Glign: Taming Misaligned Graph Traversals in Concurrent
Graph Processing

Xizhe Yin Zhijia Zhao Rajiv Gupta
xyin014@ucr.edu zhijia@cs.ucr.edu gupta@cs.ucr.edu
University of California, Riverside University of California, Riverside University of California, Riverside
USA USA USA

ABSTRACT = 30 = 700

S 25 S 600
In concurrent graph processing, different queries are evaluated on 5 20 2 igg
the same graph simultaneously, sharing the graph accesses via the § 15 & 300
memory hierarchy. However, different queries may traverse the E 1;) I I I I I E igg I I I I I
graph differently, especially for those starting from different source 3 0 u m = - -
vertices. When these graph traversals are “misaligned”, the benefits E}, E’ g g" g :Ei z % é}, :é,, E ?% En E £ %
of graph access sharing can be seriously compromised. As more 5 3 s 4 5 4 s 4o

U-SsSP U-BFS TW-SSSP TW-BFS

concurrent queries are added to the evaluation batch, the issue
tends to become even worse.

To address the above issue, this work introduces G1ign, a runtime
system that automatically aligns the graph traversals for concurrent
queries. Glign introduces three levels of graph traversal alignment
for iterative evaluation of concurrent queries. First, it synchronizes
the accesses of different queries to the active parts of the graph
within each iteration of the evaluation—intra-iteration alignment.
On top of that, Glign leverages a key insight regarding the “heavy
iterations” in query evaluation to achieve inter-iteration alignment
and alignment-aware batching. The former aligns the iterations of
different queries to increase the graph access sharing, while the
latter tries to group queries of better graph access sharing into the
same evaluation batch. Together, these alignment techniques can
substantially boost the data locality of concurrent query evaluation.
Based on our experiments, Glign outperforms the state-of-the-art
concurrent graph processing systems Krill and GraphM by 3.6x
and 4.7X on average, respectively.

CCS CONCEPTS

« Computing methodologies — Parallel computing method-
ologies; « Information systems — Computing platforms.

KEYWORDS

concurrent graph processing, data locality, graph system, iterative
graph algorithm, graph traversal

ACM Reference Format:

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2023. Glign: Taming Misaligned
Graph Traversals in Concurrent Graph Processing. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (ASPLOS °23), March 25-29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3567955.3567963

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9915-9/23/03.

https://doi.org/l().l145/3567955.3567963

78

Figure 1: Last-Level Cache Misses (64 concurrent queries on
LiveJournal [3] and Twitter [12], measured by perf profiler).

1 INTRODUCTION

Although last decade witnessed significant advances in developing
efficient graph processing systems, supports for concurrent query
evaluation remain underexplored. Most existing graph processing
systems are designed to process one analytical query each time,
such as a single-source shortest path (SSSP) query. On the other
hand, as the demands of graph analytics grow, so do the needs for
concurrent evaluation of graph queries [34, 38, 42]. A prior study
on social network application shows that most graph query jobs are
executed concurrently [34]. To fill this gap, several concurrent graph
processing systems [6, 20, 34, 38, 42] have been proposed in recent
years, including Seraph [34] for distributed platforms, CGraph [38]
and GraphM [42] with supports for out-of-core processing, and
Congra [20] and Krill [6] which focus on in-memory evaluation
of a batch of concurrent graph queries.

Opportunities and Challenges. By evaluating multiple queries
simultaneously on a graph, concurrent graph processing enables
graph access sharing across queries via the memory hierarchy, that
is, the graph data fetched to the cache(s) by one query may be used
directly by other queries. Intuitively, such sharing may reduce the
total cache misses, benefiting the overall performance. However,
this work finds that the actual cache miss reduction brought by
concurrent graph query evaluation could be quite limited.

Figure 1 reports the last-level cache (LLC) misses of evaluating
64 concurrent queries on two graphs using some representative
graph systems. As a baseline, Ligra-S evaluates the queries one by
one using Ligra [28], a well-known in-memory graph processing
framework that evaluates each query in parallel. In comparison,
Ligra-C evaluates all 64 queries simultaneously using an extended
Ligra with basic concurrency supports (see Section 4); Krill is a
state-of-the-art concurrent graph processing system just released
recently [6]. As the results show, even with a concurrency degree of
64 queries, the cache misses of Ligra-C andKrill are reduced by a

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3567955.3567963
https://doi.org/10.1145/3567955.3567963
https://doi.org/10.1145/3567955.3567963

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

limited fraction comparing to Ligra-S and sometimes, their cache
misses may even exceed that of the baseline (LJ-BFS and TW-BFS).

A primary reason causing the above unfavorable results lies in

the potential “misalignment” of underlying graph traversals among
concurrent queries. Though the above 64 queries are of the same
type, they may traverse the graph very differently due to their
vertex-specific nature (i.e., starting from different source vertices).
For queries of different types, their underlying graph traversals can
be even more diverse. When the traversals are misaligned—visiting
different parts of the graph for most of the processing time, the
concurrent evaluation of queries will not benefit much from the
shared memory accesses. Even worse, they may even “hurt” each
other by competing for the caches.
Solution of This Work. To address the above issue, this work
proposes a runtime system for in-memory graph processing on
multi-core platforms L namely, Glign 2 Gli gn can automatically
align different graph traversals of concurrent queries to maximize
the graph access sharing. As a result, it can significantly reduce
the cache misses compared to other systems (see Figure 1). Glign
primarily targets vertex-specific queries that employ iterative graph
algorithms for evaluation, such as SSSP and BFS. In addition, to
benefit the most from Glign, the vertex function of the iterative
algorithms f(v) needs to be monotonic, a common property shared
by many vertex-centric graph query algorithms [11, 25, 31]. Next,
we briefly introduce the key techniques behind Glign.

First, like most existing concurrent graph processing systems [6,
38, 42],Glign synchronizes the iterations of different queries during
evaluation—the barriers used for iterative evaluation are shared
across queries. This design allows Glign to treat the iterations as a
logical timeline for aligning graph traversals. To distinguish them
from the iterations in single-query graph processing, we refer to
the iterations shared by queries as global iterations.

Based on the global iterations, Glign addresses the problem of
graph traversal misalignment at three levels:

o Intra-iteration alignment. In each iteration of the evaluation,
a query needs to access an active part of the graph (ak.a.
frontier). Intuitively, the active parts of different queries may
overlap. If the overlapped parts are accessed around the same
time, the evaluation will benefit from temporal locality.

o Inter-iteration alignment. For a given batch of queries, Glign
allows their evaluation to start at different global iterations,
thus making it possible to align the iterations across queries
based on their graph access sharing.

o Alignment-aware batching. At the high level, considering all
the concurrent queries available, which queries should be put
into the same evaluation batch? Different batching strategies
may yield different amounts of graph access sharing.

For intra-iteration alignment, existing designs [6, 32] require two
levels of frontiers to achieve synchronized frontier traversal. Instead,
Glign proposes query-oblivious frontier, a single-level frontier that
deliberately ignores the frontier differences across queries. This
is possible if the vertex function of the query is monotonic. On
the other hand, this may evaluate extra vertices due to its inability
to distinguish some inactive ones for certain queries. Overall, we

!Similar ideas could be applied to out-of-core and distributed processing scenarios.
ZPronounced as /gline/.

79

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Alignment-aware batching
« affinity-oriented batch. <:'

uoibwWIIS3
LU01304331 AAD3Y,,

* delayed start <::|

Intra-iteration alignment
« query-oblivious frontier

Figure 2: Three Levels of Alignments in Glign.

found the benefits of reduced memory (from the use of a single-level

frontier) easily outweighs the side effects of extra computations.
For inter-iteration alignment and alignment-aware batching,

Glign leverages an important insight revealed in this work:

the “heavy iterations” of concurrent queries
should be well aligned during the evaluation.

Here, “heavy iterations” refer to iterations that access a relatively
larger portion of the graph (i.e., a large frontier). The insight is
backed by two facts. First, heavy iterations often dominate the total
processing cost of a query; Second, larger frontiers often expose
more opportunities for intra-iteration alignments—a potentially
larger overlapping among the frontiers of different queries.

The above insight reduces the two higher-level alignments into
the problem of alignment of heavy iterations. To solve the latter, this
work uses a simple yet effective heuristic to estimate the arrival
time of heavy iterations. Based on the estimation, two scheduling
techniques are proposed to improve the alignments:

o Delayed start. For a given batch of concurrent queries, this
technique postpones the start of the evaluation of certain
queries to later global iterations, based on the arrival time
differences of their heavy iterations;

o Affinity-oriented batching. Considering all the concurrent
queries received, it groups queries with closer arrival time
of heavy iterations (affinity) to the same evaluation batch.

Figure 2 lists the above techniques. To confirm their effectiveness,
this work evaluated G1ign with commonly used graphs and query
benchmarks, and compared it with two state-of-the-art concurrent
graph systems: GraphM [42] and Krill [6]. The results show that
the proposed alignment techniques can reduce the LLC misses by a
significant ratio. They also show that Glign achieves on average
3.6x speedup over Krill and 4.7X speedup over GraphM.

In summary, this work makes a three-fold contribution:

o First, it reveals a key performance issue in concurrent graph
processing—graph traversal misalignments, and categorizes
it at three levels of the graph processing system.

e Second, it proposes a series of techniques to address the
misalignments at each level: a new design of synchronized
frontier traversal and two scheduling techniques based on
the insight of heavy iterations.

e Finally, it integrates the above techniques in a system Glign
and compares it with the state-of-the-art systems.

Next, we start with some background of this work.

Glign: Taming Misaligned Graph Traversals in Concurrent Graph Processing

/* single-source shortest path */
fessp(v)
for each out-neighbor # of v {
dist(n) = min { dist(n), dist(v) + w(v, n) };
if dist(n) changed
then add » to frontier;

(a)

Figure 3: Example Vertex Function and Graph.

2 BACKGROUND

This section introduces the basics of vertex-centric graph processing
and the idea of concurrent graph query evaluation.

2.1 Vertex-Centric Graph Processing

Following the idea of “thinking like a vertex” [18], vertex-centric
graph processing emerges as the de facto model for programming
graph applications. Many graph systems have been proposed in
recent years based on this model, such as Pregel [15], GraphLab [14],
Giraph [26], PowerGraph [9], and Ligra [28]. Under this model, a
vertex function f(v) needs to be specified by developers, which
will be evaluated on every vertex in the graph or a selected subset
of vertices (i.e., frontier) iteration by iteration, to compute certain
vertex-specific properties, like the shortest distances from a source
vertex to every other vertex. The iterations stop when the properties
of all vertices stop changing (convergence) or some thresholds are
met, following the bulk synchronous parallel (BSP) model [30].

Take single-source shortest path (SSSP) as an example. The goal
is to find the shortest distance from a source vertex to every other
vertex in the graph. Figure 3-(a) shows its vertex function fsssp(v),
which updates the out-neighbors of vertex v based on its current
value. Considering the graph in Figure 3-(b), the evaluation process
of query sssp(v) is given in Table 1, including the vertex values
and the frontier in each iteration.

Initially, the values of all vertices are set to oo, except for the
source vertex v1, and only vy is in the frontier (i.e., activated). After
applying the vertex function to vy, the (only) out-neighbor of vy,
which is v3, obtains a new value 4. As a result, v3 becomes the
new frontier. As the evaluation proceeds, the frontier is propagated
through the graph, along with new vertex values being generated
iteration by iteration, until the frontier becomes empty—the fixed
point. The resulted vertex values are the answer to the query.

Note that the vertex function in Figure 3-(a) needs to access and
update the out-neighbors of a vertex. This is known as the push
model. Alternatively, the vertex function might also be designed to
access and update the in-neighbors of a vertex, which is referred to
as the pull model. In this work, we assume a push model is chosen.

2.2 Concurrent Evaluation of Graph Queries

Recently, several graph processing systems have been proposed to
support concurrent graph query evaluation, such as Seraph [34],
CGraph [38], GraphM [42], Congra [20], and Krill [6], covering
distributed, in-memory, and out-of-core processing scenarios. As

80

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 1: Iterative Evaluation of sssp(v1)

Iter# ©v; v, v3 vy Vs Vg U7 Vg Uy Frontier
0 0 o0 0 ©0 00 00 ©0 00 00 {1}
1 0 oo 4 00 000 ©0 00 00 0 {v3}
2 0 o 4 12 5 7 6 oo oo {vg,vs, vs U7}
30 17 4 12 5 7 6 oo 10 {03, vo}
4 0 17 4 12 5 7 6 22 10 {vs}
5 0o 17 4 12 5 7 6 22 10 {

to the execution model, Seraph, CGraph, and GraphM all treat each
concurrent query as a “job”. In Seraph, the minimum execution
unit is a task, consisting a bunch of vertices to be processed in
a job, while different tasks are processed using a thread pool. In
comparison, CGraph maps each concurrent job to a core by default,
then balances the jobs across cores. GraphMis built on top of the out-
of-core graph processing system GridGraph [43], where edges are
partitioned into “blocks” and processed by worker threads. Finally,
Congra [20] and Krill [6] are both built on top of Ligra [28], a
state-of-the-art in-memory graph processing system. Under the
hood, Ligra exploits the vertex-level parallelism where the vertex
function is applied to the active vertices (in the frontier) in parallel,
guided by a work stealing scheduler (from Cilk [4]). So even for a
single query, the system can evaluate it in parallel with relatively
balanced workload across CPU cores.

Table 2: Graph Access Sharing between Two Queries.

Iter# Frontier(sssp(vz)) Frontier(sssp(vs))
0 {va} {us}
1 {vs, vs} {va}
2 {v4, vs, vs, v7} {02, vs}
3 {vo} {vs, vo}
4 4 {vs, vs, v7}
5 {t {vo}
6 8 B

A key potential benefit of concurrent graph query evaluation
is the sharing of graph accesses via the memory hierarchy, which
improves the overall data locality. Consider two queries, sssp(vz)
and sssp(uvg), to the graph in Figure 3-(b). In fact, both queries
need to access the out-neighbors of vertices vy - v9 during the
evaluation, as indictated by their frontiers in Table 2. If the graph
data fetched by one query still resides in the shared cache when
the other query tries to access it (i.e., temporal locality), the overall
cache misses could be dramatically reduced. However, for many
real-world graphs, their sizes are well beyond the cache capacity.
In order to benefit from this temporal locality, the graph traversals
should be roughly aligned—visiting the same vertices (and their
out-neighbors) around the same time.

In fact, as reported earlier in Figure 1, the underlying graph
traversals on real-world graphs could be largely misaligned in the
existing concurrent graph processing systems, limiting the benefits
of shared graph accesses. In the following, we will present a solution
to addressing the graph traversal misalignment issue—Glign.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Alignment-aware

()}
Query buffer Eval. Batch
<+ Qs Q2 Gt |:>
.

V1 Vimax ‘

N =
o] - 1 - [- [ob] «— [N
—P/ i i

Intra-iteration) -
alignment '

Figure 4: Overview of Glign.

batching

Inter-iteration
alignment

~
®

suone.a)l [2GO|9

Results

3 Glign

Figure 4 illustrates the high-level design of Glign. First, assume a
buffer consists of the concurrent queries to be evaluated, Glign uses
an alignment-aware batching strategy to group queries with higher
potential of a large amount of graph access sharing to the same
evaluation batch (see @). After a batch is formed, G1ign performs
inter-iteration alignment across (global) iterations. In particular, it
first estimates the “heavy iterations” for each query in the batch,
then delays some of them to make the “heavy iterations” of different
queries aligned (see @). Finally, within each global iteration, Glign
ensures that the frontiers of different queries are traversed in a
synchronous manner so that the shared graph accesses (dictated
by the overlapping of frontiers) are accessed in a fully coalesced
way (see @). Next, we will present each of these key techniques in
detail. Due to their dependences, we will introduce them in reverse
order with respect to the number labels in Figure 4.

3.1 Global Iterations

First, we introduce the concept of global iterations, which serve as
the basis for some of the proposed alignments. Given a batch of
iterative graph queries, there are two ways to evaluate them:

e Synchronous evaluation evaluates queries in the batch in the
same pace with respect to iterations (see Figure 4). This is
ensured by a series of global barriers that are shared across
queries in the batch. Most existing concurrent graph systems
(CGraph [38], GraphM [42] and Krill [6]) follow this scheme.

e Asynchronous evaluation evaluates each query in the batch
independently, regardless of the evaluation pace of other
queries, that is, the iterations of evaluating different queries
may be interleaved arbitrarily. Congra [20] uses this scheme.

Clearly, the asynchronous design has no control over the graph
traversals, so the traversals may or may not align well depending
on their interleaving in a specific evaluation. For this reason, Glign
follows the synchronous evaluation. To distinguish the iterations
in the synchronous batch evaluation from those in single-query
evaluation, we refer to the former as global iterations.

3.2 Intra-Iteration Alignment

A commonly used design for evaluating concurrent graph queries
is to keep a frontier for each query g; in the evaluation batch 8. In

81

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

V4 Vmax

1110011001001
et
Qi+3|/ 0110011001001

YVV__ Vv v v
Q2| 1110011001000
1010011001001

1100001000001

Vi Vimax

0110011001001
—_—

1010011001000
—_—

1010011001001
——

Qi+1

i {1]1100001000001 Qi
—

(b) Unified + separate frontiers

yojeq ‘en3
yojeq ‘en3

(a) Separate frontiers

Eval. batch \2 Vimax

’CIi+3 Qis2 Qi1 Gi ‘ ‘1110011001001

(c) Query-oblivious frontier

Figure 5: Different Designs of Frontier Traversal.

a global iteration, the frontiers of different queries are traversed
independently, as shown in Figure 5-(a). The frontier is designed
as a boolean array frontier[], where the i-th element shows the
activeness of vertex v;. If frontier[i]=1, the vertex function f(v)
needs to be evaluated on v;, including accessing the out-neighbors
of v;. In other words, the frontier traversal defines how graph data
is accessed in a global iteration. When these frontiers of different
queries are traversed independently, there is no guarantee that the
commonly used graph data are accessed around the same time. As
a result, the data locality could become sub-optimal.

To ensure that different frontiers are traversed in a synchronized
manner, some recent works (Krill [6] and SimGQ [32]) propose to
add an extra frontier, called unified frontier, defined as follows:

Frontierynion = \/ Frontierg, (1)
qi€B

where Frontierg; (a boolean array) is the frontier for evaluating
query g; and \/ is the logical OR operator. This means that as long
as vertex v; is active for one query in the batch, Frontier pion(i) = 1.
To synchronize the frontier traversals, we can simply traverse the
unified frontier: if its value for vertex v; is “1”, we further check
each individual frontier Frontierg, to find out the specific queries
for which v; needs to be evaluated (see Figure 5-(b)).

The above design ensures that the shared accesses to an active
vertex and its out-neighbors are perfectly aligned across queries.
However, there are some caveats associated with this design. First, it
increases the memory cost with an extra labeling array Frontierynion;
Second, it needs to check the frontiers at two levels. Overall, our
evaluation reports limited performance benefits (see Section 4).

To avoid the above caveats, this work proposes an alternative
design to the synchronized frontier traversal, called query-oblivious
frontier. This new design explores an interesting tradeoff between
computations and memory accesses, which to our best knowledge,
has not yet been discussed before by any prior work.

Query-Oblivious Frontier. Our key insight is to deliberately ignore
the differences among the frontiers of queries in the evaluation batch,
that is, when a vertex function f(v) is invoked, it is applied for
all queries in B. This eliminates the need of second-level frontiers

Glign: Taming Misaligned Graph Traversals in Concurrent Graph Processing

(Frontierq;, q; in B) used in the prior design. Figure 5-(c) illustrates
this idea with a single frontier Frontierypion.
However, the above design immediately raises two concerns:

e Correctness. Does the evaluation based on a single unified
frontier (Frontierynion) always produce the same results as
the one using two levels of (or seperate) frontiers?

o Efficiency. A vertex v would be evaluated for all queries in
the batch, as long as it is in the frontier of one query. This
introduces extra unnecessary computations.

First, for correctness, we have established a theorem for safely
adopting query-oblivious frontier for a range of iterative queries
based on the monotonicity property of their vertex functions.

Definition 3.1. In vertex-centric programming, a vertex function
f(-) is monotonic iff. it always changes the values of vertices
monotonically (always increasing or decreasing) over iterations.

In fact, the monotonicity property has been widely exploited by
multiple existing graph systems for better efficiency [14, 25] and it
serves as the basis for incremental query evaluation [11, 31].

THEOREM 3.2. Evaluating a query batch using query-oblivious
frontier yields the same vertex values as the evaluation using separate
frontiers iff. the vertex function is monotonic.

Proor. Without loss of generality, assume the evaluation batch
consists of two queries g1 and g2, and the evaluation is in global
iteration i. Consider an arbitrary vertex v;. Assume vj is inactive
according to q;’s frontier, but active based on g2’s frontier. Thus, v;
is marked as an active one in the unified frontier, as illustrated in
Figure 6. Next, we discuss the impacts of an extra evaluation of v;
with g1 ’s vertex function, that is, fq1 (v;). There are two basic cases.
In the first case, at the time of evaluating fg, (v;), the value of v; has
not been updated by any of its in-neighbors. As its value remains
the same as it was in the prior iteration i — 1, this evaluation will not
change the value of any of its out-neighbors (like v;). In the second
case, at the time of evaluating fq, (v;), the value of v; has been
updated by at least one of its in-neighbors in the current iteration i.
In this case, the evaluation may update the value(s) of some out-
neighbor(s) of vj, causing some side-effects. However, note that
even if separate frontiers are used, v; would be marked as an active
vertex and evaluated in the next iteration i + 1. That is, using query-
oblivious frontier might lead to some earlier evaluation of certain
vertices that are supposed to be evaluated in the next iteration—
a form of asynchronous evaluation. One sufficient condition for
the correctness of asynchronous query evaluation is that the query
evaluation should be monotonic. O

Second, as to the efficiency concern, will the extra evaluation of
inactive vertices slow down the overall processing? Interestingly,
our evaluation (see Section 4) shows that using query-oblivious
frontier can substantially improve the overall performance despite
the extra evaluation of inactive vertices. This is due to fact that
query-oblivious frontier skips the maintenance and accesses to the
separate frontiers all together, dramatically reducing the memory
footprint of concurrent query evaluation (see Section 4).

So far, we have introduced the intra-iteration alignment which
addresses the potential misalignments among different frontier
traversals in a global iteration. Next, we will shift the focus to more

82

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Vi
Frontierys
Frontierg,
Frontier,pion

Case 1

if value of v; has not been changed,
fq1(v;) must not change v, ‘s value

Case 2
if value of v; has been changed, fy1(v;)
may cause an update to v,‘s value

-@-®

Figure 6: Correctness of Using Query-Oblivious Frontier.

coarse-grained misalignments, among the iterations of different
queries and during the formation of query batches.

3.3 Inter-Iteration Alignment

We first use a simple example to motivate the alignment problem,
then formalize it and present a heuristic-based solution.

Motivation. In general, the evaluation of a graph query may access
different parts of the graph in different iterations, thus the amount
of graph sharing may vary depending on the interleaving of the
(local) iterations of different queries. Revisit the examples in Table 2
(Section 2) and assume the two sssp queries are evaluated in the
same batch, then compare their frontier overlapping per iteration
with those in Table 3 where a different alignment between the (local)
iterations of the two queries is used: sssp(vy) starts two iterations
later than sssp(vg). From the comparison, we can find that the latter
alignment exposes more overlapped active vertices than the former
(6 v.s. 2). As a result, when these active vertices are evaluated and
their (out-)neighbors are accessed, the latter alignment will yield
more shared graph accesses.

Table 3: A Better Alignment of Iterations.

Iter# Frontier(sssp(vz)) Frontier(sssp(vs))
0 - {vs}
1 - {vd}
2 {v2} {v2, vs}
3 {vs, vs} {vs, vo}
4 {vs, vs, v, v7} {vs, vs, v7}
5 {9} {vo}
6 it {

Next, we formalize the above inter-iteration alignment problem.

Problem Formalization. First, we define the alignment vector I
for a given batch of queries B as follows:

Definition 3.3. Given a batch B of n queries [q1, g2, ..., qn], its
alignment vector I is a vector of [a1, ag, ..., an], where a; is the
global iteration number from which the evaluation of g; is started.

Considering the batch B=[sssp(vz), sssp(vg)], Table 3 shows
an alignment where the alignment vector I = [2, 0].

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Next, we introduce the concept of affinity to quantify the amount
of graph access sharing, which is defined as follows:

Definition 3.4. Given a query batch B and an alignment vector I,
the affinity of this evaluation is defined by the following equation:

K .
Zj:O |Frontler{mion|

Affinity(B,1) =1 -

@)

K s J
=0 Zqiegg |Frontlerfh|

union and Frontiergi are the unified frontier and the
separate frontier for query g;, respectively, at iteration j, and K is
the total number of global iterations for evaluating this batch.

where Frontier’

Again, consider the examples in Table 3, we have

.0
Frontlerum.on

= {v2, vg}, Frontier

= {vs}, Frontierinion = {v4},

13mi0n = {03’ L Ug},
Frontierinion = {vs, vs, vg, V7}, Frontierznion = {vo}.

Thus, Affinity(B,I1)=1-(1+1+2+3+4+1)/(8+10) =1/3. By
contrast, the affinity for the alignment in Table 2 Affinity(8,1’) =
1-(2+3+54+2+3+1)/(8+10) = 1/9. Obviously, the former
achieves a significantly higher affinity.

The best affinity occurs when all separate frontiers are perfectly
overlapped, while the worst affinity happens when no separate
frontiers overlap at all through all the iterations. Note that the
affinity may be negative in certain cases, due to the asynchronous
evaluation as detailed in the proof of Theorem 3.2.

The above definition of affinity is based on the ratio of active
vertices. Alternatively, one can also define affinity based on the
ratio of active edges (the outgoing edges of active vertices), which
is supposed to be more precise. However, our evaluation shows
minimal differences between the two definitions in practice.

Now we formalize the inter-iteration alignment as follows:

2
Frontlerumon

®)

That is, given an evaluation batch 8, the problem is to find out
the best alignment vector I that maximizes the affinity.

Unfortunately, as the frontier of each query will NOT be known
until the query execution is finished, we cannot precompute the
affinity for a batch of queries without evaluating them. Hence, we
cannot solve the above optimization problem precisely in advance.
To address this challenge, we need a more proactive approach. Next,
we present a heuristic to approximate the best alignment.

max Affinity(B,1)

Heuristic-based Solution. First, we observe that the distribution
of frontier sizes tends to be highly biased across iterations, thanks to
the power-law nature of many real-world graphs. Figure 7 reports
the frontier sizes across iterations during the evaluation of a few
vertex-specific queries on two real-world graphs.

From the results, we can easily find some patterns in evaluating
vertex-specific queries on power-law graphs: in the early iterations,
the frontier grows exponentially, which we call the expansion phase.
After reaching the “peak”, the frontier starts to shrink quickly and
steadily until it becomes empty, referred to as stabilization phase.
The several iterations around the “peak” often dominate overall
size of frontiers for the whole query evaluation.

With the above observations, we decide to focus the alignment
on these dominating iterations, referred to as “heavy iterations”.
The rationale behind this decision is two-fold:

83

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

4E+06

sssp(vl) sssp(v2)

3E+06

2E+06

W,)

Frontier Size
er

1E+06

0E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

(a) SSSP-LJ Iteration

3E+07

bfs(v1) bfs(v2)

2E+07 4
2E+07

%z ey
oL

1E+07

Frontier Size
€

5E+06 3

0E+00
1234567 8 910111213141516171819
Iteration

(b) BFS-TW

Figure 7: Frontier Size Distribution across Iterations.

o First, heavy iterations expose more opportunities for shared
graph accesses. The larger the frontiers are, the more likely
that they overlap. In the extreme case, when the (separate)
frontiers include all vertices, they are perfectly overlapped.

e Second, as the vertex activations in the heavy iterations
often dominate the total number of vertex activations for the
whole evaluation, their alignments could make a significant
impact on the overall alignment.

To demonstrate the effectiveness of heavy iteration alignment
in improving the overall affinity, we manually delayed the “faster”
queries in Figure 7 such that their “peaks” align with those in the
“slower” queries. As a result, we observed that the affinity value
gets improved from —0.11 to 0.34 and from 0 to 0.47, respectively.

One can quantify the heavy iterations based on different metrics,
such as the ranking of frontier sizes across iterations. However,
regardless the metric being used, just like affinity, heavy iterations
are unknown before the query evaluation. In fact, one may choose to
detect the heavy iterations dynamically during the query evaluation
and use that information to guide the alignments at runtime, for
example, pausing the evaluation of queries whose heavy iterations
have arrived, then resuming them after all the "slowest" query has
reached its heavy iterations. Though the idea sounds promising, it
has a caveat—to “pause and resume” the iterative evaluation of some
queries, the system needs to keep “their contexts”—their individual
frontiers. This requires to a design similar to the two-level frontiers
(see Figure 5-(b)). As discussed earlier, this design is inferior to the
query-oblivious frontier in terms of performance.

To work around the above dilemma, we propose to proactively
approximate the “arrival time” of heavy iterations—the iteration that
marks the beginning of heavy iterations. The key insight behind
our arrival time approximation is the correlation between frontier
size and the activation of high-degree vertices:

When evaluating a vertex-specific query on a

power-law graph, the frontier size often grows
sharply once a high-degree vertex is activated.

Glign: Taming Misaligned Graph Traversals in Concurrent Graph Processing

Table 4: Arrival Time of Heavy Iterations

Query Arrival Time Query Arrival Time
sssp(v1) iter. 9 bfs(v1) iter. 3
sssp(v2) iter. 2 bfs(v2) iter. 7

To demonstrate the above phenomenon, Table 4 lists the first
iteration where at least one of the top-4 high degree vertices is
activated for the four queries used in Figure 7. These iterations
are also highlighted with larger marks in Figure 7, which clearly
indicate the beginning of (relatively) heavy iterations.

Based on the above discussion, we only need to identify the first
iteration where a high-degree vertex is activated. In fact, given a
high-degree vertex vy, (based on a threshold), it takes i iterations
for it to be activated, where i is the least number of hops from

the source vertex v in query g(v) to the high-degree vertex vy,

Such information can be pre-computed simply by running a BFS
query on the high-degree vertex vy, that is, bfs(vy). Note that, for
directed graphs, the BFS query should run on the edge-reversed
graphs, since the goal is to get the least number of hops from every
other vertex to the high-degree vertex, not the other way around.
Figure 8 summarizes our reasoning—reducing the inter-iteration
alignment to the problem of BFS queries on high-degree vertices.

inter-iteration alignment

A
reduce approximate

heavvy iteration alignment

N
reduce compute

v
heavy iteration arrival time estimation

I

reduce approximate

least hops to high-degree vertices

N
reduce compute

BFS queries on high-degree vertices
Figure 8: Flow of Solving Inter-Iteration Alignment.

Next, we present the algorithm of inter-iteration alignment (see
Figure 9). First, some one-time preparation is needed: (i) identifying
the top-K high-degree vertices in terms of the out-degree (due to
the use of push model) at Line 2; (ii) reversing the edges’ directions
if the graph is directed (Line 3); (iii) running a BFS query on each
selected high-degree vertex to find the least number of hops from
an arbitrary vertex v; to each high-degree vertex vy, (Line 4-5).

After the preparation, the algorithm is ready to compute the
alignment vector I for a give query batch 8. First, it computes
the least hop number to the closest high-degree vertex for each
query q(v;), stored in closestHV[v;] (Line 9-10). Then, it finds the
largest value among cloestHV[v;] (Line 11), which essentially is
the latest time of reaching a high-degree vertex (i.e., arrival time)
for a query in the batch, stored in 1atestInBatch. Finally, based on
the difference of arrival time relative to the latest (latestInBatch),
it calculates the alignment vector I (Line 12-13).

From another perspective, the alignment delays the start time
of certain queries in the evaluation batch, thus we also refer to the

84

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

1 /* preparation for graph G */

2 HV = getTopHighOutDegreeVertices(G, K)
3 G, = getEdgeReversedGraph(G)

4 for each vertex v, in HV

5 leastHops[Vy - Viymadllve] = bfs (G,, vp)

6

7

8

/* find alignment vector I for query batch B */
getAlignment(#) {
9 foreach query q(v;) in #
closestHV[v;] = min { leastHopsl[v;][vy] | V v, € HV'}
11 latestinBatch = max { closestHV]v;] |V q(v)) € B }

12 for each query q(v;) in
13 1[vj] = latestinBatch — closestHV]v;]
14}

Figure 9: Pseudocode for Inter-Iteration Alignment.

above technique as delayed start. As shown later in the evaluation,
comparing to the ground truth—the optimal alignment, the accuracy
of the above heuristic-based alignment is quite high (usually off by
at most 2 iterations) and also its performance is close to that with
the optimal alignment. See more details in Section 4.

Next, we will move our discussion of alignment to the most
coarse-grained level—query batching.

3.4 Alignment-Aware Batching

In the prior section, we align (local) iterations of different queries
to improve the sharing of graph accesses (measured by affinity).
In fact, we may achieve similar or even better effects by grouping
queries whose iterations are better aligned into the same batch. For
example, it is better to put sssp(v;) (in Table 1) and sssp(vy) into
the same batch, rather than sssp(v2) and sssp(vg) (in Table 2),
as the former exposes a better alignment at the iteration level.

Based on the above intuition, we propose affinity-oriented query
batching. The goal is to maximize the affinity for queries in a batch
through the management of batching policy.

Affinity-Oriented Query Batching. By default, all queries in the
evaluation buffer are processed in the order that they are received.
Though intuitive, this first-come first-serve policy may produce
query batches with low affinity. To avoid this, affinity-oriented
batching creates batches based on the affinity among queries, which
can be approximated as detailed in the prior section. However,
a simple affinity-oriented batching, in theory, may postpone the
processing of some queries—those exhibit poor affinity with most
queries—with an unbounded delay. To avoid this caveat, we limit
the number of queries considered each time for affinity-oriented
batching using a threshold B,,. That is, every B,, queries in the
buffer are scheduled together, referred to as a batching window.

Figure 10 illustrates the idea of affinity-oriented query batching.
First, the earliest received B,, queries in the buffer are selected and
ranked by their least number of hops to the closest high-degree
vertex (i.e., closestHV[] in Figure 9). Then, every consecutive
|B| ranked queries in the batch window are selected to form an
evaluation batch. Note that array closestHV[] is pre-computed
just like that used in inter-iteration alignment.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Rank by
Query | closestHV

An eval. batch

a(vys) 1 ®
a(Vys2) 1 - [a(vy+1): A(vis2), A(Visa), A(Vyea)]
q(Vysaw) 8 Query buffer

@ 1Qj+1 Qj+Bw 3 Qj+3

Batching window

Figure 10: Affinity-Aware Query Batching.

Connection with Inter-Iteration Alignment. Note that unlike
the intra-iteration alignment which is orthogonal to the later two
alignment techniques, the relation between the two inter-iteration

alignments and affinity-oriented batching are not fully orthogonal.

This is due to the fact that both aim at improving the affinity defined
at the iteration level. In other words, if affinity-oriented batching
has been employed, then the extra benefits from inter-iteration
alignment might be limited, even though in theory, each alignment
technique may provide its unique benefits.

So far, we have introduced the alignments at all three levels.

Next, we briefly explain their implementations.

3.5 Implementation

We implemented Glign on top of the popular in-memory graph
processing engine Ligra [28]. In fact, thanks to its high-efficiency,
Ligra also serves as the base for two recently proposed concurrent
graph systems: Congra [20] and Krill [6]. One of our goals is to
implement Glign as a transparent runtime system, thus keeping

the original programming interface of Ligra mostly untouched.

For example, developers can still call functions EdgeMap() and
VertexMap() for traversing edges and vertices, and VertexSubset
remains to be the frontier representation.

Under the hood, G1ign maintains the query-oblivious frontier
and leverages the original parallelization supports from Ligra to
process each query in parallel. To support batching, we extended
Ligra to let it consume a query buffer based on the batch size B
and the batching policy (e.g., affinity-oriented batching). At the
beginning of an iteration, Glign first checks the alignment vector
I (in Section 3.3) to decide if some queries need to be started at the
current iteration. For better locality, the memory layout of vertex
values is implemented as a single array and the value of vertex v;
for query q; can be accessed via ValArray[v;*B+i], where B is the
batch size. When the graph is loaded into the memory for the first
time, Glign will automatically compute the least hops from each
vertex to the closest high degree vertex (closestHV[]), which will
later be used to guide the alignments.

4 EVALUATION

This section evaluates the effectiveness of the proposed alignment
techniques and the efficiency of Glign.

4.1 Methodology

First, we set up two baselines for comparing with Glign: (i) Ligra-S
and (ii) Ligra-C. The former evaluates the queries in a batch one

85

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Table 5: Methods in Evaluation

Method Brief Description

Ligra-S
Ligra-C
GraphM [42]
Krill [6]
Glign-Intra
Glign-Inter
Glign-Batch
Glign

Eval. queries in batch one by one w/ Ligra [28]

Eval. queries in batch simultaneously w/ Ligra [28]

A high-throughput concurrent graph system

A compiler & runtime for concurrent graph processing
Glign with only intra-iteration alignment
Glign-Intra + inter-iteration alignment
Glign-Intra + affinity-oriented batching

Glign with all proposed alignment techniques

after another, using Ligra [28]—a state-of-the-art in-memory graph
processing engine. Note that Ligra itself processes each single
query in parallel. Ligra-C extends Ligra to support concurrent
query evaluation using both unified and separated frontiers (see
Section 3.2), representing a design that has been adopted by the
existing concurrent graph processing systems [6, 13, 42].

Also, we compare Glign in general with two state-of-the-art
concurrent graph processing systems that are publicly accessible:
GraphM [42] and Krill [6]. To show the contributions of different
techniques, Glign is configured differently as listed in Table 5.
In addition to the above systems, we also tested a system design
that exploits query-level parallelism—each concurrent query is
evaluated using the serial implementation from BGL [29], while
different queries are processed on different threads. However, we
found it ran slower than our baseline Ligra-S in most cases tested.

Queries. We evaluated five types of graph queries, including BFS
(breadth-first search), SSSP (single source shortest path), SSWP (single
source widest path), SSNP (single source narrowest path), and Viterbi.
Table 6 lists their vertex functions in pseudo-code.

All queries are vertex-specific in that they start from one source
vertex and compute property values for all vertices in the graph.
To generate the query set for each type of query, we followed a
sampling strategy similar to the one used by Qi and others [21].
First, the graph vertices are divided into disjoint bins based on their
distances (hops) to the (top-4) high-degree vertices. Then, these
bins are scanned in rounds, and in each round a vertex is randomly
picked from each bin, until 512 vertices are selected, which serve as
the source vertices of our queries. In this way, the selected queries
provide a better coverage of the entire graph structure. We assume
all the 512 queries are already in the buffer when the systems start to
process them. This allows us to focus on evaluating the throughput
of the concurrent systems. One can also add the query arrival time
information, with which the latency of processing each query could
also be inferred. We leave such latency study for future work.

Besides grouping queries of the same types into the same query
buffer (i.e., homogeneous query buffer), we also generated a query
buffer of mixed types of queries, randomly selected with types of
BFS, SSSP, SSWP, and SSNP. We refer to this scenario as “Heter”.

By default, we set the query batch size to 64. For evaluating the
impacts of batch size, we changed the batch size from 2 to 128.

Graph Data Sets. We primarily evaluate Glign on power-law
graphs, which include five real-world graphs. For completeness,
we also evaluate G1ign on a couple of road networks, which are
more like planar graphs. Their basic properties are summarized in

Glign: Taming Misaligned Graph Traversals in Concurrent Graph Processing

)
éS
.20
o
. 6
[
3
2 4
o
3
§ 2 ’
5 Al
@ o Al Al Al A el A g ol 7
& B 2 5§ & 5 ® A 2 § & g = A
v v o v v o (%]
m._mI m._mI
> >
U WP

SESISERERRY

RELLg

C
Fe

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

GraphM Krill Eligra-C W Glign
5.2
2.1
1.4
4 1.0
a [& (%] a a s o = [%] 2 a e o =
5 2 % i § ?, 5 2 5 85 3 2 8 & %
= (%] T n 2 (%] T n =4 (%] T
> > >
2 T™W FR Geo

Figure 11: Overall Performance.

Table 6: Vertex Functions of Graph Queries

Bench. Pseudo-code of Vertex function f(s)

for each out-neighbor d of s
level(d) = min { level(d), level(s) +1 };
if level(d) changed then add d to frontier;

BFS

for each out-neighbor d of s
dist(d) = min { dist(d), dist(s) + w(s, d) };
if dist(d) changed then add d to frontier;

for each out-neighbor d of s
wide(d) = max { wide(d), min { wide(s), w(s, d) } };
if wide(d) changed then add d to frontier;

SSSP

SSWP

for each out-neighbor d of s
viterbi(d) = max { viterbi(d), viterbi(s) / w(s, d) };
if viterbi(d) changed then add d to frontier;

Viterbi

for each out-neighbor d of s
narrow(d) = min { narrow(d), max { narrow(s), w(s, d) } };
if narrow(d) changed then add d to frontier;

SSNP

Table 7. The number of edges ranges from 69M to 3.6B, and the
diameter ranges from 10 to 9100.

Table 7: Graph Statistics

Graph Abbr. Directed 4 [E| Avg. deg. Dia.
LiveJournal [3] Ly Yes 48M 69M 14.2 13
Wikipedia [2] WP Yes 14M 437M 32.2 10
UK-2002 [5] UK2 No 19M 524M 28.3 45
Twitter [12] ™ Yes 42M 1.5B 35.3 15
Friendster [1] FR No 125M 3.6B 289 38
roadNet-CA [24] RD-CA No 2.0M 55M 2.81 849
roadNet-USA [24] RD-US No 24M 58M 2.41 9100

The experiments are conducted on a 32-core Linux server that
equips with Intel Xeon E5-2683 v4 CPU (LLC size: 40MB) and 512GB
memory. The application is compiled with g++ 6.3 and runs on
CentOS 7.9.

Next, we will first report the overall performance, followed by
more detailed evaluation of each alignment technique.

4.2 Overall Performance

Table 8 shows the total execution time of evaluating a buffer of
512 queries using Ligra-S, while Figure 11 reports the speedups

86

Table 8: Time of Evaluating 512 Queries using Ligra-S

LJ wWp UK2 TW FR
BFS 66s 300s 334s 1104s 3646s
SSSP 176s 579s 986s 2332s 10076s
SSWP 97s 392s 507s 1734s 4580s
Viterbi 224s 499s 1388s 2129s 7926s
SSNP 99s 372s 493s 1630s 4440s
Heter 107s 398s 567s 1819s 5858s

of the other systems over Ligra-S. From the results, we find that
Glign clearly outperforms the other systems in almost all the cases
(except for the case UK2-Viterbi). The highest speedup it reaches
is 9.4X (in the case of UK2-BFS). On average, Glign achieves 5.2x
speedup over the baseline Ligra-S.

Among the other systems, GraphM exhibits similar performance
as Ligra-S. Note that, unlike the other systems in our evaluation,
GraphM is not built on top of Ligra, instead, it is built on top of
GridGraph [43], a system mainly designed for out-of-core graph
processing. This difference in the base system selection could be
one of the reasons that cause GraphM to perform worse than the
other concurrent graph systems used in our evaluation.

Krill and Ligra-C both achieve a substantial average speedup
over Ligra-S (1.4x and 2.1x), confirming the general benefits of
concurrent query evaluation. However, both perform worse than
Glign, though all the three systems share the same base system
(Ligra). We believe this is mainly due to the locality improvement
brought by the alignment techniques that G1ign employed.

To confirm the above speculation, we measured the last-level
cache (LLC) misses using the perf tool. The results are listed in
Table 9. To save space, we report the results mainly for two graphs.
From the results, we find that Glign incurs significantly fewer LLC
misses than the other methods. For example, on L] graph, Glign’s
LLC misses is only 12%, 21%, 5%, and 23% of those (on average)
incurred by Ligra-S, Ligra-C, GraphM, and Krill, respectively.
These significant LLC miss reduction echos the substantial speedups
brought by Glign as shown earlier in Figure 11.

In the following, we will break down the performance gains of
Glign by evaluating each alignment technique.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 9: LLC Misses (in billions)

Ligra-S Ligra-C GraphM Krill Glign

BFS 9 11 44 15 1
SSSp 28 15 77 15 4
L SSWP 21 12 52 15 2
Viterbi 53 20 91 8 4
SSNP 21 11 52 15 2
Heter 23 15 45 11 4
Mean 26 14 60 13 3
BFS 302 245 1083 394 26
SSSp 621 237 1698 399 53
™ SSWP 545 217 963 397 29
Viterbi 757 242 1622 171 48
SSNP 540 214 1202 396 36
Heter 563 252 1201 241 52
Mean 555 235 1295 333 41
i,j BFS SSSP ESSWP § Viterbi SSNP W Heter
5 ,
©
jgi 15
s
3 1
Q
Q
& 05 ‘
0 A 2 7 \

FR

Figure 12: Speedups of Glign-Intra over Ligra-C

4.3 Intra-Iteration Alignment

In this section, we evaluate the proposed query-oblivious frontier
(Section 3.2) and compare it with the two-level frontier design
(i-e., unified and separate frontiers) that is employed by some of
the existing concurrent query processing systems. Both designs
ensure synchronized frontier traversal—the key to intra-iteration
alignment. In our setting, Ligra-C employs the two-level frontier
design, while Glign-Intra uses the query-oblivious frontier (other
alignment techniques are disabled).

First, we have verified the correctness of all the query results
produced by Glign-Intra, thus experimentally demonstrated the
correctness of this new frontier design with real-world large data,
complimenting the theoretical proof in Section 3.2.

Second, in terms of performance, Figure 12 reports speedups of
Glign-Intra over Ligra-C. The results show that Glign-Intra
yields consistent speedups across different queries and graphs,
which range from 1.13X to 1.96X.

In addition, we also collected the LLC misses of Glign-Intra
which may offer some more direct evidences on the effectiveness
of query-oblivious frontier. The results are reported in Table 10.
From the results, we find that G1ign-Intra can consistently reduce
the LLC misses under all the evaluated cases, and the average
reduction is quite substantial—its LLC misses are only around 30%
on average of those incurred by the baseline Ligra-C. The reduction
mainly comes from the elimination of separate frontiers and the
two-level frontier checking used by the baseline and other existing

87

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Table 10: LLC Misses Reduction by Glign-Intra

(Numbers are the ratios between the LLC misses of
Glign-Intra and the LLC misses of Ligra-C)

LJ WP UK2 TW FR
BFS 22% 24% 13% 23% 32%
SSSP 33% 37% 12% 34% 36%
SSWP 32% 27% 17% 28% 24%
Viterbi 34% 39% 19% 36% 31%
SSNP 32% 28% 17% 31% 21%
Heter 35% 42% 22% 31% 31%
Geomean 31% 32% 16% 30% 29%

Table 11: Memory Footprint Breakdown (64 queries)

1 ™
Ligra-C Glign-Intra Ligra-C Glign-Intra
Graph 545MB 545MB 11,400MB 11,400MB
Vertex Value 1,180MB 1,180MB 10,200MB 10,200MB
Frontier 296 MB 4.6MB 2,540MB 39.7MB

concurrent graph systems. These results, to a large extent, explain
Glign-Intra’s speedups shown in Figure 12.

Finally, to get a sense of the memory reduction brought by the
query-oblivious frontier in comparison to a two-level frontier, we
profiled the memory footprints. Table 11 reports the sizes of major
data structures in Ligra-C and Glign: (i) the graph topology data,
the values of all vertices, and the frontier (as a labeling array). Note
that even though the frontier is only a relatively small portion of
the total memory footprint, it is accessed entirely in every iteration.
In comparison, only some parts of the graph and some vertex values
are accessed in each iteration. The results show that the frontier
size is reduced dramatically with query-oblivious frontier, which
leads to the LLC misses reduction as shown in Table 10.

4.4 Inter-Iteration Alignment

To show the benefits of inter-iteration alignment, we compare
Glign-Inter with Glign-Intra.

Performance. Figure 13 reports the speedups of Glign-Inter over
Glign-Intra. Overall, Glign-Inter achieves better performance
in all evaluated cases, except for WP-SSWP and WP-SSNP. The
speedups range from 0.89X to 2.95X. This demonstrates the benefits
of our proposed inter-iteration alignment technique—delayed start.
In general, we found Glign-Inter does not perform significantly
better on WP graph. The reason might be related to the fact that WP
has a relatively smaller diameter (see Table 7). Smaller diameters
imply that the vertices selected as the source vertices of the queries
tend to be closer to each other in terms of hops. Based on the
discussion in Section 3.3, queries with closer source vertices tend to
align better (i.e., yielding better affinity) during their evaluation. As
a result, there is less room for inter-iteration alignment to improve.

Affinity. To get a deeper understanding of the improvements, we
also collected the affinity values (see Definition 3.4). The results
are shown in Figure 14. Note that we set the Y-axis to 1 — affinity
because, for a batch of 64 queries, the affinity value tends to be

Glign: Taming Misaligned Graph Traversals in Concurrent Graph Processing

[=}
[

© #BFS mSSSP =SSWP Viterbi =SSNP mHeter
£ 3

)

5 25

g : -
= 15

=3

©

[T

[

Q.

wv

e o 1 |

Figure 13: Speedups of Glign-Inter over Glign-Intra

FR

close to 1, using 1 — affinity can better reflect its significants. In
fact, 1 — affinity reflects how much different frontiers are misaligned,
thus the lower the value is, the better alignment we get. The results
show that Glign-Inter substantially reduces the divergence, from
0.068 to 0.041 on average. The highest reductions happen to BFS
on UK2 and FR graphs, which match well with the top two best
speedups (2.91x and 2.95%) reported in Figure 13. The results also
show that divergence for Glign-Intra is already very low in the
case of WP graph, leaving little room for further improvements.
This explains the limited speedups achieved by Glign-Inter on
this graph (see Figure 13).

In addition, we report the LLC miss reduction by Glign-Inter
over Glign-Intra in Table 12. In general, the results echo well
the above findings. For example, the highest cache miss reductions
also happen to BFS on UK2 and FR graphs (37% and 32%) and the
reduction ratio on WP graph is the least.

Table 12: LLC Misses Reduction by Glign-Inter

(Numbers are the ratios between the LLC misses of
Glign-Inter and the LLC misses of Glign-Intra)

LJ WP UK2 TW FR
BFS 67% 96% 37% 68% 32%
SSSP 73% 91% 53% 77% 51%
SSWP 73% 101% 39% 76% 48%
Viterbi 64% 69% 38% 60% 37%
SSNP 74% 97% 41% 67% 42%
Heter 64% 81% 31% 65% 51%
Geomean 69% 88% 39% 69% 43%

Heuristic v.s. Ground Truth. To examine the effectiveness of the
proposed heuristic, we profiled the ground-truth best alignments for

512 sampled batches, where each batch consists of only two queries.

The best alignment of each batch is found by exhaustively trying
all possible alignments and calculating the corresponding affinity
value. Table 13 summarizes our findings. Among the 512 batches,
our heuristic finds the best alignments in 33.6% of them, and the
difference with the optimal alignment is within 2 iterations for
over 95% cases. As to the speedups, the best alignments outperform
ours (1.50% vs 1.45x), indicating that extra room exists for further
improving the performance via alignments.

Profiling Costs. As discussed in Section 3.3, our heuristic requires

profiling—running BFS queries on (four) high-degree vertices. Note
that the profiling happens at the beginning when the system and

88

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 13: Ground Truth Study of Glign-Inter

Speedup

Diff Cnt Ratio Glign-Intra Glign-Inter Best-Align

0 172 33.6% 136X 1.51x 1.51x

1 217 42.4% 132X 1.42x 1.51x

2 102 19.9% 1.20x 1.27X 1.46X

320 39% 1.13x 1.20x 1.47X

4 0 0.0% N/A N/A N/A

5 1 02% 1.62x 1.52% 1.56%
Sum./Avg. 512 100% 1.30x 1.41x 1.50%x

Table 14: Profiling Costs

J TW
Profiling Cost 0.20s

Query Eval. Cost SSSP 4.47s
(batch size:64, Glign) BFS 1.56s

3.84s

53.40s
25.51s

graph is set up. It is a one-time effort for each graph, with benefits
applying to different types of queries that run on the graph. Table 14
lists the profiling costs on two graphs (L] and TW), compared to the
query evaluation time on the same graphs. During the concurrent
query evaluation, accessing the profiling result (a table lookup) is
quick and the cost is negligible.

4.5 Alignment-Oriented Batching

To demonstrate the benefits of alignment-oriented batching, we
compare Glign-Batch with Glign-Intra. Figure 15 reports the
speedups of Glign-Batch over Glign-Intra. These speedups are
slightly higher than those achieved by Glign-Inter (Figure 13).
This is expected as both alignments essentially explore the same
affinity opportunities. The additional improvements indicate that
the alignment opportunities across queries (in the query buffer) are
slightly higher than those within a single evaluation batch, which
is also confirmed by the affinity differences between Glign-Inter
and Glign-Batch as shown in Figure 14.

4.6 Impacts of Batch Size

To understand the sensitivity of Glign to a basic parameter—the
batch size. We changed the batch size from 2 to 128. Note that 128 is
the largest value G1ign can achieve based on the memory capacity
of our machine and the size of the evaluated graphs.

Figure 16 reports the results using four types of queries and two
input graphs. Most curves in the figure follow a similar trend, that
is, the speedup first grows as the batch size increases, until the
batch size reaches around 64, then the speedup starts to drop. The
upward trend indicates that increasing the degree of concurrency
tends to be beneficial, while the downward trend indicates there is
a limit for the benefit—the memory pressure also increases as the
batch size increases, which eventually would curb the gain.

4.7 Performance on Road Networks

Though Glign is primarily designed for processing power-law
graphs, for completeness, we also report its performance on some

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

EEEIRSIIRRNNY

(I

SENNRRRRRRRRY

NN
(I

RENNRRY
(I
SSSSSNSNENY
(I
(I
ISSSSSSNNNEY
(I
SESSSSSRER)
(I

SSNP
SSSP
SSWP
Viterbi

SSNP
SSNP
Mean

-
=

Figure 14: Affinity Comparison: Glign-Intra vs Glign-Inter vs Glign-Batch

0.2
Glign-Intra Glign-Inter & Glign-Batch
Z 015
£
&
Z 01
' ; 7 7
— /) 7 7
005 % % B B m_ FE, 7
Ne Be e ebe HE B B 2 g
NN R 78 e VB p
. EEEEE e relEre 2
258385288
D R35 8292385849
= T =
RS v s
U WP
Ju 7 BFS NSSSP ESSWP §Viterbi =SSNP M Heter
=
<
2 3
G
g =
32
e X = X
o R = ™
i 0 Z Z 7 Z Z
u wp uk2 ™ FR

Figure 15: Speedups of Glign-Batch over Glign-Intra

Table 15: Performance on Road Networks

RD-CA | RD-US
SSSp BFS SSWP | SSSP BFS SSWP
Ligra-S 369.8s 239.5s 219.6s | 15224s 7916s 1298s
Ligra-C = 2.91x 530X 145X | 1.25X 2.66X 0.30x
Glign-Intra 6.08x 9.31x 2.99% | 2.04x 14.67x 1.86X
Glign-Inter 6.85x 10.05x 3.15x | 1.75x 13.51x 1.25X
Glign-Batch 8.36x 11.15X 3.66x | 2.52X 15.37X 1.91x
Glign 8.90x 12.41Xx 3.64x | 2.77X 16.91x 1.29%

road networks (RD-CA and RD-US). Table 15 reports the speedups
of Glign and their variants over our baseline Ligra-S. First, the
results show that Glign-Intra still achieves good or even higher
speedups (e.g., 9.3x and 14.7X speedups for BFS). This is due the
fact that, typically, only a small portion of the road network needs
to be accessed in each iteration, which makes the costs to access
frontier(s) relatively higher. On the other hand, the extra benefits
brought by the inter-iteration alignment and alignment-oriented
batching are more limited. This is because evaluation on such
graphs often fails to yield sufficiently “heavy” iterations, making
the affinity issue less of a concern.

4.8 Comparison with iBFS

Finally, we compare Glign with iBFS [13]—a specialized graph
system dedicated to concurrent BFS queries. It is an early work that
groups BFS query instances and leverages shared frontier traversal,
which resembles affinity-oriented batching. However, there are a
few key differences between the two. First, iBFS maintains both

89

Table 16: Comparison with iBFS

iBFS Glign-Intra Glign-Batch

L 16.6s 0.98% 1.78x
WP 41.1s 0.92x 1.45%
UK2 130.8s 0.95% 3.17x
TW 276.3s 1.08X 2.10x
FR 2465.1s 1.02x 3.04x

the unified and separate frontiers to achieve synchronized frontier
traversal, just like Ligra-C and Krill. In comparison, Glign uses
unified frontier only (i.e., query-oblivious frontier); Second, to group
BFS queries, iBFS uses a different heuristic based on the out-degrees
of source vertices. In particular, it requires two conditions for query
grouping;: (i) out-degrees of source vertices should be less than p;
and (ii) the source vertices must connect to at least one common
vertex whose out degree is greater than q. In comparison, Glign
groups queries only based on the affinity (or number of hops to
a high-degree vertex). Last but not least, iBFS does not support
inter-iteration alignment. To experimentally compare the two, we
have implemented the heuristic of iBFS in Ligra-C. Note that the
original iBFS work is implemented for the GPU platform.

Table 16 reports the performance of using iBFS for evaluating 512
BFS queries, and the speedups of Glign-Intra and Glign-Batch
over iBFS. Overall, we find that the performance of iBFS is similar
to Glign-Intra, but substantially slower than Glign-Batch. On
average the gap between iBFS and Glign-Batch is between 1.45%
and 3.17X. A further examination reveals that the heuristic of iBFS
is too strict—it works better when there are an extremely large
number of queries involved (e.g., querying all vertices in the graph).

5 RELATED WORK

This section provides a more detailed summary of the works on
multi-query graph processing as well as some other relevant works.

Targeting distributed platforms, Seraph [33, 34] is an early work
that provides system-level supports for concurrent graph query
processing. Its key idea is to decouple the graph structure from
query-specific data to allow concurrent query evaluations to share
the common graph structure data. Some other distributed systems
for concurrent graph query processing include MultilLyra [16] and
BEAD [17], both of which support efficient batched query evaluation

Glign: Taming Misaligned Graph Traversals in Concurrent Graph Processing

7
a 6 -e-Glign-Batch -»-Glign-Inter -&-Ligra-C .
35 .
g >
&4 .
3 N Y
8-
2 . a a7
1 e
N T 00O ST 0N 00 WAN S 0NS 0O
BFS SSWp Viterbi

128

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

-e-Glign-Batch -+Glign-Inter -=-Ligra-C

\;
X

< 00 W o <
— o0 O

128
128

SSSP BFS SSWP Viterbi

Figure 16: Impacts of Query Batch Size (Left: L] graph, Right: TW graph)

with graph sharing and frontier sharing in order to amortize the
communication costs among computation nodes in the cluster.

For single-machine graph processing with out-of-core processing
supports, some prior works include CGraph [38] and GraphM [42],
both of which follow the idea of graph sharing as in Seraph. The
key insight of both works is to exploit the temporal and spatial
locality of shared graph accesses. To achieve that, they first partition
the graph (as well as the vertex value array) so that each partition
is small enough to fit into the cache, then they load one partition
each time and process all jobs (queries) relevant to this partition.
Comparing to their “partition-centric” approach, our approach is
more “iteration-centric”, though both of them share the same goal—
improving the data locality.

For in-memory graph processing, one early work is Congra [20],
which is built on top of Ligra [28]. Its main goal is to maximize the
memory bandwidth by forking processes for new queries through
the guidance of a scheduler. It needs offline profiling on each graph
query to get the memory bandwidth and scalability characteristics.
Since each query is evaluated by a separate process, Congra does
not exploit graph sharing or frontier sharing. Unlike the others,
SimGQ [32] exploits the shared subcomputations of queries in a
batch of concurrent queries and reuses some computation results
proposed in VRGQ [10] to improve the efficiency. These techniques
exploit shared computations, thus are orthogonal to our techniques
which exploit shared graph accesses. Finally, Krill [6] is a more
recent work that not only exploits graph sharing, but also gains
benefits from an efficient management of property data that are
computed during the evaluation. In comparison, our work supports
both graph sharing and frontier sharing among concurrent queries
while also achieves improvements in alignment of graph traversals
and thus significant reductions in LLC misses over Krill. Like the
above systems, our system Glign also targets in-memory graph
processing, however, Glign explores three levels of alignments
which are not seen in any of these existing systems.

Following up the Ligra [28] framework, two more recent graph
programming systems, GraphIt [37, 40] and Julienne [7], have
been proposed for optimizing single query processing. In particular,
GraphIt designs a DSL that provides custom scheduling functions
for exploring various optimization opportunities. In comparison,
Julienne is specialized for bucketing-based algorithms like k-core
and approximate set-cover which cannot be supported efficiently
in Ligra. Their techniques are orthogonal to those in our work
which focus on the performance of concurrent queries. However,
to incorporate our alignment techniques, these systems need to be
extended to support concurrent query evaluation, which appears to

90

be more challenging than extending the Ligra framework, due to
the involvement of a DSL and the consideration of bucketing-based
algorithms, respectively. Some other recent works offer supports
for hypergraphs [27] and streaming graphs [8, 31]—scenarios that
our work does not cover currently. It would be an interesting topic
to explore concurrent query evaluation under such schemes.

There are recent works on graph accelerators (GraphPulse [22],
JetStream [23], and LCCG [41]). GraphPulse is an asynchronous
graph processing accelerator for static graphs. JetStream supports
streaming graphs and incremental computations. It also exploits the
monotonicity property of iterative graph queries, but for a different
purpose than our work. The property is leveraged to guarantee the
correctness of incremental computations. Neither GraphPulse or
JetStream addresses the concurrent query evaluations scenario.
LCCG is a graph accelerator that supports concurrent graph jobs by
utilizing a topology-aware approach with new hardware units. It
remains an interesting open question how our proposed alignment
techniques can be integrated into the graph accelerators. One of
the first steps should be extending the above accelerators so that
they can handle multiple queries simultaneously.

Finally, there are many works aimed at improving the memory
locality for a single query evaluation [19, 36, 39]. To carryover these
improvements to concurrent queries, they must be combined with
an approach like Glign.

6 CONCLUSION

This work reveals a major performance issue in concurrent graph
processing—alignment of graph traversals. It addresses this issue
at three levels. First, it proposes the query-oblivious frontier to
achieve synchronized frontier traversal within each global iteration.
Second, it introduces a heuristic-based solution based a series of
insights and observations to intelligently align the iterations of
different queries and to group queries with different affinities. It
integrates the proposed techniques into a runtime system called
Glign. A full evaluation of G1ign has confirmed the effectiveness of
the proposed alignments and demonstrated superior performance
over state-of-the-art concurrent graph processing systems.

ACKNOWLEDGMENTS

We thank all the reviewers for their very valuable feedback. This
material is based upon the work supported in part by National
Science Foundation Grants CCF-2028714, CCF-2002554 and CCF-
1813173. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

A ARTIFACT APPENDIX
A.1 Abstract

This artifact contains the source code of Glign, including the five
concurrent query evaluation designs discussed in the paper and
some graph benchmarks used in the experiments. In addition, this
artifact provides bash scripts to compile Glign and reproduce the
key experimental results reported in the paper.

A.2 Artifact check-list (meta-information)

o Algorithm: Five designs of concurrent query evaluation schemes:
Glign, Glign-Intra, Glign-Inter, Glign-Batch, and Ligra-C.
Program: The concurrent query evaluation system Glign built on
top of Ligra.

Compilation: GCC 6.3.0

Data set: There are seven graphs tested in the paper. We include

the smaller ones (LiveJournal and roadNet-CA) in the artifact.

Run-time environment: The system is developed and tested in

Linux environment (CentOS 7.9).

o Hardware: The experiments in the paper were run on a machine
with Intel Xeon E5-2683 v4 CPU and 512GB memory. 150GB disk
space is enough for storing all graphs.

o Experiments: Bash scripts are included in Glign-AE/apps and
Glign-AE/results/scripts. Detailed instructions are provided in
Glign-AE/README.md

¢ How much time is needed to prepare workflow (approximately)?:

2-3 hours to prepare all graphs.

e How much time is needed to complete experiments (approx-
imately)?: It takes around 2-4 hours to generate all data for the
LiveJournal (LJ) graph. Note that collecting data for all the graphs
reported in the paper may be very time-consuming. It is suggested
that the reviewer first test the LJ graph and check the results. If time
allows, the reviewer can test other larger graphs.

Publicly available?: Yes

A.3 Description

A.3.1 How to access. A file named ASPLOS23_AE . zip, containing
the source files, scripts, and input query files, is available as a public
repository on Zenodo (find its URL in [35].)

A.3.2 Hardware dependencies. To reproduce the results reported
in the paper, we recommend running the artifact on Intel Xeon CPU
with at least 32 cores. For smaller graphs like L], 64GB memory is
enough, for larger graphs (FR), 400GB memory is required.

A.3.3 Software dependencies. We recommend that the artifact runs
on CentOS 7, but other similar Linux distributions should also work.
To compile and run the source code with scripts, users need GCC
with Cilk support (GCC 7.4.0 or 6.3.0 or lower versions).

A.4 Installation

The compilation script is provided in Glign-AE/apps. Detailed
instructions are provided in G1ign-AE/README.md

A.5 Evaluation and expected results

The performance tests and profiling experiments could be run with
the provided scripts (in G1ign-AE/apps). See detailed instructions
in G1ign-AE/README . md. Scripts for collecting data reported in the
paper are provided in G1lign-AE/results/scripts). Note that the

91

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

running times, speedups, and LLC misses may vary depending on
the computing environments, but the trends should be similar.

REFERENCES

[1] 2013. Friendster network dataset. http://konect.cc/networks/friendster/. Ac-
cessed: 2022-01-02.

[2] 2013. Wikipedia links, english network dataset. http://konect.cc/networks/
wikipedia_link_en/. Accessed: 2022-01-02.

[3] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 44-54.

[4] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. 1995. Cilk: An efficient multithreaded runtime
system. ACM SigPlan Notices 30, 8 (1995), 207-216.

[5] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In Proceedings of the 13th international conference on World Wide Web.
595-602.

[6] Hongzheng Chen, Minghua Shen, Nong Xiao, and Yutong Lu. 2021. Krill: a
compiler and runtime system for concurrent graph processing. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-16.

[7] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A framework
for parallel graph algorithms using work-efficient bucketing. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures. 293-304.

[8] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency graph
streaming using compressed purely-functional trees. In Proceedings of the 40th
ACM SIGPLAN conference on programming language design and implementation.
918-934.

[9] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. Powergraph: Distributed graph-parallel computation on natural graphs.

In 10th {USENIX} Symposium on Operating Systems Design and Implementation

({0SDI} 12). 17-30.

Xiaolin Jiang, Chengshuo Xu, and Rajiv Gupta. 2021. VRGQ: Evaluating a Stream

of Iterative Graph Queries via Value Reuse. ACM SIGOPS Operating Systems

Review 55, 1 (2021), 11-20.

Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2021.

Tripoline: generalized incremental graph processing via graph triangle inequality.

In Proceedings of the Sixteenth European Conference on Computer Systems. 17-32.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. In Proceedings of the 19th international

conference on World wide web. 591-600.

Hang Liu, H Howie Huang, and Yang Hu. 2016. iBFS: Concurrent breadth-

first search on GPUs. In Proceedings of the 2016 International Conference on

Management of Data. 403-416.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,

and Joseph M Hellerstein. 2012. Distributed GraphLab: A framework for machine

learning in the cloud. arXiv preprint arXiv:1204.6078 (2012).

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data. 135-146.

Abbas Mazloumi, Xiaolin Jiang, and Rajiv Gupta. 2019. Multilyra: Scalable dis-

tributed evaluation of batches of iterative graph queries. In 2019 IEEE International

Conference on Big Data (Big Data). IEEE, 349-358.

Abbas Mazloumi, Chengshuo Xu, Zhijia Zhao, and Rajiv Gupta. 2020. BEAD:

Batched Evaluation of Iterative Graph Queries with Evolving Analytics Demands.

In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 461-468.

Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a

vertex: a survey of vertex-centric frameworks for large-scale distributed graph

processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 1-39.

Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and

Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-

Accelerated Traversal Scheduling. In Proceedings of the 51st Annual IEEE/ACM

International Symposium on Microarchitecture (Fukuoka, Japan) (MICRO-51). IEEE

Press, 1-14. https://doi.org/10.1109/MICRO.2018.00010

Peitian Pan and Chao Li. 2017. Congra: Towards efficient processing of concurrent

graph queries on shared-memory machines. In 2017 IEEE International Conference

on Computer Design (ICCD). IEEE, 217-224.

Zichao Qi, Yanghua Xiao, Bin Shao, and Haixun Wang. 2013. Toward a distance

oracle for billion-node graphs. Proceedings of the VLDB Endowment 7, 1 (2013),

61-72.

Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. 2020. Graphpulse: An

event-driven hardware accelerator for asynchronous graph processing. In 2020

53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

IEEE, 908-921.

[10

[11

[12

(13]

[14

[15

=
&

(17

(18]

[19

™
=

[21

[22]

http://konect.cc/networks/friendster/
http://konect.cc/networks/wikipedia_link_en/
http://konect.cc/networks/wikipedia_link_en/
https://doi.org/10.1109/MICRO.2018.00010

Glign: Taming Misaligned Graph Traversals in Concurrent Graph Processing

[23] Shafiur Rahman, Mahbod Afarin, Nael Abu-Ghazaleh, and Rajiv Gupta. 2021.
JetStream: Graph Analytics on Streaming Data with Event-Driven Hardware
Accelerator. In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture. 1091-1105.

[24] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-
tory with Interactive Graph Analytics and Visualization. In AAAL https:
//networkrepository.com

[25] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Subway: Mini-
mizing data transfer during out-of-GPU-memory graph processing. In Proceedings
of the Fifteenth European Conference on Computer Systems. 1-16.

[26] Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz, and Zuhair Khayyat. 2016.

Large-scale graph processing using Apache Giraph. Springer.

Julian Shun. 2020. Practical parallel hypergraph algorithms. In Proceedings of the

25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

232-249.

[28] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN symypo-
sium on Principles and practice of parallel programming. 135-146.

[29] Jeremy Siek, Lie-Quan Lee, Andrew Lumsdaine, et al. 2002. The boost graph
library. Vol. 243. Pearson India.

[30] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103-111.

[31] Keval Vora, Rajiv Gupta, and Guoging Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. In Proceed-
ings of the twenty-second international conference on architectural support for
programming languages and operating systems. 237-251.

[32] Chengshuo Xu, Abbas Mazloumi, Xiaolin Jiang, and Rajiv Gupta. 2020. SimGQ:
Simultaneously evaluating iterative graph queries. In 2020 IEEE 27th International
Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE,
1-10.

[33] Jilong Xue, Zhi Yang, Shian Hou, and Yafei Dai. 2016. Processing concurrent

graph analytics with decoupled computation model. IEEE Trans. Comput. 66, 5

(2016), 876-890.

Jilong Xue, Zhi Yang, Zhi Qu, Shian Hou, and Yafei Dai. 2014. Seraph: an efficient,

low-cost system for concurrent graph processing. In Proceedings of the 23rd

[27

[34

92

[35

[36

[37

[39

[40

[41

[42

[43

]

]

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

international symposium on High-performance parallel and distributed computing.
227-238.

Xizhe Yin. 2022. Glign: Taming Misaligned Graph Traversals in Concurrent Graph
Processing. https://doi.org/10.5281/zenodo.7173860

Pingpeng Yuan, Wenya Zhang, Changfeng Xie, Hai Jin, Ling Liu, and Kisung Lee.
2014. Fast Iterative Graph Computation: A Path Centric Approach (SC '14). IEEE
Press, 401-412. https://doi.org/10.1109/SC.2014.38

Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib
Kamil, Saman Amarasinghe, and Julian Shun. 2019. Optimizing ordered graph
algorithms with graphit. arXiv preprint arXiv:1911.07260 (2019).

Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He, Bingsheng He, and Haikun
Liu. 2018. Cgraph: A correlations-aware approach for efficient concurrent
iterative graph processing. In 2018 {USENIX} Annual Technical Conference
({USENIX} {ATC} 18). 441-452.

Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu. 2019.
DiGraph: An Efficient Path-Based Iterative Directed Graph Processing System
on Multiple GPUs (ASPLOS ’19). Association for Computing Machinery, New
York, NY, USA, 601-614. https://doi.org/10.1145/3297858.3304029

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. Proceedings
of the ACM on Programming Languages 2, OOPSLA (2018), 1-30.

Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, and Haikun
Liu. 2021. LCCG: a locality-centric hardware accelerator for high throughput of
concurrent graph processing. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1-14.

Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, Haikun
Liu, and Yicheng Chen. 2019. GraphM: an efficient storage system for high
throughput of concurrent graph processing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-14.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. {GridGraph }:{Large-
Scale} Graph Processing on a Single Machine Using 2-Level Hierarchical Parti-
tioning. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). 375-386.

Received 2022-03-31; accepted 2022-06-16

https://networkrepository.com
https://networkrepository.com
https://doi.org/10.5281/zenodo.7173860
https://doi.org/10.1109/SC.2014.38
https://doi.org/10.1145/3297858.3304029

	Abstract
	1 Introduction
	2 Background
	2.1 Vertex-Centric Graph Processing
	2.2 Concurrent Evaluation of Graph Queries

	3 Glign
	3.1 Global Iterations
	3.2 Intra-Iteration Alignment
	3.3 Inter-Iteration Alignment
	3.4 Alignment-Aware Batching
	3.5 Implementation

	4 Evaluation
	4.1 Methodology
	4.2 Overall Performance
	4.3 Intra-Iteration Alignment
	4.4 Inter-Iteration Alignment
	4.5 Alignment-Oriented Batching
	4.6 Impacts of Batch Size
	4.7 Performance on Road Networks
	4.8 Comparison with iBFS

	5 Related Work
	6 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

	References

