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ABSTRACT

A two-player game-theoretic problem on resilient graphs is formulated. An attacker is capable to disable
some of the edges of the network with the objective to divide the agents into clusters by emitting jam-
ming signals while, in response, the defender recovers some of the edges by increasing the transmission
power for the communication signals. We consider repeated games between the attacker and the de-
fender where the optimal strategies for the two players are derived in a rolling horizon fashion by taking
account of the sizes of the clusters. The players’ actions at each discrete-time step are constrained by
their energy for transmissions of signals. We derive several theoretical results to characterize the prop-
erties of the two-player game under some specific conditions of the agents’ communication network and
the players’ energy parameters. In order to investigate more general cases, we provide some numerical
evaluations to show the effects of the values of horizon lengths and game periods on the players’ perfor-

mance.

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Networked systems have been used in various areas of critical
infrastructures including power grids and transportation systems.
While wireless communication among agents plays an important
role for the functionality of the network, it is also prone to cyber
attacks initiated by malicious adversaries [1,6,16]. Attacks on cyber-
physical systems can result in not only damages in equipments but
also serious accidents in worst cases, and hence are considered as
a major threat to the society.

From such perspectives, security issues in multiagent systems
have gained much attention. Jamming attacks on consensus prob-
lems of multiagent systems have been studied in [2,18]. Noncoop-
erative games between the attacker and another player protecting
the network are widely used to analyze security problems, includ-
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ing jamming attacks and injection attacks [7,15]. In the face of the
malicious adversaries, agents with consensus protocols may not be
able to converge; instead, they are divided into clusters, i.e., groups
of agents. Cluster forming in multiagent systems has been studied
in, e.g., [14,19], where the relations among certain agents may be
hostile.

Receding/rolling horizon control has been employed to deal
with multiagent systems with uncertainties and state constraints.
It is used for achieving consensus of a linear multiagent system [9].
It is also studied in noncooperative security game settings in [21],
where horizon lengths affect the resilience of the system. Rolling
horizon approach has also been followed to obtain better planning,
e.g., in an agent with obstacle avoidance constraints [17] and in a
multivehicle competitive scenarios for self-driving cars [20].

In this paper, we consider a security problem in a two-player
game setting between an attacker, who is motivated to disrupt the
communication among agents by attacking communication links,
and a defender, who attempts to recover some of the attacked
links. This game is played repeatedly over discrete time where the
players recalculate and may change their strategies as time goes
on, according to the rolling horizon approach. The players’ utilities
are determined by how agents are divided into clusters.

We formulate the problem based on [4,12], which use graph
connectivity to characterize the game and players’ strategies.

0947-3580/© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved.
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Specifically, we address how clusters among agents may form in
this security game setting. In this paper, we approach clustering
from a viewpoint based on a game-theoretic formulation. This ap-
proach can be related to the concept of network effect/externality
[8], where the utility of an agent in a certain cluster depends on
how many other agents belong to that particular cluster. Such con-
cepts have been used to analyze grouping of agents on, e.g., social
networks and computer networks, as discussed in [5,10].

Moreover, in comparison to [4,12], which discuss a single-step
two-player attack recovery game in networks, our contributions
can be stated as follows: (i) we consider the game which con-
sists of multiple attack-recovery actions, resulting in more com-
plicated strategies; (ii) we consider a rolling horizon approach for
the players so that their strategies may be modified as they obtain
new knowledge of the system each time; and (iii) we consider the
difference in the capabilities of the players, represented by non-
uniform values of horizon parameters.

Here we focus on evaluating the players’ performance given
different computational resources represented by horizon lengths
(how long in the future the players can plan their strategies) and
game periods (how long the players apply the obtained strategies
without updating). It is expected that the players with longer hori-
zon lengths and shorter game periods perform better over time.
The related cases where the players have the same ability to com-
pute their strategies in future time are discussed in [11,13].

The paper is organized as follows. In Section 2, we describe the
general problem formulation of the attack-recovery sequence. We
then specify the non-uniform horizon length approach for games
played over time in Section 3 and discuss some theoretical results
in Section 4. We then continue by discussing the formulations with
non-uniform game periods in Section 5. The simulation results and
conclusion are provided in Sections 6 and 7, respectively.

The notations used throughout this paper are fairly standard in
regard to mathematical representations. We denote | - | as the car-
dinality of a set. The floor function is denoted by |-|. The sets of
positive and nonnegative integers are denoted by N and N, re-
spectively. Furthermore, in regard to the representations associated
with players’ actions and parameters, we put superscripts A and D
to denote the attacker and the defender, respectively, and we put
* and / to denote optimal strategies in some different aspects. On
the other hand, subscripts of some notations indicate time indices.

2. Problem formulation

We explore a multiagent system of n agents communicating to
each other in the face of jamming attacks. The network topology
for the normal operation is given by an undirected and connected
graph G = (V, £). The case where the network topology is given by
a directed graph can be similarly handled. The graph consists of
the set V of vertices representing the agents and the set £ CV x V
of edges representing the communication links.

The attacker is capable to block the communication by jamming
some targeted edges, represented by the removal of edges in G. On
the other hand, we suppose that there is a defender that has the
capability to maintain the communication among the agents, e.g.,
by asking agents to send even stronger communication signals to
overcome the jamming signals. These are represented by the action
of rebuilding some of the attacked edges.

From this occurence of attacks and recoveries, we characterize
the attack-recovery process as a two-player game between the at-
tacker and the defender in terms of the communication among the
agents of the network. In other words, we may say that the graphs
characterizing the networked system are resilient if the group of
agents is able to recover from the damages caused by the attacker.
However, there may be cases where the resiliency of the graph is
reduced due to the stronger attack signals. In this paper, we con-
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sider the case where the attacker has two types of jamming signals
in terms of their strength, strong and normal. The defender is able
to recover only the edges that are attacked with normal strength.
In the following subsections, we first describe the order of attack
and recovery actions in one sequence and characterize some con-
straints that we impose as well as the objective of the problem.

2.1. Attack-recovery sequence

In our setting, the players make their attack/recovery actions
at every discrete time k € Np. Recall that the underlying, attack-
free topology of the multiagent system is represented by G. At
time k, the players decide to attack/recover certain edges in the
two stages, with the attacker acting first, followed by the defender.
Specifically, at time k the attacker attacks G by deleting 5;:‘ cé

with normal jamming signals and ?}? C & with strong jamming

signals with 5,’{*0?? =@, whereas the defender recovers £ < €.
Due to the attacks and then the recoveries at time k, the net-
work changes from G to GP':= (V.£\ (SQU?/,?)) and further to
G 1= (V. (€\ (ELUER) U (€L nEM)).

In this paper, we formulate the game where the players attempt
to choose the best strategies in terms of edges attacked/recovered
to maximize their own utility functions. With [ € N, here the Ith
game is defined over the horizon of h* and hP steps for the at-
tacker and the defender, respectively, and played every T steps
of game period from time (I —1)T to (I — 1)T + max{h?, hP} —1.
Since the game period should be within the horizon, we assume
that 1 < T < min{h?, hP}. The players make decisions in a rolling
horizon fashion as explained more in Section 3; the optimal strate-
gies obtained at (I — 1)T for the future time may change when the
players recalculate their strategies at the future time IT. Fig. 1 il-
lustrates the discussed rolling horizon game over time; the filled
circles indicate the applied strategies and the empty circles indi-
cate the strategies of the game that are discarded.

When a player has a longer horizon length, it indicates that it
has a better computational ability relative to its opponent, since
the computational burden is directly related to the horizon length
(explained in Section 3 later). It is expected that the player with a
longer horizon length can perform better in general. This topic on
the relationship between the ability of players to calculate several
strategies in the future and their performance is discussed, e.g., in
chess, where better players search for a move more extensively and
deeply [3].

2.2. Energy constraints

The actions of the attacker and the defender are affected by the
constraints on the energy availability, which is assumed in this pa-
per to increase linearly in time; furthermore, the energy consumed
by the players is proportional to the number of attacked/recovered
edges. Here we suppose that the players initially possess certain
amount of energy «# and «P for the attacker and the defender,
respectively. Furthermore, the players’ energy supply rates are lim-
ited by the constant values of p” and pP every discrete time step.
For example, this models devices which are able to supply energy
wirelessly to obstruct/retain communication signals between the
agents.

Recall that the attacker has two types of jamming signals,

= —A
strong and normal. Here, the strong attacks on 5};\ take 8 > 0 en-
ergy per edge per unit time compared to the normal attacks on

. —A
&R, which take BA > 0 where 8~ > BA. The total energy used by
the attacker is constrained as

k
Z(BA|Em|+ﬂA|5r¢1|)SKA+pAk (1)

m=0
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Fig. 1. Illustration of the games played over discrete time k with rolling horizon approach for the players, where the players have different horizon lengths h* and hP.
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Fig. 2. Energy constraint of the attacker considered in the formulation. The dashed
line represents the allowable energy to spend. The solid circles representing the
applied energy consumed by the player should be below the dashed line.

for any time k, where «” > pA > 0. The energy constraint (1) im-
plies that the total energy spent by the attacker cannot exceed
the available energy characterized by the initial energy «* and the
supplied energy pAk by time k. This energy constraint restricts and
upper bounds the number of edges that the attacker can attack.
See also [2,18] and the references therein for other contraint-based
attack models.

Fig. 2 illustrates the energy constraint of the attacker, where the
dashed line with slope p? represents the total energy supplied and
the filled circles indicate the accumulated energy spent. A critical
case is when BA < pA since it is then possible for the attacker to
attack at least one edge for infinite time.

The energy constraint of the defender, which is similar to (1), is
given by

k

> BPlepnéenl < kP + pPk )
m=0

with «P > pP >0, B8P > 0. Recall that the defender can recover
only the edges in 5,’(‘ under normal jamming attacks.

2.3. Agents clustering

By attacking, the attacker makes the graph disconnected and
separates the agents into clusters (i.e., sets of agents). We intro-
duce a few notions related to grouping/clustering of agents. For a
given subgraph ¢’ = (V,&’) where £ C &, we say that the agents
are grouped into 7(G’) number of groups, if the sets of agents

VioVy. ..., V%(g,) CV satisfy UZ(:Q{)V{] =Vand VNV, =0 if asb.
There is no edge connecting different groups, i.e., e;; ¢ & for i<

Vo J €V,

Here, we are interested in the case where the attacker is also
concerned about the number of agents in each group, as an ex-
tension of [12]. Specifically, we follow the notion of network ef-
fect/externality [8], where the utility of an agent in a certain cluster
depends on how many other agents belong to that particular clus-
ter. In the context of this game, the attacker wants to isolate agents
so that fewer agents are in each group, while the defender wants
as many agents as possible in the same group. We then represent
the level of clustering in the graph G’ by the function c(.) called
agent-group distribution, which is given by

ng’)
(@)=Y Vil = VP (3)
a=1

Note that c(G’) is always negative when G’ is disconnected,
whereas c(G’) =0 if ¢’ remains connected.

The attacker and the defender’s utility functions of the Ith game
(Ith decision-making opportunity), | € N, starting at time k = (I —
1)T, take account of the agent-group distribution c(-) over time
horizons h#, h® > 1 from time (I — 1)T to (I — 1)T 4+ max{h?, hP} —
1. Specifically, the utility functions at the Ith game are defined by

(-1)T+hA—1

U= > =@, (4)
k=(—DT
(I-D)T+hP—1

U= Y. c@d. (5)
k=(—D)T

With the rolling horizon approach, the players will be able to
manage the usage of their energy better. The player with a longer
horizon length is expected to use their energy more efficiently, and
thus obtain a higher utility over time.

3. Game structure with non-uniform rolling horizon lengths

We are interested in finding the subgame perfect equilibrium of
this game. To find the equilibrium, the game is divided into some
subgames/decision-making points. The subgame perfect equilib-
rium must be an equilibrium in every subgame. The optimal strat-
egy of each player is obtained by using a backward induction ap-
proach, i.e., by finding the equilibrium from the smallest subgames.
The tie-break condition happens when the players’ strategies result
in the same utility. In this case, we suppose that the players choose
to save their energy by attacking/recovering less edges; otherwise,
i.e., they have enough energy to attack/recover all edges in every
subsequent steps, then they will attack/recover more edges, given
the same resulting utility.
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In this paper we consider the situation where the attacker and
the defender have different horizon lengths denoted by h# and hP,
respectively. The difference in the horizon lengths corresponds to
the different ability of the players to solve the game.

Due to the nature of the rolling horizon approach, the
strategies obtained for the I[th game, ie., attacked and re-
covered edges, are applied only from time (I—-1)T to IT —1
with T < min{h#, hP}. Note that T is set to be the same for
the players. The players’ strategies at the [th game are spec-

. <A <A <A

ified as (1. &Y€) Epo. Eflp Ep)s Elnv 1. Efp )
—A . —A

vy Clpa, eﬁhA)) if hA > hP, and (1. &Y. 60D,
—A . .

v Elpas Eas sl?hA), sll?hm, e sl?hD) if  hA<hP,  with

Eﬁa,eﬁa,el‘?a indicating the strategies at the oth step of the
Ith game, o € N. Note that here we show the strategies with two
subscripts representing the game and the step indices along the
time axis. If h* > hP, only the attacker formulates its strategies
after hPth step. Similarly, if h® < hP, only the defender formu-
lates its strategies after hAth step. In the case of hA = hP, both
players obtain their strategies until (h® = hP)th step, denoted by
(@1 D), Elpas EN s EP))-

However, since the game is played in a rolling horizon fashion,

only ((Eﬁl,gﬁl,sﬂ),..., (EﬁT,S;‘\T,EPT)) is applied (recall that
hA and hP are taken to be greater than or equal to T). Here the

strategies applied can be written in single subscripts of time
o —A =A

indices  as ((8(,,1)T,8371”,5371”),..., Era. &b &R N =
((?ﬁl,é'{\], e, (?ﬁr, &l €00)). We assume that the values of
hA and hP are known to both players. Note that this game is not
necessarily zero-sum.

In what follows, we provide an example of a small scale to de-
tail how the optimal edges can be obtained in our game setting.
To this end, suppose that hA =3 and hP = 2. The optimal strate-

. —Ax —Ax —Ax
gies (€11, €05, €P), (€15, &5, €%, (€13, €]%)) of the players at
the game with index | are obtained backward in time (from Step
o =3 to Step o = 1) and is given by:

- Step 3:
—Ax % 5
(E13(ER). E5(ED)) € arg max U (ERs) (6)
(E13.80)
where £P(E1,, €.) € arg max —UA,, 7
13 (€13.83) g e (7)
» Step 2:
£ (E),. EM) e arg maxUp,, (8)
' ' ’ 81.2 '
—Ax * %
(E12(EP. E5(E2)) € arg max UL (ER;). (9)
(E12.60)
» Step 1:
—A —A /
ErEL.EN) € argngDaxU,D(g,,;, &) (10)
1.1
—A , "
where (£5(€P). €15(EP)) € arg max —UR (&), (11)
(E12.81)
ShA* * %
(€11 &) e arg max UMED). (12)

Er1:Eh)
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A ._ s~ (U-DT+hA-1 D D ._
Ul = Zii1yT+a—1 —€(G¢) (resp., Uy =

Zlgl;(ll)jﬁiil c(GP)) is defined as parts of UM (resp., UP) cal-
culated from the ath step to the hAth (resp., hPth) step of the Ith
game.

Once again, these optimization problems are solved backward
from the max{h®, hP} = 3rd step of the Ith game. Note that to find
(Eﬁ, &My) in (12), one needs to obtain (5,'?1* (?ﬁl, &M)) in (10) be-
forehand. Likewise, to find (5{’;‘ (3?1, El'f‘])) in (10), one needs to ob-

tain (?{fﬁ(g{’]),gf\; (€P))) in (9), and so on. Also, note that while
81[’3* is not part of the defender’s strategy, it is still needed for

where

the attacker to obtain (Eﬁ;, E,A;) in (6). Therefore, outside the de-

fender’s ability characterized by its horizon length hP, here we
suppose that the attacker utilizes the strategy that emulates the
defender’s best response with a longer horizon, i.e., from part of
utility functions —UlA (which is not equal to UlD due to the horizon
inadequacy).

In the steps with index « < hP, the defender assumes that the
attacker’s optimal edges, e.g., in (11), are based on the defender’s
utility function, which consists of h? < h? steps only. Also, in this
game the defender’s optimal strategies, e.g., in (10), are based on
the defender’s perception of the attacker’s optimal strategies, i.e.,

(fﬁ’z, 5,’_‘5), since the defender is not able to foresee the attacker’s

strategy beyond hP. For the attacker, since it is able to compute the
optimal strategy for the defender as well (due to longer h%), the
attacker’s strategies in the steps with index o < hP, e.g., (9) and
(12), are based on the defender’s optimal edges SP;.

In this setting, since the defender’s strategy depends on the at-
tacker’s strategy as well, i.e., the defender can only recover edges
attacked normally, it is possible that the defender cannot apply its
strategy when the attacker changes its own strategy. In this case,
the defender will apply the strategy only on the edges that can be
recovered.

The decision-making process of the players in this example is
illustrated in the game tree in Fig. 3, where the blue line indicates
the equilibrium path. i.e., the strategy taken by the player follow-
ing backward induction, if h* = hP = 3. The green line indicates the
equilibrium path if h® = hP = 2 and the magenta line indicates the
equilibrium path if hA = 3, hP = 2. In step 2, the attacker assumes
that £ comes from utility over hA = 3. The case where h# < hP
can be similarly described. These optimization problems are solved
by the players at every game period T.

It is clear that with a longer T, the players play this game less
often and apply their obtained strategies for more time steps. Note
that with T = min{h?, hP}, the player with a shorter horizon length
does not change its strategies at all, thus effectively removing the
rolling horizon aspect of the player. In this game, we will find the
optimal strategies of the players by computing all possible combi-
nations, since the choices of edges are finite.

From the optimization problems in (7)-(12) above, the player
with a shorter horizon length hg,o € {h*, hP} examines at most
31€121€1hg; .« number of combinations for utility evaluations, since
the player has to foresee the opponent’s response as well. Note
that the attacker has three possible actions on an edge: no at-
tack, attack with normal signals, and attack with strong sig-
nals. On the other hand, the player with a longer horizon length
hiong € {h*, hP} examines at most (3/€1211) (hyppg — Aghore) + (311 +
31€121€1) hyype combinations.

In this section, we have explained the problem setting where
it is assumed that the players may not have the same computa-
tional ability represented by the different values of horizon lengths
hA and hP. Without the assumption of the horizon length discrep-
ancy, the most related results are given in [13] where the play-
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Fig. 3. Extensive-form game for h* = 3 and hP = 2. The vertical dashed lines denote the different steps of the game, whereas the dashed red line denotes boundary (min{2,3})
of different players’ horizon lengths. The optimization beyond this boundary is done by only the player with a longer horizon (in this case the attacker).

ers have the same ability to compute their strategies, represented
by hA = hP = h. There, we do not discuss the effect of the hori-
zons on the players’ performance; we instead focus more on the
necessary and sufficient condition of agents clustering at infinite
time, given the consensus dynamics. Other related papers include
[4] which considers the one-shot attack-recovery games. This for-
mulation is extended in [12] where the repeated attack-recovery
games without rolling horizon approach in continuous time is con-
sidered. Specifically, the timings for launching attack/defense ac-
tions are also part of the decision variables. The problem setting
where a game in continuous time is divided into several steps
without rolling horizon approach is also discussed in [11].

4. Players’ performance with non-uniform horizon lengths

The utility functions defined in (4) and (5) are considered
for deriving the best strategies for the players. As explained in
Section 2.1 above, the last several actions for the players may be
discarded from the obtained strategies and replaced by a new set
of actions calculated in the next game. As a consequence, the re-
sulting values of the agent-group distribution at time k is given by
c(GP*), with gP* = (V. ((€\ (?}:\* UER)) U (EP* NEM)). We now
characterize how the horizon lengths h? and hP affect the applied
utilities U := —c(GP*) and UP := c(GP*). These are elements of the
utility functions U} and UP corresponding to the ath step, with
o=k mod T+1, of the game with index [ = [k/T] + 1, where
the obtained strategies (S/(\L)TM_],53’:1)”0(_1,58:)”&_1) =
(Eﬁ;, gl £Px) are applied.

We first state a result implying that when the attacker has large
enough energy supply characterized by p”, the optimal strategies
of both players do not depend on the horizon lengths. Specifically,

if ,oA/EA > |£], then the attacker will attack all edges of the under-
lying graph G at any time k, making the optimal strategies inde-
pendent of h* and hP.

The results afterwards illustrate the performance of the players
for different h* and hP in separate subsections assuming that

—A
B <€l (13)
4.1. Attacker’s strategies with varying h?

To show the change of the attacker’s strategies, we consider cer-
tain scenarios where the defender’s strategies are less reliant on

the attacker’s action. Specifically, by assuming certain values of pP
and BP, it is possible that the defender’s optimal strategies are al-
ways to recover all £f.

In this subsection, we further assume that

pP/B° > €], (14)

implying that pP is large enough so that there is always recovery
from normally attacked edges at any step of the game. Further-
more, in Propositions 1 and 2 below, we suppose for simplicity of
obtaining theoretical assertions that

Kt = ph, (15)

i.e,, the attacker has the same amount of supplied energy at any k,
including at k = 0.

We first state a lemma describing a property of a class of
graphs under attacks, where it is better for the attacker to at-
tack as soon as it has the energy, rather than saving it to attack
more edges later. For the statement of the following results, let
€(§) == ming_g c((V, €\ £")) denote the smallest value of agent-
group distribution given the number of strongly attacked edges

E(<n-1).

Lemma 1. Consider the case where the network topology G of the
agents is given as the star graph and the attacker attacks & number
of edges with strong signals. Suppose (13)-(14) hold. Then, for time
interval k, ch(E) < E(I?é) is always satisfied for any k<mn- 1)/€.

Proof. In the star graph G, & number of strongly attacked edges
results in £ number of isolated agents and a group of (n—§&)
number of agents forming a star graph. Thus, we have c¢(§) =
(n—£)2+& —n? and hence ¢(k&) = (n— k&)2 + k& —n? so long
as k& <n- 1. It then follows that the sum of agent-group distri-
bution over k interval becomes kc(§) = k(n — £)2 + k& — kn2. 1t is
straightforward to show that k(n — £)? — kn? < (n — k&)2 — n? for
any k< n-1)/&. O

In Lemma 1, we state that in the star graph attacking a few
edges every time results in a more negative agent-group distribu-
tion compared to saving energy and only attacking later. For ex-
ample, attacking one edge for k = 1,2 results in a more negative
C(QP) + c(g'23) over k = 2 interval than attacking two edges only for
one time k=2; (n—1)2+ (n—1)2 <n?+ (n—2)? from (3) is al-
ways satisfied (note that the value of agent-group distribution is
zero if there is no attack).
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Proposition 1. Consider the case where the network topology G of
the agents is given by any tree graph. Suppose that (13)-(15) hold.
Then, the value of Zlﬁzo U,'{“ does not depend on h® or T, for any time
k.

Proof. Since after the attack of |?',:\| edges there is still a group of
agents consisting of at most (n — |§£|) agents forming a star graph,
here the star graph gives the least value of agent-group distribu-
tion among the graphs with n nodes with edge connectivity 1 (tree
graphs). Therefore, proving for the star graph is sufficient to show
the result for the tree graphs.

Since the immediate attack gives the more negative agent-
group distribution from Lemma 1, it then follows that if k2 = pA,
it will also give the maximum Y_k_o U over any k. Note that, if
kA > ph ie., (15) is not satisfied, then the attacker may have dif-
ferent ability especially at k = 0, which makes the immediate at-
tack more wasteful and no longer optimal in a shorter horizon
situation. O

We continue by stating a result on the complete graph G, where

in a low energy situation characterized by small pA/EA, the at-
tacker with longer hA always has better utility.

Proposition 2. Consider the complete graph G If (13)-(15)
and ,o"‘/ﬁA < (n—2)/T are satisfied, then 0=3Y%_, Up(hA=T) <
YK, UA(hA > T) for any k.

Proof. Note that the complete graph has the edge connectivity n —
1. Since it is assumed that the attacker always spends all of its
. —A
energy at the last step of the game, there is at most § amount
of energy at the beginning of each game from the leftover of the
. . —A

previous games. With pAT < (n —2)8 , if hA =T, then the attacker
will spend all of its energy at the last step of the game without
disconnecting any agent, implying that U = 0 for any I and hence
UA=0forany k. O

In Proposition 3 below, we state that the attacker with a shorter
hA in any ¢ may perform better if we measure the applied utility
over a shorter interval.

Proposition 3. Suppose that (13) and (14) are satisfied. In any G, it
follows that 3§ _o UAhA = 1) = Sk_oOP (kA > 1) for any time k <
—A

Lch/(ElB™ — pM)].

Proof. In the case of hA = 1, at time k = 0 the attacker will spend
all its energy, which is dictated by «A. In this case, if k2 > |£|EA,
then the attacker will attack all edges to maximize UIA. Considering
the recharge rate p” that changes the attacker’s available energy
in each time k, the attacker with h® = 1 will attack all edges with
strong signals as long as k satisfies k < %. It then follows that,

£

since attacking all edges always gives maximum applied utility in
a single time step, with h® = 1 the attacker will obtain maximum

possible applied utility 0,? for time k < %.
£

4.2. Defender’s strategies with varying hP

In this section, we discuss the characterization of U,? of the de-
fender given different values of hP. We first state a lemma de-
scribing a property of an attacked empty graph (V,#), where it
is better for the defender to save its energy and use it later to
recover more edges. For the statement of the following results,
let ¢/(6) := maxe g c((V, ') denote the largest value of agent-
group distribution given the number of recovered edges 6. As a

European Journal of Control 68 (2022) 100693

consequence, Zﬁzo c'(0) = k' () indicates the energy consump-
tion when the number of recovered edges is 6 for k steps.

Lemma 2. Assume that the attacker attacks all edges & with normal
signals at all time. Let 6 be the number of recovered edges. If (13) is
satisfied, then

ke 9) < (k- 1) (0) + ¢ (k0) (16)
for any time interval k< (n—-1)/0 forany 6 =1,...,n—1.

Proof. We begin by discussing the right-hand side of (16). Recall
from (3) that c’(0) = c((V, %)) = n—n?. Note that, in the last time
step of k < (n—1)/6 interval, the defender cannot recover more
than (n—1) edges given no previous recovery for IQ—} interval.
Thus, at the end of the interval, (3) becomes ¢/ (k8) = (k& + 1)2 +
(n—kO —1) —n2.

On the other hand, if the defender recovers & number of edges,
then we have ¢(0)=@+1)2+n—-0—-1)—n2 It then fol-
lows that kc'(6) = k[(0 + 1>+ (n— 6 — 1) — n?] < (k— 1)’ (0) +
c(k0) = (k—1n+ (kO +1)2 + (n— k& — 1) — kn? for any time in-
terval k < (n — 1)/6. O

From (5), we note that the defender prefers strategies that re-
sult in larger value of c(g,?) over time. Thus, by Lemma 2, we see
that recovering later is better for the defender, which is different
from Lemma 1 for the attacker where attacking immediately is bet-
ter.

We now continue by assuming certain values of the attacker’s
energy parameters so that its strategies do not change regardless
of the defender’s response. Specifically, we now assume that

KA = ph = AlEl, B/BA > hAg] (17)

are satisfied, i.e., attacking with strong signals takes much en-
ergy so that it is not affordable for the attacker to take such ac-
tions at any time. Note that with pA = BA|£|, the attacker will be
able to attack all edges normally at all time; furthermore, with

BA/,BA > hA|€| the attacker will never have enough energy to at-
tack any edge with strong signals at any step of the game. There-
fore, any attacked edge at any time can be recovered.

In Proposition 4, similar to Proposition 3 above, we now state
that the defender with a shorter h® may perform better if we mea-
sure the applied utility over a shorter interval. Note that this result
does not depend on the topology of the underlying graph G, simi-
lar to the one in Proposition 3 above.

Proposition 4. Suppose that pP/BP <n—1 and (17) are satis-
fied. Then Y_k_oUP(hP = 1) = YK_o UP (hP > 1) is satisfied, with k <

KD
Laa—r

Proof. Since BA/,BA is large enough to prevent attacking with
strong signals, all attacks in any k are done with normal jamming
signals. Since pA/BA = ||, the attacker is able to attack all edges
£ at all k, which is optimal.

Similar to the proof in Proposition 3 above, since the de-
fender recovers all of the attacked edges with hP =1, at k=0
it will obtain maximum applied utility. The assumption pP/BP <
n —1 means that the defender cannot recover more than (n—1)
number of edges at every time k, which results in maximum
c(g,?) in (3). The defender then will recover all edges until time

D
Lanp=r - B
While we do not obtain the general condition that ensures a
higher utility for longer h” (resp., longer hP), in Section 6 we will
show in a numerical simulation that with longer horizons the at-
tacker (resp., the defender) generally obtains more applied utility
over longer time.
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Fig. 4. Sequence of games with decision-making indices [* and IP: the attacker’s
horizon (red) and the defender’s horizon (green) with non-uniform game periods.
The horizon lengths are h* = 3 and hP = 2, whereas the game periods are TA =1
and TP = 2.

5. Game structure and players’ performance with non-uniform
game periods

5.1. Game structure with non-uniform game periods

In this section, we extend the problem formulation by gener-
alizing the game period T into TA and TP for the attacker and the
defender, respectively. These periods TA and TP are known by both
players for simplicity of the analysis. To ensure that both players
are able to obtain their own strategies at any k, we set TA < h® and
TP < hP. The game with non-uniform game periods is illustrated
in Fig. 4. Each of the yellow rectangle indicates a game consist-
ing of the set of decision-making processes, which follows a certain
pattern. A game is played, i.e., both players simultaneously update
their strategies, every lowest common multiple of TA and TP de-
noted as lcm(TA, TP); in Fig. 4, the game is played every 2 time
steps. With this formulation, it is expected that the players have
better performance with shorter TA and TP since they can adapt
to the changes faster.

From Fig. 4, we see that the players may not formulate their
strategies at the same time. For example, at time k =1, only the
attacker updates its strategies, whereas the defender does not due
to the longer TP. Since TA and TP are known by both players, at
k =1 the attacker decides its strategy considering the defender’s
strategy that is obtained before at k = 0. Furthermore, since h* = 3
and 5?,2 has been determined, here the attacker at k = 1 with the
ability to compute for three time steps ahead predicts and hence
already covers the defender’s second decision-making process. This
attacker’s prediction of the defender’s next actions is represented
by the green rectangle with dashed lines in Fig. 4.

Since it is clear that the non-uniform game periods make the
players decide their strategies at different times, we specify dif-
ferent decision-making indices I* and I® which occur at times
(1A —=1)TA and (I°P — 1)TP for the attacker and the defender, re-
spectively. As a result, the attacker (resp., the defender) does not
update its strategy if k (mod TA) = 0 (resp., k (mod TP) # 0). The
utility functions of the IAth and IPth decision-making processes
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consisting of o® and aP steps, respectively, are given by

(A-1)TA+hA -1 hA
Upi= Y =@ =Y —c(GR ), (18)
k=(IA-1)TA ahr=1
(IP—1)TP+hP -1 hP
Up := o @)=Y @R o). (19)
k=(IP-1)TP aP=1

similar to (4) and (5) above. Note that different values of these
indices for the players may refer to the same time step; e.g., in
Fig. 4, both IA =2, oA =1 and IP = 1, aP = 2 correspond to k = 1.

The optimal strategy of the attacker at time k =1 correspond-
ing to 1A =2, ie. ((E55.€8). (€5 &8%). (€55, €5%)) in the case
shown in Fig. 4 (noting that k (mod TA) =0 and k (mod TP) 0
for k = 1), is obtained backward in time and are given by:

« Step 3 (k=3,IP =2):
—Ax "
(£23(832), £23(83,)) € arg. max Uj5(£7) (20)

23:60'3)

D/ oA oA A
where £;5(&;5.&5'3) € arg r?Dax -U35.

2.2
«Step 2 (k=2,1° =2):

—Ax %
(82(€21). €05(€21)) e arg_max U, (£7) (21)
(£22:€55)

—A —A
where £ (€3, &) € argmax —Uz, (£33, £53),
1(E22. 85 X U282, &

«Step1(k=1,IP=1):
(£57, €M) e arg max Uy'(&7). (22)

(E31.80)

Since the attacker cannot compute more than h? = 3 time steps
ahead, in (20) and (21) above the attacker will use its own utility
function Ul’}\ to estimate the defender’s optimal edges denoted by
&, ie, at I°=2. Since 1 (mod TP) + 0, the defender does not
make a new decision and thus will apply the strategy obtained in
the previous time instead. Therefore, it is possible for the player
with shorter game period (in this case, the attacker) to benefit by
changing its strategies; for example, in the case explained above,
the attacker may benefit by changing 5{‘ to avoid the recovery by
the defender SP, which has been set and cannot be changed.

The optimization problems explained above vary slightly at
each time due to different TA and TP. For example, the optimiza-
tion problems (20)-(22) are solved at times k = i(lcm(T#?, TP)) + 1,
ie No.

5.2. Attacker’s strategies with varying TA

In this section, we also explore the performance of the attacker
represented by U,i\ for the non-uniform game periods, similar to
the one in Section 4 above. We first state that under some condi-
tion, the values of TA and TP do not affect the optimal strategies
of the players.

Specifically, we notice that if ,0“‘/3A > |£|, the attacker attacks
all of the edges of G at any time k, making the optimal strategies,
and therefore the applied utilities lfl,‘(A and lfll?, independent of the
values of TA and TP.

We continue by discussing the strategies of the players given
that pA/EA < |&], i.e, (13), is satisfied. In Corollaries 1-3 and
Proposition 5 below, we also suppose that (14) and (15) are sat-
isfied, for the same reason as in Section 4 above. The result in
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Corollary 1 below for the tree graph G is also similar to the one
in Section 4, since the optimal strategies for both players do not
rely on TA,

Corollary 1. Consider the tree graph G. If (13)-(15) are satisfied, then
%_o Ul does not depend on h* or TA, for any time k.

Proof. The proof is similar to the proof of Proposition 1. O

We then state the attacker’s optimal strategies for TA = 1 under
certain situations for the case of the complete graph G, where the
attacker with low recharge rate p® will not be able to attack any
edge at earlier times.

Proposition 5. Consider the complete graph G. If (13)-(15), ,oA/BA <
n—1, and TA =1 hold, then the attacker does not attack any edge
for k < | A0 -pA B |

B

Proof. Since k% = p? < (n— 1)EA, the attacker keeps spending all
of its energy and hence it cannot disconnect the graph by attack-
ing with strong signals at any k. This implies that in the complete
graph G the attacker will not attack unless it has enough energy
to attack n—1 edges at later steps of the decision-making pro-
cess. Furthermore, to implement the attack strategies, the attacker
needs to have enough energy to attack at least (n — 1)hA number
of edges (recall that given the same utility, the attacker is assumed
to attack less edges at the earlier steps).

We are then looking for the condition that prevents the at-
tacker from attacking at the earliest step (since TA =1, the only
applied strategies are the ones in the first step). With the abil-

ity to attack LpA/EAJ number of edges every k, the attacker will

—A
have (h* —1)pA/B more energy at the end of each game, given
no previous attacks. It follows that there is no attack before time

—A —A
L((hA —1)(n—1) = (W = 1) /B )/ (pA/B)]. O
From Proposition 5, we are able to characterize the at-
tacker’s performance measured by ZU,? for different TA values in
Corollary 2 below.
Corollary 2. Consider the complete graph G. If (13)-(15) and
ijﬁA <n—1 hold, then the attacker's applied utilities satisfy
Yh o UMTA =1) < SK_oOMTA > 1), with k < [(F* —1)((n—1) -
—A. —A
PrB B /oM ]
Proof. The result is a direct consequence of Proposition 5. O
From Proposition 2, we are also able to state that having a
shorter TA may help in the situation of low energy characterized
by low pA/BA.
Corollary 3. Consider the complete graph g. If (13)-(15) and
,oA/BA <(n—2)/h* are satisfied, then YX_, UMTA < h?) >
K o UMTA = M) for any k.

Proof. The result is a direct consequence of Proposition 2. O
5.3. Defender’s strategies with varying TP

In this section, we discuss the optimal strategies of the de-
fender for different TP values. In Proposition 6 and Corollary 4 be-
low, we suppose that, again for simplicity, (17) and «P = pP are
satisfied.

Proposition 6. Suppose that (17) and «P = pP are satisfied.
The defender with TP =1 does not make any recovery for k <
L(hD%)(anpD/ﬁD)ﬁDJ

oD ’
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Fig. 5. Evolution of ZUE for the path graph (solid lines) and the complete graph
(dashed lines) with h* = 1; the results for complete graph with h® =2 and hP =3
are identical.

Proof. Since p?/B” = |£| and EA/;BA > hA|€| are satisfied by (17),
the attacker cannot strongly attack any edge at any k and instead
its optimal strategy is to attack £ with normal jamming signals so
that g is an empty graph.

In this case, it follows from Lemma 2 that the defender will not
recover any edge at the first step. Since by (3) the defender does
not receive any additional utility by recovering more than (n—1)
edges, it then follows that to obtain the maximum utility of (19) in
a single decision-making process, the defender has to recover (n —
1)hP number of edges in total ((n — 1)h? number of edges except
for the TP (= 1) step(s)).

We continue by looking for the condition that prevents the de-
fender from recovering at the first step. With the ability to recover
L oP/BP| number of edges every k, the defender projects that it
will have (hP —1)P/B8P more energy at the end of each decision-
making process, given no previous recoveries. It then follows that
the defender does not make any recovery before |((hP —1)(n—

1) — (h° —1)pP/BP)/(pP/pP)]. O

From Proposition 6, we are able to characterize the defender’s
performance in Corollary 4 below.

Corollary 4. Suppose that (17) and «P = pP are satisfied. Then

the defender’s observed utilities satisfy Y k_, UP(1P =1) <
T ~ - D_ _1_,D,pDygD

YhooUP(TP > 1) for k < | SRt BOE |

Proof. The result is a direct consequence of Proposition 6. O

These theoretical results on the case with varying T* and TP
are specific to some values of parameters and class of graphs. We
will see the performance of the players on more general graphs
and parameters in Section 6 below.

6. Numerical examples

In this section, we provide some numerical examples to illus-
trate the difference of players’ performance for the cases with non-
uniform horizon lengths and game periods.

6.1. Non-uniform players’ horizon lengths h* and hP

Here we discuss the players’ strategies when they have non-
uniform horizon lengths. It is expected that players will get bet-
ter utility with longer horizon lengths, especially in the long term.
From Figs. 5 and 6 plotting YU/ and Y"UP over time with three
different values of h® and hP, we see that it is generally the case
in this simulation. In Fig. 5 for varying hP, the parameters used
are n=3, pA/pA =31, EA/ﬂA =10, and pP/BP = 1.5. In this fig-
ure, we see that both in the path graph and the complete graph
G, the defender with h® =2 and hP =3 generally obtains more
Y UP than the one with hP = 1. The difference between hP =2
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Fig. 6. Evolution of 3" U2 with h® = 1 for the path graph (solid lines) and the com-
plete graph (dashed lines).
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Fig. 7. Y22, UA for different values of h* and hP for the complete graph.

and hP =3 is not very significant in this simulation; it may be
more notable in the case of more complex systems with more
agents.

However, if we consider the performance of the players over a
certain interval, it is possible that with a shorter horizon length
the player can obtain more applied utility. We illustrate this phe-
nomenon in the case of the attacker’s applied utilities 0,? over

time in Fig. 6. We now use parameters = 10.5, EA =2, ph=
2.5, hP =3, and pP/BP =5, so that the condition pP/BP > |£| in
Proposition 3 is satisfied. Note that k® > p” here, which does not
satisfy the assumption of some of the results in Section 4. We see
from Fig. 6 that the attacker with h® = T = 1 obtains a higher ap-
plied utility 0;:‘ in the complete graph G until k=2 as stated in
Proposition 3, with k < 3.

It is interesting to note that the complexity of the graph G also
influences the effectiveness of having a longer horizon. Especially,
with more connected G, having a longer horizon may be even more
beneficial, i.e., resulting in an even higher difference of total ap-
plied utility, compared to the case with less connected G. For ex-
ample, in Fig. 6, the difference of ZU,‘:‘ in the complete graph is
more apparent than in the path graph. The reason is that in the
complete graph, since the attacker may attack some unnecessary
edges in a short h? case, e.g., attack all edges in G, which makes
the attacker have no energy in later time steps.

Fig. 7 shows Y22, U2 for several combinations of h* and hP
with slightly different parameters, where similar to Fig. 6, the at-
tacker obtains higher applied utility with h* = 2 and h® = 3, com-
pared to that of hA = 1. Similarly, the defender also obtains more
applied utility with a longer hP (recall that U} = —UP).

6.2. Non-uniform players’ game period TA and TP

In the situation where players have non-uniform game peri-
ods, we expect that players will get better utility over time with
a shorter game period, since they can use their energy more ef-
ficiently. However, from Figs. 8-10, we see that the effectiveness
of having a shorter game period depends on the underlying graph
structure as well. In Fig. 8, the attacker obtains more applied utility
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Fig. 8. Evolution of Y_U} for the complete graph with varying T# and fixed h* = 3.
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Fig. 9. Evolution of Y_UP for the path graph with varying T° and fixed h° = 3.
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Fig. 10. Evolution of Y U2 for the path graph with varying T* and fixed h* = 3.

in shorter game periods TA = 1 and TA = 2. On the other hand, in
Fig. 10 the attacker in the path graph G obtains very similar utili-
ties across different values of T and in Fig. 9 the defender with a
longer TP has slightly more applied utility over time.

For the simulation in Fig. 8, we consider the complete graph,
with low recharge rate p? for the attacker; specifically, we set

n=3,h=3,04=09, EA =2, and pP/BP > 3. Note that here, the
attacker cannot attack strongly without saving energy. From Fig. 8,
we see that in a low energy condition, having a long game pe-
riod TA = 3 results in a lower utility over time. This is in line with
Corollary 3 above, where having the maximum T4, ie., TA = hA,
does not yield any additional applied utility, since the attacker be-
comes wasteful.

On the other hand, in Figs. 9 and 10 for the path graph, we ob-
serve that having higher update frequencies, i.e., lower game peri-
ods, does not necessarily result in higher utilities for both players.
For the simulation considering varying T® whose Zlfl,? is shown
in Fig. 9, we also see the difference in the recovered edges for
the path graph in Figs. 11 and 12, where black dashed lines repre-
sent recovered edges, red dashed lines represent edges not recov-
ered from normal attacks, black solid lines represent unattacked
edges, and no lines represent edges attacked with strong attacks.
In the case with TP = 1, the defender recovers only one edge for



Y. Nugraha, A. Cetinkaya, T. Hayakawa et al.

000000000000 0000O0CO
LS R A
) 0000000000000 060900¢0
R T T T T T R T T S T

OO0 0060060666666 6OLBOHOO

o 2 4 & 8 10 12 14 6 1

Time

Fig. 11. Edges attacked and recovered with TP = 1.
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Fig. 12. Edges attacked and recovered with TP = 2.

most of the time, whereas in TP =2 the defender recovers two
edges at some k, resulting in a higher utility (as discussed in
Lemma 2). This is because in the case with TP =1, the defender
always saves its energy to use it later, causing the recovery to be
delayed. This yields a less connected graph g}f over time since the
defender tends to apply the recovery of fewer edges more consis-
tently (rather than all edges at more time steps).

7. Conclusion

We have formulated a two-player game in a cluster forming
of networks played over time. The players consider the impact of
their actions on future network topologies, and adjust their strate-
gies according to a rolling horizon approach. The players may have
different computation capabilities represented by different hori-
zon lengths and game periods. The performance of the players are
measured by calculating the applied utilities, where in general, the
player with a longer horizon length and a shorter game period per-
forms better over longer intervals. We have confirmed that this is
especially the case for more connected networks and when the at-
tack/defense energy is more limited.
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