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Abstract
Network tomography aims at estimating source–destination traffic rates from link

traffic measurements. This inverse problem was formulated by Vardi in 1996 for

Poisson traffic over networks operating under deterministic as well as random rout-

ing regimes. In this article, we expand Vardi’s second-order moment matching rate

estimation approach to higher-order cumulant matching with the goal of increas-

ing the column rank of the mapping and consequently improving the rate estimation

accuracy. We develop a systematic set of linear cumulant matching equations and

express them compactly in terms of the Khatri–Rao product. Both least squares esti-

mation and iterative minimum I-divergence estimation are considered. We develop

an upper bound on the mean squared error (MSE) in least squares rate estimation

from empirical cumulants. We demonstrate that supplementing Vardi’s approach

with the third-order empirical cumulant reduces its minimum averaged normal-

ized MSE in rate estimation by almost 20% when iterative minimum I-divergence

estimation was used.
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1 INTRODUCTION

Network tomography was formulated by Vardi in the seminal paper [34]. The goal is to estimate the rates of traffic flows over

source–destination pairs from traffic flows over links of a network. For concreteness, we shall discuss the problem in terms of

“packet” arrivals in a communication network as in [34]. A packet comprises several hundreds of bytes. The model has also

attracted considerable interest in the context of transportation networks, see, for example, [11, 30, 32]. Mathematically, network

tomography is a challenging inverse problem defined on a network with random independent source–destination arrival counts,

which induce dependent link arrival counts. Traffic flow rates are measured, for example, by the number of packets per second.

We use X to denote a vector of L source–destination traffic counts, and Y to denote a vector of M link traffic counts. Normally,

M ≪ L. The packet counts for all source–destination traffic flows are assumed to be independent Poisson random variables.

Thus, X comprises a vector of L independent Poisson random variables. Link traffic flow measurements are assumed passive and

require no probes. A probe is a special packet transmitted to a certain destination or destinations in the network for the purpose of

obtaining or measuring a particular performance metric, such as end-to-end delay. For networks operating under a deterministic

routing regime, a traffic flow is routed from a source node to the destination node over a fixed path. Traffic flows over each

link may originate from multiple source–destination traffic flows. Thus, we define a binary variable aij such that aij = 1 when

traffic over source–destination j passes through link i and aij = 0 otherwise. We also define an M × L binary routing matrix

A = {aij, i = 1, … ,M; j = 1, … , L} which is assumed known throughout the article. It follows that Y = AX. The expected
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2 LEV-ARI ET AL.

value of the jth Poisson source–destination traffic flow constitutes its traffic flow rate. Thus, the vector of source–destination

traffic flow rates is the expected value of X which we denote by 𝜆 = E{X}.

The network tomography problem is that of estimating the rate vector 𝜆 from given realizations of Y . In this inverse problem,

Y = AX is an underdetermined set of equations and the estimate of 𝜆 must be non-negative. Vardi invoked the terminology

“LININPOS” for linear inverse positive problem. Maximum likelihood estimation of 𝜆 is not feasible since the components of Y
are dependent Poisson random variables with no explicitly known distribution. The expectation-maximization (EM) algorithm

is also not useful for this problem as it requires calculation of the conditional mean E{X|Y} which in turns requires the infinite

solutions of Y = AX. Vanderbei and Iannone [32] developed an EM algorithm in which E{X|Y} is simulated. An alternative

common approach is to rely on the explicit form of E{X|Y} for jointly Gaussian X and Y , see, for example, [4, 18, 34].

Vardi resorted to moment matching in which 𝜆 is estimated from a linear matrix equation relating the first two empirical

moments of Y to the corresponding first two theoretical moments of AX. The approach is applicable to networks operating under

deterministic as well as random routing regimes. In the latter case, there are multiple alternative paths for each source–destination

pair which can be selected according to some probability law. Vardi invoked an iterative procedure for estimating 𝜆 which was

previously developed for image deblurring [25]. This useful procedure will be discussed in Section 2. Vardi’s work ignited

extensive research in the areas of network inference and medical tomography.

In this article, we explore the benefits of supplementing Vardi’s second-order moment matching approach with higher-order

empirical cumulants. Here too the cumulant matching equation is linear in 𝜆, and the approach is applicable to networks oper-

ating under deterministic as well as random routing regimes. Higher-order cumulants introduce new useful information on the

unavailable distribution of Y which can be leveraged in estimating the source–destination flow rates. By using a sufficient num-

ber of empirical cumulants, the linear mapping involved in the cumulant matching approach may achieve full column rank. In

an ideal scenario where the cumulant matching equations are consistent, and the cumulants of the link traffic flows are accu-

rately known, the rate vector can be recovered without error as the unique solution of the cumulant matching equations. As we

demonstrate in Section 5, this ideal situation is approachable when a sufficiently large number of realizations of Y is available.

A vast literature exists on network tomography. Several forms of network tomography have been studied in the litera-

ture depending on the type of measurement data and the network performance parameters (e.g., rate, delay) of interest: (i)

source–destination path-level traffic rate estimation based on link-level traffic measurements [4, 11, 18, 21, 27, 30, 34]; (ii)

link-level parameter estimation based on end-to-end path-level traffic measurements [3, 10, 19, 20, 31, 32]; (iii) network

topology discovery from traffic measurements [1, 9, 12, 22]. Approaches to network tomography can also be characterized as

active (e.g., [3, 15, 19, 24]), whereby explicit control traffic is injected into the network to extract measurements, or passive

(e.g., [4, 10, 34, 35]), whereby the observation data are obtained from existing network traffic. A somewhat outdated survey

circa 2004 can be found in [5]. A more recent survey [23] discusses network tomography in conjunction with network coding.

Closest to Vardi’s work is the contemporary work of Vanderbei and Iannone [32] which relies on a Poisson model for incom-

ing traffic. The goal is to estimate the rate of traffic on each link connecting input and output nodes from traffic counts at the

input and output nodes. Vanderbei and Iannone did not resort to moment matching but rather developed a simulation-based

EM algorithm for maximum likelihood estimation of the rates. A thorough Bayesian approach to Vardi’s problem was devel-

oped by Tebaldi and West [30] using Markov chain Monte Carlo simulation. See also [11]. Another closely related work to

Vardi’s problem appeared in [4, 5, 18], where maximum likelihood estimation of the source–destination rates from link data was

implemented under a Gaussian rather than a Poisson traffic model. In [21], source–destination rates were estimated by utilizing

spatiotemporal correlation of nominal traffic, and the fact that traffic anomalies are sparse. In [27], conditions for identifiabil-

ity of higher-order cumulants in estimation of source–destination traffic from link measurements were established. In [20], an

algorithm was developed for choosing a set of linearly independent source–destination measurement paths from which additive

link metrics are individually estimated.

The main contribution of this article is to systematically advance the theory of traffic rate network tomography by increasing

the rank of the matrix in the associated inverse problem through the use of higher-order cumulant statistics. As in most of the

literature on traffic rate network tomography, we assume that traffic flows follow a Poisson model. The Poisson assumption is

common in applications to transportation networks [11]. In modern communication networks, however, traffic at the granularity

of packet arrivals tends to be much more “bursty” than Poisson. However, our cumulant-based methodology could be extended

to more general traffic models, for example, the mixed Poisson model studied in [8], which can be used to characterize the more

bursty traffic processes found in communication networks.

The plan for this article is as follows. In Section 2, we present the minimum I-divergence iterative procedure which plays an

important role in this article. In Section 3, we address rate estimation in networks with deterministic routing. We develop a new

systematic set of cumulant matching equations for estimating the rate vector from up to the fourth-order empirical cumulant.

We also develop an upper bound on the mean squared error (MSE) in least squares estimation of the rate vector from empirical

cumulants. We conclude this section with a discussion on some implementation issues of the proposed cumulant matching

approach. Complexity of the approach is discussed in Section 3.4. In Section 4, we discuss rate estimation in networks operating

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22127, W

iley O
nline Library on [09/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



LEV-ARI ET AL. 3

under a random routing regime. Numerical results for the NSFnet [2] are presented in Section 5. Concluding remarks are given

in Section 6. Technical details of the derivations are deferred to the Appendix.

2 MINIMUM I-DIVERGENCE ITERATION

Under the Poisson model for X, the moment (and cumulant) matching approach results in a set of linear equations in 𝜆. Generally

speaking, the set of equations has the form of 𝜂̂(Y) = B𝜆 where 𝜂̂(Y) is a vector of Mb empirical moments (first and second-order

in [34]) of Y , B = {bij, i = 1, … ,Mb; j = 1, … , L} is a constant zero-one matrix that depends on A but not on 𝜆, and B𝜆
represents the corresponding theoretical moments. The exact value of Mb as a function of M is discussed in Section 3.3.

To estimate 𝜆 that satisfies 𝜂̂(Y) = B𝜆, Vardi proposed to use an iterative estimation approach which originated in the study

of another inverse problem concerning image deblurring [25, 28]. Let 𝜆
old

j denote a current estimate of the jth component of 𝜆,

and let 𝜆
new

j denote the new estimate of that component at the conclusion of the iteration. Let (B𝜆old)i denote the ith component

of B𝜆old
. Similarly, let 𝜂̂i(Y) denote the ith component of 𝜂̂(Y). The iteration is given by

𝜆
new

j = 𝜆
old

j

Mb∑

i=1

bij
𝜂̂i(Y)
(B𝜆old)i

, where bij ∶=
bij

∑Mb
t=1

btj
, (1)

for j = 1, … , L. This iteration is particularly suitable for solving positive inverse problems. It reaches a fixed point when

the moment matching equation 𝜂̂(Y) = B𝜆old
is satisfied. The iteration was studied by Snyder, Schulz, and O’Sullivan [28]

in a similarly formulated application of image deblurring. It was shown to monotonically decrease Csiszár’s I-divergence [7]

between the original image convolved with the kernel, and the observed blurred image. The procedure turned out to be an EM

iteration in the positron emission tomography problem, which follows a similar formulation as network tomography, but with

the crucially facilitating difference that the Poisson components of Y are now independent random variables [26, 33]. This

iteration will play a central role in our cumulant matching approach.

3 CUMULANT MATCHING IN DETERMINISTIC ROUTING

In this section, we present our cumulant matching approach and its theoretical performance bound for networks operating under

a deterministic routing regime. The goal is to estimate the source–destination rate vector 𝜆 from N realizations of the link traffic

flow Y where Y = AX and the routing matrix A is known. Conditions for identifiability of 𝜆 were given in [34]. Specifically,

the parameter 𝜆 is identifiable if all columns {a1, … , aL} of A are distinct and none is null.

3.1 Cumulant matching
Let X ∶= X − E{X} where X is any real random vector with finite mean and possibly dependent components. The vectorized

kth order central moment of X is given by

𝜇k(X) = E
{

X ⊗ X ⊗ · · ·⊗ X
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k times

}
, (2)

where k is any positive integer and ⊗ denotes the Kronecker product. When the length of X is L, the length of the vector 𝜇k(X)
is Lk

. For Y = AX, it follows from the identity

(A1B1)⊗ (A2B2) = (A1 ⊗ A2)(B1 ⊗ B2), (3)

where A1,A2,B1,B2 are matrices of suitable dimensions [16, p. 408], that

𝜇k(Y) = (A ⊗ A ⊗ · · ·⊗ A)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k times

𝜇k(X). (4)

Expressions for the cumulants of the observed process in a state-space model were developed by Swami and Mendal [29].

The process in this article is a particular case for which simpler expressions hold. We provide an alternative derivation for our

particular case in the Appendix. Let Kk(X) denote the vectorized kth central cumulant of any real random vector X with finite

mean. For k = 1, 2, 3, Kk(X) = 𝜇k(X). For k = 4, we have

K4(X) = 𝜇4(X) − 𝜇2(X)⊗ 𝜇2(X)
− vec

{
RXX ⊗ RXX + UL2 ⋅

(
RXX ⊗ RXX

)}
, (5)
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4 LEV-ARI ET AL.

where RXX is the covariance matrix of X and UL2 is an L2 × L2
permutation matrix defined in (A8). A permutation matrix is a

square binary matrix that permutes the rows (or columns) of a matrix it is applied to. We also have

K4(Y) =
(
A ⊗ A ⊗ A ⊗ A

)
K4(X). (6)

When RXX is a diagonal matrix, as is the case of interest in this article, it follows that UL2 ⋅
(
RXX ⊗ RXX

)
is a symmetric matrix.

We shall restrict our attention to cumulants of order k ≤ 4 since estimation of higher-order cumulants is not practical.

Next, we make use of the assumption that the components {xj} of X are independent. This is a standard assumption in

network tomography [34] that can be justified partially because source transmissions are typically independent of each other.

Under the independence assumption, the central moments and central cumulants of X are conveniently and concisely expressed

in terms of the Khatri–Rao product defined by

A ⊙ A ∶=
[
a1 ⊗ a1, a2 ⊗ a2, … , aL ⊗ aL

]
. (7)

It is shown in the Appendix that

𝜇2(Y) =
(
A ⊙ A

)
col

(
E
{

x2

1

}
,E

{
x2

2

}
, … ,E

{
x2

L
})

,

𝜇3(Y) = (A ⊙ A ⊙ A) col
(
E
{

x3

1

}
,E

{
x3

2

}
, … ,E

{
x3

L
})

, (8)

and

K4(Y) =
(
A ⊙ A ⊙ A ⊙ A

)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜅4

(
x1, x1, x1, x1

)

𝜅4

(
x2, x2, x2, x2

)

⋮

𝜅4

(
xL, xL, xL, xL

)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (9)

where

𝜅4(xi, xj, xk, xl) =

{
E{x4

i } − 3(E{x2

i })2, i = j = k = l,
0, otherwise.

(10)

When {xj} are independent Poisson random variables, all cumulants of xj equal its rate E{xj} = 𝜆j, and we have from m(Y) ∶=
E{Y} = AE{X} and (8)–(10) that

⎛
⎜
⎜
⎜
⎜
⎜
⎝

A
A ⊙ A

A ⊙ A ⊙ A
A ⊙ A ⊙ A ⊙ A

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

m(Y)
𝜇2(Y)
𝜇3(Y)
K4(Y)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

This is the key cumulant matching equation for r ≤ 4. In (11), let r denote the matrix of stacked Khatri–Rao products of A,

and let 𝜂r(Y) denote the vector of stacked cumulants. Then the rate vector 𝜆 satisfies

r𝜆 = 𝜂r(Y). (12)

To estimate 𝜆, 𝜂r(Y) is replaced by a vector of empirical estimates 𝜂̂r(Y) and 𝜆 is estimated from

r𝜆 = 𝜂̂r(Y). (13)

In this article, we consider least squares estimation and the minimum I-divergence iterative procedure (1). The vector 𝜂̂r(Y)
comprises minimum variance unbiased cumulant estimates given by the K-statistics which we discuss in the next section [14].

Vardi’s second-order moment matching equation can be summarized as 𝜂̂2(Y) = 2𝜆. With only two moments, the column

rank of the matrix 2 may be too low to provide an accurate solution. Note that if the set of equation (13) is consistent, the

theoretical cumulants are known, and r is sufficiently large so that r has full column rank, then 𝜆 can be estimated error free

as the unique solution of (13). We demonstrate in Section 5 for the NSFnet [2] that r = 3 is sufficient to achieve full column

rank, and that the theoretical performance is approachable when the cumulants are estimated from a sufficiently large number

of realizations of Y .

3.2 Error analysis
In this section, we assess the MSE in the least squares estimation of 𝜆 satisfying (12) from the cumulant matching equation (13).

We assume for this analysis that r is sufficiently large so that the augmented matrix r has full column rank.
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LEV-ARI ET AL. 5

K-statistics of scalar processes were developed in [14, p. 281]. For vector processes and k = 1, 2, 3, let 𝜇̂k(Y) and 𝜇̂k(X)
denote the K-statistics of 𝜇k(Y) and 𝜇k(X), respectively. Similarly, let K̂4(Y) and K̂4(X) denote the K-statistics of K4(Y) and

K4(X), respectively. Let {Xn, n = 1, 2, … ,N} denote a sequence of independent identically distributed source–destination

traffic flows defined similarly to X. Each Xn comprises L independent Poisson random variables with rate E{Xn} = 𝜆. Let

Yn = AXn. Define

Ỹn ∶= Yn − m̂(Y), (14)

where

m̂(Y) ∶= 1

N

N∑

n=1

Yn, (15)

and the empirical cumulant estimate for k > 1 is

𝜇̃k(Y) ∶=
1

N

N∑

n=1

Ỹn ⊗ Ỹn ⊗ · · ·⊗ Ỹn
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k times

. (16)

Similar definitions follow for the X process when Y in (14)–(16) is replaced by X. The K-statistic for k = 1 is given by

m̂(Y) = 1

N

N∑

n=1

AXn = Am̂(X), (17)

for k = 2,

𝜇̂2(Y) =
N

N − 1
𝜇̃2(Y)

=
(
A ⊗ A

)
𝜇̂2(X), (18)

for k = 3,

𝜇̂3(Y) =
N2

(N − 1)(N − 2)
𝜇̃3(Y)

=
(
A ⊗ A ⊗ A

)
𝜇̂3(X), (19)

and for k = 4,

K̂4(Y) ∶=
N2

(N − 1)(N − 2)(N − 3)
[
(N + 1)𝜇̃4(Y) − 3(N − 1)𝜇̃2(Y)⊗ 𝜇̃2(Y)

]

=
(
A ⊗ A ⊗ A ⊗ A

)
K̂4(X), (20)

where we have used (3). Similar relations are expected to hold for higher-order cumulants. For r ≤ 3 and sufficiently large N,

the K-statistic 𝜇̂r(Y) and the empirical cumulant 𝜇̃r(Y) are essentially the same.

Let 𝜂̂r(X) and 𝜂̂r(Y) denote vectors of stacked K-statistics of order smaller than or equal to r corresponding to X and Y ,

respectively. The least squares estimate of 𝜆 in (13) is given by

𝜆̂r =
(


⊤

r r
)−1


⊤

r 𝜂̂r(Y), (21)

where ⋅T denotes matrix transpose. Let

𝜖r(Y) = 𝜂̂r(Y) − 𝜂r(Y) (22)

denote the error vector in estimating 𝜂r(Y). From (12),

𝜂̂r(Y) = r𝜆 + 𝜖r(Y). (23)

Substituting (23) into (21) yields

𝜆̂r =
(


⊤

r r
)−1


⊤

r
[
r𝜆 + 𝜖r(Y)

]

= 𝜆 +
(


⊤

r r
)−1


⊤

r 𝜖r(Y). (24)

Let Hr =
(
⊤

r r
)−1

⊤

r . The rate estimation error is given by

𝜆̂r − 𝜆 = Hr𝜖r(Y), (25)
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6 LEV-ARI ET AL.

and the MSE is given by

𝜖
2
r (𝜆) = E

{
||𝜆̂r − 𝜆||2

}

= E
{
||Hr𝜖r(Y)||2

}

≤ 𝜌max

(
H⊤

r Hr
)
E{||𝜖r(Y)||2}, (26)

where the inequality follows from the Rayleigh quotient theorem
1

[16, Theorem 8.1.4], and 𝜌max(H⊤

r Hr) denotes the max-

imal eigenvalue of the Hermitian matrix H⊤

r Hr. From the theory of singular value decomposition, we recall that for any

matrix Hr,

𝜌max

(
HrH⊤

r
)
= 𝜌max

(
H⊤

r Hr
)
. (27)

Applying this to (26) gives

𝜖
2
r (𝜆) ≤ 𝜌max

(((


⊤

r r
)−1


⊤

r
)((


⊤

r r
)−1


⊤

r
)
⊤
)
E
{
||𝜖r(Y)||2

}

= 𝜌max

((


⊤

r r
)−1)E

{
||𝜖r(Y)||2

}

= 1

𝜌min

(


⊤
r r

)E
{
||𝜖r(Y)||2

}
. (28)

Let r denote a block diagonal matrix with the kth diagonal block being k. There are r diagonal blocks in total. Let

𝜖r(X) = 𝜂̂r(X) − 𝜂r(X). (29)

From (22), (17)–(20), and (11),

𝜖r(Y) = r𝜖r(X). (30)

It follows from the Rayleigh quotient [16, Theorem 8.1.4] that

||𝜖r(Y)||2 ≤ ||r||
2 ⋅ ||𝜖r(X)||2, (31)

where ||r|| equals the maximal singular value of r, and

||r||
2 = 𝜌max

(


⊤

r r
)
. (32)

The kth diagonal block of ⊤

r r is given by

(
A ⊗ A ⊗ · · ·⊗ A

)
⊤
(
A ⊗ A ⊗ · · ·⊗ A

)

= A⊤A ⊗ A⊤A ⊗ · · ·⊗ A⊤A

=∶
(
A⊤A

)
⊗k
. (33)

Since the eigenvalues of the Kronecker product of two matrices equal the Kronecker product of the vectors of eigenvalues of

each matrix [16, p. 412], we conclude that the eigenvalues of
(
A⊤A

)
⊗p

for any positive integer p are all possible products of

length p of the eigenvalues of A⊤A. In particular, since A⊤A is positive semi-definite,

𝜌max

((
A⊤A

)
⊗p) =

[
𝜌max

(
A⊤A

)]p
. (34)

Furthermore, since ⊤

r r is block diagonal with blocks of increasing size, its eigenvalues are given by the union of the sets of

eigenvalues associated with each block. Thus,

𝜌max

(


⊤

r r
)
= max

p∶p≥1

[
𝜌max

(
A⊤A

)]p
. (35)

When 𝜌max

(
A⊤A

)
> 1, the maximum in (35) is achieved for p = r. Otherwise, when 𝜌max

(
A⊤A

)
< 1, the maximum in (35) is

achieved for p = 1. Hence, from (31),

E
{
||𝜖r(Y)||2

}
≤ max

{
𝜌max

(
A⊤A

)
,

[
𝜌max

(
A⊤A

)]r}
⋅ E

{
||𝜖r(X)||2

}
. (36)

From (28) and (36), we obtain

𝜖
2
r (𝜆) ≤

max
{
𝜌max

(
A⊤A

)
,

[
𝜌max

(
A⊤A

)]r}

𝜌min

(


⊤
r r

) E
{
||𝜖r(X)||2

}
. (37)

1
The Rayleigh quotient of a Hermitian matrix H is defined as u⊤Hu∕u⊤u where u is a vector of suitable dimension.
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LEV-ARI ET AL. 7

Evaluating the MSE E
{
||𝜖r(X)||2

}
is quite involved. For r = 2, 3, and sufficiently large N, the cross terms in 𝜇̂r(X) will be

approximately zero, and hence

E
{
||𝜖r(X)||2

}
≈

L∑

l=1

E
{
||𝜖r(xl)||2

}
, (38)

where E
{
||𝜖r(xl)||2

}
is the MSE associated with the K-statistics of the lth component of X. It is also the variance of 𝜇̂r(xl). Since

the {Xn} vectors are assumed independent, we can infer E
{
||𝜖r(xl)||2

}
from the variance of the K-statistics of an IID sequence

of scalar random variables given by [14, p. 291],

var (𝜇̂2(xl)) =
1

N
K4(xl) +

1

N − 1
2𝜇

2

2
(xl),

var (𝜇̂3(xl)) =
1

N
K6(xl) +

9

N − 1
K4(xl)𝜇2(xl)

+ 9

N − 1
𝜇

2

3
(xl) +

6N
(N − 1)(N − 2)

𝜇
3

2
(xl). (39)

When the IID random variables are Poisson with E{Xl} = 𝜆l, all cumulants equal 𝜆l, and hence,

E
{
||𝜖2(xl)||2

}
= var (𝜇̂2(xl)) =

1

N
𝜆l +

1

N − 1
2𝜆

2

l

≈ 1

N
(
𝜆l + 2𝜆

2

l
)
, (40)

E{||𝜖3(xl)||2} = var (𝜇̂3(xl)) =
1

N
𝜆l +

9

N − 1
2𝜆

2

l

+ 6N
(N − 1)(N − 2)

𝜆
3

l ≈ 1

N
(
𝜆l + 18𝜆

2

l + 6𝜆
3

l
)
. (41)

The upper bound on 𝜖
2
r (𝜆) for r = 2, 3, follows from (37), (38), (40), and (41).

The bound (37) is loose when the condition number of the matrix ∗
rr is large. It does have qualitative value as it shows

that estimation of moments becomes increasingly harder as the order increases. Since usually 𝜆l > 1 in network tomography,

the error in estimating 𝜇3(xl) is much larger than that in estimating 𝜇2(xl).

3.3 Implementation
In this section, we address several aspects related to the implementation of the cumulant matching approach. The Khatri–Rao

product can be expressed in terms of the rows of A instead of its columns as in (7). Let 𝛼i denote the ith row of A, i = 1, … ,M.

Then A = stack{𝛼i ∶ i = 1, … ,M} where stack refers to the stacking of row vectors of equal length to form a matrix.

We have

A ⊙ A = stack
{
𝛼i◦𝛼j; i, j = 1, … ,M

}
,

A ⊙ A ⊙ A = stack
{
𝛼i◦𝛼j◦𝛼k; i, j, k = 1, … ,M

}
, (42)

and so forth, where ◦ denotes the Schur–Hadamard product and lexicographic ordering of the indices (i, j, k) is assumed.

Using this formulation, it is easy to see that r contains duplicate rows. For example, 𝛼i in A and 𝛼i◦𝛼i in A ⊙ A are

duplicates since the elements of A belong to {0, 1}. Additionally, r may contain null rows as is easy to see from (7).

Thus, equations in (11) corresponding to duplicate and null rows in r can be removed. We shall always opt to remove

duplicate rows that correspond to higher-order cumulants rather than to lower-order cumulants since higher-order cumu-

lants are harder to estimate. To simplify notation we shall henceforth assume that r and the right-hand side (RHS)

vector 𝜂r(Y) of (11) are given in their reduced form. Similarly, we shall consider (12) and (13) as given in their reduced

form.

It is interesting to compare the number of rows in the original and reduced r. The number of rows in the original r equals

the total number of empirical cumulants up to the rth order, which is given by

nr(M) = M + M2 + M3 + · · · + Mr = M(Mr − 1)
M − 1

. (43)

The maximum number of distinct rows in the reduced r is counted as the sum of the maximum number of distinct rows

contributed individually by A, A◦A, A◦A◦A, and so forth, with the last contribution from the r-fold Khatri–Rao product of

A with itself. The contribution from the ith term is given by

(
M
i

)

, i = 1, … , r, which represents the number of unordered
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8 LEV-ARI ET AL.

TABLE 1 Number of unreduced (nr(M)) and reduced (nr(M)) cumulant matching equations, and row rank of r , for the 4 × 15 routing matrix of all

nonzero binary 4-tuples

r 1 2 3 4

nr(M) 4 20 64 320

nr(M) 4 10 14 15

Row rank of r 4 10 14 15

combinations of i rows chosen without replacement from the given M rows. Thus, the maximum number of distinct rows in the

reduced r is given by

nr(M) =
(M

1

)

+
(M

2

)

+
(M

3

)

+ · · · +
(M

r

)

. (44)

For example, consider a network with a 4×15 routing matrix A whose columns comprise all lexicographically ordered nonzero

binary 4-tuples. Here, M = 4, and nr(M) and nr(M) are shown in Table 1. Note that for this example, the number of reduced

equations coincides with the row rank of r for each r. Furthermore, full column rank is achieved only when r = 4.

The set of equations (13) may contain infeasible equations that result when an empirical central cumulant has a negative

value. While all traffic data are non-negative, the empirical cumulants are constructed from centralized data and hence may be

negative. This situation leads to infeasible equations whereas the left-hand side of (13) is non-negative while the RHS of (13) is

negative. Following Vardi [34], infeasible equations are removed. The number of equations, Mb, in (1) is given by nr(M) minus

the number of removed infeasible equations.

We study two estimates of 𝜆 that approximate the cumulant matching equation (13). The first estimate follows from the

iteration (1) which is initialized by a constant vector. The second estimate follows from least squares. Specifically, we use the

unique Tikhonov regularized least squares solution for the inconsistent set of equations (13), when r is not necessarily full

column rank. This estimator is given by [13, p. 51]

𝜆̂r =
(


⊤

r r + 𝛾I
)−1


⊤

r 𝜂̂r(Y) (45)

for some 𝛾 > 0. Note that the regularized estimator applies to a skinny as well as a fat matrix r.

To mitigate the effects of the error introduced by the empirical cumulant estimates, while allowing the estimator of 𝜆 to

benefit from the higher-order cumulants, the relative weights of the third and fourth order cumulants compared to the first and

second order moments, can be reduced. This can be done by multiplying all equations in (45) with rows originating from 3

by some 0 < 𝜖3 < 1, and all equations with rows originating from 4 by some 0 < 𝜖4 < 1. This regularization approach

was advocated by Vardi [34] in the context of his second-order moment matching approach. Note that the constants 𝜖3 and

𝜖4 are defined independently of the functions 𝜖r(⋅), r = 1, 2, 3, 4 in Section 3.2. Following this approach, let the reduced and

𝜖-weighted matrix r be denoted by r,𝜖 , and let the reduced 𝜖-weighted vector 𝜂̂r(Y) be denoted by 𝜂̂r,𝜖(Y). Then, from (45),

the rate vector 𝜆 is estimated from

𝜆̂r,𝜖 =
(


⊤

r,𝜖r,𝜖 + 𝛾I
)−1


⊤

r,𝜖 𝜂̂r,𝜖(Y). (46)

Note that the estimator (46) is not guaranteed to be non-negative. A non-negative estimate of 𝜆 can be obtained by using

non-negative least squares optimization [17]. In our numeric examples, we have arbitrarily substituted negative estimates with

the value of 0.005. This approach resulted in substantially lower MSE compared to using the constrained optimization algorithm

of [17, p. 161]. The performance of the algorithm remained essentially the same when other small values (e.g., 0.1 or 0.2) were

used since occurrences of negative estimates are infrequent at our working point. See Table 5.

3.4 Computational complexity
The computational effort in the cumulant matching approach consists of the effort to construct and solve the set of equations (13).

The number of equations in this set is Mb ≤ nr(M), which is of order O(Mr). Construction of the left-hand side of (13) requires

at most (M2 +M3 + · · · +Mr)L operations. Construction of the RHS of (13) requires at most (M2 +M3 + · · · +Mr)N operations

where N is the number vectors used to estimate each cumulant. Therefore, the complexity of constructing (13) can be written

as O(Mr(L + N)).
In the iterative method, the complexity of evaluating (1) in each iteration is O(MbL) = O(MrL). Incorporating the number of

iterations R and the computational effort for constructing (13) as discussed above, the overall complexity of the iterative method

can be written as O(MrLR + Mr(L + N)) = O(Mr(L + N)), since R is a constant. We have used R = 300 in our experiments

(see Section 5).
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LEV-ARI ET AL. 9

FIGURE 1 NSFnet topology with link weights as in [2, fig. 4]

The least squares estimator requires evaluation of (46). On the RHS of (46), we note that the matrix product
(
∗

rr + 𝛾I
)−1

∗
r can be precomputed. Taking this into account, the evaluation of (46) contributes a complex-

ity of O(MrL). Therefore, the overall computational complexity of the least squares approach can be written as

O
(
MrL + Mr(L + N)

)
= O

(
Mr(L + N)

)
, which is the same as that of the iterative method. Hence, for both the iterative and

least squares methods, the additional computational effort in going from r = 2 to r = 3 is roughly a factor of M. For fixed M
and L, the complexity for both schemes is linear in N.

4 RANDOM ROUTING

In a typical network, there are multiple paths connecting every source node with every destination node. When the network

operates under a deterministic routing regime, a single fixed path is used for every source–destination pair. When the network

operates under a random routing regime, a path from the source to destination nodes is selected according to some probability

law. Vardi attributed Markovian routing for traffic on each source–destination pair. The accessible nodes and links for the given

pair are represented by the states and transition probabilities of the Markov chain, respectively. The transition probabilities of

the Markov chain determine the probability of each path with the same source–destination address.

Tebaldi and West argued that random routing can be viewed as deterministic routing in a super-network in which all possible

paths for each source–destination address are listed [30]. This approach results in an expanded zero-one routing matrix with each

column in the original routing matrix replaced by multiple columns representing the feasible paths for the source–destination

pair. The Poisson traffic flow on a source–destination pair is thinned into multiple Poisson traffic flows with the multinomial

thinning probabilities being the probabilities of the paths with the same source–destination address. Thus, the super-network

and the original network operate under similar statistical (Poisson) models. The thinned Poisson rates can now be estimated as

was originally done, for example, using cumulant matching, and each source–destination rate estimate can be obtained from the

sum of the thinned rate estimates in that source–destination pair.

5 NUMERICAL EXAMPLE

In this section, we demonstrate the performance of our approach and the gain realized by using higher-order empirical cumu-

lants
2
. We study the NSFnet [2] whose topology is shown in Figure 1. The network consists of 14 nodes and 21 bidirectional

links. Hence, it contains L = 14 ⋅ 13∕2 = 91 source–destination pairs. This size network may represent a private network, a

transportation network or a subnetwork of interest of a larger network. The link weights in Figure 1 are exclusively used to deter-

mine k ≥ 1 shortest paths for each source–destination pair. Otherwise, they play no role in the traffic rate estimation problem.

To determine the k shortest paths between a given source–destination pair, we used the shortest simple paths function from the

NetworkX Python library, which is based on the algorithm of Yen [36]. When k = 1, the number of source–destination paths

equals the number of source–destination pairs and the routing matrix A is a 21 × 91 matrix. The augmented routing matrix r
achieves full column rank when r = 2.

With k ≥ 2, we can assign multiple paths to each source–destination pair and treat them as distinguishable new

source–destination pairs. The routing matrix A thus becomes fatter and using higher-order empirical cumulants becomes

2
Our experiments were run on ARGO, a research computing cluster provided by the Office of Research Computing at George Mason University.
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10 LEV-ARI ET AL.

beneficial. For example, when k = 2, we have L = 182 source–destination paths, the column rank of 2 is 162 and 3 has full

column rank. Thus, using this example we focus on third-order cumulant matching.

The network with k = 2 and a 21 × 182 routing matrix A could also be seen as a super-network in the Tebaldi–West sense

[30] for a network with L = 91 source–destination pairs operating under a random routing regime with two possible paths per

each source–destination pair. The accuracy of the rate estimation for the random routing network is determined by the accuracy

of the rate estimation in the deterministic routing super-network. Thus, it suffices to focus on rate estimation in the deterministic

routing network with the 21 × 182 routing matrix A.

The arrival rates {𝜆j} in our experiment were generated randomly from the interval [0, 4]. The state of the random generator

was reset in each run. For example, for the tth run we used the MATLAB command s = rng(t). In each of T = 500 simulation

runs, a rate vector 𝜆 was generated, and was subsequently used in generating N statistically independent identically distributed

Poisson vectors {Xn} which were transformed into the vectors {Yn = AXn} using the assumed known routing matrix A. The N
statistically independent identically distributed Poisson vectors {Yn} were used to generate the empirical cumulants using (15)

when r = 1 and (16) when r = 2, 3. We experimented with N in the range of 10 000 to 500 000. We remark that for a 10 Gbps

transmission link in the core of the Internet and packets of average size 1 KByte, the number of packets observed in one second

would be approximately 1.25 million. Thus, N = 500 000 samples can be collected in a reasonable amount of time for traffic

rate network tomography analysis. The MSE in estimating the cumulants for the NSFnet with M = 21 are given in Table 2.

Clearly, the MSE decreases monotonically with N for r = 1, 2, 3.

The empirical cumulants were used to estimate the rate vector in the current run. For the cumulants regularization we have

used 𝜖2 = 1 and 𝜖3 = 0.01. Let 𝜆t(i) and 𝜆̂t(i) denote, respectively, the ith component of 𝜆 and its estimate at the tth run where

i = 1, … , L and t = 1, … , T . For each estimate we evaluated the normalized MSE defined by

𝜉
2

i =
1

T

∑T
t=1

(
𝜆t(i) − 𝜆̂t(i)

)2

1

T

∑T
t=1

(
𝜆t(i)

)2
(47)

and the averaged normalized MSE defined by

𝜉2 = 1

L

L∑

i=1

𝜉
2

i . (48)

The MSE in estimating 𝜆i is approximately 𝜉
2

i ⋅ E{𝜆2(i)} when T is sufficiently large.

Two rate estimators were used, the iterative estimator (1) and the least squares estimator (46). The iteration was initialized

uniformly with all rates set to 0.1. It was terminated after 300 iterations. The least squares regularization factor was set to

TABLE 2 MSE in cumulant estimation for the NSFnet with M = 21 links

N r = 1 r = 2 r = 3

10 000 0.0048 0.2578 14.9097

20 000 0.0025 0.1285 7.4569

50 000 0.0010 0.0515 2.9978

100 000 0.0005 0.0257 1.4989

200 000 0.0002 0.0131 0.7429

500 000 0.0001 0.0052 0.2993

TABLE 3 Averaged normalized MSE 𝜉2 in L = 182 source–destination path rate estimation of the NSFnet using iteration (1)

N r = 1 r = 2 r = 3

10 000 0.2292 0.0993 0.1008

20 000 0.2292 0.0701 0.0694

50 000 0.2292 0.0502 0.0467

100 000 0.2292 0.0434 0.0381

200 000 0.2292 0.0399 0.0335

500 000 0.2292 0.0372 0.0298

Theoretical 0.2292 0.0353 0.0015

Rank (r) 21 162 182
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LEV-ARI ET AL. 11

TABLE 4 Averaged normalized MSE 𝜉2 in L = 182 source–destination path rate estimation of the NSFnet using the least squares estimator (46)

N r = 1 r = 2 r = 3

10 000 0.3037 0.0951 0.0950

20 000 0.3037 0.0637 0.0625

50 000 0.3037 0.0430 0.0407

100 000 0.3037 0.0358 0.0329

200 000 0.3037 0.0321 0.0288

500 000 0.3037 0.0293 0.0257

Theoretical 0.3037 0.0275 0.0000

Rank (r) 21 162 182

TABLE 5 Percent of negative rate estimates in Table 4

N r = 1 r = 2 r = 3

10 000 0.1890 4.1747 4.2275

20 000 0.1868 2.9813 3.0626

50 000 0.1890 1.9879 1.9901

100 000 0.1890 1.6385 1.5780

200 000 0.1890 1.3747 1.3242

500 000 0.1890 1.1956 1.1165

Theoretical 0.1890 0.9692 0.0022

𝛾 = 0.0005. The empirical results are provided in Tables 3 and 4, respectively. Table 5 provides the percent of negative rate

estimates in the least squares estimate.

6 CONCLUDING REMARKS

We have developed a framework for higher-order cumulant matching approach for estimating the rates of source–destination

Poisson traffic flows from link traffic flows. The approach is equally applicable to networks operating under deterministic as

well as random routing strategies. Under independent Poisson source–destination traffic flows, the approach boils down to a set

of linear equations relating empirical cumulants of the link measurements to the rate vector 𝜆 via a matrix involving Khatri–Rao

products of the routing matrix. We studied an iterative minimum I-divergence approach and least squares estimation of the rate

vector from the cumulant matching equations. We have established an upper bound on the MSE in least squares estimation of

𝜆. The bound is useful for full column rank matrices r with small condition number. We demonstrated the performance of

the cumulant matching approach and compared it with the second-order moment matching system on the NSFnet. We demon-

strated that supplementing Vardi’s approach with the third-order empirical cumulant reduces its minimum averaged normalized

MSE in rate estimation by 19.89% when N = 500 000 samples and iteration (1) was used. For the same N, a more modest

improvement of 12.29% was obtained when the least squares estimator was used. These figures follow from Tables 3 and 4,

respectively.

In ongoing work, we are extending the higher-order cumulant moment matching technique to the mixed Poisson traffic

model studied in [8]. Mixture distributions are overdispersed with variance larger than their mean, whereas for Poisson traffic

flows, the mean equals the variance. Another relevant direction of research of interest lies in the development of better estimators

for higher-order cumulants to reduce the number of observation samples required, see, for example, [6].
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APPENDIX A: CUMULANTS OF LINEAR MAPS

Let ei be an L × 1 vector with a 1 in the ith component and zeros elsewhere. The vector X can be written as X =
∑L

i=1
xiei.

Substituting in (2), and applying the distributive property of the Kronecker product, we obtain

𝜇4(X) =
∑

i,j,k,l
E
{

xixjxkxl
} (

ei ⊗ ej ⊗ ek ⊗ el
)
. (A1)

Similarly, the fourth-order cumulant of X is given by

K4(X) =
∑

i,j,k,l
𝜅4

(
xi, xj, xk, xl

)(
ei ⊗ ej ⊗ ek ⊗ el

)
, (A2)

where

𝜅4

(
xi, xj, xk, xl

)
= E

{
xixjxkxl

}
− E

{
xixj

}
E
{

xkxl
}

− E
{

xixk
}

E
{

xjxl
}
− E

{
xixl

}
E
{

xjxk
}
. (A3)

Substituting (A3) into (A2) we obtain

K4(X)
(i)
=

∑

i,j,k,l
E
{

xixjxkxl
}(

ei ⊗ ej ⊗ ek ⊗ el
)

(ii)−
∑

i,j,k,l
E
{

xixj
}

E
{

xkxl
}(

ei ⊗ ej ⊗ ek ⊗ el
)

(iii)−
∑

i,j,k,l
E
{

xixk
}

E
{

xjxl
}(

ei ⊗ ej ⊗ ek ⊗ el
)

(iv)−
∑

i,j,k,l
E
{

xixl
}

E
{

xjxk
}(

ei ⊗ ej ⊗ ek ⊗ el
)
. (A4)

Row (i) coincides with (A1) and hence it equals 𝜇4(X). The expression in row (ii) can be written as

∑

i,j
E
{

xixj
}(

ei ⊗ ej
)
⊗

∑

k,l
E
{

xkxl
}(

ek ⊗ el
)

= 𝜇2(X)⊗ 𝜇2(X). (A5)

For row (iii),

(
ei ⊗ ej ⊗ ek ⊗ el

)
= vec

{(
ek ⊗ el

)(
ei ⊗ ej

)
⊤
}

= vec
{(

ek ⊗ el
)(

e⊤i ⊗ e⊤j
)}

= vec
{(

eke⊤i
)
⊗

(
ele⊤j

)}
, (A6)

and hence

∑

i,j,k,l
E
{

xixk
}

E
{

xjxl
}(

ei ⊗ ej ⊗ ek ⊗ el
)

= vec

∑

i,j,k,l
E
{

xixk
}

E
{

xjxl
}(

eke⊤i ⊗ ele⊤j
)

= vec {RXX ⊗ RXX} . (A7)

For row (iv), we utilize the L2 × L2
permutation matrix

UL2 =
L∑

i=1

L∑

j=1

(
eie⊤j

)
⊗

(
eje⊤i

)
(A8)

to obtain

(
ei ⊗ ej ⊗ ek ⊗ el

)
=
(
ei ⊗ ej

)
⊗

(
UL2 ⋅

(
el ⊗ ek

))

= vec

{

UL2 ⋅
(
el ⊗ ek

)
⋅
(
ei ⊗ ej

)
⊤

}

= vec
{

UL2 ⋅
(
el ⊗ ek

)
⋅
(
e⊤i ⊗ e⊤j

)}

= vec
{

UL2 ⋅
(
ele⊤i

)
⊗

(
eke⊤j

)}
. (A9)
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14 LEV-ARI ET AL.

Hence, row (iv) is given by

vec

{

UL2

∑

i,j,k,l
E
{

xixl
}

E
{

xjxk
}(

ele⊤i
)
⊗

(
eke⊤j

)
}

= vec
{

UL2

(
RXX ⊗ RXX

)}
. (A10)

Substituting these results into (A4) yields (5).

We next express K4(Y) in terms of K4(X) for Y = AX. By substituting X with Y in (5), we obtain

K4(Y) = 𝜇4(Y) − 𝜇2(Y)⊗ 𝜇2(Y)
− vec

{
RYY ⊗ RYY + UM2 ⋅

(
RYY ⊗ RYY

)}
. (A11)

The first term in the RHS of (A11) is given by (4). The second term can be expressed using (3) and (4) as

𝜇2(Y)⊗ 𝜇2(Y) =
[(

A ⊗ A
)
𝜇2(X)

]
⊗

[(
A ⊗ A

)
𝜇2(X)

]

=
(
A ⊗ A ⊗ A ⊗ A

)(
𝜇2(X)⊗ 𝜇2(X)

)
. (A12)

For the third term in (A11), we use (3) and the well-known identity [16, p. 410]

vec
{

ARB⊤
}
= (B ⊗ A)vec{R} (A13)

to obtain

vec {RYY ⊗ RYY} = vec
{(

ARXXA⊤
)
⊗

(
ARXXA⊤

)}

= vec

{(
A ⊗ A

)(
RXX ⊗ RXX

)(
A ⊗ A

)
⊤

}

=
(
A ⊗ A ⊗ A ⊗ A

)
vec

{
RXX ⊗ RXX

}
. (A14)

For the last term in (A11), we use (3) and the relation

UM2

(
A ⊗ A

)
=
(
A ⊗ A

)
UL2 (A15)

to obtain

UM2

(
RYY ⊗ RYY

)
= UM2

(
A ⊗ A

)(
RXX ⊗ RXX

)(
A ⊗ A

)
⊤

=
(
A ⊗ A

)
UL2

(
RXX ⊗ RXX

)(
A ⊗ A

)
⊤

. (A16)

Hence, from (A13),

vec
{

UM2

(
RYY ⊗ RYY

)}

=
(
A ⊗ A ⊗ A ⊗ A

)
vec

{
UL2

(
RXX ⊗ RXX

)}
. (A17)

Combining these results we obtain (6).

Suppose now that the components of X are independent random variables. Then,

E
{

xl
1
⋅ xl

2
· · · xlk

}
=

{
E
{

xk
l
}
, l1 = l2 = · · · = lk = l,

0, otherwise,

(A18)

and

𝜇3

(
X
)
= E

{
X1 ⊗ X1 ⊗ X1

}

=
∑

i,j,k
E
{

xixjxk
}(

ei ⊗ ej ⊗ ek
)

=
∑

i
E
{

x3

i
}(

ei ⊗ ei ⊗ ei
)
. (A19)

The central moment 𝜇3(Y) follows from (4). Expressing

A =
L∑

i=1

aie⊤i , (A20)

we have

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22127, W

iley O
nline Library on [09/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



LEV-ARI ET AL. 15

A ⊗ A ⊗ A =
∑

i,j,k

(
aie⊤i

)
⊗

(
aje⊤j

)
⊗

(
ake⊤k

)

=
∑

i,j,k

(
ai ⊗ aj ⊗ ak

)(
ei ⊗ ej ⊗ ek

)
⊤

. (A21)

Substituting (A19) and (A21) in (4), and using the orthonormality of the L3 × 1 vectors
{

ei ⊗ ej ⊗ ek
}

, we obtain

𝜇3(Y) =
L∑

i=1

E
{

x3

i
}(

ai ⊗ ai ⊗ ai
)

= (A ⊙ A ⊙ A) col
(
E
{

x3

1

}
,E

{
x3

2

}
, … ,E

{
x3

L
})

. (A22)

It can similarly be shown that

𝜇2(Y) = (A ⊙ A) col
(
E
{

x2

1

}
,E

{
x2

2

}
, … ,E

{
x2

L
})

. (A23)

When the components of X are independent random variables

𝜅4

(
xi, xj, xk, xl) = 𝛿ij𝛿jk𝛿kl𝜅4

(
xi, xi, xi, xi

)
, (A24)

and

𝜅4

(
xi, xj, xk, xl

)
=

{
E
{

x4

i
}
− 3

(
E
{

x2

i
})2

, i = j = k = l,
0, otherwise.

(A25)

Substituting (A25) into (A4) yields

K4(X) =
∑

i,j,k,l
𝜅4

(
xi, xi, xi, xi

)
𝛿ij𝛿jk𝛿kl

(
ei ⊗ ej ⊗ ek ⊗ el

)

=
∑

p
𝜅4

(
xp, xp, xp, xp

)(
ep ⊗ ep ⊗ ep ⊗ ep

)
. (A26)

To find K4(Y), we use (6) where

A ⊗ A ⊗ A ⊗ A =
∑

i,j,k,l

(
ai ⊗ aj ⊗ ak ⊗ al

)(
ei ⊗ ej ⊗ ek ⊗ el

)
⊤

(A27)

follows from (A20) and (A21), and K4(X) is given in (A26). Using orthonormality of the L4 × 1 vectors
{

ei ⊗ ej ⊗ ek ⊗ el
}

as

in (A22), yields

K4(Y) =
L∑

p=1

𝜅4

(
xp, xp, xp, xp

)(
ap ⊗ ap ⊗ ap ⊗ ap

)

=
(
A ⊙ A ⊙ A ⊙ A

)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜅4

(
x1, x1, x1, x1

)

𝜅4

(
x2, x2, x2, x2

)

⋮

𝜅4

(
xL, xL, xL, xL

)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (A28)

which is (9). We conjecture that the same relation holds for all higher-order cumulants.

When the components of X are independent Poisson random variables with E{X} = 𝜆,

E
{

x2

i
}
= E

{
x3

i
}
= 𝜆i,

E
{

x4

i
}
= 𝜆i + 3𝜆

2

i ,

𝜅4

(
xi, xi, xi, xi

)
=
(
𝜆i + 3𝜆

2

i
)
− 3𝜆

2

i = 𝜆i, (A29)

and (11) follows.
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