2022 IEEE Conference on Communications and Network Security (CNS) | 978-1-6654-6255-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/CNS56114.2022.9947238

2022 IEEE Conference on Communications and Network Security (CNS)

5G Messaging: System Insecurity and Defenses

Jinghao Zhao*, Qianru Li*, Zengwen Yuan, Zhehui Zhang, Songwu Lu
University of California, Los Angeles
{jzhao, gianru, zyuan, zhehui, slu}@cs.ucla.edu

Abstract—5G introduces Rich Communication Services (RCS)
as the official messaging service. It replaces SMS with rich
multimedia content over the chat session. RCS intends to provide
“any network, any device” messaging services for a given user
across various network (4G/5G or Wi-Fi) and devices (SIM-based
phones or SIM-free tablets/gadgets). This work provides the first
in-depth study of RCS system security. We find that although
RCS is one of the mobile carrier services, it performs a weak
cellular ID binding, which opens a door for attackers to hijack the
victim’s RCS service. Even with end-to-end encryption in place,
impersonation and eavesdropping over chat messages are still
feasible. The attacks could be persistent and stealthy. With abused
RCS service, victims are vulnerable to various attacks of fraud,
location tracking, unauthorized operations on business accounts,
and spamming. We have empirically validated such attacks in
4 major US mobile carriers by following ethical requirements.
We further propose and implement both long-term solutions and
immediate remedies.

I. INTRODUCTION

5G has standardized Rich Communication Services (RCS) as
the official messaging system based on GSMA specifications
[22]. It seeks to provide “any network, any device” messaging
services across different mobile carriers [14]. It replaces text-
based SMS with richer content in group chats, video, audio, and
images for both users and businesses [12]. Different from the
Instant Messaging (IM) applications such as WhatsApp that
require user installation, RCS service is provided by carriers
and has been deployed in the built-in message app on mobile
OS such as Android [6]. It has rolled out with 1.2 billion active
users from 90 mobile carriers in 60 countries to date [22]. RCS
also promises to offer better user experiences and open up more
opportunities for businesses [12], [13]. The business messaging
service by RCS is projected to generate $8.3B revenue by 2024
[13].

System security is a primary goal for 5G RCS. From the
security perspective, 5G RCS includes all necessary protec-
tion including user authentication, server authenticity, integrity
check, and end-to-end encryption. Moreover, the system im-
plementation is as excellent as Google Messenger [9], and
its operations by carriers have no non-trivial slips except
[21]. Therefore, the RCS design seems not to have significant
security issues. Indeed, given the large-scale rollout since 2018,
there have been no further reports on RCS insecurity.

However, our recent study shows negative results. We find
that user authentication in 5G RCS can be breached in practice.
As a mobile carrier service, RCS must be directly accessible
to cellular subscribers (i.e., SIM holders). However, the current

*Co-first authors

978-1-6654-6255-6/22/$31.00 ©2022 IEEE

RCS binding with cellular IDs is weak and opens a door for
hijacking the RCS service. By detailed inspection of the RCS
signaling procedures, we devise the attack that can remotely
hijack the victim’s RCS service. The attack does not need
any root access on the victim’s device. It is also regardless
of the victim’s access network (4G/5G cellular or Wi-Fi) or
device type. With hijacked accounts, other security functions
of message confidentiality and integrity can also be compro-
mised. Even with end-to-end encryption in place for RCS chat
sessions, adversaries is still able to impersonate and eavesdrop
on chat messages. We have validated such attacks with four
US mobile carriers (with a total market share > 98%) while
following ethical requirements. We further validate that the
attack could be persistent and stealthy in practice, which makes
it hard to be detected and defended by victims.

Furthermore, enriched services provided by 5G RCS exacer-
bate the damage in the real world. We validate the insecurity
and privacy intrusion in the current 5G RCS services. The
attacker can launch fraud or location tracking by impersonating
victims. The attacker could also perform business account
invasion and heavy data spamming to cause financial losses to
victims. We further conduct a user study from 679 participants
covering a wide range of ages. The results show that the RCS
service abuse could lead to financial losses and privacy leakage,
with a high probability from 24% to 33.3% in practice.

To defend against such threats, we propose both long-term
solutions and short-term fixes. In the long run, RCS must ensure
the cellular IDs remain private to its app. For phones with SIMs,
RCS should use SIM/eSIM-based keys that are exclusively tied
to messaging apps. They are well tested by 4G/5G services like
VoLTE. On SIM-free devices, RCS may leverage the assistance
of the phone device and introduce an intermediate binding with
the verified smartphone. We also propose quick remedies for
immediate mitigation. Our gained insights on RCS and carrier-
supported services may also shed light on securing other mobile
applications. The lessons learned from RCS will further help
to fix any authentication loophole there.

II. BACKGROUND
A. System Architecture and Workflow

As shown in Figure 1, the RCS system consists of five
components to offer enriched chat service: profile server,
messaging server, content server, key server, and network-
network interface (NNI). We illustrate their functions through
the example of how user Alice logs on to RCS and starts
chatting with her friend Bob. To start, Alice logs on to the

37

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

Key Server
(Optional between 1 and 2) Optional between 1’ and 2"
é Encrypt. key register/update/query g Encrypt. key reglster/update/query
: Profile Server Profile Server
L\ -

0. Login ’—>

'7
v | o_o
Msg Senﬂ/

*g
AA

Content Server

N 0’ Login
/ \ 1. Connection setup
° o] 2. RechNVITE 2 Recv INVITE and send

\%sg Server

Content Server

1. Connection setup
2. Send INVITE and rec
AC

\in d chat) —-» Bob
(opﬂ"“a 4 video

Carrier A Carrier B

Fig. 1: RCS system architecture.

profile server and gets access tokens that authenticate all follow-
up operations in the current logon session. Next, Alice connects
with the messaging server using the access token and invites
Bob to a live chat. If end-to-end encryption is supported, Alice
will generate a set of keys, upload the public key to the key
server, and query Bob’s public key as well. Once Bob accepts
the invitation, Alice sends messages (encrypted, say, with the
e2e encryption scheme) to him. Optionally, Alice shares a
file (e.g., picture/video) by uploading it to the content server
and sending the URL to Bob. Finally, Alice ends chatting by
sending Bob a BYE message. Note that Bob is reachable though
served by a different carrier, given the inter-carrier connection
provided by NNI.

B. RCS Security

RCS guarantees that any legitimate user can access services
under any network (cellular 4G/5G or non-cellular Wi-Fi net-
works) and any device (phones or SIM-free tablets/gadgets).
RCS system security is a well-informed design that seeks to
meet the following security requirements:

User Authentication Supported by mobile carriers, 5G RCS
is provisioned for mobile subscribers only. Therefore, RCS
verifies the secure binding between the RCS account and
cellular IDs (e.g., phone number). To support the access from
any network any device, Figure 2 depicts the scenario-specific
customization. For smartphones (Figure 2a), the account is
bound to the phone number with OTP. International Mobile
Subscriber Identity (IMSI) is also required to strengthen the
binding. For SIM-free devices (non-cellular networks), RCS
requires users to input OTP received from the phone with the
corresponding SIM for authentication (Figure 2b).

Server Authentication RCS guarantees server authenticity
by HTTPS/TLS with root certificates issued by trusted CA.

Integrity and confidentiality RCS adopts a series of stan-
dardized mechanisms to prevent eavesdropping and tampering
of both signaling and chat messages. Service logon (which
involves credential exchange) is protected by HTTPS; Chat
messages are first protected by end-to-end encryption [7] and
then encrypted by the server-client TLS connection.

III. OVERVIEW
A. Threat Model

In our study, victims could be anyone eligible for RCS
service (i.e., cellular subscribers). We make two assumptions

38

Profile Server SIM-free Device Phone Profile Server

(Assist auth. a

Login request with IMSI

Login request with IMSI

Ly OTP via SMS OTP viewed by user QTP via SMS
: wifE) [T

: OR 2nd request to echo OTP e 2nd request to echo OTP

156 _Access tokens (auth success) :

Access tokens (auth success)

(a) Access from phones (b) Access from other devices

Fig. 2: Authentication in multiple use scenarios.

about the attacker’s capabilities. First, the attacker owns a
rooted device with 5G RCS enabled, and a malicious server
with the network connection to launch attacks. Second, the
attacker knows the victims’ phone numbers by crawling profiles
on social networks (e.g., LinkedIn, Facebook, etc.) The attacker
does NOT require root access of the victim’s device, or the
privilege to control or manipulate RCS servers.

B. Attack overview

The current 5G RCS performs various protection, in-
cluding ID binding, end-to-end encryption, and periodic re-
authentication. We perform a detailed inspection of the security
procedures of the 5G RCS and devise attacks as shown in
Figure 3. First, we devise the account hijacking (§IV) by
breaking the ID binding and launching the attack from a fake
client remotely. Despite the end-to-end encryption, the attacker
could still hijack the victim’s account to initialize chat sessions.
We enhance the hijacking attack to be persistent and stealthy
to the victim. Furthermore, based on the new rich chat services
with hijacked accounts, we explore various attacks in terms of
impersonation, location tracking, unauthorized operations, and
spam downloading (§V).

We validate vulnerabilities and attacks with victims using 4
U.S. mobile carriers (total market share > 98%) and various
Android phone models (Google Pixel 5/4a/2/1, OnePlus 7
Pro/8 Pro, and Mi MIX 2). Tested Android OS versions cover
9/10/11/12. Even users’ phone models do not support 5G RCS
(e.g., OnePlus 7 Pro and Mi MIX 2 in our experiment), they
are still potential victims under attacks. This is because those
legitimate SIM holders are eligible to use SG RCS on a different
device. Without specification, validation results of attacks and
vulnerabilities apply to all tested operators/phones.

Ethical issues Our attacks do not incur damage to real users.
The tested devices and SIM cards are only for experimental
usage, but not associated with real users. Moreover, the attacks
do not negatively impact the RCS service providers, given that
only up to 3 devices are involved and little traffic is generated.
Furthermore, the authors are reaching out to all four US carriers
and working with them and the OS vendor to examine the
uncovered vulnerabilities and proposed remedies.

IV. COMPONENT I: HIJACKING 5G RCS

In this section, we introduce vulnerabilities in 5G RCS
authentication. Attackers can exploit the weak ID bindings
(§IV-A) to hack victims’ accounts under any network and any
device (§IV-B), and breaks the end-to-end encryption for chat

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

Profile Key Msg
Server Server Server

7°\
QS |o_o

Attacker

®

Login rgst with counterfeit IMSI (§1V-A)
OTP via SMS

i)
(©

Acquire OTP from_
il dgvice/network

Auth with fake client (§1V-B)
Auth success
Downgrade/replace e2ee keys (§IV-C)
Obtain the public key of the chat target
Setup chat sessions for fraud, location t:racking, etc. (§V)
I I

Fig. 3: Attack overview.
messages (§1V-C). We further show how to achieve a persistent
and stealthy attack for the hijacking (§IV-D).

A. Weak ID Bindings

RCS takes different cellular IDs to match capabilities under
different access networks and devices. Cellular IDs are verified
by confidential information for security-wise strengths. RCS
leverages two cellular IDs to bind the user: IMSI and phone
number. We find that both adopted IDs introduce weak bind-
ing. All weaknesses break the initial authentication and open
surfaces for account hijacking.

1) IMSI - Partial Binding: RCS server demands a cellular
ID, IMSI, to claim the binding between an RCS account and
the SIM holder. It takes advantage of IMSI being a private
subscriber ID stored in a SIM. Although it is not accessible
to non-system apps on Android OS (version 10 or above),
the binding is weak considering two practical issues. First,
it is not strictly enforced by service providers. In the current
implementation, the user account is only bound to a fragment
of IMSI referring to MCCMNC, a public identity code of the
mobile carrier. Since attackers can acquire MCCMNC using
the victim’s phone number [5], they can easily counterfeit
an IMSI to break the binding. On the other hand, even if
the IMSI is thoroughly examined, it still suffers from leakage
during cellular service attach (e.g., downgrade attack with IMSI
catchers [36], [11]).

2) Phone Number - Verified by Public Information: RCS
adopts one-time passwords (OTP) via SMS to verify the phone
numbers. However, the attacker could eavesdrop on the victim’s
SMS from either the client or network side. From the client
side, applications could read the SMS with APIs provided by
mobile OS [28]. It has been validated that applications with
SMS reading privilege could pass the application store’s check-
ing (e.g., Google Play) and be installed by victims [26]. From
the network side, attackers could acquire the SMS by signaling
attacks (SS7, diameter, etc.) [23], [29], [30]. To make things
worse, 5G RCS adopts invisible SMS for OTP, which is hidden
from users but automatically extracted by the built-in message
app to complete verification. It targets better usability by getting
rid of user operation or even attention during service access.
However, invisibility facilitates the stealthiness of attacks. It
makes victims lose the chance to realize the potential risk and
stop it immediately.

Validation = We validate the vulnerability for 4 US mobile
carriers in our study. For all 4 operators, none of them provides

sufficient examination on IMSI. Every carrier only checks that
the carrier code (MCCMNC, first 6 digits in IMSI) and the URL
in the request refer to the same mobile carrier. In our test, we
concatenate the 6-digit code of any carrier and a random 9-digit
number to create a fake IMSI like (MCCMNC)123456789.
With a fake IMSI, we make a successful request on behalf
of the victim. We prototype an Android application to stole
OTP with READ_SMS permission. Our results validated OTP
leakage for all 4 US operators. OP-I/II/IIl mandate invisible
SMS for smartphone registration. As OP-IV supports visible
SMS, the application has one more choice to sniff OTP from
the notifications.

B. Hacking Accounts under Any Network Any Device

The weak ID bindings enable the attacker to log on to the
RCS service using the victim’s cellular identity. Note that this
hijacking attack could target any cellular service user, no matter
whether they have existing RCS accounts or not. This is because
attackers could create the RCS account first for the victim,
hijack the target account, and do evil in her name.

To successfully launch the attack, we first learn the op-
eration logic by collecting signaling/chat messages from a
rooted device for various events: service request, login, message
exchanging, and file sharing. After the detailed inspection of
the signaling procedures, we deploy a fake client to counterfeit
signaling messages for attack validation. The attacker feeds it
with the victim’s phone number to automatically communicate
with RCS servers in the name of victims and intrude on their
services. No matter what network the victim is under, the
attacker could launch the attack remotely without accessing the
victim’s device. The implementation is composed of 3 major
components, with 3000+ lines of code in Python.

o Service logon. This module hijacks the victim’s RCS
account to obtain his access tokens. It constructs spoofed
requests using the victim’s phone number and fake IMSIs,
sends login requests to the 5G RCS profile server, and receives
configuration files with access tokens. HTTPS connections are
set up for communication.

o OTP interception. We deploy an application on the device
side to acquire the OTP in experiments. An attacker could
also acquire it from network-side SMS interceptions. Before
hijacking starts, the fake client sets up a TCP connection with
the app on the victim’s phone. After sending a request to the
5G RCS server, the fake client pings the app to ask for OTP.
The app then sniffs the OTP with OS APIs and share it with
the logon module to complete verification.

o Chat message exchanging. We leverage this module for
attacks in § V. We implement a simplified SIP [33] library
to support basic message exchanging: REGISTER to set up a
connection with the messaging server, INVITE to initiate the
chat with another user, BYE to end the chat, to name a few.
With the well-crafted signaling, the attacker could send and
receive diverse messages supported by SG RCS (text, locations,
multimedia, etc.) with the victim’s identity.

Validation = Our validation shows that the attack is widely
applicable. We have successfully hacked RCS accounts over 4

39

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

mobile carriers. Attackers need phone numbers only since they
can counterfeit IMSI to pass the check. We validate that the
attack could target a variety of phone models used by victims.
We have launched successful attacks towards users with Google
Pixel-5/4a/2 and OnePlus 7/8 Pro. The attack is not restricted
to specific phone models; Moreover, attackers do not need to
know the device model of victims. We issued an accepted
request specifying Google Pixel-5 as the device model in the
experiment, yet the victim is on a OnePlus phone. We also
validate that attacks even apply to people who are not using
RCS. Those users may disable RCS features, or their devices
do not support RCS. We successfully created RCS accounts
in the name of victims using Mi MIX 2 and OnePlus 7 Pro
without RCS support.

C. Spoofing under End-to-end Encryption

The end-to-end encryption rolls out for the chat messages
to further ensure the security of 5G RCS [7]. In addition to
TLS encryption between clients and servers, RCS enhances
the protection for user privacy since messages cannot be
eavesdropped on or tampered with even by internal servers.
End-to-end encryption is powered by a key server where users
register, update and exchange public keys. Once a user logs
on to RCS on a new device/app, the client will generate a
pair of keys and share the public key with the server. If both
users enable the function, plain messages between them will
be encrypted using the keys [9]. In order to do spoofing, the
attacker has to break the protection of end-to-end encryption
after taking over the victim’s account. Our study shows that
one can bypass the challenge of end-to-end encryption with
downgrade attacks or key replacement.

Downgrade attack A conversation will be downgraded to
plain text for backward compatibility if either client does not
support or enable end-to-end encryption. Therefore, one can
bypass end-to-end encryption by claiming the incapability of
clients. We deploy it within the Python-based attacker. Our
experiments show that the attacker successfully skips end-to-
end encryption and exchanges messages in plain text with the
victim’s contact.

Key replacement Another approach is to replace the original
key of the victim after hijacking her account. Note that end-to-
end encryption is set up after authentication. Since the attacker
has already taken over the victim’s account, he can update
the key, retrieve the contacts’ keys, and enable end-to-end
encryption. However, it is still challenging to enable end-to-
end encryption between the attacker (spoofing the user) and
the contact by imitating the end-to-end encryption signaling.
The application obfuscation prevents reverse engineering, and
the key exchanging messages are in an unknown format.
Therefore, we exploited the implementation of messaging
app to launch attacks. Specifically, we hooked the app on a
rooted device to spoof the victim’s account and replace the
encryption key. Figure 4 illustrates the entire process. We
used another rooted Android phone as the bot to launch the
attack. We hooked the bot’s messaging app using Frida [4].

1.Hook built-in messagln%ap w/ victim ID & register =)

| telephonyManager.getSubscriberl overloadz implementation; (c =)
telephonyMana_gergethelNumberover\oad J.implementation; | c =)
Profile

| (2. Replace victim’s encryptlon keys on the key server]\ Server

| [3. Obtain the public key of the chat target <)i>
1
' (4 Set up chat session w/ eZee and start conversation J,' Key8
@ @ Chatting with +1 N Learn more Server
Attacker ‘ _ o
Hi Bob, | just got mugged. Can you 77\

o_o

borrow me 20 bucks on venmo? My

account is @badalice. Msg

Server

OMG @ Are you okay? Did you call
9112

Tmin &

Fig. 4: Attacks end-to-end encryption via key replacement.

We fed the app with the victim’s phone number and a fake
IMSI. The hooked app first sent a logon request to the profile
server and triggered SMS OTP during an attack. The bot passes
verification and registers successfully by feeding the victim’s
OTP stolen from either the device or network side to the bot.
After login in as a new user, the hooked app uploaded a new
encryption key to the server. The new key is generated by the
app thus could pass the key server checking. Before sending
messages, the app also requested the public key of the target
contact'. Until now, the attacker could set up a connection
under end-to-end encryption with the victim’s contact. Figure 4
shows the view of a successful attack where the lock sign under
message bubbles indicates end-to-end encryption.

D. Persistent and Stealthy Attack

While our validation proves the feasibility of attacks, the

current RCS system prevents persistent account hijacking. First,
clients periodically re-connect to the server. If the RCS account
is hijacked, the client could recover it no later than the subse-
quent reconnection. Second, the server enforces a rate limit on
logon requests to prevent continuous attacks. We further devise
a persistent and stealthy attack, making it hard to be perceived
by victims.
Persistence of Attack We perform a dynamic reconnection
in the attack to be persistent or long enough to cause damage.
The attacker can still hack the account continuously if the
rate limit is not as tight as the frequency of reconnection.
We attempt a new attack immediately once detecting that
the previous one is terminated by monitoring the incoming
signaling message. If the new one succeeds, account hijacking
could be persistent. In our experiments, persistent attack applies
to OP-II, OP-III, and OP-IV. OP-I has a tight rate limit, and only
one attack is permitted in a 10-hour window. However, there
is sufficient time to intrude chat service and pose real damage
in one attack. We conducted measurement over 4 carriers and
Android OSes version 9 — 12; The validity period of one attack
is approximately equal to the interval between consecutive
connection refreshes, i.e., 2 — 3.5 hours.

Stealthy Connection Spoofing Furthermore, our attack is
stealthy due to invisible SMS and lack of anomaly alert.
With the hacked access token, the attacker can set up a

! According to our observation, this operation is performed once the user
opens the dialog with the contact.

40

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

Alice’s client Bob’s client
< Bob [A | & Alice o W Qi
Where are you guys going? Normal chat

Let's grab a sandwich and go to the
patio &

Let's grab a sandwich and goto the
patio @

@ [@ Chatmessage ® 9 -
To: Bob How are you doing? Can | get your
& 90 From: Attacker Alice mailing address to send a postcard?
| Wow thanks! My address is IG_
/ To: Alice I —
</> _From: Bob L@y
ot &

Fig. 5: Example of impersonation and fraud attack.

chat connection in the victim’s name. As a result, the new
connection will replace the original legitimate one, which is
reasonable to accept only one phone per user. However, instead
of dropping the old connection, RCS leaves it alive but unused.
Consequently, the victim still assumes her chat connection
is working well, while all messages targeting the victim are
forwarded to the attacker only. We have validated the feasibility
of spoofing chat connections stealthily over 4 U.S. carriers.

We attribute stealthy spoofing of chat connections to im-
plementation flaws. To secure users in a better way, RCS
should stay aware of potential threats and manage connections
more wisely. Specifically, RCS should explicitly terminate the
existing connection with the old device. Actually, it will benefit
both security and usability. For security-wise, victims can get
their accounts only if they are aware of the loss; For usability,
it is even worse if the user stops receiving messages without
being alerted a terminated service.

V. COMPONENT II: EXPLOIT RICH CHAT SERVICES

In this section, we explore RCS’s enriched service, such as
location sharing, multimedia support, etc. We find that enriched
services provided by RCS exacerbate the damage in real world.
The attacker can launch impersonation-based fraud (§V-A),
location tracking (§V-B), business account invasion (§ V-C), and
heavy data spamming (§V-D).

A. Text Chat: Impersonation-based Fraud

After hijacking the victim’s RCS account, the attacker can
impersonate the victim and send fraudulent messages to con-
tacts. Figure S illustrates an example. The attacker breaks in
the conversation between Alice and Bob and asks Bob for his
mailing address. Bob’s reply is forwarded to the attacker.

Unlike prevalent fraud from unknown numbers, it is much
easier to obtain privacy or monetary gains by impersonating
a friend or family. In case the recipients reply and ask for
confirmation, the attacker will catch it and react accordingly.
By handling such challenges, the attacker can further convince
the recipients to take action as requested.

Moreover, the fraud is stealthy since the victim will never
receive any message from her contacts, thus remaining unaware
of underlying risks. The attacker can set up a new connection
with hijacked accounts to replace the victim’s original connec-
tion. Therefore, the messaging server will forward all messages

20-40

= w/o Spam = w/ Spam ‘
o mE
Wi-Fi - B

Cellular

<20
I —

N e]

34.625%

0 10 20 30 40 50
Bitrate (Mbps)

40-60

Fig. 6: Age distribution. ~ Fig. 7: Impact of spamming.

targeting the victim to the attacker. The attacker can further
acknowledge those messages to make the sender believe in
delivery to the right person. The entire attack is silent from
the view of the victim.

Validation. We validate the practicality and effectiveness of
impersonation-based fraud. We have successfully impersonated
users from all 4 carriers. Unlike messaging spoofing, where
attackers only send messages, we can further push it by
reacting with the target. To evaluate the effectiveness of fraud,
we conduct a user study by recruiting volunteers to take a
questionnaire. We ask participants about their actions upon
receiving short messages from a friend or unknown number
asking for privacy or money. Those requests emulate common
scenarios in our daily life to convince the recipients. We collect
answers from 679 participants covering a wide range of ages,
as shown in Figure 6. The fraud is very effective, according to
the following findings.

o Impersonating acquaintances greatly boosts the chance
of successful fraud. When receiving a short message ask-
ing for an address/money/gift from their family or friends,
11.5%/9.3%/4.6% of people will do it as requested immedi-
ately, as shown in Table I. Impersonation brings a considerable
boost of 28.8x, 93x, and 11.5x, respectively, compared with
fraud from unknown numbers. It also helps reduce the chance
of failure (i.e., people take no action or make a phone call for
confirmation).

o The ability to interact with recipients via RCS live chat
helps convince the recipients to take action as requested.
Impersonation-based fraud takes advantage of interaction with
targets. The user study shows that 21.8%, 17.2%, and 19.4%
of people need confirmation via live chat to request address,
money, and gift, respectively. In total, the fraud will put 33.3%,
26.5%, and 24% of people at very high risk of privacy leakage,
monetary loss in terms of money or gift.

B. Location Sharing: Real-time Tracking

The attacker can exploit a new chat feature, location shar-
ing, to track the victim’s contacts in real-time. RCS clients
support in-app retrieval of real-time location and sharing with
geolocationpush message. The attacker can impersonate
the victim as in §V-A to lure the victim’s contacts to share real-
time location. Moreover, location tracking is also stealthy since
the spoofed connection has replaced the existing one between
the victim and the victim’s contact.

Validation. = The feasibility is validated since this attack

adopts similar techniques as impersonation-based fraud. In
addition, we evaluate the effectiveness of location tracking.

41

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

TABLE I: Results of user study.

Requested item From Immediate action Confirm via live chat ~ Confirm via phone call No action
Home address Friend/family 11.5% 21.8% 57.9% 8.8%
Unknown number 0.4% 1.6% 6.0% 92.0%
Mon Friend/family 9.3% 17.2% 64.9% 8.6%
oney Unknown number 0.1% 3.8% 10.6% 85.5%
Gift Friend/family 4.6% 19.4% 61.9% 14.1%
Unknown number 0.4% 1.8% 6.0% 91.8%
Real-time location Friend/family 12.7% 22.5% 56.3% 8.5%
Unknown number 0.6% 3.5% 6.8% 89.1%
< Alice o W Q i € Bot Store 9 Q & RichOTP 9 Qa
I'd like to buy you a dinner. '
an you share ur location’ o> ©
________ 1
: _@Ehfrilgca_ﬁgn_l What address? Wher]) ® Profile New Trending ‘
@ B cratmessone © ¢ o S ocaton @ Solct Solc

(a) Action suggestion (b) Send real-time location

http://www.opengis.net/gml" xmlns:gs="
http://www.opengis.net/pidflo/1.0" entity="

tel:+1 I >< id="kj vDKkXNAA"
label="https://www.google.com/maps/place/@/data=!4m2!
. > <

srsName="

g Latitude |

>< ><
urn:ogc:def:crs:EPSG: :4326"><
| _Longjtude 334 ></ ></

(c) GPS intercepted by attackers
Fig. 8: Location sharing via RCS.

The successful rate to track victims’ contacts is pretty high.
As shown in the user study (Table 1), 12.7% of people would
expose their locations immediately; 22.5% of people only need
confirmation from live chat. Similarly, people tend to lower
their guard when sharing real-time locations with contacts. Note
that the location tracking is accurate as RCS uses GPS in plain
text (Figure 8c).

C. Business Chatbots: Unauthorized Actions

More threats are emerging as RCS service providers are
rolling out for business chatbots. The RCS chatbots directly
connect users to a wide range of services, including merchants,
restaurants, and banking, to name a few. In a conversation,
users can take similar operations as on the webpage. Therefore,
insecurities of RCS conversations would jeopardize the victim’s
accounts of other online services. Here we introduce two
potential threats: unauthorized purchase/privacy retrieval and
account take-over.

Unauthorized purchase/privacy retrieval Business chat-
bots enable quick actions in a conversation, like placing de-
livery orders, booking a flight, and viewing transaction history.
Such an appealing feature makes it easier for users to access
the services of a business and thus increases user engagement
and sales. Pizza Hut and Booking.com have launched RCS
chatbot in Europe [15]. However, the evil power to hijack RCS
accounts would turn the new charm into a nightmare. Once the
attacker intrudes on the victim’s RCS service, he also acquires
control of business accounts launched on RCS. Depending on
the functionality of the business chatbot, the attacker might
be able to place orders using the default payment method or
retrieving account information.

Click “Profile” —

& 25kB

Dotgo Bot Store OTP - 0366

Select

Use this One time Password to verify your phone number
on Dotgo Bot Store.

Profile Details
u cs

Your OTP is 0366

(a) In-conversation actions (b) OTP sent via RCS
Fig. 9: Exploit RCS chatbot functions.

We validated privacy retrieval on Bot Store [3], a platform
providing chatbot service for businesses. It implements click
buttons and menus to guide users. Figure 9a shows that the user
can view his profile and initiate a new transaction by simple
clicks in a conversation. In our experiment, the attacker ex-
ploited such convenience and successfully retrieved the victim’s
account profile.

Business account take-over Risks with chatbots are not
limited to in-conversation actions. The attacker could com-
pletely take over the user’s business account once he intrudes
on the victim’s RCS service. Along with the rolling out of
business chat, OTP verification will be migrated from SMS to
RCS (Figure 9b). Note that OTP is usually used as the only
authentication factor for login or account recovery. Therefore,
one can trigger new login or account recovery on behalf of the
victim, intercept OTP from spoofed chat connection and then
log onto the victim’s business account. Note that the attacker
could log in on websites and take complete control of the
business account, not limited to chatbot-specific functions.

The risk is validated on Bot Store as well. First, the attacker
intruded on the conversation between the victim and chatbot
and waited for OTP. Then, he triggered authentication by click-
ing “forget password” on behalf of the victim. Immediately, the
OTP through RCS was intercepted and used to log in to the
business account.

D. File Sharing: Spam with Heavy Download

RCS supports file sharing in various forms, like photos and
videos, which is a prominent appealing feature. RCS imple-
ments file transfer by media servers (Figure 1) with three major
steps: (1) The sender uploads a file to the media server and
obtains a URL. (2) The sender transmits a message, including
the URL, to the receiver. (3) On receiving the message, the
RCS client downloads the file from the media server.

42

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

However, one can abuse the implementation to launch a
low-cost spamming attack with heavy download. While the
uploaded file is accessible via the URL (generally 30 days),
attackers can spam many users by repeatedly sending the URL.
To make things worse, RCS clients automatically download
large files without the user’s consent. We find that system mes-
saging app on Android 9 through 12 enables auto-downloading
up to 105M for each file by default. In practice, the attacker
can overwhelm the victim with parallel downloading tasks
by sending messages at intensive frequency. To prolong the
spamming attack, one probably hacks many RCS accounts to
switching accounts before getting blocked by victims.

Validation In our test, we sent the URL of a 100MB file
using the fake client and successfully triggered downloading
on the target user’s device. Then we repeatedly sent the URL
to make the victim continuously busy with downloading. In
our experiment, one URL message every 3 seconds is intensive
enough to saturate the victim’s network. Note that the cost of
spamming is pretty low. Only one uploading from the attacker
was sufficient throughout our test.

The attack would quickly use up mobile data and degrade the
network performance for other applications. For data consump-
tion, our investigation shows that most (58.4%) participants
may suffer from data use-up or extra charge due to limited data
plans; the threat is even more fatal for 30.6% of users whose
monthly quota is no more than 5GB. To evaluate the impact on
network performance, we play a 4K video on the test device
under spamming attack for about 5 minutes and measure the
average bitrate. Figure 7 shows that the spamming significantly
hurt network performance for taking a large portion of band-
width. The average bitrate of streaming decreases by 80.4%
(from 46.9 to 9.2 Mbps) under Wi-Fi and 68.6% (from 49.1
to 15.4 Mbps) under cellular. Our experiments do not abuse
or congest RCS servers, given only one user involved and low
bandwidth consumed (below 50 Mbps).

VI. SOLUTIONS FOR RCS

We propose both long-term solutions and quick remedies
to secure RCS based on the lessons from vulnerabilities and
attacks. While an attacker has to complete three major compo-
nents to pose real harm, hijacking an RCS account is the key. A
long-term solution is switching to IDs confidential to the RCS
app for secure binding (§ VI-A). Before it is launched, service
providers should consider quick remedies to mitigate attacks
temporarily (§ VI-B).

A. Long-term Solutions

We focus on user authentication to secure the entire system
in the long run. While ID binding fits the goal of RCS
authentication very well, currently adopted cellular IDs are
prone to spoofing and counterfeiting because none of them
are confidential to the 5G RCS app/users. Different from IM
apps (e.g., Signal, WhatsApp, etc.), we leverage the unique
features of RCS as a carrier service. We leverage built-in keys
in the SIM for access from any device and any network. eSIM
inherits SIM’s functions and our solution works for both SIM

43

and eSIM?. Our solutions still maintain good usability so that
users can access the service with no memory-wise efforts and
negligible physical operations.

1) Authentication for smartphones: On smartphones, we
leverage one advantage of RCS: the ability to access authenti-
cation resources of mobile carriers. As a carrier-based service,
RCS has the option to adopt SIM-based ID, like what VoLTE
does. An RCS-specific ID is issued by service providers and
pre-installed onto the SIM. Thus, the secret ID is bound to
the SIM holder. Those authentication functions can be built
into the existing 4G/5G SIM applet. Since the mechanisms
are used for authentication in 4G/5G and VOLTE, service
providers can easily reuse the current infrastructure to RCS.
In addition, SIM-based authentication can be extended to non-
cellular networks like Wi-Fi. To protect communications via
an untrusted network, we need to set up a secure channel with
an authentic server. We can continue to use the existing RCS
design mechanisms: enforcing TLS connection with public
root certificate issued by recognized CA. Therefore, service
providers could safely adopt this measure for user authentica-
tion under any network.

How does it resolve vulnerabilities? SIM-based cellular ID
ensures the ID binding without hurting user experiences. First,
the isolated hardware provides exclusive access to the ID for
the target service. Specifically, the SIM applet strictly binds the
cellular ID to the signature of RCS apps. Therefore, the cellular
ID becomes a real “secret” to RCS service. The SIM only grants
access to apps whose signatures are on a white list [1]. The
app signature is created using the developer’s private key and
is hard to be abused by attackers [2]. More importantly, RCS
users get authenticated automatically without any memory-wise
or physical efforts. Thus, the usability maintains. In addition,
the operators can quickly deploy the new applet over the air
without hardware replacement.

Implementation on clients We implement an RCS applet
with Javacard SDK [8] on a programmable SIM card, together
with a prototype RCS messaging app and RCS registration
server to test the authentication procedure. As shown in Fig-
ure 10a, when the RCS app registers, it first retrieves the
login challenge from the RCS server with the phone number.
Then the app opens a session and forwards the challenge to
the RCS applet through the OpenMobileAPI [10]. After the
RCS applet calculates the response with the preset key and
challenge, the app authenticates with the RCS server. We test
the implementation on the Google Pixel 4a with Android 12.
Figure 10b shows that we can successfully perform the SIM-
based authentication for RCS registration.

2) Authentication for SIM-free devices: We propose to
authenticate SIM-free devices by creating a binding to the
verified, trusted smartphone. It is based on the RCS feature that
access from SIM-free devices always relies on the assistance of
the SIM holder’s smartphone. We take the approach of pushing
a confirmation dialog to the trusted smartphone and ask for the

2For simplicity, we use SIM to represent both SIM and eSIM later.

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

RCS Registration Server
login_challenge

RCS App
y 1

//1. Get Challenge from RCS server
login_challenge = get_challenge_from_server();
//2. Get Response from SIM through OMAPI
session = SIMreader.openSession();

channel = session.openLogicalChannel(RCS_AID);|

.RCS_app D/MainActivity:

24C4E3DECCBDSEB5682

OpenMobileAPI (OMAPI)

login_rsp = channel.transmit(login_challenge);
//3. Verify the response with RCS server

RCS Applet login_status = login_with_response(login_rsp);

(a) Authenticate RCS client through SIM

user’s consent when attempting to access on a SIM-free device
[20]. Moreover, we propose the management of those bindings
on smartphones to control access from associated devices. On
the smartphone, the user can see which devices are online and
connected to servers. More importantly, the user can unbind
any SIM-free device and immediately logs it out. To make
the protection more efficient, RCS could support a blacklist
of device IPs so that the user can always ignore the binding
request from the same address.

How does it resolve vulnerabilities? The current veri-
fication binds with phone numbers with SMS OTP, which
suffers from both device and network side attackers. Our
confirmation way is secure for two reasons. First, the binding
is only established with the authentic user’s physical action.
The confirmation message is not generated until the user clicks
on “approve”. Next, it is super hard to spoof the phone-issued
approval. The binding enabled by SIM-based IDs (§ VI-Al)
poses great challenges in impersonating the user on phone
access. In addition, the connection between smartphone and
server is secured, and thus, messages can hardly be tampered
with or injected.

B. Quick Remedies

Considering severe damage caused by RCS insecurities, we
propose the following quick remedies while deploying the
fundamental solutions is necessary.

Enforce the binding with IMSI One solution is to enforce
the binding between IMSI and RCS accounts. With Android
version 10 or above, only system apps can retrieve IMSI from
SIM. Therefore, attackers can hardly access it without root. It
requires minimal modifications to the current design, given that
the infrastructure already supports it. However, this solution still
opens the attack surface since IMSI could be leaked by rogue
base stations, etc. Attackers with more advanced technical
support can still break into the victim’s RCS account.

New login alert We propose a client-based alert to stop
service intrusion after it happens. RCS account hijacking will
trigger SMS OTP sent to the victim’s device based on the
current design. If it does not follow an RCS service request, we
can probably infer the undergoing attack. We have implemented
a prototype application for anomaly detection and alert. As
shown in Figure 11, if the victim did not attempt to log on but
received RCS OTP, the application will notify the user. The
RCS messaging app does not need additional permissions to
integrate anomaly detection and alert functions. Then the client
could invalidate the attacker’s login by refreshing the network

2021-08-17 09:27:15.883 22446-22446/com.example
.RCS_app D/MainActivity: <--
CODBOBF54ABC993B1A6C3210418ED1B5ESAL7DB
D51C2D36ADFCFSCFD79AF912A7ABEBAR865F229F2CA21B7AE 90680

2021-08-17 ©9:27:15.774 22446-22446/com. example
--> send login_challenge to SIM:
B80A500812210351B71FED9A82648F499647BF59833FC1096A79DA94C8DF

L) RCS Protector * now ~

RCS Attack Warning!

Receive unexpected RCS OTP! YOU MAY BE
UNDER SECURITY ATTACK! Please refresh the
network connection to void it.

recv login_rsp from SIM:
5495056 F258BFB109

(b) RCS-SIM authentication log
Fig. 10: Implementation of SIM-based authentication at client side.

Fig. 11: Implementation of hijacking alert.

connection, turning on and off airplane mode, or restarting the
phone, etc.

Conservative configuration for downloading We suggest
fixes for RCS clients to avoid spamming and keep the usability
of file sharing. Generally, the client should adopt conservative
default settings for file downloading. To reduce consumption of
mobile data, the client could separate configurations for cellular
networks and Wi-Fi. Upon receiving URLs of large files, the
client asks for the user’s approval and suggest him/her connect-
ing to Wi-Fi if available. All remedies above are only concerned
with RCS client implementation. The service provider could
achieve better protection with a new software release.
VII. DISCUSSION

RCS is different from regular mobile services, which rarely
have substitutes better than OTP-based ID binding to balance
security and usability. As one of the carrier services, 5G
RCS did not make good utilization of carrier-powered security
strengths, such as the secure SIM-based IDs in 4G/5G data
access [16], VOLTE [27], etc. It overlooked such resources and
thus caused insecurity.

Insights of RCS (in)security are not limited to carrier-based
services but also can be generalized to mobile applications.
First, the provided data for ID verification should be strictly
confidential. While the weak bindings such as the SMS OTP
are vulnerable, other authentication leveraging the in-SIM keys
such as the Generic Bootstrapping Architecture (GBA) is
much more secure [17]. Not restricted to mobile-carrier-based
services, GBA is available to regular online applications and
can provide a strictly private verification of phone numbers
as account identity. Second, the authentication should apply
multiple bindings in parallel with cross-checking. For example,
RCS binds with phone numbers and IMSI but does not perform
the cross-validation and fails to offer adequate protection. For
general mobile applications, cross-checking such as Two-Factor
Authentication [32] should be enforced for user authentication.

VIII. RELATED WORK

To our best knowledge, this paper provides the first in-depth
study of RCS system security. Several works related to RCS
security focused on a specific system component, e.g., the
messaging server [37], or operational slips [21]. Different from
prior studies, we cover all the registration procedures and use
scenarios corresponding to any network and any device support.
In addition to analysis, our work validates the feasibility and
real-world impacts of attacks. SMS security is well studied by a
plethora of work [31], [25], [30], [34], [19]. Although the SMS
and 5G RCS are both provided as carrier services, 5SG RCS

44

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE Conference on Communications and Network Security (CNS)

security is a different problem with insufficient exploration,
given completely different system architecture. There are many
studies about ID binding security, including DNS spoofing [35],
ARP spoofing [18], new attacks in SDN [24]. Our study starts
on the weak ID bindings in 5G RCS and incites deeper thinking
about how to apply ID binding to authentication for generic
mobile services properly.

IX. CONCLUSION

As the official 5G messaging service, RCS is expected
to become an essential platform for operators. In this work,
we conduct an in-depth study on 5G RCS (in)security. We
have uncovered several vulnerabilities and devised attacks by
analyzing their standards and real-world implementation. The
weak ID bindings allow for account hijacking. Even with the
recent end-to-end encryption for RCS, adversaries may still
breach the messaging service persistently and stealthy. The
victims further suffer from impersonation-based fraud, location
tracking, business account invasion, and heavy data spamming.
We have validated such attacks with 4 US mobile carriers
while following ethical requirements. We have designed and
implemented both short-term remedies and long-term solutions.
Lessons learned from our RCS study are also applicable to these
apps and usage scenarios.

X. ACKNOWLEDGMENT

We greatly thank the reviewers for their insightful comments
and constructive feedback. This work is partly supported by
NSF CNS-1910150 and NSF CNS-2008026.

REFERENCES

[1] Android access rule file (arf) support. https://source.android.com/devices/
tech/config/uicc.

[2] Android application
apksigning.

[3] Dotgo bot store. https://dotgo.com/.

[4] Frida. https://frida.re/docs/android/.

[5] Get current mcc/mnc from mobile phone number. https:
/Istackoverflow.com/questions/23888311/get- current-mcc-mnc-from-
mobile-phone-number.

[6] Google completes global rollout of rcs for android. https://telecoms.com/
507569/google-completes- global-rollout-of-rcs-for-android/.

[7] How end-to-end encryption in messages provides more security. https:
//support.google.com/messages/answer/10262381?hl=en.

[8] Java card platform, classic edition 3.0.5. https://docs.oracle.com/javacard/
3.0.5/.

[9] Messages end-to-end encryption overview - technical paper.
/Iwww .gstatic.com/messages/papers/messages_e2ee.pdf.

[10] Open mobile api. https://developer.android.com/guide/topics/
connectivity/omapi.

[11] Protecting high-level personnel from imsi catchers.
/Iwww .securitymagazine.com/articles/91767-protecting-high-level-
personnel-from-imsi-catchers.

[12] Res set to revolutionize mobile messaging ecosystem.
https://www.forest-interactive.com/newsroom/forest-interactive-rcs-
set-to-revolutionize-mobile- messaging-ecosystem/.

[13] Rcs wusers to grow 294% by 2024, driving new revenue for
mnos. https://www.interoptechnologies.com/news/202 1/rcs-users-to-
grow-294-by-2024-driving-new-revenue-for-mobile-operators.

[14] Why rcs? https://jibe.google.com/.

[15] Case study: Pizza hut delivery grabs a slice of rcs messaging.
https://www.mobileindustryeye.com/intelligence/case- study-pizza-hut-
delivery- grabs-a-slice- of-rcs-messaging-enabled-by-imimobile/, 2020.

signing. https://source.android.com/security/

https:

https:

45

[16] 3GPP. TS33.501: Security architecture and procedures for 5G System,
Dec. 2020.

[17] 3GPP. 3GPP TS33.220: Generic Authentication Architecture (GAA);
Generic Bootstrapping Architecture (GBA), 2021.

[18] Marco De Vivo, Gabriela O de Vivo, and Germinal Isern. Internet security
attacks at the basic levels. ACM SIGOPS operating systems review,
32(2):4-15, 1998.

[19] Sarah Jane Delany, Mark Buckley, and Derek Greene. Sms spam filtering:
Methods and data. Expert Systems with Applications, 39(10):9899-9908,
2012.

[20] Periwinkle Doerfler, Kurt Thomas, Maija Marincenko, Juri Ranieri,
Yu Jiang, Angelika Moscicki, and Damon McCoy. Evaluating login
challenges as adefense against account takeover. In The World Wide
Web Conference, pages 372-382, 2019.

[21] BlackHat EU. Mobile network hacking — all-over-ip edition.
https://i.blackhat.com/eu- 19/Wednesday/eu- 19- Yazdanmehr-Mobile-
Network-Hacking-1P-Edition-2.pdf.

[22] GSMA. Rcs deployment. https://www.gsma.com/futurenetworks/rcs/.

[23] Silke Holtmanns and Ian Oliver. Sms and one-time-password interception
in Ite networks. In 2017 IEEE International Conference on Communica-
tions (ICC), pages 1-6. IEEE, 2017.

[24] Samuel Jero, William Koch, Richard Skowyra, Hamed Okhravi, Cristina
Nita-Rotaru, and David Bigelow. Identifier binding attacks and defenses
in software-defined networks. In 26th USENIX Security Symposium
(USENIX Security 17), pages 415-432, 2017.

[25] Nan Jiang, Yu Jin, Ann Skudlark, and Zhi-Li Zhang. Greystar: Fast
and accurate detection of sms spam numbers in large cellular networks
using gray phone space. In 22nd USENIX Security Symposium (USENIX
Security 13), pages 1-16, 2013.

[26] Zeyu Lei, Yuhong Nan, Yanick Fratantonio, and Antonio Bianchi. On
the insecurity of sms one-time password messages against local attackers
in modern mobile devices. In Proceedings of the 2021 Network and
Distributed System Security (NDSS) Symposium, 2021.

[27] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan, Yuanjie Li,
Songwu Lu, and Xinbing Wang. Insecurity of voice solution volte in lte
mobile networks. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 316-327, 2015.

[28] Siqi Ma, Runhan Feng, Juanru Li, Yang Liu, Surya Nepal, Elisa Bertino,
Robert H Deng, Zhuo Ma, and Sanjay Jha. An empirical study of sms
one-time password authentication in android apps. In Proceedings of the
35th Annual Computer Security Applications Conference, pages 339-354,
2019.

[29] Collin Mulliner, Ravishankar Borgaonkar, Patrick Stewin, and Jean-
Pierre Seifert. Sms-based one-time passwords: attacks and defense. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 150—159. Springer, 2013.

[30] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert. Sms of death:
From analyzing to attacking mobile phones on a large scale. In USENIX
Security Symposium, volume 168. San Francisco, CA, 2011.

[31] Bradley Reaves, Nolen Scaife, Dave Tian, Logan Blue, Patrick Traynor,
and Kevin RB Butler. Sending out an sms: Characterizing the security
of the sms ecosystem with public gateways. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 339-356. IEEE, 2016.

[32] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan Armknecht, Jacob
Cameron, and Kent Seamons. A usability study of five {Two-Factor}
authentication methods. In Fifteenth Symposium on Usable Privacy and
Security (SOUPS 2019), pages 357-370, 2019.

[33] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan
Johnston, Jon Peterson, Robert Sparks, Mark Handley, and Eve Schooler.
Rfc3261: Sip: session initiation protocol, 2002.

[34] Yubo Song, Kan Zhou, and Xi Chen. Fake bts attacks of gsm system on
software radio platform. Journal of Networks, 7(2):275, 2012.

[35] U Steinhoff, A Wiesmaier, and R Aratjo. The state of the art in dns
spoofing. In Proc. 4th Intl. Conf. Applied Cryptography and Network
Security (ACNS), 2006.

[36] Daehyun Strobel. Imsi catcher. Chair for Communication Security, Ruhr-
Universitit Bochum, 14, 2007.

[37] Guan-Hua Tu, Chi-Yu Li, Chunyi Peng, Yuanjie Li, and Songwu Lu. New
security threats caused by ims-based sms service in 4g Ite networks. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1118-1130, 2016.

Authorized licensed use limited to: UCLA Library. Downloaded on January 10,2023 at 01:34:21 UTC from IEEE Xplore. Restrictions apply.

