier for query qi , respectively, at iteration j, and K is
the total number of global iterations for evaluating this batch.

Again, consider the examples in Table 3, we have

Frontier0union = {v8}, Frontier1union = {v4},

Frontier2union = {v2, v6}, Frontier3union = {v3, v8, v9},

Frontier4union = {v4, v5, v6, v7}, Frontier5union = {v9}.

Thus, A!nity(B, I ) = 1 − (1 + 1 + 2 + 3 + 4 + 1)/(8 + 10) = 1/3. By
contrast, the a#nity for the alignment in Table 2 A!nity(B, I ′) =
1 − (2 + 3 + 5 + 2 + 3 + 1)/(8 + 10) = 1/9. Obviously, the former
achieves a signi"cantly higher a#nity.

The best a#nity occurs when all separate frontiers are perfectly
overlapped, while the worst a#nity happens when no separate
frontiers overlap at all through all the iterations. Note that the
a#nity may be negative in certain cases, due to the asynchronous
evaluation as detailed in the proof of Theorem 3.2.

The above de"nition of a#nity is based on the ratio of active
vertices. Alternatively, one can also de"ne a#nity based on the
ratio of active edges (the outgoing edges of active vertices), which
is supposed to be more precise. However, our evaluation shows
minimal di!erences between the two de"nitions in practice.

Now we formalize the inter-iteration alignment as follows:

max
∀I

A!nity(B, I ) (3)

That is, given an evaluation batch B, the problem is to "nd out
the best alignment vector I that maximizes the a#nity.

Unfortunately, as the frontier of each query will NOT be known
until the query execution is "nished, we cannot precompute the
a#nity for a batch of queries without evaluating them. Hence, we
cannot solve the above optimization problem precisely in advance.
To address this challenge, we need a more proactive approach. Next,
we present a heuristic to approximate the best alignment.

Heuristic-based Solution. First, we observe that the distribution
of frontier sizes tends to be highly biased across iterations, thanks to
the power-law nature of many real-world graphs. Figure 7 reports
the frontier sizes across iterations during the evaluation of a few
vertex-speci"c queries on two real-world graphs.

From the results, we can easily "nd some patterns in evaluating
vertex-speci"c queries on power-law graphs: in the early iterations,
the frontier grows exponentially, which we call the expansion phase.
After reaching the “peak”, the frontier starts to shrink quickly and
steadily until it becomes empty, referred to as stabilization phase.
The several iterations around the “peak” often dominate overall
size of frontiers for the whole query evaluation.

With the above observations, we decide to focus the alignment
on these dominating iterations, referred to as “heavy iterations”.
The rationale behind this decision is two-fold:
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Figure 7: Frontier Size Distribution across Iterations.

• First, heavy iterations expose more opportunities for shared
graph accesses. The larger the frontiers are, the more likely
that they overlap. In the extreme case, when the (separate)
frontiers include all vertices, they are perfectly overlapped.

• Second, as the vertex activations in the heavy iterations
often dominate the total number of vertex activations for the
whole evaluation, their alignments could make a signi"cant
impact on the overall alignment.

To demonstrate the e!ectiveness of heavy iteration alignment
in improving the overall a#nity, we manually delayed the “faster”
queries in Figure 7 such that their “peaks” align with those in the
“slower” queries. As a result, we observed that the a#nity value
gets improved from −0.11 to 0.34 and from 0 to 0.47, respectively.

One can quantify the heavy iterations based on di!erent metrics,
such as the ranking of frontier sizes across iterations. However,
regardless the metric being used, just like a#nity, heavy iterations
are unknown before the query evaluation. In fact, one may choose to
detect the heavy iterations dynamically during the query evaluation
and use that information to guide the alignments at runtime, for
example, pausing the evaluation of queries whose heavy iterations
have arrived, then resuming them after all the "slowest" query has
reached its heavy iterations. Though the idea sounds promising, it
has a caveat—to “pause and resume” the iterative evaluation of some
queries, the system needs to keep “their contexts”—their individual
frontiers. This requires to a design similar to the two-level frontiers
(see Figure 5-(b)). As discussed earlier, this design is inferior to the
query-oblivious frontier in terms of performance.

To work around the above dilemma, we propose to proactively
approximate the “arrival time” of heavy iterations—the iteration that
marks the beginning of heavy iterations. The key insight behind
our arrival time approximation is the correlation between frontier
size and the activation of high-degree vertices:

When evaluating a vertex-speci#c query on a
power-law graph, the frontier size often grows
sharply once a high-degree vertex is activated.
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Table 4: Arrival Time of Heavy Iterations

Query Arrival Time Query Arrival Time

sssp(v1) iter. 9 bfs(v1) iter. 3
sssp(v2) iter. 2 bfs(v2) iter. 7

To demonstrate the above phenomenon, Table 4 lists the "rst
iteration where at least one of the top-4 high degree vertices is
activated for the four queries used in Figure 7. These iterations
are also highlighted with larger marks in Figure 7, which clearly
indicate the beginning of (relatively) heavy iterations.

Based on the above discussion, we only need to identify the "rst
iteration where a high-degree vertex is activated. In fact, given a
high-degree vertex vh (based on a threshold), it takes i iterations
for it to be activated, where i is the least number of hops from
the source vertex v in query q(v) to the high-degree vertex vh .
Such information can be pre-computed simply by running a BFS
query on the high-degree vertexvh , that is, bfs(vh). Note that, for
directed graphs, the BFS query should run on the edge-reversed
graphs, since the goal is to get the least number of hops from every
other vertex to the high-degree vertex, not the other way around.

Figure 8 summarizes our reasoning—reducing the inter-iteration
alignment to the problem of BFS queries on high-degree vertices.

inter-iteration alignment
reduce

heavy iteration alignment
reduce

heavy iteration arrival time estimation
reduce

least hops to high-degree vertices

reduce

BFS queries on high-degree vertices

approximate

compute

approximate

compute

Figure 8: Flow of Solving Inter-Iteration Alignment.

Next, we present the algorithm of inter-iteration alignment (see
Figure 9). First, some one-time preparation is needed: (i) identifying
the top-K high-degree vertices in terms of the out-degree (due to
the use of push model) at Line 2; (ii) reversing the edges’ directions
if the graph is directed (Line 3); (iii) running a BFS query on each
selected high-degree vertex to "nd the least number of hops from
an arbitrary vertex vi to each high-degree vertex vh (Line 4-5).

After the preparation, the algorithm is ready to compute the
alignment vector I for a give query batch B. First, it computes
the least hop number to the closest high-degree vertex for each
query q(vi ), stored in closestHV[vi] (Line 9-10). Then, it "nds the
largest value among cloestHV[vi] (Line 11), which essentially is
the latest time of reaching a high-degree vertex (i.e., arrival time)
for a query in the batch, stored in latestInBatch. Finally, based on
the di!erence of arrival time relative to the latest (latestInBatch),
it calculates the alignment vector I (Line 12-13).

From another perspective, the alignment delays the start time
of certain queries in the evaluation batch, thus we also refer to the

/* preparation for graph G */
HV = getTopHighOutDegreeVertices(G, K)
Gr = getEdgeReversedGraph(G)
for each vertex vh in HV

leastHops[v1 - vmax][vh] = bfs (Gr, vh)

/* find alignment vector I for query batch B */
getAlignment(B )  {  
for each query q(vi ) in B

closestHV[vi ] = min { leastHops[vi ][vh] | ∀ vh ∈ HV }
latestInBatch = max { closestHV[vi ] | ∀ q(vi) ∈ B }
for each query q(vi ) in B

I [vi] = latestInBatch – closestHV[vi ]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 9: Pseudocode for Inter-Iteration Alignment.

above technique as delayed start. As shown later in the evaluation,
comparing to the ground truth—the optimal alignment, the accuracy
of the above heuristic-based alignment is quite high (usually o! by
at most 2 iterations) and also its performance is close to that with
the optimal alignment. See more details in Section 4.

Next, we will move our discussion of alignment to the most
coarse-grained level—query batching.

3.4 Alignment-Aware Batching
In the prior section, we align (local) iterations of di!erent queries
to improve the sharing of graph accesses (measured by a#nity).
In fact, we may achieve similar or even better e!ects by grouping
queries whose iterations are better aligned into the same batch. For
example, it is better to put sssp(v1) (in Table 1) and sssp(v2) into
the same batch, rather than sssp(v2) and sssp(v8) (in Table 2),
as the former exposes a better alignment at the iteration level.

Based on the above intuition, we propose a"nity-oriented query
batching. The goal is to maximize the a#nity for queries in a batch
through the management of batching policy.

A!nity-Oriented Query Batching. By default, all queries in the
evaluation bu!er are processed in the order that they are received.
Though intuitive, this "rst-come "rst-serve policy may produce
query batches with low a#nity. To avoid this, a#nity-oriented
batching creates batches based on the a#nity among queries, which
can be approximated as detailed in the prior section. However,
a simple a#nity-oriented batching, in theory, may postpone the
processing of some queries—those exhibit poor a#nity with most
queries—with an unbounded delay. To avoid this caveat, we limit
the number of queries considered each time for a#nity-oriented
batching using a threshold Bw . That is, every Bw queries in the
bu!er are scheduled together, referred to as a batching window.

Figure 10 illustrates the idea of a#nity-oriented query batching.
First, the earliest received Bw queries in the bu!er are selected and
ranked by their least number of hops to the closest high-degree
vertex (i.e., closestHV[] in Figure 9). Then, every consecutive
|B| ranked queries in the batch window are selected to form an
evaluation batch. Note that array closestHV[] is pre-computed
just like that used in inter-iteration alignment.
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Query buffer

qj+1 qj+Bw qj+3 ......

Batching window

Query
Rank by
closestHV

q(vj’+1) 1

q(vj’+2) 1

...

q(vj’+Bw) 8

[q(vj’+1), q(vj’+2), q(vj’+3), q(vj’+4)]

An eval. batch

1

2

Figure 10: A#nity-Aware Query Batching.

Connection with Inter-Iteration Alignment. Note that unlike
the intra-iteration alignment which is orthogonal to the later two
alignment techniques, the relation between the two inter-iteration
alignments and a#nity-oriented batching are not fully orthogonal.
This is due to the fact that both aim at improving the a#nity de"ned
at the iteration level. In other words, if a#nity-oriented batching
has been employed, then the extra bene"ts from inter-iteration
alignment might be limited, even though in theory, each alignment
technique may provide its unique bene"ts.

So far, we have introduced the alignments at all three levels.
Next, we brie$y explain their implementations.

3.5 Implementation
We implemented Glign on top of the popular in-memory graph
processing engine Ligra [28]. In fact, thanks to its high-e#ciency,
Ligra also serves as the base for two recently proposed concurrent
graph systems: Congra [20] and Krill [6]. One of our goals is to
implement Glign as a transparent runtime system, thus keeping
the original programming interface of Ligra mostly untouched.
For example, developers can still call functions EdgeMap() and
VertexMap() for traversing edges and vertices, and VertexSubset
remains to be the frontier representation.

Under the hood, Glign maintains the query-oblivious frontier
and leverages the original parallelization supports from Ligra to
process each query in parallel. To support batching, we extended
Ligra to let it consume a query bu!er based on the batch size B
and the batching policy (e.g., a#nity-oriented batching). At the
beginning of an iteration, Glign "rst checks the alignment vector
I (in Section 3.3) to decide if some queries need to be started at the
current iteration. For better locality, the memory layout of vertex
values is implemented as a single array and the value of vertex vj
for query qi can be accessed via ValArray[vj*B+i], where B is the
batch size. When the graph is loaded into the memory for the "rst
time, Glign will automatically compute the least hops from each
vertex to the closest high degree vertex (closestHV[]), which will
later be used to guide the alignments.

4 EVALUATION
This section evaluates the e!ectiveness of the proposed alignment
techniques and the e#ciency of Glign.

4.1 Methodology
First, we set up two baselines for comparingwith Glign: (i) Ligra-S
and (ii) Ligra-C. The former evaluates the queries in a batch one

Table 5: Methods in Evaluation

Method Brief Description

Ligra-S Eval. queries in batch one by one w/ Ligra [28]
Ligra-C Eval. queries in batch simultaneously w/ Ligra [28]

GraphM [42] A high-throughput concurrent graph system
Krill [6] A compiler & runtime for concurrent graph processing

Glign-Intra Glign with only intra-iteration alignment
Glign-Inter Glign-Intra + inter-iteration alignment
Glign-Batch Glign-Intra + a#nity-oriented batching

Glign Glign with all proposed alignment techniques

after another, using Ligra [28]—a state-of-the-art in-memory graph
processing engine. Note that Ligra itself processes each single
query in parallel. Ligra-C extends Ligra to support concurrent
query evaluation using both uni"ed and separated frontiers (see
Section 3.2), representing a design that has been adopted by the
existing concurrent graph processing systems [6, 13, 42].

Also, we compare Glign in general with two state-of-the-art
concurrent graph processing systems that are publicly accessible:
GraphM [42] and Krill [6]. To show the contributions of di!erent
techniques, Glign is con"gured di!erently as listed in Table 5.
In addition to the above systems, we also tested a system design
that exploits query-level parallelism—each concurrent query is
evaluated using the serial implementation from BGL [29], while
di!erent queries are processed on di!erent threads. However, we
found it ran slower than our baseline Ligra-S in most cases tested.

Queries. We evaluated "ve types of graph queries, including BFS
(breadth-#rst search), SSSP (single source shortest path), SSWP (single
source widest path), SSNP (single source narrowest path), and Viterbi.
Table 6 lists their vertex functions in pseudo-code.

All queries are vertex-speci"c in that they start from one source
vertex and compute property values for all vertices in the graph.
To generate the query set for each type of query, we followed a
sampling strategy similar to the one used by Qi and others [21].
First, the graph vertices are divided into disjoint bins based on their
distances (hops) to the (top-4) high-degree vertices. Then, these
bins are scanned in rounds, and in each round a vertex is randomly
picked from each bin, until 512 vertices are selected, which serve as
the source vertices of our queries. In this way, the selected queries
provide a better coverage of the entire graph structure. We assume
all the 512 queries are already in the bu!er when the systems start to
process them. This allows us to focus on evaluating the throughput
of the concurrent systems. One can also add the query arrival time
information, with which the latency of processing each query could
also be inferred. We leave such latency study for future work.

Besides grouping queries of the same types into the same query
bu!er (i.e., homogeneous query bu!er), we also generated a query
bu!er of mixed types of queries, randomly selected with types of
BFS, SSSP, SSWP, and SSNP. We refer to this scenario as “Heter”.

By default, we set the query batch size to 64. For evaluating the
impacts of batch size, we changed the batch size from 2 to 128.

Graph Data Sets. We primarily evaluate Glign on power-law
graphs, which include "ve real-world graphs. For completeness,
we also evaluate Glign on a couple of road networks, which are
more like planar graphs. Their basic properties are summarized in
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Figure 11: Overall Performance.

Table 6: Vertex Functions of Graph Queries

Bench. Pseudo-code of Vertex function f (s)

BFS
for each out-neighbor d of s
level(d ) = min { level(d ), level(s ) +1 };
if level(d ) changed then add d to f rontier ;

SSSP
for each out-neighbor d of s
dist(d ) = min { dist(d ), dist(s ) + w(s , d ) };
if dist(d ) changed then add d to f rontier ;

SSWP
for each out-neighbor d of s
wide(d ) = max { wide(d ), min { wide(s ), w(s , d ) } };
if wide(d ) changed then add d to f rontier ;

Viterbi
for each out-neighbor d of s
viterbi(d ) = max { viterbi(d ), viterbi(s ) / w(s , d ) };
if viterbi(d ) changed then add d to f rontier ;

SSNP
for each out-neighbor d of s
narrow(d ) = min { narrow(d ), max { narrow(s ), w(s , d ) } };
if narrow(d ) changed then add d to f rontier ;

Table 7. The number of edges ranges from 69M to 3.6B, and the
diameter ranges from 10 to 9100.

Table 7: Graph Statistics

Graph Abbr. Directed |V| |E| Avg. deg. Dia.

LiveJournal [3] LJ Yes 4.8M 69M 14.2 13
Wikipedia [2] WP Yes 14M 437M 32.2 10
UK-2002 [5] UK2 No 19M 524M 28.3 45
Twitter [12] TW Yes 42M 1.5B 35.3 15
Friendster [1] FR No 125M 3.6B 28.9 38
roadNet-CA [24] RD-CA No 2.0M 5.5M 2.81 849
roadNet-USA [24] RD-US No 24M 58M 2.41 9100

The experiments are conducted on a 32-core Linux server that
equips with Intel Xeon E5-2683 v4 CPU (LLC size: 40MB) and 512GB
memory. The application is compiled with g++ 6.3 and runs on
CentOS 7.9.

Next, we will "rst report the overall performance, followed by
more detailed evaluation of each alignment technique.

4.2 Overall Performance
Table 8 shows the total execution time of evaluating a bu!er of
512 queries using Ligra-S, while Figure 11 reports the speedups

Table 8: Time of Evaluating 512 Queries using Ligra-S

LJ WP UK2 TW FR

BFS 66s 300s 334s 1104s 3646s
SSSP 176s 579s 986s 2332s 10076s
SSWP 97s 392s 507s 1734s 4580s
Viterbi 224s 499s 1388s 2129s 7926s
SSNP 99s 372s 493s 1630s 4440s
Heter 107s 398s 567s 1819s 5858s

of the other systems over Ligra-S. From the results, we "nd that
Glign clearly outperforms the other systems in almost all the cases
(except for the case UK2-Viterbi). The highest speedup it reaches
is 9.4× (in the case of UK2-BFS). On average, Glign achieves 5.2×
speedup over the baseline Ligra-S.

Among the other systems, GraphM exhibits similar performance
as Ligra-S. Note that, unlike the other systems in our evaluation,
GraphM is not built on top of Ligra, instead, it is built on top of
GridGraph [43], a system mainly designed for out-of-core graph
processing. This di!erence in the base system selection could be
one of the reasons that cause GraphM to perform worse than the
other concurrent graph systems used in our evaluation.

Krill and Ligra-C both achieve a substantial average speedup
over Ligra-S (1.4× and 2.1×), con"rming the general bene"ts of
concurrent query evaluation. However, both perform worse than
Glign, though all the three systems share the same base system
(Ligra). We believe this is mainly due to the locality improvement
brought by the alignment techniques that Glign employed.

To con"rm the above speculation, we measured the last-level
cache (LLC) misses using the perf tool. The results are listed in
Table 9. To save space, we report the results mainly for two graphs.
From the results, we "nd that Glign incurs signi"cantly fewer LLC
misses than the other methods. For example, on LJ graph, Glign’s
LLC misses is only 12%, 21%, 5%, and 23% of those (on average)
incurred by Ligra-S, Ligra-C, GraphM, and Krill, respectively.
These signi"cant LLCmiss reduction echos the substantial speedups
brought by Glign as shown earlier in Figure 11.

In the following, we will break down the performance gains of
Glign by evaluating each alignment technique.
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Table 9: LLC Misses (in billions)

Ligra-S Ligra-C GraphM Krill Glign

LJ

BFS 9 11 44 15 1
SSSP 28 15 77 15 4
SSWP 21 12 52 15 2
Viterbi 53 20 91 8 4
SSNP 21 11 52 15 2
Heter 23 15 45 11 4

Mean 26 14 60 13 3

TW

BFS 302 245 1083 394 26
SSSP 621 237 1698 399 53
SSWP 545 217 963 397 29
Viterbi 757 242 1622 171 48
SSNP 540 214 1202 396 36
Heter 563 252 1201 241 52

Mean 555 235 1295 333 41
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Figure 12: Speedups of Glign-Intra over Ligra-C

4.3 Intra-Iteration Alignment
In this section, we evaluate the proposed query-oblivious frontier
(Section 3.2) and compare it with the two-level frontier design
(i.e., uni"ed and separate frontiers) that is employed by some of
the existing concurrent query processing systems. Both designs
ensure synchronized frontier traversal—the key to intra-iteration
alignment. In our setting, Ligra-C employs the two-level frontier
design, while Glign-Intra uses the query-oblivious frontier (other
alignment techniques are disabled).

First, we have veri"ed the correctness of all the query results
produced by Glign-Intra, thus experimentally demonstrated the
correctness of this new frontier design with real-world large data,
complimenting the theoretical proof in Section 3.2.

Second, in terms of performance, Figure 12 reports speedups of
Glign-Intra over Ligra-C. The results show that Glign-Intra
yields consistent speedups across di!erent queries and graphs,
which range from 1.13× to 1.96×.

In addition, we also collected the LLC misses of Glign-Intra
which may o!er some more direct evidences on the e!ectiveness
of query-oblivious frontier. The results are reported in Table 10.
From the results, we "nd that Glign-Intra can consistently reduce
the LLC misses under all the evaluated cases, and the average
reduction is quite substantial—its LLC misses are only around 30%
on average of those incurred by the baseline Ligra-C. The reduction
mainly comes from the elimination of separate frontiers and the
two-level frontier checking used by the baseline and other existing

Table 10: LLC Misses Reduction by Glign-Intra

(Numbers are the ratios between the LLC misses of
Glign-Intra and the LLC misses of Ligra-C)

LJ WP UK2 TW FR

BFS 22% 24% 13% 23% 32%
SSSP 33% 37% 12% 34% 36%
SSWP 32% 27% 17% 28% 24%
Viterbi 34% 39% 19% 36% 31%
SSNP 32% 28% 17% 31% 21%
Heter 35% 42% 22% 31% 31%

Geomean 31% 32% 16% 30% 29%

Table 11: Memory Footprint Breakdown (64 queries)

LJ TW

Ligra-C Glign-Intra Ligra-C Glign-Intra

Graph 545MB 545MB 11,400MB 11,400MB
Vertex Value 1,180MB 1,180MB 10,200MB 10,200MB
Frontier 296MB 4.6MB 2,540MB 39.7MB

concurrent graph systems. These results, to a large extent, explain
Glign-Intra’s speedups shown in Figure 12.

Finally, to get a sense of the memory reduction brought by the
query-oblivious frontier in comparison to a two-level frontier, we
pro"led the memory footprints. Table 11 reports the sizes of major
data structures in Ligra-C and Glign: (i) the graph topology data,
the values of all vertices, and the frontier (as a labeling array). Note
that even though the frontier is only a relatively small portion of
the total memory footprint, it is accessed entirely in every iteration.
In comparison, only some parts of the graph and some vertex values
are accessed in each iteration. The results show that the frontier
size is reduced dramatically with query-oblivious frontier, which
leads to the LLC misses reduction as shown in Table 10.

4.4 Inter-Iteration Alignment
To show the bene"ts of inter-iteration alignment, we compare
Glign-Inter with Glign-Intra.

Performance. Figure 13 reports the speedups of Glign-Inter over
Glign-Intra. Overall, Glign-Inter achieves better performance
in all evaluated cases, except for WP-SSWP and WP-SSNP. The
speedups range from 0.89× to 2.95×. This demonstrates the bene"ts
of our proposed inter-iteration alignment technique—delayed start.
In general, we found Glign-Inter does not perform signi"cantly
better onWP graph. The reason might be related to the fact thatWP
has a relatively smaller diameter (see Table 7). Smaller diameters
imply that the vertices selected as the source vertices of the queries
tend to be closer to each other in terms of hops. Based on the
discussion in Section 3.3, queries with closer source vertices tend to
align better (i.e., yielding better a#nity) during their evaluation. As
a result, there is less room for inter-iteration alignment to improve.

A!nity. To get a deeper understanding of the improvements, we
also collected the a#nity values (see De"nition 3.4). The results
are shown in Figure 14. Note that we set the Y-axis to 1 − a!nity
because, for a batch of 64 queries, the a#nity value tends to be
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Figure 13: Speedups of Glign-Inter over Glign-Intra

close to 1, using 1 − a!nity can better re$ect its signi"cants. In
fact, 1 − a!nity re$ects how much di!erent frontiers are misaligned,
thus the lower the value is, the better alignment we get. The results
show that Glign-Inter substantially reduces the divergence, from
0.068 to 0.041 on average. The highest reductions happen to BFS
on UK2 and FR graphs, which match well with the top two best
speedups (2.91× and 2.95×) reported in Figure 13. The results also
show that divergence for Glign-Intra is already very low in the
case of WP graph, leaving little room for further improvements.
This explains the limited speedups achieved by Glign-Inter on
this graph (see Figure 13).

In addition, we report the LLC miss reduction by Glign-Inter

over Glign-Intra in Table 12. In general, the results echo well
the above "ndings. For example, the highest cache miss reductions
also happen to BFS on UK2 and FR graphs (37% and 32%) and the
reduction ratio on WP graph is the least.

Table 12: LLC Misses Reduction by Glign-Inter

(Numbers are the ratios between the LLC misses of
Glign-Inter and the LLC misses of Glign-Intra)

LJ WP UK2 TW FR

BFS 67% 96% 37% 68% 32%
SSSP 73% 91% 53% 77% 51%
SSWP 73% 101% 39% 76% 48%
Viterbi 64% 69% 38% 60% 37%
SSNP 74% 97% 41% 67% 42%
Heter 64% 81% 31% 65% 51%

Geomean 69% 88% 39% 69% 43%

Heuristic v.s. Ground Truth. To examine the e!ectiveness of the
proposed heuristic, we pro"led the ground-truth best alignments for
512 sampled batches, where each batch consists of only two queries.
The best alignment of each batch is found by exhaustively trying
all possible alignments and calculating the corresponding a#nity
value. Table 13 summarizes our "ndings. Among the 512 batches,
our heuristic "nds the best alignments in 33.6% of them, and the
di!erence with the optimal alignment is within 2 iterations for
over 95% cases. As to the speedups, the best alignments outperform
ours (1.50× vs 1.45×), indicating that extra room exists for further
improving the performance via alignments.

Pro"ling Costs. As discussed in Section 3.3, our heuristic requires
pro"ling—running BFS queries on (four) high-degree vertices. Note
that the pro"ling happens at the beginning when the system and

Table 13: Ground Truth Study of Glign-Inter

Speedup

Di! Cnt Ratio Glign-Intra Glign-Inter Best-Align

0 172 33.6% 1.36× 1.51× 1.51×
1 217 42.4% 1.32× 1.42× 1.51×
2 102 19.9% 1.20× 1.27× 1.46×
3 20 3.9% 1.13× 1.20× 1.47×
4 0 0.0% N/A N/A N/A
5 1 0.2% 1.62× 1.52× 1.56×

Sum./Avg. 512 100% 1.30× 1.41× 1.50×

Table 14: Pro!ling Costs

LJ TW

Pro"ling Cost 0.20s 3.84s

Query Eval. Cost SSSP 4.47s 53.40s
(batch size:64, Glign) BFS 1.56s 25.51s

graph is set up. It is a one-time e!ort for each graph, with bene"ts
applying to di!erent types of queries that run on the graph. Table 14
lists the pro"ling costs on two graphs (LJ and TW), compared to the
query evaluation time on the same graphs. During the concurrent
query evaluation, accessing the pro"ling result (a table lookup) is
quick and the cost is negligible.

4.5 Alignment-Oriented Batching
To demonstrate the bene"ts of alignment-oriented batching, we
compare Glign-Batch with Glign-Intra. Figure 15 reports the
speedups of Glign-Batch over Glign-Intra. These speedups are
slightly higher than those achieved by Glign-Inter (Figure 13).
This is expected as both alignments essentially explore the same
a#nity opportunities. The additional improvements indicate that
the alignment opportunities across queries (in the query bu!er) are
slightly higher than those within a single evaluation batch, which
is also con"rmed by the a#nity di!erences between Glign-Inter

and Glign-Batch as shown in Figure 14.

4.6 Impacts of Batch Size
To understand the sensitivity of Glign to a basic parameter—the
batch size. We changed the batch size from 2 to 128. Note that 128 is
the largest value Glign can achieve based on the memory capacity
of our machine and the size of the evaluated graphs.

Figure 16 reports the results using four types of queries and two
input graphs. Most curves in the "gure follow a similar trend, that
is, the speedup "rst grows as the batch size increases, until the
batch size reaches around 64, then the speedup starts to drop. The
upward trend indicates that increasing the degree of concurrency
tends to be bene"cial, while the downward trend indicates there is
a limit for the bene"t—the memory pressure also increases as the
batch size increases, which eventually would curb the gain.

4.7 Performance on Road Networks
Though Glign is primarily designed for processing power-law
graphs, for completeness, we also report its performance on some
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Figure 14: A#nity Comparison: Glign-Intra vs Glign-Inter vs Glign-Batch
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Figure 15: Speedups of Glign-Batch over Glign-Intra

Table 15: Performance on Road Networks

RD-CA RD-US

SSSP BFS SSWP SSSP BFS SSWP

Ligra-S 369.8s 239.5s 219.6s 15224s 7916s 1298s
Ligra-C 2.91× 5.30× 1.45× 1.25× 2.66× 0.30×

Glign-Intra 6.08× 9.31× 2.99× 2.04× 14.67× 1.86×
Glign-Inter 6.85× 10.05× 3.15× 1.75× 13.51× 1.25×
Glign-Batch 8.36× 11.15× 3.66× 2.52× 15.37× 1.91×

Glign 8.90× 12.41× 3.64× 2.77× 16.91× 1.29×

road networks (RD-CA and RD-US). Table 15 reports the speedups
of Glign and their variants over our baseline Ligra-S. First, the
results show that Glign-Intra still achieves good or even higher
speedups (e.g., 9.3× and 14.7× speedups for BFS). This is due the
fact that, typically, only a small portion of the road network needs
to be accessed in each iteration, which makes the costs to access
frontier(s) relatively higher. On the other hand, the extra bene"ts
brought by the inter-iteration alignment and alignment-oriented
batching are more limited. This is because evaluation on such
graphs often fails to yield su#ciently “heavy” iterations, making
the a#nity issue less of a concern.

4.8 Comparison with iBFS
Finally, we compare Glign with iBFS [13]—a specialized graph
system dedicated to concurrent BFS queries. It is an early work that
groups BFS query instances and leverages shared frontier traversal,
which resembles a#nity-oriented batching. However, there are a
few key di!erences between the two. First, iBFS maintains both

Table 16: Comparison with iBFS

iBFS Glign-Intra Glign-Batch

LJ 16.6s 0.98× 1.78×
WP 41.1s 0.92× 1.45×
UK2 130.8s 0.95× 3.17×
TW 276.3s 1.08× 2.10×
FR 2465.1s 1.02× 3.04×

the uni"ed and separate frontiers to achieve synchronized frontier
traversal, just like Ligra-C and Krill. In comparison, Glign uses
uni"ed frontier only (i.e., query-oblivious frontier); Second, to group
BFS queries, iBFS uses a di!erent heuristic based on the out-degrees
of source vertices. In particular, it requires two conditions for query
grouping: (i) out-degrees of source vertices should be less than p;
and (ii) the source vertices must connect to at least one common
vertex whose out degree is greater than q. In comparison, Glign
groups queries only based on the a#nity (or number of hops to
a high-degree vertex). Last but not least, iBFS does not support
inter-iteration alignment. To experimentally compare the two, we
have implemented the heuristic of iBFS in Ligra-C. Note that the
original iBFS work is implemented for the GPU platform.

Table 16 reports the performance of using iBFS for evaluating 512
BFS queries, and the speedups of Glign-Intra and Glign-Batch

over iBFS. Overall, we "nd that the performance of iBFS is similar
to Glign-Intra, but substantially slower than Glign-Batch. On
average the gap between iBFS and Glign-Batch is between 1.45×
and 3.17×. A further examination reveals that the heuristic of iBFS
is too strict—it works better when there are an extremely large
number of queries involved (e.g., querying all vertices in the graph).

5 RELATEDWORK
This section provides a more detailed summary of the works on
multi-query graph processing as well as some other relevant works.

Targeting distributed platforms, Seraph [33, 34] is an early work
that provides system-level supports for concurrent graph query
processing. Its key idea is to decouple the graph structure from
query-speci"c data to allow concurrent query evaluations to share
the common graph structure data. Some other distributed systems
for concurrent graph query processing include MultiLyra [16] and
BEAD [17], both of which support e#cient batched query evaluation
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Figure 16: Impacts of Query Batch Size (Left: LJ graph, Right: TW graph)

with graph sharing and frontier sharing in order to amortize the
communication costs among computation nodes in the cluster.

For single-machine graph processingwith out-of-core processing
supports, some prior works include CGraph [38] and GraphM [42],
both of which follow the idea of graph sharing as in Seraph. The
key insight of both works is to exploit the temporal and spatial
locality of shared graph accesses. To achieve that, they "rst partition
the graph (as well as the vertex value array) so that each partition
is small enough to "t into the cache, then they load one partition
each time and process all jobs (queries) relevant to this partition.
Comparing to their “partition-centric” approach, our approach is
more “iteration-centric”, though both of them share the same goal—
improving the data locality.

For in-memory graph processing, one early work is Congra [20],
which is built on top of Ligra [28]. Its main goal is to maximize the
memory bandwidth by forking processes for new queries through
the guidance of a scheduler. It needs o%ine pro"ling on each graph
query to get the memory bandwidth and scalability characteristics.
Since each query is evaluated by a separate process, Congra does
not exploit graph sharing or frontier sharing. Unlike the others,
SimGQ [32] exploits the shared subcomputations of queries in a
batch of concurrent queries and reuses some computation results
proposed in VRGQ [10] to improve the e#ciency. These techniques
exploit shared computations, thus are orthogonal to our techniques
which exploit shared graph accesses. Finally, Krill [6] is a more
recent work that not only exploits graph sharing, but also gains
bene"ts from an e#cient management of property data that are
computed during the evaluation. In comparison, our work supports
both graph sharing and frontier sharing among concurrent queries
while also achieves improvements in alignment of graph traversals
and thus signi"cant reductions in LLC misses over Krill. Like the
above systems, our system Glign also targets in-memory graph
processing, however, Glign explores three levels of alignments
which are not seen in any of these existing systems.

Following up the Ligra [28] framework, two more recent graph
programming systems, GraphIt [37, 40] and Julienne [7], have
been proposed for optimizing single query processing. In particular,
GraphIt designs a DSL that provides custom scheduling functions
for exploring various optimization opportunities. In comparison,
Julienne is specialized for bucketing-based algorithms like k-core
and approximate set-cover which cannot be supported e#ciently
in Ligra. Their techniques are orthogonal to those in our work
which focus on the performance of concurrent queries. However,
to incorporate our alignment techniques, these systems need to be
extended to support concurrent query evaluation, which appears to

be more challenging than extending the Ligra framework, due to
the involvement of a DSL and the consideration of bucketing-based
algorithms, respectively. Some other recent works o!er supports
for hypergraphs [27] and streaming graphs [8, 31]—scenarios that
our work does not cover currently. It would be an interesting topic
to explore concurrent query evaluation under such schemes.

There are recent works on graph accelerators (GraphPulse [22],
JetStream [23], and LCCG [41]). GraphPulse is an asynchronous
graph processing accelerator for static graphs. JetStream supports
streaming graphs and incremental computations. It also exploits the
monotonicity property of iterative graph queries, but for a di!erent
purpose than our work. The property is leveraged to guarantee the
correctness of incremental computations. Neither GraphPulse or
JetStream addresses the concurrent query evaluations scenario.
LCCG is a graph accelerator that supports concurrent graph jobs by
utilizing a topology-aware approach with new hardware units. It
remains an interesting open question how our proposed alignment
techniques can be integrated into the graph accelerators. One of
the "rst steps should be extending the above accelerators so that
they can handle multiple queries simultaneously.

Finally, there are many works aimed at improving the memory
locality for a single query evaluation [19, 36, 39]. To carryover these
improvements to concurrent queries, they must be combined with
an approach like Glign.

6 CONCLUSION
This work reveals a major performance issue in concurrent graph
processing—alignment of graph traversals. It addresses this issue
at three levels. First, it proposes the query-oblivious frontier to
achieve synchronized frontier traversal within each global iteration.
Second, it introduces a heuristic-based solution based a series of
insights and observations to intelligently align the iterations of
di!erent queries and to group queries with di!erent a#nities. It
integrates the proposed techniques into a runtime system called
Glign. A full evaluation of Glign has con"rmed the e!ectiveness of
the proposed alignments and demonstrated superior performance
over state-of-the-art concurrent graph processing systems.
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A ARTIFACT APPENDIX

A.1 Abstract
This artifact contains the source code of Glign, including the "ve
concurrent query evaluation designs discussed in the paper and
some graph benchmarks used in the experiments. In addition, this
artifact provides bash scripts to compile Glign and reproduce the
key experimental results reported in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Five designs of concurrent query evaluation schemes:
Glign, Glign-Intra, Glign-Inter, Glign-Batch, and Ligra-C.

• Program: The concurrent query evaluation system Glign built on
top of Ligra.

• Compilation: GCC 6.3.0
• Data set: There are seven graphs tested in the paper. We include
the smaller ones (LiveJournal and roadNet-CA) in the artifact.

• Run-time environment: The system is developed and tested in
Linux environment (CentOS 7.9).

• Hardware: The experiments in the paper were run on a machine
with Intel Xeon E5-2683 v4 CPU and 512GB memory. 150GB disk
space is enough for storing all graphs.

• Experiments: Bash scripts are included in Glign-AE/apps and
Glign-AE/results/scripts. Detailed instructions are provided in
Glign-AE/README.md

• Howmuch time is needed to preparework$ow (approximately)?:
2-3 hours to prepare all graphs.

• Howmuch time is needed to complete experiments (approx-
imately)?: It takes around 2-4 hours to generate all data for the
LiveJournal (LJ) graph. Note that collecting data for all the graphs
reported in the paper may be very time-consuming. It is suggested
that the reviewer "rst test the LJ graph and check the results. If time
allows, the reviewer can test other larger graphs.

• Publicly available?: Yes

A.3 Description
A.3.1 How to access. A "le named ASPLOS23_AE.zip, containing
the source "les, scripts, and input query "les, is available as a public
repository on Zenodo ("nd its URL in [35].)

A.3.2 Hardware dependencies. To reproduce the results reported
in the paper, we recommend running the artifact on Intel Xeon CPU
with at least 32 cores. For smaller graphs like LJ, 64GB memory is
enough, for larger graphs (FR), 400GB memory is required.

A.3.3 So!ware dependencies. We recommend that the artifact runs
on CentOS 7, but other similar Linux distributions should also work.
To compile and run the source code with scripts, users need GCC
with Cilk support (GCC 7.4.0 or 6.3.0 or lower versions).

A.4 Installation
The compilation script is provided in Glign-AE/apps. Detailed
instructions are provided in Glign-AE/README.md

A.5 Evaluation and expected results
The performance tests and pro"ling experiments could be run with
the provided scripts (in Glign-AE/apps). See detailed instructions
in Glign-AE/README.md. Scripts for collecting data reported in the
paper are provided in Glign-AE/results/scripts). Note that the

running times, speedups, and LLC misses may vary depending on
the computing environments, but the trends should be similar.
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