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a b s t r a c t 

A two-player game-theoretic problem on resilient graphs is formulated. An attacker is capable to disable 

some of the edges of the network with the objective to divide the agents into clusters by emitting jam- 

ming signals while, in response, the defender recovers some of the edges by increasing the transmission 

power for the communication signals. We consider repeated games between the attacker and the de- 

fender where the optimal strategies for the two players are derived in a rolling horizon fashion by taking 

account of the sizes of the clusters. The players’ actions at each discrete-time step are constrained by 

their energy for transmissions of signals. We derive several theoretical results to characterize the prop- 

erties of the two-player game under some specific conditions of the agents’ communication network and 

the players’ energy parameters. In order to investigate more general cases, we provide some numerical 

evaluations to show the effects of the values of horizon lengths and game periods on the players’ perfor- 

mance. 
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. Introduction 

Networked systems have been used in various areas of critical 

nfrastructures including power grids and transportation systems. 

hile wireless communication among agents plays an important 

ole for the functionality of the network, it is also prone to cyber 

ttacks initiated by malicious adversaries [1,6,16] . Attacks on cyber- 

hysical systems can result in not only damages in equipments but 

lso serious accidents in worst cases, and hence are considered as 

 major threat to the society. 

From such perspectives, security issues in multiagent systems 

ave gained much attention. Jamming attacks on consensus prob- 

ems of multiagent systems have been studied in [2,18] . Noncoop- 

rative games between the attacker and another player protecting 

he network are widely used to analyze security problems, includ- 
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ng jamming attacks and injection attacks [7,15] . In the face of the 

alicious adversaries, agents with consensus protocols may not be 

ble to converge; instead, they are divided into clusters, i.e., groups 

f agents. Cluster forming in multiagent systems has been studied 

n, e.g., [14,19] , where the relations among certain agents may be 

ostile. 

Receding/rolling horizon control has been employed to deal 

ith multiagent systems with uncertainties and state constraints. 

t is used for achieving consensus of a linear multiagent system [9] . 

t is also studied in noncooperative security game settings in [21] , 

here horizon lengths affect the resilience of the system. Rolling 

orizon approach has also been followed to obtain better planning, 

.g., in an agent with obstacle avoidance constraints [17] and in a 

ultivehicle competitive scenarios for self-driving cars [20] . 

In this paper, we consider a security problem in a two-player 

ame setting between an attacker, who is motivated to disrupt the 

ommunication among agents by attacking communication links, 

nd a defender, who attempts to recover some of the attacked 

inks. This game is played repeatedly over discrete time where the 

layers recalculate and may change their strategies as time goes 

n, according to the rolling horizon approach. The players’ utilities 

re determined by how agents are divided into clusters. 

We formulate the problem based on [4,12] , which use graph 

onnectivity to characterize the game and players’ strategies. 
rved. 
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pecifically, we address how clusters among agents may form in 

his security game setting. In this paper, we approach clustering 

rom a viewpoint based on a game-theoretic formulation. This ap- 

roach can be related to the concept of network effect/externality 

8] , where the utility of an agent in a certain cluster depends on 

ow many other agents belong to that particular cluster. Such con- 

epts have been used to analyze grouping of agents on, e.g., social 

etworks and computer networks, as discussed in [5,10] . 

Moreover, in comparison to [4,12] , which discuss a single-step 

wo-player attack recovery game in networks, our contributions 

an be stated as follows: (i) we consider the game which con- 

ists of multiple attack-recovery actions, resulting in more com- 

licated strategies; (ii) we consider a rolling horizon approach for 

he players so that their strategies may be modified as they obtain 

ew knowledge of the system each time; and (iii) we consider the 

ifference in the capabilities of the players, represented by non- 

niform values of horizon parameters. 

Here we focus on evaluating the players’ performance given 

ifferent com putational resources represented by horizon lengths 

how long in the future the players can plan their strategies) and 

ame periods (how long the players apply the obtained strategies 

ithout updating). It is expected that the players with longer hori- 

on lengths and shorter game periods perform better over time. 

he related cases where the players have the same ability to com- 

ute their strategies in future time are discussed in [11,13] . 

The paper is organized as follows. In Section 2 , we describe the 

eneral problem formulation of the attack-recovery sequence. We 

hen specify the non-uniform horizon length approach for games 

layed over time in Section 3 and discuss some theoretical results 

n Section 4 . We then continue by discussing the formulations with 

on-uniform game periods in Section 5 . The simulation results and 

onclusion are provided in Sections 6 and 7, respectively. 

The notations used throughout this paper are fairly standard in 

egard to mathematical representations. We denote | · | as the car- 
inality of a set. The floor function is denoted by �·� . The sets of
ositive and nonnegative integers are denoted by N and N 0 , re- 

pectively. Furthermore, in regard to the representations associated 

ith players’ actions and parameters, we put superscripts A and D 

o denote the attacker and the defender, respectively, and we put 

and ′ to denote optimal strategies in some different aspects. On 

he other hand, subscripts of some notations indicate time indices. 

. Problem formulation 

We explore a multiagent system of n agents communicating to 

ach other in the face of jamming attacks. The network topology 

or the normal operation is given by an undirected and connected 

raph G = (V, E ) . The case where the network topology is given by

 directed graph can be similarly handled. The graph consists of 

he set V of vertices representing the agents and the set E ⊆ V × V
f edges representing the communication links. 

The attacker is capable to block the communication by jamming 

ome targeted edges, represented by the removal of edges in G. On 
he other hand, we suppose that there is a defender that has the 

apability to maintain the communication among the agents, e.g., 

y asking agents to send even stronger communication signals to 

vercome the jamming signals. These are represented by the action 

f rebuilding some of the attacked edges. 

From this occurence of attacks and recoveries, we characterize 

he attack-recovery process as a two-player game between the at- 

acker and the defender in terms of the communication among the 

gents of the network. In other words, we may say that the graphs 

haracterizing the networked system are resilient if the group of 

gents is able to recover from the damages caused by the attacker. 

owever, there may be cases where the resiliency of the graph is 

educed due to the stronger attack signals. In this paper, we con- 

m

2 
ider the case where the attacker has two types of jamming signals 

n terms of their strength, strong and normal . The defender is able 

o recover only the edges that are attacked with normal strength. 

n the following subsections, we first describe the order of attack 

nd recovery actions in one sequence and characterize some con- 

traints that we impose as well as the objective of the problem. 

.1. Attack-recovery sequence 

In our setting, the players make their attack/recovery actions 

t every discrete time k ∈ N 0 . Recall that the underlying, attack- 

ree topology of the multiagent system is represented by G. At 
ime k , the players decide to attack/recover certain edges in the 

wo stages, with the attacker acting first, followed by the defender. 

pecifically, at time k the attacker attacks G by deleting E A 
k 

⊆ E
ith normal jamming signals and E A k ⊆ E with strong jamming 

ignals with E A 
k 

∩ E A k = ∅ , whereas the defender recovers E D 
k 

⊆ E . 
ue to the attacks and then the recoveries at time k , the net-

ork changes from G to G A 
k 
:= (V, E \ (E A 

k 
∪ E A k )) and further to

 
D 
k 
:= (V, (E \ (E A 

k 
∪ E A k )) ∪ (E D 

k 
∩ E A 

k 
)) . 

In this paper, we formulate the game where the players attempt 

o choose the best strategies in terms of edges attacked/recovered 

o maximize their own utility functions. With l ∈ N , here the lth

ame is defined over the horizon of h A and h D steps for the at- 

acker and the defender, respectively, and played every T steps 

f game period from time (l − 1) T to (l − 1) T + max { h A , h D } − 1 .

ince the game period should be within the horizon, we assume 

hat 1 ≤ T ≤ min { h A , h D } . The players make decisions in a rolling

orizon fashion as explained more in Section 3 ; the optimal strate- 

ies obtained at (l − 1) T for the future time may change when the 

layers recalculate their strategies at the future time lT . Fig. 1 il- 

ustrates the discussed rolling horizon game over time; the filled 

ircles indicate the applied strategies and the empty circles indi- 

ate the strategies of the game that are discarded. 

When a player has a longer horizon length, it indicates that it 

as a better computational ability relative to its opponent, since 

he computational burden is directly related to the horizon length 

explained in Section 3 later). It is expected that the player with a 

onger horizon length can perform better in general. This topic on 

he relationship between the ability of players to calculate several 

trategies in the future and their performance is discussed, e.g., in 

hess, where better players search for a move more extensively and 

eeply [3] . 

.2. Energy constraints 

The actions of the attacker and the defender are affected by the 

onstraints on the energy availability, which is assumed in this pa- 

er to increase linearly in time; furthermore, the energy consumed 

y the players is proportional to the number of attacked/recovered 

dges. Here we suppose that the players initially possess certain 

mount of energy κA and κD for the attacker and the defender, 

espectively. Furthermore, the players’ energy supply rates are lim- 

ted by the constant values of ρA and ρD every discrete time step. 

or example, this models devices which are able to supply energy 

irelessly to obstruct/retain communication signals between the 

gents. 

Recall that the attacker has two types of jamming signals, 

trong and normal. Here, the strong attacks on E A k take β
A 

> 0 en- 

rgy per edge per unit time compared to the normal attacks on 

 
A 
k 
, which take βA > 0 where β

A 
> βA . The total energy used by 

he attacker is constrained as 

k ∑ 

 =0 

( β
A | E A m 

| + βA |E A m 
| ) ≤ κA + ρA k (1) 
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Fig. 1. Illustration of the games played over discrete time k with rolling horizon approach for the players, where the players have different horizon lengths h A and h D . 

Fig. 2. Energy constraint of the attacker considered in the formulation. The dashed 

line represents the allowable energy to spend. The solid circles representing the 

applied energy consumed by the player should be below the dashed line. 
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or any time k , where κA ≥ ρA > 0 . The energy constraint (1) im-

lies that the total energy spent by the attacker cannot exceed 

he available energy characterized by the initial energy κA and the 

upplied energy ρA k by time k . This energy constraint restricts and 

pper bounds the number of edges that the attacker can attack. 

ee also [2,18] and the references therein for other contraint-based 

ttack models. 

Fig. 2 illustrates the energy constraint of the attacker, where the 

ashed line with slope ρA represents the total energy supplied and 

he filled circles indicate the accumulated energy spent. A critical 

ase is when βA ≤ ρA since it is then possible for the attacker to 

ttack at least one edge for infinite time. 

The energy constraint of the defender, which is similar to (1) , is 

iven by 

k ∑ 

 =0 

βD |E D m 
∩ E A m 

| ≤ κD + ρD k (2) 

ith κD ≥ ρD > 0 , βD > 0 . Recall that the defender can recover 

nly the edges in E A 
k 

under normal jamming attacks. 

.3. Agents clustering 

By attacking, the attacker makes the graph disconnected and 

eparates the agents into clusters (i.e., sets of agents). We intro- 

uce a few notions related to grouping/clustering of agents. For a 

iven subgraph G ′ = (V, E ′ ) where E ′ ⊆ E , we say that the agents

re grouped into n (G ′ ) number of groups , if the sets of agents

 
′ 
1 , V 

′ 
2 , . . . , V 

′ 
n (G ′ ) ⊆ V satisfy ∪ 

n (G ′ ) 
a =1 

V ′ a = V and V ′ a ∩ V ′ 
b 

= ∅ if a 
 = b.

here is no edge connecting different groups, i.e., e i j / ∈ E ′ for i ∈ 

 
′ 
a , j ∈ V ′ 

b 
. 
3 
Here, we are interested in the case where the attacker is also 

oncerned about the number of agents in each group, as an ex- 

ension of [12] . Specifically, we follow the notion of network ef- 

ect/externality [8] , where the utility of an agent in a certain cluster 

epends on how many other agents belong to that particular clus- 

er. In the context of this game, the attacker wants to isolate agents 

o that fewer agents are in each group, while the defender wants 

s many agents as possible in the same group. We then represent 

he level of clustering in the graph G ′ by the function c(·) called 
gent-group distribution , which is given by 

(G ′ ) := 

n (G ′ ) ∑ 

a =1 

|V ′ a | 2 − |V| 2 . (3) 

ote that c(G ′ ) is always negative when G ′ is disconnected, 

hereas c(G ′ ) = 0 if G ′ remains connected. 

The attacker and the defender’s utility functions of the lth game 

 lth decision-making opportunity), l ∈ N , starting at time k = (l −
) T , take account of the agent-group distribution c(·) over time 

orizons h A , h D ≥ 1 from time (l − 1) T to (l − 1) T + max { h A , h D } −
 . Specifically, the utility functions at the lth game are defined by 

 
A 
l := 

(l−1) T + h A −1 ∑ 

k =(l−1) T 

−c(G D k ) , (4) 

 
D 
l := 

(l−1) T + h D −1 ∑ 

k =(l−1) T 

c(G D k ) . (5) 

With the rolling horizon approach, the players will be able to 

anage the usage of their energy better. The player with a longer 

orizon length is expected to use their energy more efficiently, and 

hus obtain a higher utility over time. 

. Game structure with non-uniform rolling horizon lengths 

We are interested in finding the subgame perfect equilibrium of 

his game. To find the equilibrium, the game is divided into some 

ubgames/decision-making points. The subgame perfect equilib- 

ium must be an equilibrium in every subgame. The optimal strat- 

gy of each player is obtained by using a backward induction ap- 

roach, i.e., by finding the equilibrium from the smallest subgames. 

he tie-break condition happens when the players’ strategies result 

n the same utility. In this case, we suppose that the players choose 

o save their energy by attacking/recovering less edges; otherwise, 

.e., they have enough energy to attack/recover all edges in every 

ubsequent steps, then they will attack/recover more edges, given 

he same resulting utility. 
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In this paper we consider the situation where the attacker and 

he defender have different horizon lengths denoted by h A and h D , 

espectively. The difference in the horizon lengths corresponds to 

he different ability of the players to solve the game. 

Due to the nature of the rolling horizon approach, the 

trategies obtained for the lth game, i.e., attacked and re- 

overed edges, are applied only from time (l − 1) T to lT − 1 

ith T ≤ min { h A , h D } . Note that T is set to be the same for

he players. The players’ strategies at the lth game are spec- 

fied as (( E A l, 1 , E A l, 1 
, E D 

l, 1 
) , . . . , ( E A l,h D , E A l,h D 

, E D 
l,h D 

) , ( E A l,h D +1 , E A l,h D +1 
) ,

 . . , ( E A l,h A , E A l,h A 
)) if h A > h D , and (( E A l, 1 , E A l, 1 

, E D 
l, 1 

) ,

 . . , ( E A l,h A , E A l,h A 
, E D 

l,h A 
) , E D 

l,h A +1 
, . . . , E D 

l,h D 
) if h A < h D , with

 

A 
l,α, E A 

l,α
, E D 

l,α
indicating the strategies at the αth step of the 

th game, α ∈ N . Note that here we show the strategies with two

ubscripts representing the game and the step indices along the 

ime axis. If h A > h D , only the attacker formulates its strategies 

fter h D th step. Similarly, if h A < h D , only the defender formu-

ates its strategies after h A th step. In the case of h A = h D , both

layers obtain their strategies until ( h A = h D )th step, denoted by 

( E A l, 1 , E A l, 1 
, E D 

l, 1 
) , . . . , ( E A l,h A , E A l,h A 

, E D 
l,h A 

)) . 

However, since the game is played in a rolling horizon fashion, 

nly (( E A l, 1 , E A l, 1 
, E D 

l, 1 
) , . . . , ( E A l,T , E A l,T 

, E D 
l,T 

)) is applied (recall that

 
A and h D are taken to be greater than or equal to T ). Here the

trategies applied can be written in single subscripts of time 

ndices as (( E A (l−1) T , E A (l−1) T 
, E D 

(l−1) T 
) , . . . , ( E A lT −1 , E A lT −1 

, E D 
lT −1 

)) =
( E A l, 1 , E A l, 1 

, E D 
l, 1 

) , . . . , ( E A l,T , E A l,T 
, E D 

l,T 
)) . We assume that the values of

 
A and h D are known to both players. Note that this game is not 

ecessarily zero-sum. 

In what follows, we provide an example of a small scale to de- 

ail how the optimal edges can be obtained in our game setting. 

o this end, suppose that h A = 3 and h D = 2 . The optimal strate-

ies (( E A ∗l, 1 , E A ∗l, 1 
, E D ∗

l, 1 
) , ( E A ∗l, 2 , E A ∗l, 2 

, E D ∗
l, 2 

) , ( E A ∗l, 3 , E A ∗l, 3 
)) of the players at

he game with index l are obtained backward in time (from Step 

= 3 to Step α = 1 ) and is given by: 

• Step 3: 

( E A ∗l, 3 (E D l, 2 ) , E 
A ∗
l, 3 (E 

D 
l, 2 )) ∈ arg max 

( E A l, 3 , E A l, 3 ) 
U 

A 
l, 3 (E 

D ∗
l, 3 ) (6) 

where E D ∗l, 3 ( E 
A 

l, 3 , E A l, 3 ) ∈ arg max 
E D 
l, 3 

−U 
A 
l, 3 , (7) 

• Step 2: 

E D ∗l, 2 ( E 
A 

l, 2 , E A l, 2 ) ∈ arg max 
E D 
l, 2 

U 
D 
l, 2 , (8) 

( E A ∗l, 2 (E D l, 1 ) , E 
A ∗
l, 2 (E 

D 
l, 1 )) ∈ arg max 

( E A l, 2 , E A l, 2 ) 
U 

A 
l, 2 (E 

D ∗
l, 2 ) , (9) 

• Step 1: 

E D ∗l, 1 ( E 
A 

l, 1 , E A l, 1 ) ∈ arg max 
E D 
l, 1 

U 
D 
l ( E 

A ′ 
l, 2 , E A 

′ 
l, 2 ) (10) 

where ( E A ′ l, 2 (E D l, 1 ) , E 
A ′ 
l, 2 (E 

D 
l, 1 )) ∈ arg max 

( E A l, 2 , E A l, 2 ) 
−U 

D 
l, 2 (E 

D ∗
l, 2 ) , (11) 

( E A ∗l, 1 , E A ∗l, 1 ) ∈ arg max 
( E A l, 1 , E A l, 1 ) 

U 
A 
l (E 

D ∗
l, 1 ) , (12) 
4 
here U 
A 
l,α

:= 

∑ (l−1) T + h A −1 
k =(l−1) T + α−1 

−c(G D 
k 
) (resp., U 

D 
l,α

:= 

 (l−1) T + h D −1 
k =(l−1) T + α−1 

c(G D 
k 
) ) is defined as parts of U 

A 
l 

(resp., U 
D 
l 
) cal- 

ulated from the αth step to the h A th (resp., h D th) step of the lth

ame. 

Once again, these optimization problems are solved backward 

rom the max { h A , h D } = 3 rd step of the lth game. Note that to find

 E A ∗l, 1 , E A ∗l, 1 
) in (12) , one needs to obtain (E D ∗

l, 1 
( E A l, 1 , E A l, 1 

)) in (10) be-

orehand. Likewise, to find (E D ∗
l, 1 

( E A l, 1 , E A l, 1 
)) in (10) , one needs to ob-

ain ( E A ∗l, 2 (E D l, 1 
) , E A ∗

l, 2 
(E D 

l, 1 
)) in (9) , and so on. Also, note that while

 
D ∗
l, 3 

is not part of the defender’s strategy, it is still needed for 

he attacker to obtain ( E A ∗l, 3 , E A ∗l, 3 
) in (6) . Therefore, outside the de-

ender’s ability characterized by its horizon length h D , here we 

uppose that the attacker utilizes the strategy that emulates the 

efender’s best response with a longer horizon, i.e., from part of 

tility functions −U 
A 
l 

(which is not equal to U 
D 
l 

due to the horizon 

nadequacy). 

In the steps with index α ≤ h D , the defender assumes that the 

ttacker’s optimal edges, e.g., in (11) , are based on the defender’s 

tility function, which consists of h D < h A steps only. Also, in this 

ame the defender’s optimal strategies, e.g., in (10) , are based on 

he defender’s perception of the attacker’s optimal strategies, i.e., 

 E A ′ l, 2 , E A ′ l, 2 
) , since the defender is not able to foresee the attacker’s

trategy beyond h D . For the attacker, since it is able to compute the 

ptimal strategy for the defender as well (due to longer h A ), the 

ttacker’s strategies in the steps with index α ≤ h D , e.g., (9) and 

12) , are based on the defender’s optimal edges E D ∗
l,α

. 

In this setting, since the defender’s strategy depends on the at- 

acker’s strategy as well, i.e., the defender can only recover edges 

ttacked normally, it is possible that the defender cannot apply its 

trategy when the attacker changes its own strategy. In this case, 

he defender will apply the strategy only on the edges that can be 

ecovered. 

The decision-making process of the players in this example is 

llustrated in the game tree in Fig. 3 , where the blue line indicates

he equilibrium path . i.e., the strategy taken by the player follow- 

ng backward induction, if h A = h D = 3 . The green line indicates the

quilibrium path if h A = h D = 2 and the magenta line indicates the 

quilibrium path if h A = 3 , h D = 2 . In step 2, the attacker assumes

hat E D ∗
l, 2 

comes from utility over h A = 3 . The case where h A < h D 

an be similarly described. These optimization problems are solved 

y the players at every game period T . 

It is clear that with a longer T , the players play this game less

ften and apply their obtained strategies for more time steps. Note 

hat with T = min { h A , h D } , the player with a shorter horizon length

oes not change its strategies at all, thus effectively removing the 

olling horizon aspect of the player. In this game, we will find the 

ptimal strategies of the players by computing all possible combi- 

ations, since the choices of edges are finite. 

From the optimization problems in (7) –(12) above, the player 

ith a shorter horizon length h short ∈ { h A , h D } examines at most

 
|E| 2 |E| h short number of combinations for utility evaluations, since 

he player has to foresee the opponent’s response as well. Note 

hat the attacker has three possible actions on an edge: no at- 

ack, attack with normal signals, and attack with strong sig- 

als. On the other hand, the player with a longer horizon length 

 long ∈ { h A , h D } examines at most (3 |E| 2 |E| )(h long − h short ) + (3 |E| +
 
|E| 2 |E| ) h long combinations. 

In this section, we have explained the problem setting where 

t is assumed that the players may not have the same computa- 

ional ability represented by the different values of horizon lengths 

 
A and h D . Without the assumption of the horizon length discrep- 

ncy, the most related results are given in [13] where the play- 
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Fig. 3. Extensive-form game for h A = 3 and h D = 2 . The vertical dashed lines denote the different steps of the game, whereas the dashed red line denotes boundary (min{2,3}) 

of different players’ horizon lengths. The optimization beyond this boundary is done by only the player with a longer horizon (in this case the attacker). 
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rs have the same ability to compute their strategies, represented 

y h A = h D = h . There, we do not discuss the effect of the hori-

ons on the players’ performance; we instead focus more on the 

ecessary and sufficient condition of agents clustering at infinite 

ime, given the consensus dynamics. Other related papers include 

4] which considers the one-shot attack-recovery games. This for- 

ulation is extended in [12] where the repeated attack-recovery 

ames without rolling horizon approach in continuous time is con- 

idered. Specifically, the timings for launching attack/defense ac- 

ions are also part of the decision variables. The problem setting 

here a game in continuous time is divided into several steps 

ithout rolling horizon approach is also discussed in [11] . 

. Players’ performance with non-uniform horizon lengths 

The utility functions defined in (4) and (5) are considered 

or deriving the best strategies for the players. As explained in 

ection 2.1 above, the last several actions for the players may be 

iscarded from the obtained strategies and replaced by a new set 

f actions calculated in the next game. As a consequence, the re- 

ulting values of the agent-group distribution at time k is given by 

(G D ∗
k 

) , with G D ∗
k 

= (V, ((E \ ( E A ∗k ∪ E A ∗
k 

)) ∪ (E D ∗
k 

∩ E A ∗
k 

)) . We now

haracterize how the horizon lengths h A and h D affect the applied 

tilities ˆ U 
A 
k 
:= −c(G D ∗

k 
) and ˆ U 

D 
k 
:= c(G D ∗

k 
) . These are elements of the

tility functions U 
A 
l 

and U 
D 
l 

corresponding to the αth step, with 

= k mod T + 1 , of the game with index l = � k/T � + 1 , where

he obtained strategies ( E A ∗(l−1) T + α−1 , E A ∗(l−1) T + α−1 
, E D ∗

(l−1) T + α−1 
) = 

 E A ∗l,α, E A ∗
l,α

, E D ∗
l,α

) are applied. 

We first state a result implying that when the attacker has large 

nough energy supply characterized by ρA , the optimal strategies 

f both players do not depend on the horizon lengths. Specifically, 

f ρA / β
A ≥ |E| , then the attacker will attack all edges of the under- 

ying graph G at any time k , making the optimal strategies inde- 

endent of h A and h D . 

The results afterwards illustrate the performance of the players 

or different h A and h D in separate subsections assuming that 

A / β
A 

< |E| . (13) 

.1. Attacker’s strategies with varying h A 

To show the change of the attacker’s strategies, we consider cer- 

ain scenarios where the defender’s strategies are less reliant on 
5 
he attacker’s action. Specifically, by assuming certain values of ρD 

nd βD , it is possible that the defender’s optimal strategies are al- 

ays to recover all E A 
k 
. 

In this subsection, we further assume that 

D /βD > |E| , (14) 

mplying that ρD is large enough so that there is always recovery 

rom normally attacked edges at any step of the game. Further- 

ore, in Propositions 1 and 2 below, we suppose for simplicity of 

btaining theoretical assertions that 

A = ρA , (15) 

.e., the attacker has the same amount of supplied energy at any k , 

ncluding at k = 0 . 

We first state a lemma describing a property of a class of 

raphs under attacks, where it is better for the attacker to at- 

ack as soon as it has the energy, rather than saving it to attack 

ore edges later. For the statement of the following results, let 

 (ξ ) := min |E ′ | = ξ c((V, E \ E ′ )) denote the smallest value of agent- 

roup distribution given the number of strongly attacked edges 

(< n − 1) . 

emma 1. Consider the case where the network topology G of the 

gents is given as the star graph and the attacker attacks ξ number 

f edges with strong signals. Suppose (13) –(14) hold. Then, for time 

nterval ˆ k , ˆ k c (ξ ) ≤ c ( ̂ k ξ ) is always satisfied for any ˆ k ≤ (n − 1) /ξ . 

roof. In the star graph G, ξ number of strongly attacked edges 

esults in ξ number of isolated agents and a group of (n − ξ ) 

umber of agents forming a star graph. Thus, we have c (ξ ) = 

n − ξ ) 2 + ξ − n 2 and hence c ( ̂ k ξ ) = (n − ˆ k ξ ) 2 + ̂
 k ξ − n 2 so long

s ˆ k ξ ≤ n − 1 . It then follows that the sum of agent-group distri- 

ution over ˆ k interval becomes ˆ k c (ξ ) = ̂
 k (n − ξ ) 2 + ̂

 k ξ − ˆ k n 2 . It is 

traightforward to show that ˆ k (n − ξ ) 2 − ˆ k n 2 ≤ (n − ˆ k ξ ) 2 − n 2 for 

ny ˆ k ≤ (n − 1) /ξ . �

In Lemma 1 , we state that in the star graph attacking a few

dges every time results in a more negative agent-group distribu- 

ion compared to saving energy and only attacking later. For ex- 

mple, attacking one edge for k = 1 , 2 results in a more negative

(G D 
1 
) + c(G D 

2 
) over ˆ k = 2 interval than attacking two edges only for

ne time k = 2 ; (n − 1) 2 + (n − 1) 2 ≤ n 2 + (n − 2) 2 from (3) is al-

ays satisfied (note that the value of agent-group distribution is 

ero if there is no attack). 
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roposition 1. Consider the case where the network topology G of 

he agents is given by any tree graph. Suppose that (13) –(15) hold. 

hen, the value of 
∑ k 

k =0 
ˆ U 
A 
k 

does not depend on h A or T , for any time

 . 

roof. Since after the attack of | E A k | edges there is still a group of
gents consisting of at most (n − | E A k | ) agents forming a star graph,

ere the star graph gives the least value of agent-group distribu- 

ion among the graphs with n nodes with edge connectivity 1 (tree 

raphs). Therefore, proving for the star graph is sufficient to show 

he result for the tree graphs. 

Since the immediate attack gives the more negative agent- 

roup distribution from Lemma 1 , it then follows that if κA = ρA , 

t will also give the maximum 

∑ k 
k =0 

ˆ U 
A 
k 

over any k . Note that, if 
A > ρA , i.e., (15) is not satisfied, then the attacker may have dif- 

erent ability especially at k = 0 , which makes the immediate at- 

ack more wasteful and no longer optimal in a shorter horizon 

ituation. �

We continue by stating a result on the complete graph G, where 

n a low energy situation characterized by small ρA / β
A 
, the at- 

acker with longer h A always has better utility. 

roposition 2. Consider the complete graph G. If (13) –(15) 

nd ρA / β
A 

< (n − 2) /T are satisfied, then 0 = 

∑ k 
k =0 

ˆ U 
A 
k 
(h A = T ) ≤

 k 
k =0 

ˆ U 
A 
k 
(h A > T ) for any k . 

roof. Note that the complete graph has the edge connectivity n −
 . Since it is assumed that the attacker always spends all of its 

nergy at the last step of the game, there is at most β
A 

amount 

f energy at the beginning of each game from the leftover of the 

revious games. With ρA T < (n − 2) β
A 
, if h A = T , then the attacker

ill spend all of its energy at the last step of the game without 

isconnecting any agent, implying that U 
A 
l 

= 0 for any l and hence 

ˆ  A 
k 

= 0 for any k . �

In Proposition 3 below, we state that the attacker with a shorter 

 
A in any G may perform better if we measure the applied utility 

ver a shorter interval. 

roposition 3. Suppose that (13) and (14) are satisfied. In any G, it 
ollows that 

∑ k 
k =0 

ˆ U 
A 
k 
(h A = 1) ≥ ∑ k 

k =0 
ˆ U 
A 
k 
(h A > 1) for any time k < 

 κA / (|E| βA − ρA ) � . 
roof. In the case of h A = 1 , at time k = 0 the attacker will spend

ll its energy, which is dictated by κA . In this case, if κA > |E| βA 
,

hen the attacker will attack all edges to maximize U 
A 
l 
. Considering 

he recharge rate ρA that changes the attacker’s available energy 

n each time k , the attacker with h A = 1 will attack all edges with

trong signals as long as k satisfies k < 
κA + kρA 

|E| βA . It then follows that,

ince attacking all edges always gives maximum applied utility in 

 single time step, with h A = 1 the attacker will obtain maximum 

ossible applied utility ˆ U 
A 
k 

for time k < 
κA + kρA 

|E| βA . �

.2. Defender’s strategies with varying h D 

In this section, we discuss the characterization of ˆ U 
D 
k 

of the de- 

ender given different values of h D . We first state a lemma de- 

cribing a property of an attacked empty graph (V, ∅ ) , where it

s better for the defender to save its energy and use it later to 

ecover more edges. For the statement of the following results, 

et c ′ (θ ) := max |E ′ | = θ c((V, E ′ )) denote the largest value of agent- 
roup distribution given the number of recovered edges θ . As a 
6

onsequence, 
∑ ̂ k 

k =0 c 
′ (θ ) = ̂

 k c ′ (θ ) indicates the energy consump- 

ion when the number of recovered edges is θ for ˆ k steps. 

emma 2. Assume that the attacker attacks all edges E with normal 

ignals at all time. Let θ be the number of recovered edges. If (13) is 

atisfied, then 

ˆ 
 c ′ (θ ) ≤ ( ̂ k − 1) c ′ (0) + c ′ ( ̂ k θ ) (16) 

or any time interval ˆ k ≤ (n − 1) /θ for any θ = 1 , . . . , n − 1 . 

roof. We begin by discussing the right-hand side of (16) . Recall 

rom (3) that c ′ (0) = c((V, ∅ )) = n − n 2 . Note that, in the last time

tep of ˆ k ≤ (n − 1) /θ interval, the defender cannot recover more 

han (n − 1) edges given no previous recovery for ˆ k − 1 interval. 

hus, at the end of the interval, (3) becomes c ′ (kθ ) = ( ̂ k θ + 1) 2 +
n − ˆ k θ − 1) − n 2 . 

On the other hand, if the defender recovers θ number of edges, 

hen we have c ′ (θ ) = (θ + 1) 2 + (n − θ − 1) − n 2 . It then fol-

ows that ˆ k c ′ (θ ) = ̂
 k [(θ + 1) 2 + (n − θ − 1) − n 2 ] ≤ ( ̂ k − 1) c ′ (0) +

 
′ ( ̂ k θ ) = ( ̂ k − 1) n + ( ̂ k θ + 1) 2 + (n − ˆ k θ − 1) − ˆ k n 2 for any time in-

erval ˆ k ≤ (n − 1) /θ . �

From (5) , we note that the defender prefers strategies that re- 

ult in larger value of c(G D 
k 
) over time. Thus, by Lemma 2 , we see

hat recovering later is better for the defender, which is different 

rom Lemma 1 for the attacker where attacking immediately is bet- 

er. 

We now continue by assuming certain values of the attacker’s 

nergy parameters so that its strategies do not change regardless 

f the defender’s response. Specifically, we now assume that 

A = ρA = βA |E| , β
A 
/βA > h A |E| (17) 

re satisfied, i.e., attacking with strong signals takes much en- 

rgy so that it is not affordable for the attacker to take such ac- 

ions at any time. Note that with ρA = βA |E| , the attacker will be 

ble to attack all edges normally at all time; furthermore, with 
A 
/βA > h A |E| the attacker will never have enough energy to at- 

ack any edge with strong signals at any step of the game. There- 

ore, any attacked edge at any time can be recovered. 

In Proposition 4 , similar to Proposition 3 above, we now state 

hat the defender with a shorter h D may perform better if we mea- 

ure the applied utility over a shorter interval. Note that this result 

oes not depend on the topology of the underlying graph G, simi- 

ar to the one in Proposition 3 above. 

roposition 4. Suppose that ρD /βD < n − 1 and (17) are satis- 

ed. Then 
∑ k 

k =0 U 
D 
l 
(h D = 1) ≥ ∑ k 

k =0 U 
D 
l 
(h D > 1) is satisfied, with k <

 
κD 

(n −1) βD −ρD � . 

roof. Since β
A 
/βA is large enough to prevent attacking with 

trong signals, all attacks in any k are done with normal jamming 

ignals. Since ρA /βA = |E| , the attacker is able to attack all edges 
at all k , which is optimal. 

Similar to the proof in Proposition 3 above, since the de- 

ender recovers all of the attacked edges with h D = 1 , at k = 0

t will obtain maximum applied utility. The assumption ρD /βD < 

 − 1 means that the defender cannot recover more than (n − 1) 

umber of edges at every time k , which results in maximum 

(G D 
k 
) in (3) . The defender then will recover all edges until time 

 
κD 

(n −1) βD −ρD � . �

While we do not obtain the general condition that ensures a 

igher utility for longer h A (resp., longer h D ), in Section 6 we will

how in a numerical simulation that with longer horizons the at- 

acker (resp., the defender) generally obtains more applied utility 

ver longer time. 
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Fig. 4. Sequence of games with decision-making indices l A and l D : the attacker’s 

horizon (red) and the defender’s horizon (green) with non-uniform game periods. 

The horizon lengths are h A = 3 and h D = 2 , whereas the game periods are T A = 1 

and T D = 2 . 
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. Game structure and players’ performance with non-uniform 

ame periods 

.1. Game structure with non-uniform game periods 

In this section, we extend the problem formulation by gener- 

lizing the game period T into T A and T D for the attacker and the

efender, respectively. These periods T A and T D are known by both 

layers for simplicity of the analysis. To ensure that both players 

re able to obtain their own strategies at any k , we set T A ≤ h A and

 
D ≤ h D . The game with non-uniform game periods is illustrated 

n Fig. 4 . Each of the yellow rectangle indicates a game consist- 

ng of the set of decision-making processes , which follows a certain 

attern. A game is played, i.e., both players simultaneously update 

heir strategies, every lowest common multiple of T A and T D de- 

oted as lcm (T A , T D ) ; in Fig. 4 , the game is played every 2 time

teps. With this formulation, it is expected that the players have 

etter performance with shorter T A and T D since they can adapt 

o the changes faster. 

From Fig. 4 , we see that the players may not formulate their 

trategies at the same time. For example, at time k = 1 , only the

ttacker updates its strategies, whereas the defender does not due 

o the longer T D . Since T A and T D are known by both players, at

 = 1 the attacker decides its strategy considering the defender’s 

trategy that is obtained before at k = 0 . Furthermore, since h A = 3

nd E D 1 , 2 has been determined, here the attacker at k = 1 with the

bility to compute for three time steps ahead predicts and hence 

lready covers the defender’s second decision-making process. This 

ttacker’s prediction of the defender’s next actions is represented 

y the green rectangle with dashed lines in Fig. 4 . 

Since it is clear that the non-uniform game periods make the 

layers decide their strategies at different times, we specify dif- 

erent decision-making indices l A and l D which occur at times 

l A − 1) T A and (l D − 1) T D for the attacker and the defender, re- 

pectively. As a result, the attacker (resp., the defender) does not 

pdate its strategy if k ( mod T A ) 
 = 0 (resp., k ( mod T D ) 
 = 0 ). The

tility functions of the l A th and l D th decision-making processes 
7

onsisting of αA and αD steps, respectively, are given by 

 
A 
l A 
:= 

(l A −1) T A + h A −1 ∑ 

k =(l A −1) T A 

−c(G D k ) = 

h A ∑ 

αA =1 

−c(G D 
l A ,αA ) , (18) 

 
D 
l D := 

(l D −1) T D + h D −1 ∑ 

k =(l D −1) T D 

c(G D k ) = 

h D ∑ 

αD =1 

c(G D l D ,αD ) , (19) 

imilar to (4) and (5) above. Note that different values of these 

ndices for the players may refer to the same time step; e.g., in 

ig. 4 , both l A = 2 , αA = 1 and l D = 1 , αD = 2 correspond to k = 1 . 

The optimal strategy of the attacker at time k = 1 correspond- 

ng to l A = 2 , i.e., (( E A ∗2 , 1 , E A ∗2 , 1 
) , ( E A ∗2 , 2 , E A ∗2 , 2 

) , ( E A ∗2 , 3 , E A ∗2 , 3 
)) in the case

hown in Fig. 4 (noting that k ( mod T A ) = 0 and k ( mod T D ) 
 = 0

or k = 1 ), is obtained backward in time and are given by: 

• Step 3 ( k = 3 , l D = 2 ): 

( E A ∗2 , 3 (E D 2 , 2 ) , E A ∗2 , 3 (E D 2 , 2 )) ∈ arg max 
( E A 2 , 3 , E A 2 , 3 ) 

U 
A 
2 , 3 (E D ′ 2 , 2 ) (20) 

where E D ′ 2 , 2 ( E 
A 

2 , 3 , E A 2 , 3 ) ∈ arg max 
E D 
2 , 2 

−U 
A 
2 , 3 , 

• Step 2 ( k = 2 , l D = 2 ): 

( E A ∗2 , 2 (E D 2 , 1 ) , E A ∗2 , 2 (E D 2 , 1 )) ∈ arg max 
( E A 2 , 2 , E A 2 , 2 ) 

U 
A 
2 , 2 (E D ′ 2 , 1 ) (21) 

where E D ′ 2 , 1 ( E 
A 

2 , 2 , E A 2 , 2 ) ∈ arg max 
E D 
2 , 1 

−U 
A 
2 , 2 ( E 

A ∗
2 , 3 , E A ∗2 , 3 ) , 

• Step 1 ( k = 1 , l D = 1 ): 

( E A ∗2 , 1 , E A ∗2 , 1 ) ∈ arg max 
( E A 2 , 1 , E A 2 , 1 ) 

U 
A 
2 (E D 1 ) . (22) 

Since the attacker cannot compute more than h A = 3 time steps 

head, in (20) and (21) above the attacker will use its own utility 

unction U 
A 
l A 

to estimate the defender’s optimal edges denoted by 

 
D ′ 
2 ,α , i.e., at l 

D = 2 . Since 1 ( mod T D ) 
 = 0 , the defender does not

ake a new decision and thus will apply the strategy obtained in 

he previous time instead. Therefore, it is possible for the player 

ith shorter game period (in this case, the attacker) to benefit by 

hanging its strategies; for example, in the case explained above, 

he attacker may benefit by changing E A 1 to avoid the recovery by 

he defender E D 
1 
, which has been set and cannot be changed. 

The optimization problems explained above vary slightly at 

ach time due to different T A and T D . For example, the optimiza- 

ion problems (20) –(22) are solved at times k = i ( lcm (T A , T D )) + 1 ,

 ∈ N 0 . 

.2. Attacker’s strategies with varying T A 

In this section, we also explore the performance of the attacker 

epresented by ˆ U 
A 
k 

for the non-uniform game periods, similar to 

he one in Section 4 above. We first state that under some condi- 

ion, the values of T A and T D do not affect the optimal strategies 

f the players. 

Specifically, we notice that if ρA / β
A ≥ |E| , the attacker attacks 

ll of the edges of G at any time k , making the optimal strategies, 

nd therefore the applied utilities ˆ U 
A 
k 

and ˆ U 
D 
k 
, independent of the 

alues of T A and T D . 

We continue by discussing the strategies of the players given 

hat ρA / β
A 

< |E| , i.e., (13) , is satisfied. In Corollaries 1 –3 and
roposition 5 below, we also suppose that (14) and (15) are sat- 

sfied, for the same reason as in Section 4 above. The result in 
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orollary 1 below for the tree graph G is also similar to the one 

n Section 4 , since the optimal strategies for both players do not 

ely on T A . 

orollary 1. Consider the tree graph G. If (13) –(15) are satisfied, then 
 k 
k =0 

ˆ U 
A 
k 

does not depend on h A or T A , for any time k . 

roof. The proof is similar to the proof of Proposition 1 . �

We then state the attacker’s optimal strategies for T A = 1 under 

ertain situations for the case of the complete graph G, where the 

ttacker with low recharge rate ρA will not be able to attack any 

dge at earlier times. 

roposition 5. Consider the complete graph G. If (13) –(15) , ρA / β
A 

< 

 − 1 , and T A = 1 hold, then the attacker does not attack any edge

or k < � (h A −1)((n −1) −ρA / β
A 
) ρA 

β
A � . 

roof. Since κA = ρA < (n − 1) β
A 
, the attacker keeps spending all 

f its energy and hence it cannot disconnect the graph by attack- 

ng with strong signals at any k . This implies that in the complete

raph G the attacker will not attack unless it has enough energy 

o attack n − 1 edges at later steps of the decision-making pro- 

ess. Furthermore, to implement the attack strategies, the attacker 

eeds to have enough energy to attack at least (n − 1) h A number 

f edges (recall that given the same utility, the attacker is assumed 

o attack less edges at the earlier steps). 

We are then looking for the condition that prevents the at- 

acker from attacking at the earliest step (since T A = 1 , the only

pplied strategies are the ones in the first step). With the abil- 

ty to attack � ρA / β
A � number of edges every k , the attacker will

ave (h A − 1) ρA / β
A 

more energy at the end of each game, given 

o previous attacks. It follows that there is no attack before time 

 ((h A − 1)(n − 1) − (h A − 1) ρA / β
A 
) / (ρA / β

A 
) � . �

From Proposition 5 , we are able to characterize the at- 

acker’s performance measured by 
∑ 

ˆ U 
A 
k 

for different T A values in 

orollary 2 below. 

orollary 2. Consider the complete graph G. If (13) –(15) and 

A / β
A 

< n − 1 hold, then the attacker’s applied utilities satisfy 
 k 
k =0 

ˆ U 
A 
k 
(T A = 1) < 

∑ k 
k =0 

ˆ U 
A 
k 
(T A > 1) , with k < � (h A − 1)((n − 1) −

A / β
A 
)( β

A 
/ρA ) � . 

roof. The result is a direct consequence of Proposition 5 . �

From Proposition 2 , we are also able to state that having a 

horter T A may help in the situation of low energy characterized 

y low ρA / β
A 
. 

orollary 3. Consider the complete graph G. If (13) –(15) and 

A / β
A 

< (n − 2) /h A are satisfied, then 
∑ k 

k =0 
ˆ U 
A 
k 
(T A < h A ) ≥

 k 
k =0 

ˆ U 
A 
k 
(T A = h A ) for any k . 

roof. The result is a direct consequence of Proposition 2 . �

.3. Defender’s strategies with varying T D 

In this section, we discuss the optimal strategies of the de- 

ender for different T D values. In Proposition 6 and Corollary 4 be- 

ow, we suppose that, again for simplicity, (17) and κD = ρD are 

atisfied. 

roposition 6. Suppose that (17) and κD = ρD are satisfied. 

he defender with T D = 1 does not make any recovery for k <

 
(h D −1)(n −1 −ρD /βD ) βD 

ρD � . 
8 
roof. Since ρA /βA = |E| and βA 
/βA > h A |E| are satisfied by (17) , 

he attacker cannot strongly attack any edge at any k and instead 

ts optimal strategy is to attack E with normal jamming signals so 

hat G A 
k 
is an empty graph. 

In this case, it follows from Lemma 2 that the defender will not 

ecover any edge at the first step. Since by (3) the defender does 

ot receive any additional utility by recovering more than (n − 1) 

dges, it then follows that to obtain the maximum utility of (19) in 

 single decision-making process, the defender has to recover (n −
) h D number of edges in total ( (n − 1) h D number of edges except 

or the T D (= 1) step(s)). 

We continue by looking for the condition that prevents the de- 

ender from recovering at the first step. With the ability to recover 

 ρD /βD � number of edges every k , the defender projects that it 

ill have (h D − 1) ρD /βD more energy at the end of each decision- 

aking process, given no previous recoveries. It then follows that 

he defender does not make any recovery before � ((h D − 1)(n −
) − (h D − 1) ρD /βD ) / (ρD /βD ) � . �

From Proposition 6 , we are able to characterize the defender’s 

erformance in Corollary 4 below. 

orollary 4. Suppose that (17) and κD = ρD are satisfied. Then 

he defender’s observed utilities satisfy 
∑ k 

k =0 
ˆ U 
D 
k 
(T D = 1) < 

 k 
k =0 

ˆ U 
D 
k 
(T D > 1) for k < � (h D −1)(n −1 −ρD /βD ) βD 

ρD � . 
roof. The result is a direct consequence of Proposition 6 . �

These theoretical results on the case with varying T A and T D 

re specific to some values of parameters and class of graphs. We 

ill see the performance of the players on more general graphs 

nd parameters in Section 6 below. 

. Numerical examples 

In this section, we provide some numerical examples to illus- 

rate the difference of players’ performance for the cases with non- 

niform horizon lengths and game periods. 

.1. Non-uniform players’ horizon lengths h A and h D 

Here we discuss the players’ strategies when they have non- 

niform horizon lengths. It is expected that players will get bet- 

er utility with longer horizon lengths, especially in the long term. 

rom Figs. 5 and 6 plotting 
∑ 

ˆ U 
A 
k 

and 
∑ 

ˆ U 
D 
k 

over time with three 

ifferent values of h A and h D , we see that it is generally the case

n this simulation. In Fig. 5 for varying h D , the parameters used 

re n = 3 , ρA /βA = 3 . 1 , β
A 
/βA = 10 , and ρD /βD = 1 . 5 . In this fig-

re, we see that both in the path graph and the complete graph 

, the defender with h D = 2 and h D = 3 generally obtains more 
 

ˆ U 
D 
k 

than the one with h D = 1 . The difference between h D = 2
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Fig. 6. Evolution of 
∑ 

ˆ U A 
k 
with h D = 1 for the path graph (solid lines) and the com- 

plete graph (dashed lines). 

Fig. 7. 
∑ 20 

k =0 
ˆ U A 
k 

for different values of h A and h D for the complete graph. 
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Fig. 8. Evolution of 
∑ 

ˆ U A 
k 

for the complete graph with varying T A and fixed h A = 3 . 

Fig. 9. Evolution of 
∑ 

ˆ U D 
k 

for the path graph with varying T D and fixed h D = 3 . 

Fig. 10. Evolution of 
∑ 

ˆ U A 
k 

for the path graph with varying T A and fixed h A = 3 . 
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I  
nd h D = 3 is not very significant in this simulation; it may be

ore notable in the case of more complex systems with more 

gents. 

However, if we consider the performance of the players over a 

ertain interval, it is possible that with a shorter horizon length 

he player can obtain more applied utility. We illustrate this phe- 

omenon in the case of the attacker’s applied utilities ˆ U 
A 
k 

over 

ime in Fig. 6 . We now use parameters κA = 10 . 5 , β
A = 2 , ρA =

 . 5 , h D = 3 , and ρD /βD = 5 , so that the condition ρD /βD > |E| in
roposition 3 is satisfied. Note that κA > ρA here, which does not 

atisfy the assumption of some of the results in Section 4 . We see

rom Fig. 6 that the attacker with h A = T = 1 obtains a higher ap-

lied utility ˆ U 
A 
k 

in the complete graph G until k = 2 as stated in 

roposition 3 , with k < 3 . 

It is interesting to note that the complexity of the graph G also 

nfluences the effectiveness of having a longer horizon. Especially, 

ith more connected G, having a longer horizon may be even more 

eneficial, i.e., resulting in an even higher difference of total ap- 

lied utility, compared to the case with less connected G. For ex- 
mple, in Fig. 6 , the difference of 

∑ 

ˆ U 
A 
k 

in the complete graph is 

ore apparent than in the path graph. The reason is that in the 

omplete graph, since the attacker may attack some unnecessary 

dges in a short h A case, e.g., attack all edges in G, which makes

he attacker have no energy in later time steps. 

Fig. 7 shows 
∑ 20 

k =0 
ˆ U 
A 
k 

for several combinations of h A and h D 

ith slightly different parameters, where similar to Fig. 6 , the at- 

acker obtains higher applied utility with h A = 2 and h A = 3 , com-

ared to that of h A = 1 . Similarly, the defender also obtains more

pplied utility with a longer h D (recall that ˆ U 
A 
k 

= − ˆ U 
D 
k 
). 

.2. Non-uniform players’ game period T A and T D 

In the situation where players have non-uniform game peri- 

ds, we expect that players will get better utility over time with 

 shorter game period, since they can use their energy more ef- 

ciently. However, from Figs. 8–10 , we see that the effectiveness 

f having a shorter game period depends on the underlying graph 

tructure as well. In Fig. 8 , the attacker obtains more applied utility 
9 
n shorter game periods T A = 1 and T A = 2 . On the other hand, in

ig. 10 the attacker in the path graph G obtains very similar utili- 

ies across different values of T A and in Fig. 9 the defender with a 

onger T D has slightly more applied utility over time. 

For the simulation in Fig. 8 , we consider the complete graph, 

ith low recharge rate ρA for the attacker; specifically, we set 

 = 3 , h A = 3 , ρA = 0 . 9 , β
A = 2 , and ρD /βD > 3 . Note that here, the

ttacker cannot attack strongly without saving energy. From Fig. 8 , 

e see that in a low energy condition, having a long game pe- 

iod T A = 3 results in a lower utility over time. This is in line with

orollary 3 above, where having the maximum T A , i.e., T A = h A ,

oes not yield any additional applied utility, since the attacker be- 

omes wasteful. 

On the other hand, in Figs. 9 and 10 for the path graph, we ob-

erve that having higher update frequencies, i.e., lower game peri- 

ds, does not necessarily result in higher utilities for both players. 

or the simulation considering varying T D whose 
∑ 

ˆ U 
D 
k 

is shown 

n Fig. 9 , we also see the difference in the recovered edges for 

he path graph in Figs. 11 and 12 , where black dashed lines repre-

ent recovered edges, red dashed lines represent edges not recov- 

red from normal attacks, black solid lines represent unattacked 

dges, and no lines represent edges attacked with strong attacks. 

n the case with T D = 1 , the defender recovers only one edge for



Y. Nugraha, A. Cetinkaya, T. Hayakawa et al. European Journal of Control 68 (2022) 100693 

Fig. 11. Edges attacked and recovered with T D = 1 . 

Fig. 12. Edges attacked and recovered with T D = 2 . 
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ost of the time, whereas in T D = 2 the defender recovers two 

dges at some k , resulting in a higher utility (as discussed in 

emma 2 ). This is because in the case with T D = 1 , the defender

lways saves its energy to use it later, causing the recovery to be 

elayed. This yields a less connected graph G D 
k 

over time since the 

efender tends to apply the recovery of fewer edges more consis- 

ently (rather than all edges at more time steps). 

. Conclusion 

We have formulated a two-player game in a cluster forming 

f networks played over time. The players consider the impact of 

heir actions on future network topologies, and adjust their strate- 

ies according to a rolling horizon approach. The players may have 

ifferent com putation capabilities represented by different hori- 

on lengths and game periods. The performance of the players are 

easured by calculating the applied utilities, where in general, the 

layer with a longer horizon length and a shorter game period per- 

orms better over longer intervals. We have confirmed that this is 

specially the case for more connected networks and when the at- 

ack/defense energy is more limited. 
10 
eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

[1] T. Alpcan, T. Basar, Network Security: a Decision and Game-Theoretic Ap- 
proach, Cambridge University Press, 2010 . 

[2] A. Cetinkaya, H. Ishii, T. Hayakawa, Networked control under random and ma- 
licious packet losses, IEEE Trans. Autom. Control 62 (2017) 2434–2449 . 

[3] N. Charness, Search in chess: age and skill differences, J. Exp. Psychol. 7 (2) 
(1981) 467–476 . 

[4] J. Chen, C. Touati, Q. Zhu, A dynamic game approach to strategic design of 
secure and resilient infrastructure network, IEEE Trans. Inf. Forensics Secur. 15 

(2020) 462–474 . 

[5] X. Gong, L. Duan, X. Chen, J. Zhang, When social network effect meets conges- 
tion effect in wireless networks: data usage equilibrium and optimal pricing, 

IEEE J. Sel. Areas Commun. 35 (2) (2017) 449–462 . 
[6] H. Ishii, Q. Zhu, Security and Resilience of Control Systems: Theory and Ap- 

plications, Lecture Notes in Control and Information Sciences, 489, Springer, 
2022 . 

[7] L. Jia, Y. Xu, Y. Sun, S. Feng, A. Anpalagan, Stackelberg game approaches for 

anti-jamming defence in wireless networks, IEEE Wireless Commun. 25 (2018) 
120–128 . 

[8] M.L. Katz, C. Shapiro, Systems competition and network effects, J. Econ. Per- 
spect. 8 (1994) 93–115 . 

[9] H. Li, W. Yan, Receding horizon control based consensus scheme in general 
linear multi-agent systems, Automatica 56 (2015) 12–18 . 

[10] Y. Li, C.A. Courcoubetis, L. Duan, R. Weber, Optimal pricing for peer-to-peer 

sharing with network externalities, IEEE/ACM Trans. Netw. 29 (1) (2021) 
148–161 . 

[11] Y. Nugraha, A. Cetinkaya, T. Hayakawa, H. Ishii, Q. Zhu, Cluster formation in 
multiagent consensus via dynamic resilient graph games, in: Proc. IEEE Conf. 

Control Tech. App., 2021a, pp. 735–740 . 
12] Y. Nugraha, A. Cetinkaya, T. Hayakawa, H. Ishii, Q. Zhu, Dynamic resilient net- 

work games with applications to multiagent consensus, IEEE Trans. Control 

Netw. Syst. 8 (2021b) 246–259 . 
13] Y. Nugraha, A. Cetinkaya, T. Hayakawa, H. Ishii, Q. Zhu, Rolling horizon games 

for cluster formation of resilient multiagent systems, in: Proc. IEEE Conf. Dec. 
Control, 2021c, pp. 4 829–4 934 . 

[14] G.D. Pasquale, M.E. Valcher, Consensus for clusters of agents with cooperative 
and antagonistic relationships, Automatica 135 (2022) . 

[15] M. Pirani, E. Nekouei, H. Sandberg, K. Johansson, A graph-theoretic equilibrium 

analysis of attacker-defender game on consensus dynamics under H 2 perfor- 
mance metric, IEEE Trans. Control Netw. Syst. 8 (2021) 1991–20 0 0 . 

[16] H. Sandberg, S. Amin, K.H. Johansson, Special issue on cyberphysical security 
in networked control systems, IEEE Control Syst. Mag. 35 (2015) 20–23 . 

[17] T. Schouwenaars, J. How, E. Feron, Receding horizon path planning with 
implicit safety guarantees, in: Proc. American Control Conference, 2004, 

pp. 5576–5581 . 

[18] D. Senejohnny, P. Tesi, C. De Persis, A jamming resilient algorithm for self-trig- 
gered network coordination, IEEE Trans. Control Netw. Syst. 5 (2018) 981–990 . 

[19] Y. Shang, Resilient cluster consensus of multiagent systems, IEEE Trans. Syst. 
Man Cybern. Syst. 52 (2022) 346–356 . 

20] M. Wang, Z. Wang, J. Talbot, J.C. Gerdes, M. Schwager, Game-theoretic planning 
for self-driving cars in multivehicle competitive scenarios, IEEE Trans. Robot. 

37 (2021) 1313–1325 . 
21] M. Zhu, S. Martinez, On the performance analysis of resilient networked con- 

trol systems under replay attacks, IEEE Trans. Autom. Control 59 (3) (2014) 

804–808 . 

http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0001
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0002
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0003
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0004
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0005
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0006
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0007
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0008
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0009
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0010
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0011
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0012
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0013
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0014
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0015
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0016
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0017
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0018
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0019
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0020
http://refhub.elsevier.com/S0947-3580(22)00086-3/sbref0021

	Rolling horizon games of resilient networks with non-uniform horizons
	1 Introduction
	2 Problem formulation
	2.1 Attack-recovery sequence
	2.2 Energy constraints
	2.3 Agents clustering

	3 Game structure with non-uniform rolling horizon lengths
	4 Players’ performance with non-uniform horizon lengths
	4.1 Attacker’s strategies with varying 
	4.2 Defender’s strategies with varying 

	5 Game structure and players’ performance with non-uniform game periods
	5.1 Game structure with non-uniform game periods
	5.2 Attacker’s strategies with varying 
	5.3 Defender’s strategies with varying 

	6 Numerical examples
	6.1 Non-uniform players’ horizon lengths  and 
	6.2 Non-uniform players’ game period  and 

	7 Conclusion
	Declaration of Competing Interest
	References


