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In diverse biological applications, single-particle tracking (SPT) of pas-
sive microscopic species has become the experimental measurement of
choice, when either the materials are of limited volume or so soft as to deform
uncontrollably when manipulated by traditional instruments. In a wide range
of SPT experiments, a ubiquitous finding is that of long-range dependence
in the particles’ motion. This is characterized by a power-law signature in
the mean squared displacement (MSD) of particle positions as a function of
time, the parameters of which reveal valuable information about the viscous
and elastic properties of various biomaterials. However, MSD measurements
are typically contaminated by complex and interacting sources of instrumen-
tal noise. As these often affect the high-frequency bandwidth to which MSD
estimates are particularly sensitive, inadequate error correction can lead to
severe bias in power law estimation and, thereby, the inferred viscoelastic
properties. In this article we propose a novel strategy to filter high-frequency
noise from SPT measurements. Our filters are shown theoretically to cover
a broad spectrum of high-frequency noises and lead to a parametric estima-
tor of MSD power-law coefficients for which an efficient computational im-
plementation is presented. Based on numerous analyses of experimental and
simulated data, results suggest our methods perform very well compared to
other denoising procedures.

1. Introduction. With the development of high-resolution microscopy, single-particle
tracking (SPT)—the recording of trajectories of individual particles within a fluid medium—
has emerged as an invaluable tool in the study of biophysical and transport properties of
diverse soft materials (e.g., Mason et al. (1997)). Examples of applications include cellular
membrane dynamics (Saxton and Jacobson (1997)), drug delivery mechanisms (Suh, Daw-
son and Hanes (2005)), properties of colloidal particles (Lee et al. (2007)), mechanisms of
virus infection (van der Schaar et al. (2008)), microrheology of complex fluids and living
cells (Mason et al. (1997), Wirtz (2009)) and functional analyses of the cytoskeleton (Gal,
Lechtman-Goldstein and Weihs (2013)).

Passive SPT refers to experiments in which microscale probes and/or pathogens (e.g.,
bacteria and viruses) are recorded without external forcing, producing high-resolution time
series of particle positions from which dynamical properties of the transport medium are
inferred. Let X(¢) = (X1(¢), ..., X4(t)) denote the stochastic process representing the d-
dimensional trajectory of a particle at time ¢, with d € {1, 2, 3} depending on the recording
device. In many SPT experiments, scientific analysis hinges pivotally on the measurement of
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particles’ mean square displacement (MSD) as a function of time,

d
(1.1) MsDy (1) = E[| X (1) — X()*] = Y E[|X;(1) — X;(0)|*].
j=1

For particles diffusing in viscous media (e.g., water, glycerol), the trajectory X (¢) is accu-
rately modeled by Brownian motion. The MSD is then linear in time,

(1.2) MSDyx (t) = 2d Dt,
and the diffusion coefficient D is determined by the Stokes—FEinstein relation (Edward (1970),
Einstein (1956))
kgT
p— "B

1.3 = ,
(1.3) 6 nr

where r is the particle radius, T is temperature, 7 is the viscosity of the medium and kp is
Boltzmann’s constant. However, due to the microstructure of large molecular weight biopoly-
mers (e.g., mucins in mucosal layers), most biological fluids are viscoelastic. In such fluids
a nearly ubiquitous experimental finding has been that the MSD has sublinear power-law
scaling over a given range of timescales,

(1.4) MSDx () ~2dDt%, tmin <t < tmax, 0 <o < 1.

This phenomenon is referred to as subdiffusion. Due to its pervasiveness, interpretation of the
subdiffusion parameters («, D) has far-reaching consequences for numerous biological appli-
cations, for example, distinguishing signatures of healthy vs. pathological human bronchial
epithelial mucus (Hill et al. (2014)), cytoplasmic crowding (Weiss et al. (2004)), local vis-
coelasticity in protein networks (Amblard et al. (1996)), dynamics of telomeres in the nu-
cleus of mammalian cells (Bronstein et al. (2009)) and microstructure dynamics of entangled
F-Actin networks (Wong et al. (2004)).

Unlike viscous fluids exhibiting ordinary (linear) diffusion, the precise manner in which
the properties of a viscoelastic fluid determine its subdiffusion parameters (¢, D) is unknown,
such that («, D) must be estimated from particle-tracking data. To this end, a widely-used ap-
proach is to apply ordinary least-squares to a nonparametric estimate of the MSD (e.g., Qian,
Sheetz and Elson (1991)). While minimal modeling assumptions suffice to make this subdif-
fusion estimator consistent (Michalet (2010)), for finite-length trajectories the nonparametric
MSD estimator at longer timescales is severely biased (Mellnik et al. (2016)). Therefore, in
practice, a good portion of the MSD must be discarded at the expense of considerable loss
in statistical efficiency. In contrast, fully parametric subdiffusion estimators specify a com-
plete stochastic process for X (¢) as a function of («, D) (e.g., Berglund (2010), Lysy et al.
(2016), Mellnik et al. (2016)), whereby optimal statistical efficiency is achieved via likeli-
hood inference. However, the accuracy of these parametric estimators critically depends on
the adequacy of the parametric model, and SPT measurements are well known to be corrupted
by various sources of experimental noise.

Noise in SPT experiments can be categorized roughly into two types. Low-frequency
noise, originating primarily from slow drift currents in the fluid itself, is typically removed
from particle trajectories by way of various linear detrending methods (e.g., Fong et al.
(2013), Koslover, Chan and Theriot (2016), Mellnik et al. (2016), Rowlands and So (2013)).
In contrast, high-frequency noise can be due to a variety of reasons—mechanical vibrations
of the instrumental setup, particle displacement while the camera shutter is open, noisy es-
timation of true position from the pixelated microscopy image and error-prone tracking of
particle positions when they are out of the camera focal plane. A systematic review of high-
frequency or localization errors in SPT experiments is given by Deschout et al. (2014). The



ERROR CORRECTION IN PARTICLE TRACKING MICRORHEOLOGY 1749

effect of such noise is to distort the MSD at the shortest observation timescales. Since fully-
parametric models extract far more information about (o, D) from short timescales than long
ones, their accuracy in the presence of high-frequency noise can suffer considerably.

In a seminal work, Savin and Doyle (2005) present a theoretical model for localiza-
tion error, encompassing most of the approaches reviewed by Deschout et al. (2014). The
parameters of the Savin—Doyle model can be derived either from first-principles (for in-
stance, by analyzing uncertainty in position-extraction algorithms, e.g., Burov et al. (2017),
Chenouard et al. (2014), Kowalczyk, Oelschlaeger and Willenbacher (2014), Mortensen et al.
(2010)), or empirically (via signal-free control experiments, e.g., Deschout et al. (2014),
Savin and Doyle (2005)). Model-based methods for estimating localization error have also
been proposed, under the assumption of ordinary diffusion « =1 (e.g., Ashley and Andersson
(2015), Berglund (2010), Calderon (2016), Michalet (2010), Michalet and Berglund (2012),
Vestergaard, Blainey and Flyvbjerg (2014)).

The Savin—-Doyle theoretical framework accounts for a wide range of experimental errors.
However, due to the extreme complexity and interdependence between various sources of
localization error, the Savin—Doyle model cannot account for them all. This is illustrated in
the control experiment of Figure 1(a), where trajectories of 1 um diameter tracer particles are
recorded in water, for which it is known that « = 1 and for which D may be determined the-
oretically by the Stokes—Einstein relation (1.3). However, the Savin—Doyle model estimates
both of these parameters with considerable bias (Figure 1(b)).

In this article, we propose a likelihood-based filtering method to correct for localization
errors, complementing the Savin—Doyle theoretical approach. Our filters can be readily ap-
plied to any parametric model of particle dynamics and are demonstrated theoretically to
cover a very broad spectrum of high-frequency noises. We show how to combine our filters
with parametric methods of low-frequency drift correction and estimate all parameters of
both subdiffusion and noise models in a computationally efficient manner. Extensive simu-
lations and analyses of experimental data suggest that our filters perform remarkably well,
both for estimating the true values of («, D) and compared to state-of-the-art high-frequency
denoising procedures (e.g., Figures 1(b—c)).

The remainder of the article is organized as follows. In Section 2 we review a number
of existing subdiffusion estimators and high-frequency error-correction techniques. In Sec-
tion 3 we present our family of high-frequency filters with theoretical justification for the
proposed construction. Sections 4 and 5 contain analyses of numerous simulated and real
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FI1G. 1. (a) Pathwise empirical MSD for 1931 particles of diameter 1 um recorded in water at At =1/60 s
for a duration of 30 s (N = 1800 observations). Straight lines correspond to fitted MSDs for three parametric
models: fractional Brownian Motion (fBM), fBM with Savin—Doyle noise correction (fSD) and fBM with one of
the noise correction models proposed in this paper (fMA). (b—c) Estimated values of « and D for each particle
and parametric model. The predicted values from Stokes—Einstein theory are given by the horizontal dashed lines.
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particle-tracking experiments comparing our proposed subdiffusion estimators to existing al-
ternatives. Efficient implementations of all estimators considered are provided in the R/C++
package subdiff (Lysy and Ling (2021)). Finally, while our investigations focus on esti-
mating subdiffusion parameters, the denoising methodology we propose can be applied to a
wide variety of particle-tracking models and experimental settings. An example of particular
importance is that of estimating protein binding rates in live cells (e.g., Hansen et al. (2018),
Mazza et al. (2012), Monnier et al. (2015), Persson et al. (2013)). We discuss in Section 6 the
applicability and limitations of our methods in this context as well as additional concluding
remarks and directions for future work.

2. Existing subdiffusion estimators.

2.1. Semiparametric least-squares estimator. Let X = (Xo,..., Xn), X, =X(n - A1),
denote the discrete-time observations of a given particle trajectory X (¢) recorded at frequency
1/At. Assuming that X (¢) has second-order stationary increments,

(2.1) E[|X(s+1)—X©®|*]=E[|X@) — X©0)]].

a standard nonparametric estimator for the particle MSD is given by

N—n

1
2.2 MSDx(n-Af)= ——— Xori — Xil%
(22) x(n- A N—n+1§o” wsi — Xl
Based on the linear relation
(2.3) logMSDx (¢) =log2dD + alogt

over the subdiffusion timescale t € (fiin, fmax), @ commonly-used subdiffusion estimator
(e.g., Gal, Lechtman-Goldstein and Weihs (2013)) is obtained from the least-squares regres-
sion of vy, =log(MSDx (n - At)) onto x, = log(n - At), namely,

SN =) — %)
SN (e — )2

The least-squares subdiffusion estimator (2.4) is easy to implement, and it is consistent
under the minimal assumption of (2.1) and when the power-law scaling (1.4) holds for all
t > tmin (Sikora et al. (2017a)). However, the least-squares estimator also presents three sig-
nificant drawbacks. First, the errors underlying the regression (2.3) are neither homoskedastic
nor uncorrelated (Sikora et al. (2017a)) such that (2.4) is statistically inefficient. To address
this, Zhang et al. (2018) derive the asymptotic distribution of y = (y1, ..., yy) to produce a
two-step least-squares estimator with improved accuracy and precision. When At is small,
one might view MSDy (n - At) as an approximation to its continuous extension,

(2.4) &= , D=Qd)""-exp(y — ax).

. N-At—t 2
(2.5) MSDX(t)=/O |X (s +1)— X ()| ds,

and approach the regression problem from the perspective of functional data analysis (e.g.,
Morris (2015), Ramsay and Silverman (2005)). We do not pursue these extensions here, fo-
cusing rather on the simple and more commonly-used least-squares estimator (2.4).

The second drawback of the least-squares estimator is due to the presence of low-frequency
noise. Indeed, it is common practice to account for such noise by calculating the empirical
MSD (2.2) from the drift-subtracted positions

(2.6) X,=X,—-Xy) —n-AX,
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where AX = % Zr]l\’:l(X n — X,—1) is the average displacement over the interobservation

time Atr. However, a straightforward calculation (Mellnik et al. (2016)) shows that Xy=0
such that MSDy (n - At) becomes increasingly biased toward zero as n approaches N. Conse-
quently, a widely-reported figure (e.g., Weihs, Teitell and Mason (2007)) suggests that, prior
to fitting (2.4), the largest 30% of MSD lag times are discarded, thus severely compounding
the inefficiency of the least-squares subdiffusion estimator when low-frequency noise correc-
tion is applied.

Third and finally, the semiparametric estimator (2.4) focuses exclusively on (&, D) which
are functions of the MSD of X (¢). However, several important dynamical properties of
particle-fluid interactions, such as first-passage times of microparticle pathogens through pro-
tective mucosal layers, cannot be determined from the MSD alone (Gal, Lechtman-Goldstein
and Weihs (2013), Lysy et al. (2016)). For this a complete specification of the stochastic
process underlying X (¢) is required.

2.2. Fully-parametric subdiffusion estimators. A convenient stochastic process frame-
work for subdiffusion modeling is the location-scale model of Lysy et al. (2016),

k
(2.7) X)=Y B, fi)+=Z'?Z@).

Jj=1

In (2.7), By, ..., Br € RY are regression coefficients, and fi(¢), ..., fi(¢) are known func-
tions accounting for low-frequency drift (typically linear, fi1(#) = ¢, and occasionally
quadratic, f>(t) = 12). Scaling is achieved with via the variance matrix X g4, and Z(t) =
(Z1(t), ..., Z4()) are i.i.d. continuous stationary-increments (CSI) Gaussian processes with
mean zero and MSD parametrized by ¢,

2.8) mMspz () = E[[ Z;(1) = Z;0|*] =n(t | 9,
such that the MSD of the drift-subtracted process X =X — ZI;.ZI B j fj(t) is given by

(2.9) MSDy (1) =tr(X) - n(t | @).

Perhaps the simplest parametric subdiffusion model (e.g., Szymanski and Weiss (2009),
Weiss (2013)) is
(2.10) Z;(t) <),

where B“(t) is fractional Brownian Motion (fBM), a mean-zero CSI Gaussian process with
covariance function

1
(2.11) cov(B%(t), B(s)) = 5(
Since the covariance function of a CSI process is completely determined by its MSD, fBM is
the only (mean-zero) CSI Gaussian process exhibiting uniform subdiffusion,

[t 4+ [s|* = |t —5]%), O<a<2.

(2.12) MSDpga () =1t%, 0 <t <o00.
When this is the case, we have
(2.13) MSDy (1) =tr(X) - t*

and equating this to (1.4) gives the diffusivity coefficient

(2.14) D= % x tr(X).
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It is henceforth typically assumed that the location-scale model (2.7) is driven by an fBM
process in the sense of (2.10). Other examples of driving CSI processes are the confined dif-
fusion model (Ernst et al. (2017)) and the viscoelastic generalized Langevin equation (GLE)
(McKinley, Yao and Forest (2009)). Both of these models exhibit fransient subdiffusion, that
is, power-law scaling only on a given timescale ¢ € (fmin, fmax)- In this case the subdiffusion
parameters (o, D) become functions of the other parameters, « = a(¢) and D = D(¢, X).
We shall revisit these transient subdiffusion models in Section 4.

Parameter estimation for the location-scale model (2.7) can be done by maximum
likelihood. Let AX,, = X,,4+1 — X, denote the nth trajectory increment, and let AX =

(AXp,...,AXy_1). Then, AX are consecutive observations of a stationary Gaussian time
series with autocorrelation function

(2.15) ACFax(h) =cov(AX,, AX,yn) =X xy((h| @),

where

1
2.16)  y(nlg)=3x (ln—11- At | @) +n(ln+1]- At | @) —2n(In| - At | @)},

such that the increments follow a matrix-normal distribution (defined in Supplementary Ma-
terial A (Ling et al. (2022))),

2.17) AXNxa ~MatNorm(FB,Vy, X),

where B =1[B1 1| Bil, Fnxk is a matrix with elements Fy,, = fin((n + 1) - At) —

Sm(n - Atr) and V, is an N x N Toeplitz matrix with element (n, m) given by Vé”’m) =
y (n — m | @) such that the log-likelihood function is given by

1
Up, B, | AX) = —Etr{):_l(AX —FB)V, (AX — FB)}
(2.18)
N d
— Elogl):l — Elog|V¢|.

In order to calculate the MLE of 6 = (¢, 8, X), model (2.7) has two appealing properties.
First, for given ¢, the conditional MLEs of § and X can be obtained analytically, as shown
in Supplementary Material A, such that the optimization problem can be reduced by 2d + (521)
dimensions by calculating the profile likelihood £prof(@ | AX) = maxg x £(@, B, X | AX).
Second, we show in Supplementary Material A that the computational bottleneck in £pof(¢ |
AX) involves the calculation of V;l and its log-determinant. While the computational cost

of these operations is O(N?) for general variance matrices, for Toeplitz matrices it is only
O(N?), using the Durbin—Levinson algorithm (Durbin (1960), Levinson (1947)), or, more re-
cently, only O(N log® N), using the generalized Schur algorithm (Ammar and Gragg (1988),
Kailath, Kung and Morf (1979), Ling and Lysy (2017)).

2.3. Savin—Doyle noise model. In order to characterize high-frequency noise in SPT ex-
periments, Savin and Doyle (2005) decompose it into so-called static and dynamic sources.
Static noise is due to measurement error in the recording of the position of the particle at
a given time. Thus, if X,, denotes the true particle position at time ¢t =n - Af and Y, is its
recorded value, then Savin and Doyle suggest the additive error model

(2.19) Y, =X,+e,,

where €, is a d-dimensional stationary process independent of X (¢). Thus, if the autocorre-
lation of the static noise is denoted as

(2.20) ACFg(n) = cov(&m, €mtn),
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FIG. 2. Effect of localization error on the MSD of an fBM process X (t) = B*(t) with « = 0.8 and At = 1/60.
(a) Dynamic error, as a function of exposure time t. (b) Static error, as a function of the signal-to-noise ratio,
SNR = var(ABY)/ var(ey).

the MSD of the observations becomes
MSDy (1) = E[||Y,, — Yo|*]

(2.21)
=MSDx (n) + 2 - tr(ACF¢ (0) — ACF¢(n)).

Savin and Doyle describe how to estimate the temporal dynamics of €, by recording immobi-
lized particles, that is, for which it is known that X,, = 0. Over a wide range of signal-to-noise
ratios, they report that ¢, is, effectively, white noise,

(2.22) ACFg(n) =%, -1(n =0),

a result corroborated by many other experiments (e.g., see references in Deschout et al.
(2014), Figure 2). For the canonical trajectory model of fractional Brownian motion,
MSDy (1) = 2d Dt%, white static noise has the effect of raising the MSD at the shortest
timescales, as seen in Figure 2(b).

In contrast to static noise, Savin and Doyle define dynamic noise as originating from move-
ment of the particle during the camera frame exposure time. Thus, if the camera exposure time
is T < At (as it must be less than the framerate), the recorded position of the particle at time
t=n-Atis

1 rt
(2.23) Y,= —f X(n- At —s)ds.
TJO

The dynamic-error MSD for an fBM process X (1) = B*(t) is given in Supplementary Mate-
rial B. Larger values of T have the effect of lowering the MSD at the shortest timescales, as
seen in Figure 2(a).

Combining static and dynamic models, the Savin—Doyle localization error model is

1 T
(2.24) Y,,:—/ X(n- At —s)ds + e,.
TJO

When X () follows the location-scale model (2.7) and the static noise variance has the form
Y. =02 - X, the computationally efficient methods of parametric inference in Section 2.2
can be applied.

Of particular interest is the fBM + Savin—-Doyle (fSD) model, where fBM drives the error
model (2.24). Explicit calculations for its MSD are given in Supplementary Material B. The
fSD model has three MSD parameters: (o (a, T, o). Its maximum likelihood estimates of
the subdiffusion parameters («, D) are & and D= tr(Z) /(2d). While these estimates suc-
cessfully correct for many types of high-frequency measurement errors, the fSD model has
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two important limitations. First, Figure 2(a) shows that the Savin—Doyle model has little abil-
ity to correct negatively biased MSDs at the shortest timescales. Indeed, the camera aperture
time 7 is typically at least an order of magnitude smaller than A¢, in which case the effect of
the dynamic error in Figure 2(a) is extremely small and insufficient to explain larger negative
MSD biases as in Figure 1(a). Second, the Savin—-Doyle model uses one parameter (t) to
lower the MSD, and a different parameter (o) to raise it. This leads to an identifiability issue
which adversely affects the subdiffusion estimator, as we shall see in Section 4.

3. Proposed method. Complementing the theoretically derived Savin—Doyle approach,
we now present a data-driven filtering framework for localization errors, beginning with the
following definition of high-frequency noise. Let us focus first on a one-dimensional CSI
process X (t) with E[X ()] =0 such that X ={X,, : n > 0} and Y = {Y,, : n > 0} denote the
true and recorded particle position process at times ¢t = n - At. Then, we shall say that the
observation process Y contains only high-frequency noise if the low-frequency second-order
dynamics of the true and recorded particle positions are the same, namely,

MSDy (n)

(3.1 im =
n—o0 MSDy (n)

Given the true position process X, our noise model sets the observed position process to be
of autoregressive/moving-average ARMA(p, q) type,

p q
(3.2) YnZZQiYn—i-l‘Z,Oan—j, n>r =max{p,q}.
i=1 =0

For 0 <n <r, Y, is defined via the stationary increment process AX = {AX,, :n € Z}.
That is, with the usual parameter restrictions (e.g., Brockwell and Davis (1991))

P q .
-2 67 po— Y pjz!
i=1 Jj=1

the increment process AY = {AY,, : n € Z}, defined by

(3.3) min

> 0,
{zeC:|z|<1}

>0, min
{zeC:|z|<1}

p q
(3.4) AY, =) 0;AY,_i+ Y pjAXu_j,

i=1 j=0
is a well-defined stationary process which can be causally derived from AX and vice-versa.
Moreover, setting Y, = Z?:_(} AY; obtains the ARMA relation (3.2) on the position scale for
n>r.

One may note in model (3.2) that p = (po, ..., pg) and var(AX,) cannot be identified
simultaneously. This issue is typically resolved in the time-series literature by imposing the
restriction pg = 1. However, in order for the recorded positions to adhere to a high-frequency
error model, as defined by (3.1), a different restriction must be imposed.

THEOREM 1. Let X and Y denote the true and recorded position processes, with the
latter defined by an ARMA(p, q) representation of the former as in (3.4). Then, Y is a high-
frequency error model for X, as defined by (3.1), if and only if

P q
(3.5) po=1- 6~ pj.
i=1 j=1

The proof is given in Supplementary Material D.1. Indeed, the following result (proved
in Supplementary Material D.2) shows that the family of ARMA(p, ¢) noise models (3.2) is
sufficient to describe any high-frequency noise model to arbitrary accuracy.



ERROR CORRECTION IN PARTICLE TRACKING MICRORHEOLOGY 1755

THEOREM 2. Let Y be a stochastic process of recorded positions defined as a high-
frequency noise model via (3.1). If Y satisfies the assumptions in Supplementary Mate-
rial D.2, then, for any € > 0, we may find an ARMA(p, q) noise model Y* ={Y,y : n > 0}
satisfying (3.2) such that, for all n > 0, we have

MSDy=(n)

(5-6) ’ MSDy (1)

1' <e.

The use of fractionally-integrated ARMA (ARFIMA) models to describe subdiffusive dy-
namics is not new (e.g., Balcerek et al. (2019), Burnecki et al. (2019), Sikora et al. (2017b)).
However, ARFIMA models are inherently defined in discrete time and, therefore, cannot be
derived from the underlying continuous-time trajectory process X () as in our ARMA noise
model (3.2) (Geweke and Porter-Hudak (1983)). In order to establish a connection to X (¢), a
variant of the ARFIMA model is often employed (e.g., Burnecki et al. (2015), Burnecki et al.
(2019), Sikora et al. (2017b)). However, this variant merely reduces to the fBM + Savin—
Doyle model (2.24) but with static errors only. Moreover, the general ARFIMA model does
not explicitly distinguish between the particle trajectory and measurement error. Therefore,
the general ARFIMA model can be used to consistently estimate «, but, unlike the ARMA
high-frequency model (3.2), it cannot be used to estimate D.

3.1. Efficient computations for the location-scale model. Let us now consider a d-
dimensional position process X(¢) = Z];:1 B;fi@) + 2127(1) following the location-
scale model (2.7). Then, we may construct an ARMA(p, ¢) high-frequency model for the
measured positions as follows. Starting from the drift-free stationary increment process
AX ={AX, =X2AZ, :n € Z)}, define the increment process AY ={AY, :n €7} via

p q
(3.7) AY, =Y 0;AY i+ > piAX,_;.
i=1 j=0

Then,~ under parameter restrictions (3.3), Aj? is a well-defined stationary process with
E[AY,]=0. In order to add drift to the high-frequency noise model (3.7), let

Af(n n<0,
k
AXp=1, <
"T)AX,+ ) BiAfy n=0,
j=1
(3.8) !
AY, n <0,
AY, — p q
"N 6AY i+ pjAX,_j n>0,
i=1 j=0

where Af,; = fj((n + 1) - At) — fj(n - Atr). Then, for n > 0, X,, = Zl'.‘:_ol AX; cor-
responds to discrete-time observations of X (#) from the location-scale model (2.7), and
Y, = ;’:_01 AY; satisfies the ARMA(p, g) relation (3.2). Moreover, the observed increments

AY = (AYy, ..., AY y_) follow a matrix-normal distribution:
3.9) AY ~MatNorm(F ,8,V,, X),
where F, is an N x k matrix with elements
min{n, p} min{n,q}
(3.10) Fam=— Y 6iFuim+ Y. PpjAfacjm

i=1 j=0
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and V, isan N x N Toeplitz matrix with element (n, m) given by ngn’m) = ACFay(|n —m|).
Thus, we may use the methods of Section 2.2 for parameter inference, given the autocorrela-
tion function ACFay (n) defined by (3.4). For the pure moving-average process (p = 0), this
function is available in closed-form for any driving autocorrelation function ACFaz(n). For
p > 0, an accurate and computationally efficient approximation is provided in Supplementary
Material C.2.

3.2. The fractional MA(1) noise model. A particularly simple ARMA(p, g) noise model
is that with p =0 and ¢ = 1, that is, the first-order moving-average MA (1) model given by

(3.11) Y, =(0-p)Xy+pXn-1,

where |p| < 1 is required to satisfy (3.3) and p < % is required to satisfy (3.1). The autocor-
relation of the observed increments becomes
ACFAy(n) = ACFax (n)

(3.12)
+ (1 — p)p[ACFax (In — 1]) + ACFax (n + 1) — 2 ACFAx (n)],

where ACFa x (n) is the autocorrelation of the true increment process. When (3.11) is driven
by fractional Brownian motion, we refer to the corresponding MA(1) noise model as fMA.
The MSD of such a model is plotted in Figure 3(a) for a range of values p € (—1, %). As with
the fractional Savin—Doyle (fSD) model (2.24), p > 0 raises the high-frequency correlations
in the observation process, whereas p < 0 lowers them. A similar MSD plot for the fSD
model is given in Figure 3(b). While both high-frequency noise models can similarly raise
the MSD at short timescales, the fMA model has much higher capacity to lower it.

In order to examine this difference more carefully, the following experiment is proposed.
Suppose that observed increments AY = (AYy, ..., AY y_1) are generated from a drift-free
location-scale fSD model p(AY | «, X, t, 0). Then, for fixed N and A¢, we may calculate the
parameters of the (drift-free) fMA model p(AY | a4, X, p), which minimize the Kullback—
Liebler divergence from the true model,

Gy, T, P) = argmin KL{p(AY |a, 2, 7,0)||p(AY | ay, T4, p)}

(0, Xy, 0)
(3.13) s Ny
= argmin tr(Z; ') r(V;1V) + log 2L IV.[
* * IZINVIE )
(0, Xy, )
(a) fMA (b) fSD
e P
€
3
=]
(%2}
2 ~—
o
p=-02 1=0.2At SNR=0.5
p=0.2 p=-04 T=0.5At SNR=1
p=03 p=-0.6 7=0.9At SNR=2
p=04 p=-0.8 7=0.999At SNR=5
— fBM p=-0.99 — fBM SNR=10
I I I I
107! 10° 107" 10°

Time (s)

FI1G. 3. (a) MSD of the fMA model with a = 0.8 and different values of p. (b) MSD of the fSD model with
o = 0.8 and different values of T and signal-to-noise ratio SNR = Var(AB,‘f)/Gz.
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FIG. 4. Model misspecification bias in o and D. (a) Best-fitting fMA model to true fSD models with different
values of «, T, and signal-to-noise ratio SNR = var(ABf) /02. (b) Best-fitting fSD model to true fMA models
with different values of o and p.

where V and V, are N x N Toeplitz variance matrices with first row given by the autocorre-
lation function of the fSD and fMA models, respectively.

Flgure 4(a) displays the difference between true and best-fitting subdiffusion parameters

« — o and logD* —logD,ford=2,% = [1 0] N = 1800, At = 1/60 and over a range of
parameter values («, 7, o). Figure 4(b) does the same but with the best-fitting fSD model to
data generated from fMA. For all but very high static error o (corresponding to low signal-
to-noise ratio SNR = var(AX,)/o?), the fMA model can recover the true subdiffusion pa-
rameters (o, D) with little bias, due to model misspecification. There is significantly more
bias when fSD is used on data generated from fMA, particularly when p > 0, as suggested
by Figure 3.

4. Simulation study. In this section we evaluate the performance of the proposed
ARMA(p, g) high-frequency noise filters in various simulation settings. In each setting we
simulate B = 500 observed data trajectories Y® = (Y(()b), e, Yg\l,’)), b=1,...,B, each
consisting of N = 1800 two-dimensional observations (d = 2) recorded at intervals of
At =1/60s.
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4.1. Empirical localization error. Consider the following simulation setting designed to
reflect the localization errors in our own experimental setup. Let Y, denote the trajectory
measurements for a particle undergoing ordinary diffusion in a viscous environment. Then,
we may estimate the MSD ratio
@1 ") MSDy (n)

. n)=————,
& MSDy. (1)
where the MSD of the true position process is MSDy, (n) = 2d Dt with D determined by the

Stokes—Einstein relation (1.3), and the MSD of the drift-subtracted observation process Y
can be accurately estimated by

_ |
4.2) MSDy (n) = 7 X;MSDyii)(n),
1=
where I\TS\D};@) (n) is the empirical MSD (2.2) for each (drift-subtracted) particle trajectory
f/(vl), ey f/iM) recorded in a given experiment (e.g., Figure 1(a)). We then suppose that the
true trajectory is drift-free fBM X (¢) = x1/2g (t) and simulate the measured trajectories
from

4.3) Y® X MatNorm(0, V., 3),

where X = [(1) (1)] and the (N + 1) x (N + 1) variance matrix V is that of a CSI process with
MSD given by

4.4) MsDy (n) = (yg§(n) —y + 1) x MSDx (n),

where g(n) is the estimated noise ratio (4.1) from a viscous experiment, and the noise factor
y > 0 can be used to suppress or amplify the empirical localization error with y < 1 or
y > 1, respectively. Having constrained our estimator such that g(n) = 1 for n > Ny, (4.4)
is a high-frequency noise model, as defined by (3.1). Figure 5 displays the observed MSD
(4.4) for a true fBM trajectory with o = 0.6, contaminated by empirical localization errors
from two representative viscous experiments described in Table 3, illustrating the effects of
high-frequency MSD suppression and amplification, respectively.

The following methods are used to estimate the subdiffusion parameters («, D) for each
set of simulated particle observations Y(b), b=1,...,B:

1. LS: The semiparametric least-squares estimator (2.4) applied to the drift-subtracted em-
pirical MSD (2.2). The timescale used is At <t < 10s.

(a) H2O0¢ Errors (b) Glygg Errors

MSD (um?)
\
\

I I I I I I
107" 10° 10’ 107" 10° 10'
Time (s)

FI1G. 5. MSD of simulated observations with empirical localization error (4.4), where the true trajectory is an
fBM process with o = 0.6. (a) High-frequency MSD suppression, as observed in the H2Og( experiments (see
Table 3). (b) High-frequency MSD amplification, as observed in the GLY g experiments.
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2. fBM: The MLE of an fBM-driven location-scale model with linear drift,
4.5) X(t)=pm +Z'2B (),

for which the model parameters are (o, @, X).

3. fSD: The MLE of the Savin—Doyle error model (2.24) applied to (4.5) for which the
model parameters are («, T, 0, K, X).

4. fMA: The MLE of the proposed MA(1) high-frequency noise filter (3.11) applied to
(4.5) for which the model parameters are (o, p, 1, X).

5. fMA2: The MLE of the proposed MA(2) high-frequency noise filter

(4.6) Yy=0—-p1—02)Xn+p1Xn-1+02Xp—2

applied to (4.5) for which the model parameters are (¢, p1, p2, K, X).
6. fARMA: The MLE of the proposed ARMA(1, 1) high-frequency noise filter

4.7) Y, =0Y,_1+(0—-0—-p)Xn+pXn_i
applied to (4.5) for which the model parameters are (o, 9, p, g, X).

REMARK 1. The fSD exposure time parameter t is typically known and, therefore, need
not be estimated from the data. However, we have opted here to estimate it regardless, as this
gives far greater ability to account for high-frequency MSD suppression (e.g., Figure 2(a)).
We return to this point in Section 5.

The point estimates for (¢, D) for true fBM trajectories with @ € {0.6, 0.8, 1} and empiri-
cal error factor y € {0.5, 1, 2} are displayed in Figure 6. As expected, the semiparametric LS
estimator is substantially more variable than any of the fully parametric estimators, and the
error-unadjusted fBM estimator incurs considerable bias, even with the smallest noise fac-
tor y = 0.5. The high-frequency estimators (fMA, fMA2 and fARMA) are fairly similar to
each other with the additional parameters of fMA2 and fARMA giving them slightly lower
bias and higher variance. The high-frequency estimators are slightly more biased than fSD
in the GLYg( simulation with o = 0.8. In contrast, they are somewhat less biased than fSD
for GLYgo with the stronger subdiffusive signal & = 0.6 and considerably less so for H2Ogg
with the largest noise factor y = 2.

Table 1 displays the true coverage of the 95% confidence intervals for each parametric
estimator, calculated as

1 8 . .
(4.8) Pos(¥) = & > 1{y € v £1.96se(Pp)},
b=1

where € {«, log D} is the true parameter value, @b is the MLE for dataset b, and se(lﬁb)

is the square root of the corresponding diagonal element of the variance estimator Vﬁr(é’ p) =
—[M]_l, where éb is the MLE of all model parameters. The true coverage of the
fMA, fMA?2 and fARMA confidence intervals is close to 95% when the bias is negligible and
typically above 85%. This is also true for fSD, with the notable exception of either empirical
error model and true o = 1. Upon closer inspection, we found that the fSD model suffers
from an identifiability issue in the diffusive (viscous) regime, wherein the MSD suppression
by t and amplification by o achieve the same net effect over a range of values. Thus, the
estimate of (&, D) is insensitive to a range of choices of (z, o), which artificially decreases
the uncertainty of the estimates (&, D).

REMARK 2. Since the subdiffusion equation MSDy (¢) = 2d Dt“ dictates that D be mea-
sured in units of Mmzs—oz, in order to compare estimates of D for different values of «, as in
Figure 6, we follow the convention of interpreting D as MSDx (t = 1 s)/(2d) (e.g., Lai et al.
(2007), Wang et al. (2008)) which for any « is measured uniformly in units of um?.
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FIG. 6. Estimates of («, D) for true fBM trajectories with various types and degrees of empirical localization
errors.

4.2. Modeling transient subdiffusion. In this section we show how the proposed high-
frequency filter can be used not only for measurement error correction but also to esti-
mate subdiffusion in models where the power-law relation MSDy (¢) ~ 2d Dt* holds only
for t > tpin. For this purpose, here we shall generate particle trajectories from a so-called
generalized Langevin equation (GLE), a physical model derived from the fundamental
laws of thermodynamics for interacting-particle systems (e.g., Kou (2008), Kubo (1966),
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TABLE 1
Actual coverage by 95% confidence intervals with various types and degrees of empirical localization errors

H20g¢ errors GLYg errors

y=0.5 y=1 y=2 y=0.5 y=1 y=2

Pos () a=06  fBM 5 0 0 0 0 0
fSD 90 87 11 93 84 59

fMA 96 96 90 91 88 88

fMA2 91 91 84 94 95 94

fARMA 92 93 87 89 93 93

«a=08  fBM 4 0 0 0 0 0
fSD 91 93 0 92 94 94

fMA 93 94 93 87 84 81

fMA2 93 91 87 92 91 93

fARMA 92 91 88 89 90 93

a=1 fBM 1 0 0 0 0 0
fSD 13 6 0 23 34 36

fMA 95 94 93 87 81 70

fMA2 92 92 94 90 88 84

fARMA 91 92 92 87 86 85

Pos(logD)  a=0.6  fBM 57 1 0 20 1 0
fSD 94 9 10 88 80 72

fMA 96 95 88 86 73 85

fMA2 94 95 95 86 79 66

fARMA 94 95 95 87 79 65

a=08  fBM 48 0 0 18 2 0
fSD 92 94 I 90 89 82

fMA 95 94 94 89 82 76

fMA2 93 94 94 89 86 83

fARMA 91 93 93 89 88 84

a=1 fBM 42 0 0 16 1 0
fSD 63 61 0 69 74 67

fMA 95 94 95 90 88 80

fMA2 92 92 94 91 90 85

fARMA 90 91 93 91 89 85

Zwanzig (2001)). For a one-dimensional particle with negligible mass, the GLE for its tra-
jectory X (¢) is a stochastic integrodifferential equation of the form

t
4.9 /_ ¢ —s)V(s)ds = F(2),

where V (t) = %X (1) is the particle velocity, ¢ (¢) is a memory kernel and F'(¢) is a stationary
mean-zero Gaussian force process with ACFr(t) = kgT - ¢ (t), where T is temperature and
kp is Boltzmann’s constant. The memory of the process is modeled as a generalized Rouse
kernel (McKinley, Yao and Forest (2009)),

K
(4.10) b0 == Y exp(—lil/m). =T (K/B.
k=1

The sum-of-exponentials form of (4.10) is a longstanding linear model for viscoelastic relax-
ation (e.g., Ferry (1980), Mason and Weitz (1995), Soussou, Moavenzadeh and Gradowczyk
(1970)), whereas the specific parametrization of the relaxation modes t; has been shown for
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F1G. 7. MSD of GLE processes with oeff = 0.63, Degr = 0.58, and tyin/ At = {5, 10, 20, 50, 100}. The vertical
dashed lines correspond to different values of tyin, and the diagonal dashed line corresponds to an fBM process
with the same subdiffusive parameters (cteff, Defr). The dotted vertical lines indicate the beginning and end of the
experiment, at At =1/60 s and N At =30 s, respectively.

sufficiently large K to exhibit transient subdiffusion (McKinley, Yao and Forest (2009)),

2Dets - 1% tmin <1t < Imax.
(4.11) MSDx (t) = { 2Dpmin - ¢ t < tmin,
2Dmax -t > tmaXa

where the subdiffusive range parameters (fmin, fmax) and the effective subdiffusion parameters
(ceft, Defr) are implicit functions of K, y, T and v. Details of the parameter conversions and
the exact form of (4.11) are provided in Supplementary Material E.

Figure 7 displays the MSD of various GLE processes with fixed K = 300, and {y, 7, v}
tuned to have aeff = 0.63, Desr = 0.58 and values of tmin /At = {5, 10, 20, 50, 100}. In all
cases the value of f,x was several times larger than the experimental timeframe N At =
30 s such that the observable MSD could potentially be matched by the fBM-driven high-
frequency models of Section 3. The trajectories for this experiment were simulated from

4.12) Y® % MatNorm(0, V., %),

where ¥ = [(1) ?] and V is the (N + 1) x (N + 1) variance matrix of the GLE process (4.9)
with MSDs displayed in Figure 7.

Figure 8 displays the parameter estimates of afr and Degr for the six estimators described
in Section 4.1, and Table 2 displays the true coverage probabilities of the corresponding 95%
confidence intervals. As in Figure 6, the LS estimator has the highest variance and fBM the
largest bias. In this case, however, the fSD and fMA estimators exhibit considerable bias in
estimating «, especially when i, >> At. In contrast, the fARMA estimator displays good
accuracy and reasonable coverage, even when tpi, is 50 times the interobservation time At.

5. Analysis of experimental data. We now investigate the performance of our high-
frequency filters on a variety of real SPT experiments, described in Table 3. For each exper-
iment, Table 3 reports the interobservation time Af, the number of particles M, the number
of observations per trajectory N and the type of camera and particle tracking software. All
tracked particles are inert polystyrene beads of diameter d = 1 um.

5.1. Viscous fluids. The first six experiments are conducted in viscous fluids (water and
glycerol), for which o = 1 and the diffusivity constant D is derived from the Stokes—FEinstein
relation (1.3). For the six estimators described in Section 4.1, estimates of («, D) and true
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FI1G. 8. Estimates of aefs and Degs for simulated GLE trajectories with true parameters oefs = 0.63, Degr = 0.58,
K =300 and tyin/ At = {5, 10, 20, 50, 100}.

coverage probabilities of the associated 95% confidence intervals are displayed in Figure 9
and Table 4, respectively. Both fSD and the proposed high-frequency estimators remove most
of the bias of fBM without camera error correction. However, the fSD 95% confidence in-
tervals suffer from severe undercoverage, due to the parameter identifiability issue noted in
Section 4.1. Indeed, Table 5 shows that the estimated exposure time 7 is much larger than its
true value 7, as required in the H20 experiments to capture high-frequency MSD suppres-
sion. When 7 is fixed at its true value, fSD estimation results are close to those of fBM, as
illustrated in Figure 1.

5.2. Viscoelastic fluids. The remaining 12 experiments from Table 3 are conducted in
two kinds of viscoelastic media. The first consists of mucus harvested from primary human
bronchial epithelial (HBE) cell cultures (Hill et al. (2014)). Washings from cultures were
pooled and concentrated to desired weight percent solids (wt%). Higher concentrations of
solids in lung mucus have been associated with disease states, so an accurate recovery of
biophysical properties is critical in samples with volumes too small to measure wt% directly

TABLE 2
Actual coverage by 95% confidence intervals with different GLE processes

GLE-5 GLE-10 GLE-20 GLE-50 GLE-100
Pos () fBM 0 0 0 0 0
fSD 96 96 64 0 0
fMA 95 84 25 0 0
fMA2 92 95 89 15 0
fARMA 92 92 95 85 53
Pos (log D) fBM 31 8 1 1 11
£SD 94 95 87 78 74
fMA 93 92 78 68 81
fMA2 94 95 93 93 92

fARMA 93 94 93 95 91
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TABLE 3

Summary of experimental conditions for various SPT experiments. The different types of fluids are water (H20),
glycerol (GLY), mucus from human bronchial ephithelia cell cultures (HBE) and polyethilene oxide (PEO). The
subscripts correspond to sampling frequency for H20, percent concentration for GLY and percent weight (wt%)
for HBE and PEO. The two types of cameras are Flea3 USB 3.0 (Flea3: Teledyne FLIR (2019)) and Panoptes
(Pan: Cribb et al. (2013)). The particle tracking software employed is either Video Spot Tracker (VS: Taylor et al.

(2018)) or Net Tracker (Net: Newby et al. (2018))

Medium Name D At (s) N M Camera Software
Viscous H2015 0.43 1/15 1800 1293 Flea3 Net
(x=1) H203 0.43 1/30 1800 889 Flea3 Net
H20g¢g 0.43 1/60 1800 1931 Flea3 Net
H20g0p 0.43 1/60 1800 313 Flea3 VS
GLY¢0 0.09 1/60 1800 532 Flea3 A
GLYgg 0.022 1/60 1800 358 Flea3 A
Viscoelastic HBE, 5 - 1/60 1800 63 Flea3 VS
(a unknown) HBE, - 1/60 1800 72 Flea3 VS
HBE; 5 - 1/60 1800 76 Flea3 A
HBE3 - 1/60 1800 99 Flea3 VS
HBE, - 1/60 1800 180 Flea3 VS
HBE;5 - 1/60 1800 178 Flea3 A
PEOg 22 - 1/38.17 1145 123 Pan VS
PEOqg 45 - 1/38.17 1145 205 Pan A
PEOg ¢ - 1/38.17 1145 192 Pan VS
PEQOg 75 - 1/38.17 1145 202 Pan VS
PEOg 9 - 1/38.17 1145 124 Pan VS
PEOj 72 - 1/38.17 1145 193 Pan VS

(Hill et al. (2014)). The second medium, polyethylene oxide (PEO), is a synthetic polyether
compound with applications in diverse fields ranging from biomedicine to industrial manu-
facturing (Working et al. (1997)). The present data consists of trajectories in 5 megadalton
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FI1G. 9. Estimates of («, D) for the viscous medium experiments in Table 3.
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TABLE 4
Actual coverage by 95% confidence intervals for the viscous medium experiments in Table 3

H2015 H203 H20¢ H20¢0p GLY¢p GLYgp
fBM 0 0 0 0 4 16
fSD 47 42 47 11 14 44
fMA 94 90 93 85 90 71
fMA2 95 91 92 87 91 75
fARMA 95 92 94 88 92 82

(MDa) PEO at a range of wt% values. In all 12 viscoelastic experiments, subdiffusive motion
a < 1 is expected, but the true values of (¢, D) are unknown.

Figure 10 displays the various estimates of (o, D) for the viscoelastic data. The high-
frequency noise models tend to produce similar results with the largest differences occurring
in the estimates of « at high wt%. In the absence of true values of («, D) against which to
benchmark our models, we compare the different subdiffusion estimators using the following
metric.

For measurements ¥ = (¥Yo,Y1,...,Yy) of a given particle trajectory, let Yy =
(Y, Yiqr, ..., Yrqn/r)r) denote the kth subset of the measurements downsampled by a
factor of r. Downsampling effectively removes all high-frequency dynamics from the parti-
cle positions, leading us initially to consider a subdiffusion estimator, which maximizes the
composite loglikelihood (e.g., Varin, Reid and Firth (2011)),

r—1

(5.1) D@ 1Y) =" tmm@ | Y o0,
k=0

where 6 = («, B, X) are the parameters of the location-scale fBM model (2.7). However, this
estimator was found to have very high variance which, for the purpose of constructing confi-
dence intervals, was poorly estimated by the sandwich method (Freedman (2006)). Therefore,
we have not pursued this downsampling estimator here. Instead, we propose to evaluate the
accuracy of subdiffusive model M by calculating

~(M;)

(5.2) 0 1Y),

where é(Mj ) are the corresponding elements of the MLE under M; for the complete set
of measurements Y. Larger values of the composite likelihood statistic (5.2) indicate better
agreement with subdiffusive dynamics MSDy (#) = 2d D -t* for t > At x r. This approach to
comparing models with respect to (¢, D) is evocative of the focused information criterion of
Claeskens and Hjort (2003).

TABLE 5
Ratio of true and estimated exposure time to interobservation time for the fSD model in the viscous medium
experiments of Table 3

H2015 H203 H20¢g H20g0, GLY¢gg GLYgg

True t/At 0.3 0.3 0.3 0.3 0.3 0.3
Estimated /At 0.93 0.91 0.89 0.91 0.85 0.54
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F1G. 10. Estimates of («, D) for the viscoelastic medium experiments in Table 3. For the HBE data the subdif-
fusive estimators are the six described in Section 4.1 and that of the fMA + static noise (fMAS) model (5.4).

Table 6 reports the improvement in the composite likelihood statistic (5.2) of each mea-
surement error model M ; over the noise-free fBM model,

L& o a0 -~ (BM)
5.3 SO =S (D0 Y™y — 26 y ™)},
(5.3) i Z {ec’( | ) =€’ ( | )}
m=1
where the average is calculated over the trajectories Y, ..., Y in each viscoelastic ex-

periment of Table 3. Interpretation of the units in Table 6 is similar to those of the AIC, upon
multiplying ours by a factor of negative two. However, we do not penalize by the number
of parameters here, since all models have the same number of parameters in the subdiffusive
range of interest. We return to this point in the Discussion (Section 6).
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TABLE 6
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Average improvement S ) in the composite likelihood statistic (5.2) relative to fBM for various subdiffusion
estimators. For each experiment and downsampling factor r, the estimator with the greatest improvement is

highlighted in bold
PEO (wt%)
0.22 0.45 0.6 0.75 0.9 1.22
r=>5 fSD 3.1 2.9 4.2 4.3 3.6 7.6
fMA 2.9 2.5 3.7 43 3.8 11
fMA2 4.1 4.6 5.8 5.1 4.8 9.9
fARMA 4.8 3.9 6.9 5.2 3.8 12
r=10 fSD 2.2 2 2.9 3.5 2.9 5.7
fMA 1.8 1.9 2.5 3.1 2.5 8.7
fMA2 2.7 34 4.5 3.6 3.6 7.9
fARMA 2.7 3 4.7 3.5 2.8 7.7
r=20 fSD 1.6 1.6 2.9 24 2.6 4.2
fMA 1.7 1.6 2.3 2.4 1.9 7
fMA2 1.5 2.7 3.9 33 2.8 6.1
fARMA 1.5 1.7 33 2 1.7 5
HBE (wt%)
1.5 2 2.5 3 4 5
r=>5 fSD 15 29 31 28 29 —60
fMA 15 27 30 28 42 0.06
fMA2 15 31 31 29 47 -9.6
fARMA 16 31 30 29 33 -22
fMAS 15 30 31 29 32 =72
r=10 fSD 11 21 23 18 12 —53
fMA 11 20 22 21 30 0.25
fMA2 12 22 21 22 31 -7.1
fARMA 11 22 22 20 18 —26
fMAS 11 21 23 19 13 —42
r=20 fSD 9 14 16 11 2.5 —61
fMA 8.9 14 16 18 23 0.81
fMA2 8.9 17 15 16 22 —5.3
fARMA 8.1 16 14 11 7.1 —28
fMAS 9 14 15 16 11 -52
r =60 fSD 2.3 4.1 5.7 4.1 2.3 8
fMA 2.1 43 6.2 6.0 8.5 1.3
fMA2 2.3 5.7 5.1 5.3 9.2 5.3
fARMA 2.9 5.1 54 4.1 2.7 4
fMAS 2.5 4.5 5.6 5.0 33 12

As expected, noise correction produces significantly better estimates of («, D) than does
the fBM model alone. For the PEO data the more accurate subdiffusion estimators are fMA?2
and fARMA, whereas for HBE they are fMA and fMA?2. A notable exception is in the highest
concentration HBE at 5 wt%, where for r = 5, 10, 20 all measurement error models, except
fMA, are decisively dominated by noise-free fBM. To see why this is the case, Figure 11(a)
displays the empirical MSDs of three representative particle trajectories from the HBE 5 wt%
dataset. Each of these MSDs exhibits two distinct power-law signatures with the changepoint
occurring around ¢t = 1 s. Figure 11(b) displays the fitted MSD for various subdiffusion es-
timators. We can see that fBM and fMA capture only the short-range power-law dynamics,
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@ Short-Range
@ Long-Range

MSD (um?)
1 1 1

5x10™* 10 2x10° 5x107° 5x10* 10° 2x10° 5x107°

Time (s)

F1G. 11. (a) Pathwise empirical MSD for three representative particles of diameter 1 um with 5 wt% mucus
concentration. The dashed lines are fitted to separate transient subdiffusive phases. (b) Empirical MSD and fitted
power law MSD for various subdiffusion estimators. Dashed lines represent different downsampling rates r.

whereas the other estimators capture the power law for ¢ > 1 s. However, for » = 5, 10, 20,
a sufficient amount of short-range power-law remains for it to outweigh the contribution of
the longer-range dynamics in the calculation of the composite likelihood statistic (5.2), thus
favoring the fMB and fMA models.

It is theorized that the presence of two distinct power-law signatures in the HBE 5 wt%
data is due to the extremely low particle mobility such that the trajectory displacement signal
is substantially masked by the measurement noise floor. To investigate this, we added the
static noise component of the Savin—Doyle model to the fMA model, leading to the so-called
fMAS model

(5.4) Y, =(-p)X,+pX,-1 +en

Indeed, Table 6 indicates that fMAS most accurately captures long-range subdiffusion dy-
namics for » = 60. It is noteworthy that fMAS outperforms the Savin—Doyle model (fSD) in
this setting, suggesting that noise sources other than static and dynamic errors may be present
in these data.

6. Discussion. We present a family of parametric filters to correct for high-frequency
noise in SPT measurements. We demonstrate, theoretically, that our models can account for a
very broad range of localization errors and show how to combine them with arbitrary models
of particle dynamics and low-frequency drift so as to estimate subdiffusion parameters in a
computationally efficient manner.

Compared to the state-of-the-art Savin—Doyle error model, our high-frequency filters gen-
erally exhibit lower bias and much better coverage of confidence intervals for o &~ 1, where
the Savin—Doyle model suffers from a parameter identifiability issue. A notable setting in
which the Savin—Doyle model outperforms ours is when static noise dominates the high-
frequency errors, for example, in low-mobility experiments, such as HBE 5 wt%. Indeed,
static noise is only covered by our definition of high-frequency noise (3.1) if the true posi-
tion process X (¢) is nonstationary (as is the case for fBM). However, it is easy to combine
static noise with our parametric filters without sacrificing computational efficiency, as we
have done for the fMAS model in Section 5.2.
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An important practical question is how to determine which high-frequency error model
produces the most accurate subdiffusion estimator for a given viscoelastic fluid and instru-
mental setup. We have proposed a composite likelihood metric to approach this problem,
but accounting for model complexity in the underlying estimation of Kullback—Liebler diver-
gence would benefit from deeper theoretical and empirical investigation. Possible directions
of inquiry for the former are AIC for composite likelihoods (Varin, Reid and Firth (2011)),
via consistent estimators (Grgnneberg and Hjort (2014)) and focused information criteria for
time series models (Hermansen, Hjort and Jullum (2015)).

This paper focuses on microrheological applications. Another important application of
SPT is to study the function and behavior of biomolecules (e.g., proteins) in live cells (e.g.,
Goulian and Simon (2000), Hansen et al. (2018), Monnier et al. (2015), Persson et al. (2013)).
To the extent that an MSD-based CSI process is used to model the biomolecule trajecto-
ries (e.g., Briane, Kervrann and Vimond (2018), Kowalek, Loch-Olszewska and Szwabifiski
(2019), Monnier et al. (2012), Saxton and Jacobson (1997), Tiirkcan and Masson (2013)),
parameter estimates can be obtained by direct application of the methodology proposed here.
However, biomolecule SPT experiments differ from microrheology experiments in two im-
portant aspects.

First, microrheology experiments typically consist of relatively few long trajectories (e.g.,
hundreds of trajectories with thousands of timepoints), whereas biomolecule SPT experi-
ments often consist of many very short trajectories (tens of thousands of trajectories of five
or so timepoints, e.g., Hansen et al. (2018)). While, in principle, the methods in this paper
can be applied to trajectories of any length, estimating the MSD at timescales beyond the ex-
periment timeframe relies on modeling assumptions which cannot be verified directly. Thus,
biomolecule SPT experiments consisting of many short trajectories are not well suited to
estimate long-range dependence phenomena such as subdiffusion. Moreover, the MSD esti-
mates of single short trajectories have high variability such that many such trajectories must
be combined to estimate the dynamic properties of the ensemble. When the particles are as-
sumed to exhibit homogeneous behavior, that is, their trajectories are i.i.d. realizations of a
single CSI Gaussian process, the profile likelihood calculations presented in Supplementary
Material A are readily extended. When the homogeneity assumption does not hold, spatially
heterogeneous particle dynamics can be accounted for in a hierarchical modeling framework
(Lysy et al. (2016)).

A second key distinction between microrheology and biomolecule SPT experiments is
that often biomolecules inside cells undergo state transitions leading to non-Gaussian be-
havior (e.g., Hansen et al. (2018), Monnier et al. (2015), Persson et al. (2013)). Neverthe-
less, the state transition model is a CSI process such that the computational methods derived
here under a Gaussian assumption lead to quasi-likelihood estimates of the model parame-
ters (Heyde (1997)). However, our methods require a closed-form expression for the MSD in
(2.8), whereas that of the state transition model is given by an infinite series (e.g., Mazza et al.
(2012), Supplementary Material). Thus, parameter estimation via exact maximum likelihood
using dynamic programming methods (e.g., Monnier et al. (2015), Persson et al. (2013)) may
be both statistically and computationally more efficient. That being said, our ARMA model
for measurement error can be applied to any underlying model for the biomolecule dynam-
ics. Developing an efficient computational approach to this for the state transition model is a
promising direction for future work.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“‘Measurement error correction in particle tracking microrheology”
(DOLI: 10.1214/21-AOAS1565SUPPA; .pdf). Profile Likelihood for the Matrix-Normal Dis-
tribution: Detailed calculations for the profile likelihood method described in Section 2.2.
Calculations for the fSD Model: Derivation of the autocorrelation of the fSD model (2.24).
Calculations for the ARMA Noise Model: Derivation of the autocorrelation of the ARMA
noise model (3.2). Proof of Theorems: Proof of Theorems 1 and 2. Calculations for
the GLE Model: Formula for the autocorrelation of the subdiffusive GLE model (4.9)
of McKinley, Yao and Forest (2009), and a numerical approximation of its subdiffusive
timescale (fmin, fmax)-

R package subdiff (DOI: 10.1214/21-AOAS1565SUPPB; .zip). The R package
subdiff is provided in this file. For the most recent version of the package, see https:
//github.com/mlysy/subdift.
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