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A B S T R A C T

Multi-agent learning (MAL) studies how agents learn to behave optimally and adaptively from their experience
when interacting with other agents in dynamic environments. The outcome of a MAL process is jointly
determined by all agents’ decision-making. Hence, each agent needs to think strategically about others’
sequential moves, when planning future actions. The strategic interactions among agents makes MAL go beyond
the direct extension of single-agent learning to multiple agents. With the strategic thinking, each agent aims to
build a subjective model of others decision-making using its observations. Such modeling is directly influenced
by agents’ perception during the learning process, which is called the information structure of the agent’s
learning. As it determines the input to MAL processes, information structures play a significant role in the
learning mechanisms of the agents. This review creates a taxonomy of MAL and establishes a unified and
systematic way to understand MAL from the perspective of information structures. We define three fundamental
components of MAL: the information structure (i.e., what the agent can observe), the belief generation (i.e.,
how the agent forms a belief about others based on the observations), as well as the policy generation (i.e.,
how the agent generates its policy based on its belief). In addition, this taxonomy enables the classification of
a wide range of state-of-the-art algorithms into four categories based on the belief-generation mechanisms of
the opponents, including stationary, conjectured, calibrated, and sophisticated opponents. We introduce Value of
Information (VoI) as a metric to quantify the impact of different information structures on MAL. Finally, we
discuss the strengths and limitations of algorithms from different categories and point to promising avenues
of future research.
1. Introduction

Multi-agent systems (MAS) are distributed systems involving a
group of intelligent and autonomous entities called agents (Wooldridge,
009). Agents perceive the environment1 to understand the context and
ake decisions to achieve certain tasks and objectives. The history of
AS can be traced back to the 1980s, when the research in Distributed
rtificial Intelligence (DAI) (Bond & Gasser, 2014; O’Hare & Jennings,
996) prevailed, which focuses on modeling systems with multiple
ntelligent agents as well as coordinating their behaviors and complex
nteractions with the environment (Dorri, Kanhere, & Jurdak, 2018;
tone & Veloso, 2000).
Stemmed from the studies of MAS, Multi-Agent Learning (MAL)
ainly focuses on applying learning-based methods to MAS problems.
ore formally, MAL studies how an intelligent agent learns to behave
ptimally and adaptively from its experience with the presence of
ther agents in dynamic environments (Tuyls & Weiss, 2012). Unlike
echniques from distributed optimization and control, the learning-
ased methods aim to equip MAS with distributed intelligence that

∗ Corresponding author.
E-mail addresses: tl2636@nyu.edu (T. Li), yz5718@nyu.edu (Y. Zhao), qz494@nyu.edu (Q. Zhu).

1 For a single agent, all the counterpart agents are perceived as part of the environment.

responds to uncertainties, anomalies, and disruptions to achieve the
desired coordination of the agents within the system.

1.1. A brief history of multi-agent learning

In the early stage of MAL, machine learning was used to address
challenges in MAS. Many techniques from different fields were studied
and developed in this stage, such as distributed sensing and fusion
(Luo & Kay, 1992; Mataric, 1998), herd behavior (Banerjee, 1992;
Colorni, Dorigo, Maniezzo, et al., 1991), social learning (Coussi-Korbel
& Fragaszy, 1995), evolutionary computation and games (Beer & Gal-
lagher, 1992; Fogel, 1995; Weibull, 1997), and artificial neural net-
works (Hertz, Krogh, & Palmer, 1991; Yao, 1999). Meanwhile, in
addition to the endeavors from the machine learning community, game
theorists, economists, and biologists were also keen on the research of
learning in games, which brought new interpretations of the equilib-
rium concepts and related results in evolutionary biology (Bowling &
Veloso, 2002; Fudenberg, Drew, Levine, & Levine, 1998; Hofbauer &
vailable online 26 March 2022
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Sigmund, 2003). This booming stage ranging from the late 1980s to
2000 has greatly enriched the research scope and topics in MAL, and
it is named as the startup period by Tuyls and Weiss (2012).

With the advances in single-agent reinforcement learning (RL)
Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 2018), MAL has
ushered in another prosperity. More work such as Bowling and Veloso
(2002), Hu and Wellman (2003) and Littman (2001) began to focus
on the intersection of RL and MAL, which pushes MAL to a new stage
called the consolidation period (Tuyls & Weiss, 2012). Traditional RL
studies the single-agent learning scenario, where an agent learns the
optimal policy for maximizing long-term return under the framework of
the Markov Decision Processes (MDP) (Puterman, 2014). The optimal
policy is learned from the agent’s past interaction history through either
value-based approaches, e.g., Q-learning (Watkins & Dayan, 1992), or
policy-based ones, e.g., policy gradient (Silver et al., 2014).

The success of single-agent RL motivates the technique to be ex-
tended from single-agent RL to multi-agent cases. Naturally, this ex-
tension has to take the interactions among multiple agents and the
environment into consideration. Most of the existing literature adopts
game-theoretic models as formal frameworks (Tuyls & Weiss, 2012),
which quantitatively depict how the interactions of independent agents
with different information lead to coordinated behaviors at a system
level. Compared with the first stage, the research in the consolidation
period is more like a depth-first exploration characterized by a focus
on RL theory in a game-theoretic context, which dominates the current
MAL field (Tuyls & Weiss, 2012). Moreover, with the recent advances
in deep learning (LeCun, Bengio, & Hinton, 2015), the combination
of MAL algorithms and deep-learning-based function approximators
provides practical solutions to many long-standing problems (Jaderberg
et al., 2019; Mnih et al., 2015).

However, MAL challenges go beyond the direct application of
single-agent learning. From a game-theoretic viewpoint, the outcome of
a MAL process is jointly determined by every agent’s sequential moves,
and hence, when planning future actions, each agent needs to take
into account others’ decision-making as well. The strategic interactions
among agents make MAL a research direction in its own right, rather
than an extension of single-agent learning to strategically interacting
agents.

This strategic thinking fundamentally differentiates MAL from
single-agent learning. With the presence of strategic interactions, each
agent in MAL is required to model others’ decision-making and pre-
dict their future moves. Since agents’ decision-making processes are
unknown to each other, each individual can only build a subjective
model or an estimate of others’ strategies, using its own observations.
Therefore, such modeling and estimation are directly influenced by
agents’ perception during the learning process, which further influences
strategies used by agents, and hence, the learning outcome. To sum up,
what information an agent receives, as the input to its decision-making,
plays an important part in its learning process, and its role in MAL is
even more significant, as it helps the agent quantify others’ concurrent
decision-making, leading to a strategic learning. In the following sub-
section, we take a closer look at the role of information played in MAL,
and argue that a theoretical underpinning of information structure is
necessary to the future development of MAL.

1.2. The role of information structures in MAL

For each agent in MAL, information refers to a set of random
variables whose realizations can be observed by the agent. For example,
for agents with full state observations in RL, the realization of state
variable can be observed, and accordingly, the state variable belongs
to the information received by these agents. Because of the possible
spatial and temporal structures of the information an agent receive at
each time instance, we refer to this set of observable variables as the in-
formation structure of the agent. A more mathematical characterization
297
of information structures is provided in Definition 2, and the associated
spatial and temporal structures are discussed in Section 3.

Following the discussion in Section 1.1, there are three stages within
each agent’s decision-making at each round of interactions: (1) the
agent receives observations according to its information structure; (2)
the agent forms a belief about others’ decision-making using its obser-
vations; (3) based on its belief, the agent implements an action, which
leads to new observations for the next round. A schematic illustration
of this MAL process is provided in Fig. 1. The high performance of each
learning agent requires beliefs as consistent as possible with the ground
truth. The measure of the consistency depends on the information struc-
ture of the agent. A thorough investigation into the role of information
structures in learning is indispensable for studying and designing MAL
algorithms. In the following, we take three major challenges in MAL
to elaborate how a deeper understanding of information structures
can contribute to the future development of MAL both in theory and
application. Other related challenges and future research directions are
discussed in Section 5.3.

Heterogeneity. The heterogeneity of a MAS refers to the fact that agents
within the same system may possess distinct learning capabilities, and
operate under different information structures. In contrast with MAS
with homogeneous agents, the analysis of agents’ limiting behavior and
the stabilized system outcome is more involved, since the dynamical
system corresponding to the heterogeneous MAL becomes highly non-
linear, coupled and possibly time-varying. Existing techniques, such as
Lyapunov methods, are not directly applicable.

One way to deal with this heterogeneity is to classify agents ac-
cording to the information structure. For example, agents sharing the
same information structure or reward structure can be labeled as one
type (Sunehag et al., 2018; Tang, Tavafoghi, Subramanian, Nayyar, &
Teneketzis, 2021), and the original system reduces to a much simplified
MAS where each type is treated as a decision-maker, leading to a
population-based MAL (Tembine, Zhu, & Baar, 2014). By examining
heterogeneous MAS at a coarse scale, theoretical analysis of MAL
becomes tractable, and the adaptability of heterogeneous agents under
various information structures leads to system-level resiliency (Zhu,
Tembine, & Baar, 2010). A detailed discussion on this topic is present
in Section 5.3.2.

Non-stationarity. Non-stationarity often arises from the dynamically
changing environment, and the concurrent learning of agents. Each
agent constantly adjusts its strategy to adapt to other agents, and hence,
from each agent’s perspective, the transition probability from one state
to another is no longer stationary, and is affected by other agents. If
the agent simply ignores this non-stationarity and fails to adapt to the
changing environment, it can be exploited by its opponents during the
strategic interactions (Conitzer & Sandholm, 2007).

The key to combat this non-stationarity relies on the agent forming
proper beliefs on others’ decision-making. Since other agents’ decision-
making is hidden, the discrepancy between beliefs and true strategies
employed by others cannot be directly observed by the agent. There-
fore, the best one can do is to ensure that one’s belief is consistent
with one’s observations. As the information structure dictates the envi-
ronmental feedback received by the agent, it influences the measure
of consistency, leading to various belief generation and calibration
processes in MAL. Therefore, a thorough understanding of information
structures allows for consistent conjectures on the non-stationary dy-
namics of external environment experienced by each agent, and bring
up distributed intelligence in MAS that is responsive to uncertain-
ties, anomalies and disruptions. Section 4 provides a comprehensive
elaboration on the belief generation and calibration under different

information structures.
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Fig. 1. A schematic illustration of multi-agent learning (MAL). At each round of interactions, the agent first forms a belief about others’ strategies using its observations about
the environment and other agents. The observations, represented by arrows, are subject to information structures of MAL. Then, based on its belief, the agent generates a policy
to be implemented.
Scalability. In MAL, one agent’s learning depends on the decision-
making processes of others. In this case, forming beliefs may require
information regarding joint actions and rewards of all agents (Littman,
994). The dimension of the joint action space increases exponen-
ially with the number of agents, resulting in prohibitive sample and
omputation complexity (Zhang, Yang, & Baar, 2019). The study of
nformation structures in MAL can create possible solutions to address
his long standing challenge. With a proper design of information
tructures, agents may not need global information regarding the whole
ystem to correctly form beliefs. For example, communications with
eighboring agents in MAS creates information diffusion over networks,
ielding efficient coordination (Liu, Li, & Zhu, 2020; Zhang, Yang,
iu, Zhang, & Baar, 2018). In addition to information sharing, a more
tructured design information structures can facilitate knowledge reuse
nd transfer among agents (Bannon, Windsor, Song, & Li, 2020), where
latent variables are taken from direct observations as the learned
knowledge, and then are shared across the MAS.

There are a few initial attempts to evaluate its impact on MAL
in the literature. In Lowe, Foerster, Boureau, Pineau, and Dauphin
(2019) and Naghizadeh, Gorlatova, Lan, and Chiang (2019), the effects
f message passing or communication among agents are evaluated,
dentifying benefits and drawbacks of communication in MAL. Ouyang,
avafoghi, and Teneketzis (2016) investigates the signaling effect of
ach agent’s action under asymmetric information structures, where
gents’ actions reflect its hidden information. There is also a growing
ody of works addressing MAL with partial state observations, and
e refer the reader to a recent review by Hernandez-Leal, Kartal, and
aylor (2019) on this topic. MAL under each information structure is
a subfield of studies, and each of these initial endeavors contributed
to a subfield of their own. However, efforts crossing the subfields
and creating a unifying approach is missing. Furthermore, there is
no mathematical formalism that can lay a theoretical foundation for
future discussion. The holistic and systematic treatment of information
structures in MAL has remained largely unexplored, and there is a need
to better understanding the role played by information structures in
MAL both qualitatively and quantitatively.

By proposing a mathematical characterization of information struc-
tures in the context of MAL, this paper takes the first step toward a
theoretical underpinning of information structures, and unifying many
subfields, including partially observable MDP, networked control the-
ory, MAS under asymmetric information, and other related studies.
Such mathematical formulation can facilitate future studies on this
topic, leading to a holistic viewpoint on the impact of information
298
structures on MAL. Based on this characterization, we examine existing
MAL algorithms, and categorize these state-of-the-art works according
to their different treatments on information structures and belief gener-
ation processes. On the other hand, similarities of learning algorithms
across many subfields are also summarized, highlighting their strengths
and limitations on handling various information structures.

To qualitatively compare different information structures, we in-
troduce Information Superiority, a relation that establishes a partial
order among different information structures, indicating how much
information an information structure contains during the learning. A
subsequent thought experiment provides an interesting finding that the
agent’s learning performance does not increase monotonically with re-
spect to information superiority: more information does not necessarily
lead to better learning performance. We refer to this non-monotonicity
as Information Paradox. This paradox further necessitate the introduc-
tion of another metric called Value of Information, which quantitatively
measures the impact of information structures on the agent’s learn-
ing with respect to its average rewards. The information perspective
proposed in this paper provides a unified view of recent MAL advance-
ments, and together with the introduced metrics, it creates a stepping
stone to address long-standing MAL challenges, including heterogene-
ity, non-stationarity, scalability as well as other emerging challenges
presented in Section 5.3.

1.3. Our contributions

In this paper, we create a taxonomy of MAL based on informa-
tion structures and establish a unified framework to capture MAL in
structurally diverse settings, including Markov games, repeated games,
extensive-form games, and multi-armed bandits. This review provides
a systematic overview of the literature from the perspective of in-
formation structures, aiming to contribute to MAL in the following
directions.

1. We show that an MAL algorithm comprises three components:
the information structure, the belief generation, and the policy
generation. This unified perspective provides a coherent view of
state-of-the-art MAL algorithms.

2. We categorize the MAL algorithms into four categories, i.e., sta-
tionary opponents, conjectured opponents, calibrated opponents,
and sophisticated opponents, depending on how the belief about
the opponent is generated. For different belief generation pro-
cesses, we provide concrete examples to illustrate the intercon-
nection between belief generation and the information structure.
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3. We formally define the information structure in MAL, which
quantitatively specifies the influence of the information on the
learning process via belief generation. The proposed framework
paves the way for a systematic discussion of the strengths and
limitations of algorithms within the four categories under vari-
ous information structures.

4. We use the information structure as a theoretic underpinning
to facilitate the description and presentation of MAL algorithms
and discuss open questions in MAL, such as the heterogeneity of
MAS, the scalability issues, and novel learning objectives.

1.4. Related taxonomies

Along with its development, many taxonomies have been proposed
to understand MAL from different perspectives. In the following, we
briefly review four of them. Stone and Veloso (2000) have catego-
ized the MAS algorithms into four classes based on the degree of
omogeneity and degree of communication. Potential learning methods
nd opportunities are discussed within each category. Although the
axonomy is based on works published before 2000, it provides the first
ystematic view of MAL.
As the research is growing in MAL in recent years, many new

earning-oriented algorithms are being proposed. To summarize the
ontribution and challenges, Busoniu, Babuska, and De Schutter (2008)
ave proposed two taxonomies to classify MAL. One is based on the
earning task type, and the other is based on the degree of agent
wareness. For the task-based taxonomy, MAL is categorized into fully
ooperative cases, fully competitive cases, and mixed cases. All agents
ooperate to achieve the same objective in fully cooperative cases,
hile all agents optimize their objectives respectively in fully com-
etitive cases. Mixed cases lie in the middle. For awareness-based
axonomy, agents in MAL ranges from fully unaware of the environ-
ent to fully aware of the environment. These two taxonomies build
he foundation for modern MAL research. Many recent works such as
a Silva and Costa (2019) and Zhang et al. (2019) have acknowledged
nd used these taxonomies to categorize research works in the area.
Another recent taxonomy based on the agent’s reaction pattern

o the environment has been proposed in Hernandez-Leal, Kaisers,
aarslag, and Cote (2017). In a joint learning task, an agent can
eact to the environments through five patterns: ignore, forget, respond
o target opponents, learn opponent models, and theory of mind. In
ach pattern, an agent chooses different actions to respond to the
nvironment. For example, ignoring means a static environment while
heory of mind refers to the recursive reasoning in the learning.
The rest of the paper is organized as follows. We formally introduce

ur proposed definition for MAL in Section 2, where an MAL algorithm
s said to be comprised of the information structure, the belief gener-
tion as well as the policy generation. The detail of the information
tructure is discussed in Section 3 and Section 4 discusses the belief and
olicy generation in MAL. Based on different approaches in generating
eliefs, we propose a categorization of MAL algorithms in Section 4.
ollowing this categorization, a systematic discussion on the strengths
nd limitations of MAL algorithms from the proposed categories is
rovided in Section 5. Furthermore, we propose a metric called the
alue of information (VoI) in Section 5 in order to quantitatively
escribe the importance of the information structure in MAL. Some
elated applications in the security domain and MAL are reviewed in
ection 6, and Section 7 concludes the paper.

. A mathematical framework for multi-agent learning

This section introduces a mathematical model of MAL, which is
299

unified framework capable of describing, analyzing, and comparing w
arious MAL algorithms. To facilitate our discussions on the frame-
ork, we begin with a formal definition of the multi-agent sequen-
ial decision-making problem (MASDM). Then, we proceed to intro-
uce our unified MAL framework, which incorporates other promi-
ent MAL frameworks, such as repeated games (Mertens, Sorin, & Za-
ir, 2015), Markov games (Shapley, 1953) and extensive-form games
Kuhn, 2016). We elaborate on three important components within
his framework: the information structure, the belief generation, and
he policy generation. The three components are closely related: the
nformation structure determines what can be observed by the agent
t each round of play, which further influences the agent on updating
ts belief about its opponent’s policy.2 Finally, the generation of future
olicy depends on the agent’s belief.
Following the prescriptive viewpoint in Sandholm (2007), a MAL

roblem is essentially a sequential decision-making process in MAS
nder uncertainty. In general, the decision-making problem can be
efined as follows.

efinition 1. A multi-agent decision-making process (MASDM) is
efined by a tuple  = ⟨ , ∪ {𝑐}, {𝑖}𝑖∈∪𝑐 , 𝜇𝑐 ,, 𝜏,  , {𝑅𝑖}𝑖∈ ⟩,
here

1.  is the state space;
2.  ∶= {1, 2,… , 𝑁} denotes the set of 𝑁 agents, and 𝑐 is a special
agent called chance or nature, which employs a fixed stochastic
policy that specifies the randomness of the environment;

3. 𝑖 is the set of all possible actions that agent 𝑖 can take;
4. 𝜇𝑐 is nature’s fixed policy, which is a probability measure over

𝑐 ;
5.  is the set of all possible histories, where each history ℎ is a
sequence of states and actions;

6. 𝜏 ∶  →  ∪ {𝑐} is the agent selection function that determines
which agent takes the action after a sequence of plays;

7.  ∶  → 𝛥() is a transition dynamics that specifies the
probability of a certain state is chosen as the next state based
on the history;

8. 𝑅𝑖 ∶  → R is the utility function or reward function that
determines the payoff or cost agent 𝑖 receives when the historical
play is ℎ.

he length of admissible histories determines the horizon of the
ecision-making problem. If all possible histories are of finite length,
.e., the finite number of states and actions, then the problem is said to
ave a finite horizon. Otherwise, it has an infinite horizon.

Several remarks are in order. First, the introduction of the special
gent 𝑐 accounts for multi-agent decision making with incomplete in-
ormation regarding the agents or, more broadly speaking, risk-related
actors involved in decision-making (Park & Shapira, 2017). In other
ords, the actions of 𝑐 correspond to random events in the environment
ubject to a prior distribution. These events are agent-independent in
he sense that the occurrence does not depend on agents’ actions. In
ayesian games literature (Zamir, 2009), the action space of chance
𝑐 is often referred to as the type space of agents, elements of which
pecify the ‘‘type’’ of each agent according to the fixed policy 𝜇𝑐 , also
alled prior. These types from 𝑐 accounts for hidden information
hich is privately revealed to agents, and the corresponding realization
s unknown to others.
Another remark is about the history set . Figuratively speaking,

ny element ℎ ∈  is a system log that tracks everything that hap-
ened within the system, and it may not be observable to the agent.
he observability issue will be discussed in the information structure

2 We define the opponent of an agent as the set of other agents within the
ystem of interest. The opponent-relevant quantities and mappings are denoted
ith the subscript −𝑖.
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section. Under some circumstances, a history ℎ can be summarized
by a state variable as argued in Lanctot et al. (2019), and hence the
history set  can be suppressed. However, we find it necessary to
nclude agents’ actions in addition to the state variable when facing
omplicated systems such as non-Markovian environments (Sutton,
recup, & Singh, 1999).
Based on the MASDM model in Definition 1, MAL can be viewed

s an online decision-making process with incomplete domain knowl-
dge about  and certain observability conditions. We provide the
athematical definition of MAL as follows.

efinition 2 (Multi-agent Learning). A multi-agent learning process is
defined by a sequence of tuples {⟨𝑡

𝑖 , 𝛤
𝑡
𝑖 ,𝛱

𝑡
𝑖 ⟩

𝑇
𝑡=0}𝑖∈ , involving the

following elements.

1. 𝑇 ∈ N+ ∪ {∞} is the horizon of the learning process, and
𝑡 ∈ {0, 1,… , 𝑇 } is the time index, where 𝑡 = 0 indicates the
pre-learning stage.

2. 𝑡
𝑖 is the information structure of agent 𝑖 at time 𝑡, a set of
variables whose realizations can be observed by the agent at
time 𝑡. When 𝑡 = 0, 0

𝑖 ⊂  corresponds to the subset of
the domain knowledge available to the agent. When 𝑡 ≥ 1,
𝑡
𝑖 ⊂ {𝑆𝑡, {𝑀 𝑡

𝑗}𝑗∈ , {𝐴𝑡−1
𝑗 }𝑗∈ , {𝑅𝑡−1

𝑗 }𝑗∈ }, where 𝑆𝑡 is the state
variable, 𝑀 𝑡

𝑗 is the message variable of agent 𝑗 from its message
space 𝑗 , and 𝐴𝑡

𝑗 , 𝑅
𝑡
𝑗 corresponds to the action and reward of

agent 𝑗, respectively.
3. 𝛤 𝑡

𝑖 ∶ 0∶𝑡
𝑖 → 𝛥(−𝑖) is the belief mapping, generating a belief 𝛾 𝑡𝑖 ∈

𝛥(−𝑖) about the opponent’s policy at time 𝑡. For completeness, it
is assumed that 𝛤 0

𝑖 maps from 0
𝑖 to an arbitrary point in 𝛥(−𝑖)

4. 𝛱 𝑡
𝑖 ∶ 0∶𝑡

𝑖 → 𝛥(𝑖) is the policy mapping, generating a policy
𝜋𝑡
𝑖 ∈ 𝛥(𝑖) to be implemented at time 𝑡.

Note that in MASDM, there is no message element. This is because
when solving the decision-making problem, the message can be viewed
as a costless action (Myerson, 1991) or can be interpreted as an action
recommendation in mechanism/information design problems accord-
ing to revelation principle (Myerson, 1979). However, in the learning
paradigm, messages have a broader usage (Foerster, Assael, de Freitas,
& Whiteson, 2016a), and hence, we incorporate the message variable
into the definition of MAL in Definition 2. A detailed discussion on
the information structure is provided in Section 3, where the included
variables are further elaborated on.

Our MAL framework comprises three components: the informa-
tion structure, the belief mapping, and the policy mapping. These
components determine what information the agent can acquire, how
the information is processed, and what is the best policy given the
acquired information. The proposed framework in Definition 2 provides
a coherent view of various MAL problems. We provide three examples
to show that the mainstream MAL models are in fact special cases of
our MAL framework.

Learning in Markov games. Markov games (MG), also stochastic games,
first proposed by Shapley (1953) in the 1950s, have long been used to
model multi-agent strategic interactions in a dynamic environment. In
the early ages, advances in Markov games were mainly contributed by
game theorists and economists (Solan & Vieille, 2015). It is not until the
seminal work by Littman (1994) was Markov games widely accepted as
framework of multi-agent reinforcement learning by the community.
In a Markov game, after observing the current state, all agents make

heir decisions simultaneously, and are rewarded by the environment
ccordingly. Then, agents move to the next state following the tran-
ition dynamics. The most notable feature of Markov games is that
ts transition dynamics is Markovian, meaning that the selection of
he next state only depends on the current state and the joint actions
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mplemented by agents. The formal definition is given below.
Definition 3 (Markov Games). A Markov game is defined by a tuple

⟨ , , {𝑖}𝑖∈ ,  , {𝑅𝑖}𝑖∈ ⟩,

where , , {𝑖}𝑖∈ are all defined in the same way as in Definition 1.
The transition dynamics and the reward functions follow the Markovian
property, that is

1. the transition dynamics  ∶  ×
∏

𝑖∈ 𝑖 → 𝛥() determines the
probability from any state 𝑠 ∈  to any state 𝑠′ ∈  for any joint
action 𝑎 ∈

∏

𝑖∈ 𝑖, irrelevant of historical plays;
2. the reward is determined by the function 𝑅𝑖 ∶ ×

∏

𝑖∈ 𝑖 → R,
which is also irrelevant of historical plays.

Research on learning in Markov games, generally called multi-agent
einforcement learning (MARL), revolves around multi-agent sequential
ecision-making with unknown dynamics and reward functions. Using
he language in Definition 2, in most MARL studies, each agent is
ssumed to acquire 0

𝑖 = { , , {𝑗}𝑗∈ } as the domain knowl-
dge. Through interactions with other agents and the environment,
ach agent may observe additional information about others’ decision-
aking and the environment dynamics. For example, one common
ssumption in MARL is that each agent can observe other agents’
ctions, the realized rewards of the joint actions as well as the state
ransitions, and in this case 𝑡

𝑖 = {𝑆𝑡, {𝐴𝑡
𝑗}𝑗∈ , 𝑅𝑡

𝑖}. Based on this
nformation, the agent reason about the opponent’s behaviors and plan
ts moves accordingly. A detailed discussion regarding the observable
nformation and the reasoning process will be included in the following
ections.
As a simplification of MG, repeated games (RG) is a special case of
arkov games, where there is only one state, and agents play the same
ame repeatedly. The same game played at each time is called a stage
ame or base game, denoted by a tuple ⟨ , {𝑖}𝑖∈ , {𝑅𝑖}𝑖∈ ⟩. With a
impler structure, repeated games are often used as a testbed for MAL
lgorithms. Recent advances in best response dynamics (Leslie, Perkins,
Xu, 2020) and gradient-based learning (Bu, Ratliff, & Mesbahi, 2019;
azumdar, Ratliff, & Sastry, 2020) in Markov games are inspired by
xisting results in repeated games.
On the other hand, repeated games are an essential research topic in

heir own right, which models long-term strategic interactions among
gents within a stable system or institution (Mertens et al., 2015).
rom learning in repeated games, there arise many exciting concepts
uch as reputation (Fudenberg & Levine, 1989) and trigger strategy
Mertens et al., 2015). Moreover, learning in repeated games provides
new interpretation of equilibrium concepts: a certain equilibrium of
he base game is a stable outcome of multi-agent learning processes,
hich is resilient under slight disturbance. This interpretation is the
riving force of the development in evolutionary game theory, and for
ore details, we refer the reader to Hofbauer and Sigmund (2003) and
i, Peng, Zhu, and Basar (2021).

earning in extensive-form games. Even though they constitute a clas-
ical formalism for MARL, Markov games defined in Definition 3 can
nly handle the fully observable case, that is, the agent has perfect
nformation on the system state 𝑆𝑡 and the executed action 𝐴𝑡. Nonethe-
ess, many MAL applications involve imperfect information, where,
or example, agents can only observe actions implemented by their
eighbors in a network setting.
In contrast, another framework for multi-agent decision making

amed extensive-form games (EFG), introduced by Kuhn (2016), can
handily model these imperfect information cases. We briefly introduce
the EFG framework in the following.

Definition 4. An extensive-form game is defined by

⟨ , ∪ {𝑐}, {𝑖}𝑖∈∪𝑐 , 𝜇𝑐 ,, 𝜏, {𝑅𝑖}𝑖∈ ⟩

and all components are defined the same as in Definition 1 except that
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1. each element in  is a sequence of actions taken from the
beginning of the game;

2. the state space  in fact specifies a partition such that for any
𝑠 ∈  and any ℎ, ℎ′ ∈ 𝑠, we have 𝜏(ℎ) = 𝜏(ℎ′), meaning that
histories ℎ and ℎ′ in the same partition are indistinguishable to
the agent (𝜏(ℎ)) that is about to take action.

Rooted in game-theoretic and economic studies, EFG provides a
rigorous treatment of imperfect information in the sequential decision-
making process, and there are many impressive results built on this
particular framework (Brown & Sandholm, 2017, 2019). It should be
noted that many advances in learning in EFG are following the com-
putational agenda (Sandholm, 2007): learning algorithms serve as an
optimizer for computing the equilibrium. Recent years have witnessed
a series of thrilling successes in applying learning algorithms in EFG,
such as regret minimization (Brown, Lerer, Gross, & Sandholm, 2019;
Zinkevich, Johanson, Bowling, & Piccione, 2007), fictitious self-play
(Heinrich, Lanctot, & Silver, 2015). Some of them have led to strong
oker AI that defeated human players (Brown & Sandholm, 2017, 2019;
oravík et al., 2017).

earning in multi-armed bandits. Multi-armed bandits (MAB) problem
Lattimore & Szepesvári, 2020) is probably the simplest RL problem:
he agent is in a room with multiple gambling machines (called ‘‘one-
rmed bandits’’). At each time step, the agent pulls the arm of one
f the machines and receives a reward. The agent is allowed a fixed
umber of pulls, and the goal is to maximize its total reward over a
equence of trials. Each arm is assumed to have a different distribution
f rewards. Therefore, the goal is to find the arm with the best-expected
eturn as early as possible and then to keep gambling using that arm.
athematically speaking, a 𝐾-arm stochastic MAB can be defined by
 ∪{𝑐}, 𝜇𝑐 , {𝑖}𝑖∈∪{𝑐}, {𝑅𝑖}𝑖∈ ⟩, where = {1}. In a MAB problem,
ature first determines the realized rewards 𝑟 = (𝑟𝑘)𝐾𝑘=1 of all arms, in
hich 𝑟𝑘 ∈ R, 1 ≤ 𝑘 ≤ 𝐾 denotes the actual reward of pulling the
th arm drew from the corresponding distribution 𝑘. Hence, nature’s
ction set is 𝑐 = R𝐾 and its fixed policy follows 𝜇𝑐 =

∏

1≤𝑘≤𝐾 𝑘.
hile for the agent, its action set is 𝐴1 ∶= {1, 2,… , 𝐾} with each
lement representing an arm. At each time, after nature complete its
ove which is unknown to the agent, the agent chooses an action 𝑘
nd pull 𝑘th arm. The reward is 𝑅1(𝑟, 𝑘) = 𝑟𝑘.
Even though the MAB problem can hardly be seen as a MAL problem

ince there is only one decision-maker, it is useful to analyze the
ecision-making in such a stationary settings, which provides a simple
et fundamental framework for studying the exploitation–exploration
rade-off in online learning. Some key ideas and methodologies de-
eloped in MAB research, such as upper confidence bounds (Auer,
esa-Bianchi, & Fischer, 2002) and Thompson sampling (Kaufmann,
orda, & Munos, 2012) shed further light on similar studies in more
omplicated scenarios, such as reinforcement learning (Jin, Allen-Zhu,
ubeck, & Jordan, 2018).
Definition 2 provides a theoretical underpinning of MAL, allowing

or a systematic investigation into various MAL approaches with respect
o the key components: information structures, belief generation and
olicy generation processes. In the subsequent, detailed discussions
egarding these components are presented.

. Information structure

The importance of the information structure is self-evident: it is the
nput argument of both the belief mapping and the policy mapping.
n this section, we carry out a detailed discussion on the information
tructure 𝑡 and its variants in MAL problems.
We begin our discussion with 0

𝑖 . From Definition 2, 0
𝑖 indicates

how much the agent knows about the current multi-agent environment,
which qualitatively depicts the uncertainty faced by the agent. Current
MAL research focuses on building distributed AI which allows agents
301

to adapt to the unknown environment and versatile tasks. Hence, it
is common in the literature to assume that the transition dynamics
and the reward function are unknown. For 𝑡

𝑖 , 𝑡 ≥ 1, we discuss each
element in {𝑆𝑡, 𝑂𝑡, {𝑀 𝑡

𝑗}𝑗∈ , {𝐴𝑡−1
𝑗 }𝑗∈ , {𝑅𝑡−1

𝑗 }𝑗∈ } in the following
aragraphs.

tate variables. The state 𝑆𝑡 is a summary of the current system status,
hich is payoff-relevant in most cases. The agent needs to observe the
ealizations of state variables and adapt its behavior to the dynamic en-
ironment. Without access to 𝑆𝑡 or state-related information, the agent
annot quantify the dynamics of the environment, let alone quantify
he impact of other agents’ move on the changing environment.
Since the state variable summarizes the system status, which in-

ludes other agents’ status, for example, their current locations, full
bservation of the environment state may not always be available
o everyone within the system at all times. In modern network ap-
lications with large and complex network topologies, it is neither
omputationally feasible nor desirable to distribute system information
o every entity in the network. Meanwhile, in practice, due to noised
ensing and communication processes, it is not possible to recover
he accurate state information from the collected data, and only some
stimates are available, which is quite common in control applications
Marden & Shamma, 2018). Therefore, it is more practical to have
artial observability in a real-world application, although it can sig-
ificantly complicate the analysis (Kaelbling, Littman, & Cassandra,
998).
There are two kinds of modeling elements in the literature that

ccount for this partial observability: public partial observations and
rivate partial observations. Public partial observation is relatively
imple. Every agent enjoys the same observation 𝑂𝑡 of the underlying
state 𝑆𝑡. While in the private partial observation, each agent may have
different private partial observations 𝑂𝑡

𝑖 , which may incur signaling
effect in the learning process (Ouyang et al., 2016). This means that
agents’ implemented actions may reveal some information regarding
their private observations.

Action variables. The observability of action variables {𝐴𝑗}𝑗∈ is also
of vital importance in tackling non-stationarity issue. By observing
other agents’ implemented actions, the agent can reason or estimate the
policy employed by others, which corresponds to the belief generation
to be discussed in the next section. In other words, observing the state
variable makes the agent aware of how the environment is changing,
and observing the action variables makes it clear to the agent why the
environment is changing.

It is natural to assume that each agent knows their own actions.
However, the observability of other agents’ actions {𝐴𝑗}𝑗∈−𝑖

is sub-
ject to a case-by-case discussion. Similar to the observability issue of
environment state in large and complex networks, it is not practical
to assume that each agent can observe distant agents over networks.
This spatial constraint also applies to the observability of reward vari-
ables and message variables, which will further be discussed in Spatial
Structures in the subsequent.

Reward variables. The realizations of reward variables at each time
serve as the evaluation of the implemented actions, according to which
agents adjust their policies. When the reward function is not accessible
to the agent, the reward realization 𝑟𝑡𝑖 can be obtained by trial and error,
based on which the agent can estimate the reward function. For a brief
discussion on the estimation process, we refer readers to a recent survey
(Li et al., 2021).

Despite the observability of its own reward variables, the observa-
tion of other agents’ reward realization is also allowed under some
circumstances. For example, in team problems, all agents share the
same reward function. Meanwhile, due to the increasing popularity of
the idea centralized-learning-decentralized-execution (Lowe et al., 2017),
in recent works on deep MARL, it is pretty common, even in competi-
tive settings, to assume that agents can access others’ realized payoffs

(Zhang et al., 2019). Unlike the case where the agent utilizes action



Annual Reviews in Control 53 (2022) 296–314T. Li et al.

M

D
t
o
r

r
i

a
c
c
a
d
o
o

t
r
𝑡





4

t
p
o
t
i
w
m

4

a
i
t
f
g
e
a

c

𝛾

observations to estimate the opponent’s policy, the agent can even
take a step further with the observation of the opponent’s reward: it
can reason how the opponent generates the policy. The details will be
discussed in Section 4.

essage variables. As we have discussed in Definition 2, due to revela-
tion principle (Myerson, 1979), messages can be interpreted as action
recommendations when solving for the multi-agent decision-making
problem defined in Definition 1. Naturally, in MAL, a message can
still serve as a special action or an action recommendation, as it does
in offline planning. Yet, messages can also be agents’ beliefs about
their opponent’ play (Eksin & Ribeiro, 2017; Swenson, Eksin, Kar, &
Ribeiro, 2017), agents’ estimated value functions (Kar, Moura, & Poor,
2013), or parameters of function approximators employed by agents
(Zhang et al., 2018). In our later discussion, we will elaborate on the
important role messages variables or communication in general plays
when dealing with spatial structures of information.

Spatial structures. As we have already mentioned in the above discus-
sions, for MAS with complex topologies, the observability of different
variables is subject to a certain spatial constraint. For ease of exposi-
tion, we first explicitly describe the underlying topology using a graph.
Although there is no graph-theoretic component in Definition 1 or
efinition 2, we claim that our proposed model is still able to capture
he topological structure. As argued in Jackson and Zenou (2015), most
f the network topologies can be characterized by the structure of
eward functions.
Consider a graph ⟨ , ⟩, where  = {1, 2,… , 𝑁} is the node set

epresenting the agents in the system, and  = {(𝑖, 𝑗)|𝑖, 𝑗 are connected}
s the edge set. Agents in the system are connected via the edges in
. The edges may have many different interpretations for different
pplications. For example, in a multi-agent robotic network, edges
an represent two-way communication channels through which agents
an share information, resulting in an undirected graph. There are
lso problems requiring a directed graph if the information flow is
irected. For simplicity, we assume that the graph is undirected, and
ur characterization of information structures still applies to directed
nes.
For agents connected via the undirected graph, if they are able

o observe their neighbors’ actions and further allowed to exchange
ealized rewards and messages, then the information structure at time
can be defined as
𝑡
𝑖 = {𝑆𝑡, {𝐴𝑡

𝑗}𝑗∈ (𝑖), {𝑅𝑡
𝑗}𝑗∈ (𝑖), {𝑀 𝑡

𝑗}𝑗∈ (𝑖)},

(𝑖) ∶= {𝑗|(𝑖, 𝑗) ∈ } ∪ {𝑖}.

. Belief and policy generation

As we have pointed out earlier, one of the challenges in MAL is
he non-stationarity issue. Each agent faces a moving target learning
roblem because other agents’ time-varying strategies have an impact
n its own reward. The key to tackle the non-stationarity issue is
o identify the opponent’s play based on the acquired information,
ncluding domain knowledge and online observations. In this section,
e elaborate on the other two components in Definition 2: the belief
apping 𝛤 𝑡

𝑖 and the policy mapping 𝛱 𝑡
𝑖 .

.1. Belief generation

The belief indicates the agent’s understanding of the environment
nd the opponent, and it is the key to dealing with the non-stationarity
n MAL. In the following, we characterize how an agent generates
he belief about other agents’ policies in the learning process. Then,
our categories with increasing order of sophistication of the belief
eneration are proposed. For each category, we start with an illustrative
xample to concretely describe how the information helps produce
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proper belief and a good policy. Following the specific examples,
we comment on different approaches in the belief generation under
various information structures and eventually provide an extensive list
of algorithms categorized by how they deal with the non-stationarity
issue.

For ease of exposition, we introduce these categories and discuss
related algorithms from the perspective of a single agent, called the
learner. The rest of the agents within the system are called the opponent
as before. The notations of opponent-relevant quantities and mappings
remain the same as in Definition 2.

4.1.1. Stationary opponent
In this category, the opponent is assumed to use a fixed mixed

strategy, and the learner’s goal is to identify the stationary strategy
used by the opponent. Even though this assumption may not fit the
ground truth, it simplifies the learner’s belief generation process. For
example, it suffices for the learner to compute the empirical frequency
of the opponent’s play only by observing the immediate actions.

One typical early work of this kind is fictitious play (Fudenberg
et al., 1998), a simple learning algorithm used in repeated games
for Nash equilibrium seeking. Consider a two-player repeated game
⟨ , {𝑖}𝑖∈ , {𝑅𝑖}𝑖∈ ⟩, where  = {1, 2}. The information structure
for agent 𝑖 is as

0
𝑖 = { , {𝑖}𝑖∈ , 𝑅𝑖}, 𝑡

𝑖 = {{𝐴𝑡−1
𝑗 }𝑗∈ }.

Each player knows its own utility function and can observe the actions
of the opponent. In fictitious play, from player 1’s viewpoint, player
2 is following a fixed policy and its actions are independent and
identically distributed samples drew from this fixed policy. Therefore,
one simple way to estimate the policy employed by player 2 is to
maintain an empirical frequency of the plays by the opponent in the
past. Mathematically, player 𝑖’s belief 𝛾 𝑡𝑖 ∈ 𝛥(−𝑖) about the other’s
policy at time 𝑡 is given by

𝛾 𝑡𝑖 (𝑎) = 𝛤 𝑡
𝑖 (

0∶𝑡
𝑖 ) = 1

𝑡 − 1

𝑡−1
∑

𝑘=1
1{𝑎𝑘−𝑖=𝑎}

,

which is the empirical frequency of the opponent’s actions up to time 𝑡−
1. Using this belief, the learner chooses the best action that maximizes
the expected payoff, and the learner’s policy for the 𝑡th round is given
by

𝜋𝑡
𝑖 = 𝛱 𝑡

𝑖 (
0∶𝑡
𝑖 , 𝛾 𝑡𝑖 ) = argmax

𝑥∈𝛥(𝑖)
𝑅𝑖(𝑥, 𝛾 𝑡𝑖 ), (1)

where 𝑅𝑖(𝑥, 𝛾 𝑡𝑖 ) is the expected utility under 𝑥, 𝛾
𝑡
𝑖 , defined as

𝑅𝑖(𝑥, 𝛾 𝑡𝑖 ) ∶= E𝑎𝑖∼𝑥,𝑎−𝑖∼𝛾 𝑡𝑖
[𝑅𝑖(𝑎𝑖, 𝑎−𝑖)].

To sum up, the belief and the policy generation in fictitious play
an be written in the following recursive form:

𝑡+1
𝑖 =

(

1 − 1
𝑡

)

𝛾 𝑡−1𝑖 + 1
𝑡
𝑒𝑎𝑡−𝑖 ,

𝜋𝑡+1
𝑖 = argmax

𝑥∈𝛥(𝑖)
𝑅𝑖(𝑥, 𝛾 𝑡+1𝑖 ),

(2)

where 𝑒𝑎 ∈ 𝛥(−𝑖) is the unit vector in the simplex, with its 𝑎th entry
being 1 and 0 for the rest. It has been shown that (2) is indeed the dis-
cretized version of the best response dynamics (Hofbauer & Sigmund,
2003). When both players believe that their opponent is stationary
and adopt (2), the collection of their beliefs about the opponent’s play
(𝛾 𝑡1, 𝛾

𝑡
2) converges to Nash equilibrium under certain conditions. For

more details on the convergence analysis, we refer readers to Li et al.
(2021) and Swenson, Murray, and Kar (2018).

Information structure. Since the opponent is assumed to be stationary,
the information structure for this type of algorithm is relatively simple.
The learning agent needs two kinds of information. One is opponent
actions for estimating the opponent’s policy. The other one is related to
its own reward structure. In the example of fictitious play, it is assumed
that the agent knows its own utility function for making decisions,
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and this assumption about acquiring domain knowledge can be further
lessened: it suffices for the learner to observe the realized payoffs, from
which the learner can construct an estimate of the reward function. In
this case, the information structure follows

0
𝑖 = { , {𝑖}𝑖∈ }, 𝑡

𝑖 = {{𝐴𝑡−1
𝑗 }𝑗∈ , 𝑅𝑡−1

𝑖 }.

xamples of MAL algorithms under the above information structure
nclude joint-action learners (Claus & Boutilier, 1998), individual Q-
earning (Leslie & Collins, 2003, 2005) and other MAL works using best
esponse dynamics. For more related works, we refer readers to a recent
urvey on learning in games (Li et al., 2021).
The above example articulates how a learner can adapt its policy

o its belief about the opponent’s play in a two-player repeated game
nder the stationary opponent assumption. However, when carrying
he similar idea to network games where agents are connected via
dges, it may not be possible for an agent to observe the actions
f all others, especially in large and complex network systems. In
his case, the spatial constraints in the information structure shall be
onsidered, which means that agents can only observe the actions of
heir neighbors.
One possible approach to estimate the policies employed by those

istant players is to resort to communication. As investigated in Eksin
nd Ribeiro (2017) and Swenson et al. (2017), each player can pass
nd receive messages from its neighbors to acquire information of the
istant players’ actions. The information structure in this situation is
0
𝑖 = { , {𝑖}𝑖∈ , 𝑅𝑖}, 𝑡

𝑖 = {{𝐴𝑡−1
𝑗 }𝑗∈ (𝑖), {𝑀 𝑡−1

𝑗 }𝑗∈ (𝑖)},

here 𝑀 𝑡−1
𝑗 is agent 𝑗’s beliefs about other agents’ policies. The idea

ehind this communication-assisted belief generation is simple but
ffective. Players first construct beliefs about their neighbors’ policies
sing the same way in (2) and then share their beliefs with their neigh-
ors. By doing the process repeatedly, the learner can hold beliefs about
veryone’s policy without directly observing the opponent’s actions.
hen the learner simply performs the best response with this belief
hown in (1). Based on the information passed by neighbors, all players
est respond to the estimated strategies. The entire process can be
iewed as a gossip-based fictitious play, which is proved to converge
o Nash equilibrium in weakly cyclic games (Marden, Young, Arslan, &
hamma, 2009).

.1.2. Conjectured opponent
In this class of MAL algorithms, the learner conjectures that the

pponent follows a specific behavioral model to generate policies. It is
oted that the exact strategy or the behavioral model of the opponent
s not known to the leaner, and its conjecture of the opponent’s play
ight be far from reality. Clearly, the previous ‘‘Stationary Model’’ is
special case of ‘‘Conjectured Opponent’’, where the behavioral model
educes to a simple fixed policy.
For this type of learning algorithms, we use temporal-difference

earning as an example to illustrate how the learner construct the belief
n the learning process. Known as the Bellman’s heritage (Shoham,
owers, & Grenager, 2007), temporal-difference learning serves as the
heoretical foundation for a plethora of MAL research works, including
arious extensions of Q-learning (Watkins & Dayan, 1992). Consider a
wo-player zero-sum Markov game

 , , {𝑖}𝑖∈ ,  , {𝑅𝑖}𝑖∈ , 𝛽⟩,

here  = {1, 2} and 𝑅1(𝑠, 𝑎1, 𝑎2) + 𝑅2(𝑠, 𝑎1, 𝑎2) = 0, for all 𝑠 ∈ ,
1 ∈ 1, 𝑎2 ∈ 2. Note that due to the zero-sum nature of the game, it
uffices for the learner to observe its own reward 𝑅𝑡

𝑖. When dealing with
eneral-sum cases (Hu & Wellman, 2003), 𝑡

𝑖 shall also include other
gents’ rewards. Following the notation in Littman (1994), we define a
ew reward function 𝑅 ∶ ×1×2 → R so that 𝑅1 = 𝑅,𝑅2 = −𝑅. With
he new definition of the reward, the goal of agent 1 is to maximize the
iscounted cumulative reward E[

∑∞
𝑘=1 𝑅(𝑠

𝑘, 𝑎𝑘1 , 𝑎
𝑘
2)], while agent 2 tries
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o minimize it.
When the opponent (player 2) is assumed to perform a temporal-
ifference learning, its decision-making is based on the Q function,
hich is updated as

𝑡(𝑠, 𝑎1, 𝑎2) =

⎧

⎪

⎨

⎪

⎩

𝑄𝑡−1(𝑠, 𝑎1, 𝑎2), if (𝑠, 𝑎1, 𝑎2) ≠ (𝑠𝑡, 𝑎𝑡1, 𝑎
𝑡
2),

𝑄𝑡−1(𝑠, 𝑎1, 𝑎2) + 𝛼𝑡[𝑅𝑡 + 𝛽𝑉 𝑡−1(𝑠𝑡+1)

−𝑄𝑡−1(𝑠, 𝑎1, 𝑎2)], otherwise
, (3)

where 𝑉 𝑡−1(𝑠) is the maxmin value of 𝑄(𝑠, ⋅, ⋅) ∈ R|1|×|2|, defined as

𝑉 𝑡−1(𝑠) ∶= max
𝑥∈𝛥(1)

min
𝑦∈𝛥(2)

𝑥𝖳𝑄𝑡−1(𝑠, ⋅, ⋅)𝑦,

and 𝑄𝑡−1 serves as the action evaluation for the play in the 𝑡−th round.
The corresponding updating rule requires the following information
structure

0
𝑖 = { , , {𝑖}𝑖∈ }, 𝑡

𝑖 = {𝑆𝑡, {𝐴𝑡−1
𝑗 }𝑗∈ , 𝑅𝑡−1

𝑖 }.

Since the opponent is a minimizer and assumed to rely on temporal-
difference learning in a fully competitive setting, we have

𝛾 𝑡1 = 𝛤 𝑡
1(

0∶𝑡
1 ) = argmin

𝑦∈𝛥(2)
max

𝑥∈𝛥(1)
𝑥𝖳𝑄𝑡−1(𝑠𝑡, ⋅, ⋅)𝑦.

With this belief, the corresponding policy of player 1 at state 𝑠, is simply
the best response

𝜋𝑡
1 = 𝛱 𝑡

𝑖 (
0∶𝑡
𝑖 ) = argmax

𝑥∈𝛥(1)
𝑥𝖳𝑄𝑡−1(𝑠𝑡, ⋅, ⋅)𝛾 𝑡𝑖 . (4)

Information structure. As we have mentioned, when dealing with
general-sum cases, such as Nash Q-learning (Hu & Wellman, 2003) and
Correlated Q-learning (Greenwald & Hall, 2003), 𝑡

𝑖 shall also include
other agents’ rewards:

0
𝑖 = { , , {𝑖}𝑖∈ }, 𝑡

𝑖 = {𝑆𝑡, {𝐴𝑡−1
𝑗 }𝑗∈ , {𝑅𝑡−1

𝑗 }𝑗∈ },

which helps the learner to construct other agents’ 𝑄 tables. Naturally,
having access to other agents’ reward realizations is not a trivial
assumption. In practice, each agent may only acquire local and neigh-
boring information, especially in network applications. Similar to the
belief-sharing process discussed in the previous subsection, when com-
munication is allowed in the learning process, agents are able to
exchange information regarding their Q tables, in order to have a
conjectured model for their opponent. This idea has been investigated
in distributed Q-learning (Kar et al., 2013), where neighboring agents
try to reach a consensus on their Q tables by communication, and the
corresponding information structure is

0
𝑖 = { , , {𝑖}𝑖∈ }, 𝑡

𝑖 = {𝑆𝑡, {𝐴𝑡−1
𝑗 }𝑗∈ , {𝑀 𝑡

𝑗}𝑗∈ (𝑖), 𝑅
𝑡
𝑖},

where the message 𝑀 𝑡
𝑗 is agent 𝑗’s Q table.

In addition to the value-based approaches above, the policy-based
methods in MARL such as policy gradient (Bu et al., 2019; Mazumdar
et al., 2020) and actor–critic (Foerster, Farquhar, Afouras, Nardelli, &
Whiteson, 2018; Lowe et al., 2017; Zhang et al., 2018) also fall within
this category, where the opponent is assumed to optimize its policy
directly. For these algorithms, the opponent is assumed to use the
gradient to update its policies. The computation of policy gradient calls
for a global Q function (Zhang et al., 2018) or centralized critic (Lowe
et al., 2017), which evaluates the quality of joint actions of all agents.
One way to construct this global Q function of the centralized critic
is to maintain a copy of other agents’ Q functions. The corresponding
information structure includes others’ actions and rewards. Another
approach is to make agents share their Q-tables or the parameters of
the neural networks that approximate Q functions (Zhang et al., 2018).
In the latter case, the information structure is the same as that in

distributed Q-learning (Kar et al., 2013).
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4.1.3. Calibrated opponents
Compared with algorithms within the category ‘‘conjectured oppo-

nents’’, algorithms from ‘‘calibrated opponents’’ move one step further:
the learner can calibrate its conjecture in order to ensure that the
conjectured model is consistent with the actual history of plays. In other
words, algorithms from this category still follow a conjecture but with
additional correction/calibration mechanisms. The learner’s goal is to
identify which behavioral model the opponent follows and detect the
switch from one model to another as quickly as possible.

To show how the calibration mechanism works in a learning pro-
cess, we discuss the MAL algorithm proposed in Conitzer and Sandholm
(2007) for dealing with learning in repeated games: AWESOME (Adapt
When Everybody is Stationary, Otherwise Move to Equilibrium). As its
name suggests, when the opponent appears to be playing stationary
strategies, AWESOME adapts to play the best response regarding these
strategies. When the opponent appears to be adapting their strategies,
AWESOME resorts to an equilibrium strategy. Hence, in the learning
process, the learner needs to form a belief about whether the opponent
is stationary or not, and constantly calls the calibration mechanism to
adjust its belief.

The information structure of AWESOME is

0
𝑖 = { , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ }, 𝑡

𝑖 = {{𝐴𝑗}𝑗∈ },

where the learner has complete knowledge about the game, which
enables it to compute the equilibrium strategy profile (𝜋∗

𝑖 , 𝜋
∗
−𝑖). This

complete domain knowledge is necessary for AWESOME, as the learner
sticks to the equilibrium strategy 𝜋∗

𝑖 when the opponent is thought
to be non-stationary. In the learning process, the agent needs a few
interactions to learn and calibrate the opponent’s model, and hence,
the learning process consists of a series of epochs. The belief remains
constant throughout the epoch, and will be adjusted at the beginning of
the next epoch. For ease of the exposition, we denote the belief in the
𝑘th epoch by 𝛾 𝑡𝑘𝑖 . Similarly, other notations introduced in Definition 2
ith the 𝑡𝑘 superscript denotes the corresponding quantities, mappings
n the 𝑘th epoch.
In AWESOME, the belief is generated according to

𝑡𝑘
𝑖 =

{

𝜋̄𝑡𝑘−1
−𝑖 , if the opponent is thought to be stationary

𝜋∗
−𝑖, otherwise

,

here 𝜋̄𝑡𝑘−1
−𝑖 is the frequency of the opponent’s play in the 𝑡𝑘−1-th

epochs. In AWESOME, the calibration mechanism is a hypothesis test
on whether the implemented actions of the opponent in the latest epoch
(𝑡𝑘−1-th epoch) are samples independently drew from the distribution
̄ 𝑡𝑘−2−𝑖 . If the opponent is stationary, there should not be much difference
between 𝜋̄𝑡𝑘−2

−𝑖 and 𝜋̄𝑡𝑘−1
−𝑖 , and AWESOME maintains the stationarity

hypothesis if the 𝓁1 norm of the different is below some threshold.

Information structures. In AWESOME, the calibration mechanism is
based on a statistical test, where the samples come from the repeated
interactions. In a similar vein, Banerjee, Liu, and How (2017) and
Hadoux, Beynier, and Weng (2014) propose RL algorithms under non-
stationary environments, where the learner relies on hypothesis testing
for detecting the change of the environment. These algorithms require
that the learner has complete knowledge about the underlying MDP,
and can fully observe the states, actions, and rewards in the learn-
ing process. Based on this information, the agent can compute the
likelihood ratios for hypothesis testing.

Even though statistical tests provide a mathematically sound ap-
proach for detecting the change of the opponent’s policy or behavioral
model, it requires much of the domain knowledge to compute the
likelihood ratio. When the learner has limited knowledge about the
environment, it may also detect the change based on its own real-
ized payoffs, making the learning process more self-dependent. The
WoLF principle is based on the following heuristic: the learner should
adapt fast when it is doing more poorly than expected. When it is
304

doing better than expected, it should be cautious by diminishing the
learning stepsize since the other players are likely to change their
policy. Compared with statistical tests in algorithms like AWESOME,
the calibration mechanism in WoLF-based algorithms only requires the
agent to observe the realized payoffs in the repeated plays. The same
intuition behind WoLF algorithms has also been explored in Marden
et al. (2009) and Young (2009), and it has been shown in these works
that under a properly designed calibration, agents’ limiting behaviors
arrive at equilibrium points.

4.1.4. Sophisticated opponent
Algorithms within the above categories above all assume that the

opponent is following a particular behavioral model, which can be a
stationary one (‘‘stationary opponents’’), a pre-defined one (‘‘conjec-
tured opponents’’), or an unknown model that needs to be learned
(‘‘calibrated opponents’’). The opponent in these models is assumed to
be adaptive but not sophisticated, meaning that it adapts its behaviors
according to a certain rule, and there is not strategic reasoning on the
opponent’s side.

In this last class, termed ‘‘sophisticated opponents’’, it is assumed
that the opponent is also reasoning about others’ decision making.
Accordingly, MAL algorithms within this class model the opponent’s
behavior and model the opponent’s strategic reasoning, which leads
to nested reasoning: the learner would ponder how the opponent is
reasoning about the learner’s decision-making.

One illustrative example of algorithms within this category is the
sophisticated experience-weighted attraction (s-EWA) (Camerer, Ho, &
Chong, 2002), where two players repeatedly play the same normal-form
game, with the following information structure

0
𝑖 = { , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ }, 𝑡

𝑖 = {{𝐴𝑡
𝑗}𝑗∈ }.

With a slight abuse of notations, in s-EWA, the learner’s belief of the
opponent’s policy is given by

𝛾 𝑡𝑖 = 𝛤 𝑡
𝑖 (

0∶𝑡
𝑖 ) = 𝛤 𝑡

𝑖 (𝛾
𝑡
−𝑖), (5)

where 𝛾 𝑡−𝑖 denotes the opponent’s belief of the learner’s policy at time
𝑡. Similarly, we have

𝛾 𝑡−𝑖 = 𝛤 𝑡
−𝑖(

0∶𝑡
−𝑖 ) = 𝛤 𝑡

−𝑖(𝛾𝑖). (6)

Since agents share the same domain knowledge and online obser-
vations, 0∶𝑡

𝑖 = 0∶𝑡
−𝑖 , combining (5) and (6) leads to the following

fixed-point characterization of 𝛾 𝑡𝑖

𝛾 𝑡𝑖 = 𝛤 𝑡
𝑖 (𝛾

𝑡
−𝑖) = 𝛤 𝑡

𝑖 ◦𝛤
𝑡
−𝑖(𝛾

𝑡
𝑖 ), (7)

based on which, the learner takes the best response

𝜋𝑡
𝑖 = 𝛱 𝑡

𝑖 (
0∶𝑡
𝑖 , 𝛾 𝑡𝑖 ) = argmax

𝑥∈𝛥(𝑖)
𝑅𝑖(𝑥, 𝛾 𝑡𝑖 ).

Since s-EWA assumes that sophisticated agents believe others are
sophisticated, and those others think others are sophisticated, so on so
forth, it creates a whirlpool of recursive thinking as demonstrated in
(7), which leads to equilibrium concepts. It has been shown in Camerer
et al. (2002) that when agents are all sophisticated and believe others
are sophisticated, the learning outcome is a Nash equilibrium.

Information structures. Different from previously discussed information
structures, in s-EWA, the domain knowledge includes the reward func-
tions, and the online observations are joint actions of all agents at
each time, which are common information. This common information
provides agents with the same jump-off point when carrying out the
iterative reasoning process, simplifying the theoretical analysis. When
agents are allowed to observe private information, the signaling effect
of their actions must be taken into account, and the resulting belief
hierarchy is quite challenging when developing the algorithm (Ouyang
et al., 2016).

Since research works on MAL within this category are relatively

scarce, we comment on some models and related information structures
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considered in planning problems. The level-k and cognitive hierar-
chy models (Camerer, Ho, & Chong, 2004; Costa-Gomes, Crawford, &
Broseta, 2001) are mainly applied to analyze the iterative reasoning
process. The model involves an initial set of zero-level strategies,
usually uniform distributions over the action spaces, representing non-
strategic behaviors. The next-level strategy is essentially the best re-
sponse against the current level. Using the language of the belief
generation in Definition 2, the learner’s belief is produced by (5), where
the opponent’s belief about the learner 𝛾 𝑡−𝑖 depends on which level the
opponent believes the learner is in.

Inspired by the cognitive hierarchy, Gmytrasiewicz and Doshi (2005)
propose a formal sequential decision-making model called interac-
tive POMDP (I-POMDP), which considers what an agent knows and
believes about what other agents know and believe. In this model,
the state variable incorporates models of how agents reason, which
is unobservable to all. The agent’s belief of the true state tells how
the agent believes another agent reasons. Parameterized I-POMDP
(Wunder, Kaisers, Yaros, & Littman, 2011) is more closely related to
level-k theory (Costa-Gomes et al., 2001). The idea is to compute a
policy that maximizes the rewards against the distribution of agents
over previous levels or selects representative agents from these levels,
by solving the POMDP formed by them.

4.2. Policy generation

In our previous discussion, we have mentioned how the learner
generates its policy 𝜋𝑡

𝑖 based on the belief 𝛾
𝑡
𝑖 . In this subsection, a more

detailed treatment on policy generation is provided. We also summarize
policy generation approaches primarily used in the literature.

Best response. The most direct way of generating policies is to best
respond to 𝛾 𝑡𝑖 which is the opponent’s belief generated by the learner.
athematically speaking, the best response policy is given by

𝑡
𝑖 = argmax

𝑥∈𝛥(𝑖)
𝑅𝑖(𝑥, 𝛾 𝑡𝑖 ), (BR)

here 𝑅𝑖 denotes the reward function. 𝑅𝑖 can also be replaced by its
stimate, such as the Q function. MAL algorithms, such as fictitious play
Brown, 1951) and its variants (Eksin & Ribeiro, 2017; Swenson et al.,
017), utilize (BR) for producing 𝜋𝑡

𝑖 . When other players are believed
o play the equilibrium strategies, the best response to these strategies
lso leads to an equilibrium strategy for the learner. In the sense, value-
ased MARL algorithms, such as minmax Q-learning (Littman, 1994),
ash Q-learning (Hu & Wellman, 2003) and Correlated Q-learning
Greenwald & Hall, 2003), also relies on the best response idea.

moothed best response. Since the best response mapping in (BR) al-
ays seeks the maximum, the resulting policy may be myopic and
xploitable in Li et al. (2021). In order to balance the exploitation and
xploration, a regularization term can be added in (BR) so that the
robability of choosing suboptimal actions is greater than zero. This
egularized best response is referred to as the smoothed best response,
nd mathematically, it is defined as

𝑡
𝑖 = argmax

𝑥∈𝛥(𝑖)
𝑅𝑖(𝑥, 𝛾 𝑡𝑖 ) + 𝜖ℎ(𝑥), (SBR)

here ℎ(⋅) is the regularizer with strong convexity and 𝜖 is called the
xploration parameter, determining how likely the suboptimal actions
ill be chosen. When ℎ(𝑥) is the entropy function, the resulting policy
s called softmax policy (Neu, Jonsson, & Gómez, 2017) or Boltzmann–
ibbs policy (Zhu et al., 2010). We refer the reader to Li et al.
2021) for more details on the selection of the regularizer and the
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xploitation–exploration trade-off. t
radient response. Both the best response (BR) and the smoothed best
esponse work for learning with finite actions. When dealing with
nfinite spaces, for example, the policy space 𝛥(𝑖), the agent may rely
n the gradient information to search better policies.

𝑡
𝑖 = 𝜋𝑡−1

𝑖 + 𝜂𝑖
𝜕𝑅𝑖(𝜋𝑡−1

𝑖 , 𝛾 𝑡−1𝑖 )
𝜕𝜋𝑖

, (GR)

where 𝜂𝑖 is the learning rate for the learner. When the gradient
𝜕𝑅𝑖(𝜋𝑡−1𝑖 ,𝛾 𝑡−1𝑖 )

𝜕𝜋𝑖
can be estimated from collected samples, the gradient

response does not directly rely on the reward function, leading to a
policy-based method in MAL. The gradient response (GR) has been
idely applied in learning in repeated games, such as WoLF-based al-
orithms (Bowling, 2004; Bowling & Veloso, 2002), as well as learning
n Markov games, such as policy gradients (Silver et al., 2014) and
ctor–critic methods (Foerster et al., 2018; Lowe et al., 2017).

. Discussions

Following the four categorizations of MAL algorithms, we discuss
heir strengths and limitations regarding the theoretical analysis and
ractical implementations. A short summary of our discussion is pre-
ented in Table 2.

.1. Strengths and limitations

The discussion in this subsection is not meant to be comprehensive
ince new developments and interpretations are being brought up in
his burgeoning research field. Instead, we focus on the following
wo aspects when discussing the strengths and limitations of algo-
ithms from different categories. We first comment on the information
tructure of MAL algorithms from the introduced categories, which
etermines the applicability of these algorithms. Then, we discuss
heoretical guarantees that can be obtained for algorithms within these
ategories.

tationary Opponent. Because of the simple assumption about the op-
onent, algorithms within this category generally adopt simple infor-
ation structures, and most of them do not require extra information
n addition to action observations from the opponent. Besides, under
his assumption, the opponent can be viewed as a part of the learning
nvironment, essentially stationary, from the learner’s perspective. Un-
er this assumption, single-agent reinforcement learning methods can
e easily extended to MARL (Hernandez-Leal et al., 2017).
Convergence to equilibrium or the best response policy has been

roven in particular scenarios. For example, when agents all use the
ame fictitious play in repeated games or Markov games with cer-
ain payoff structures (Leslie et al., 2020; Sayin, Parise, & Ozdaglar,
020), the resulting beliefs converge to a Nash equilibrium. However,
n general, theoretical guarantees do not hold when the stationary
pponent assumption fails, which has been reported in the literature
s a motivating example of the non-stationarity issue (Littman, 1994).
he use of algorithms within this class can be considered when no extra
nformation can be obtained from the environment.

onjecture Opponent. As a slightly more advanced model than ‘‘Sta-
ionary Opponent’’, algorithms within the category ‘‘Conjectured Op-
onent’’ may require more than just action observations, depending
n the specific model the learner applies. Similar to our argument in
‘Stationary Opponent’’, when the opponent’s behavior pattern is appro-
riately modeled, theoretical results, especially convergence analysis, is
o longer a daunting task, given fruitful tools such as stochastic approx-
mation (Benaïm, Hofbauer, & Sorin, 2005) and online convex/ linear
ptimization (Shalev-Shwartz, 2011). The majority of MAL research
orks focus on this model.
Thanks to the restrictive assumption of the opponent, algorithms

ithin the first two classes under certain regularity conditions converge

o stationary policies when dealing with MAL in RG or MG (Zhang et al.,
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2019). These obtained stationary policies are best-response policies for
the opponent’s model, which is the best the learner can hope in the
face of other adaptive agents in the multi-agent system. Since adopting
different opponent models leads to different interpretations of the best
response policy, algorithms within this ‘‘Conjectured Opponent’’ can
be leveraged to search policies with different properties. For example,
when the opponent is assumed to be the worst-case as assumed in min-
imax Q-learning (Littman, 1994), the obtained policy can be regarded
s a robust solution to the MAL problem. The idea of robustness has
een explored in many engineering applications (Marden & Shamma,
018), especially in security domains (Zhu & Başar, 2013, 2015).
One limitation of this class is the constrained adaptability of these

lgorithms. The successful implementation of algorithms within this
lass requires that the learner is aware of the decision-making scheme
mployed by the opponent. Even though the knowledge of others’
ecision-making schemes is not mandatory when rolling out the al-
orithm, when the conjecture is wrong, the failure of achieving high
ewards or other related criteria in the learning process is not surpris-
ng. Considering its strengths and limitations, algorithms within this
lass can be utilized when the learner has access to the opponent’s
earning scheme or some information regarding its behavioral pattern.
ore importantly, the opponent’s decision-making can be designed so
hat the resulting best response policy enjoys desired properties, and
hen algorithms can be considered to search the desired policy.

alibrated Opponent. The model ‘‘Calibrated Opponent’’ is more ad-
anced than the previous models, and algorithms within this class do
ot require a strong prior assumption about the opponent’s learning
rocess. Instead, the learner is directed to construct a model of the op-
onent’s decision-making during the learning, which brings algorithms
o a broader audience. It should be noted that due to the calibration
echanism, the constructed model may be time-varying, depending on
he learner’s observations of the opponent as well as the opponent’s
nherent decision-making.
On the one hand, the calibration mechanism makes the learner less

xploitable (Bowling, 2004; Conitzer & Sandholm, 2007), as it con-
stantly corrects its constructed model based on the online observations.
As we have illustrated in the previous section, the idea of quickest
change detection enables the learner to adjust the constructed model
swiftly once there is a misalignment between what the opponent is
projected to do and what it really did. The adjustment of the opponent
model further leads to the adaption of learner’s policies, which is
designed explicitly for the adjusted opponent model. In other words,
the calibration mechanism enables the learner to do the right thing
at the right time. Another advantage of these algorithms is that the
learned model of the opponent can be reused if the opponent returns
to the same strategy. The idea of reusing learned models or knowledge
is closely related to transfer learning (Zhang & Bareinboim, 2017) or
causal reinforcement learning (Bannon et al., 2020; Buesing et al.,
2018), where information from previous interactions can be reused in
order to reduce the sample complexity. We will include more details
on this topic when discussing future directions.

Despite the strength, the limitations of these algorithms are also
due to the calibration mechanism. First, the learner requires sufficient
rounds of interactions to learn and construct the opponent’s model,
and the associated sample complexity can be prohibitive. Second,
with the calibration mechanism, if the learner constantly calibrates
the opponent’s model, equilibrium convergence analysis can be quite
challenging. In general, for algorithms within this class, the theoretical
analysis is more involved, and for the most of existing works, only
performance guarantees are available (Marden & Shamma, 2018). In
the literature, the most used notion is regret, which is the gap between
the average performance under current policies and the best policy
in hindsight. When the regret is diminishing or upper bounded, these
algorithms achieve no-regret or low regret. The idea of regret can be
further extended under different circumstances. Weighing its strengths
and limitations, we suggest that algorithms from this category can
be applied to learn the opponent’s model when the learner possesses
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limited domain knowledge.
Sophisticated Opponent. Distinct from all other classes, the class ‘‘So-
phisticated Opponent’’ is more related to behavioral game theory
(Camerer, 2011; Wright & Leyton-Brown, 2010), where players perform
complex strategic reasoning. Compared with other classes, research
on this type of learning is still in its infancy, and algorithms within
this class mostly fall within the realm of behavioral economics and
psychological studies. One strength of these algorithms is that they are
suitable for predicting agents’ transient behavioral or strategic moves in
a short period. It is because agents determine their policy by reasoning
how others may react instead of modeling and estimating the opponent,
and hence, agents requires less rounds of interactions. However, the
process of strategic reasoning necessitates high computational costs to
solve them (Camerer et al., 2004). Even though in simple examples
(Camerer et al., 2002), theoretically analyzing the learning outcomes
is viable, producing interesting interpretations of concepts in behav-
ioral game theory (Camerer, 2011; Wright & Leyton-Brown, 2010),
analytical results are scarce in this field of study.

5.2. The value of information

According to the definition of the information structure in Defini-
ion 2, 0

𝑖 and 𝑡
𝑖 are subsets of the complete domain knowledge  and

he set of variables {𝑆𝑡, {𝑀 𝑡
𝑗}𝑗∈ , {𝐴𝑡−1

𝑗 }𝑗∈ , {𝑅𝑡−1
𝑗 }𝑗∈ }, respectively.

herefore, we can use the notion of inclusion relation in set theory to
ompare information structures of different agents.

efinition 5 (Information Superiority, Inferiority and Equality). In a MAL
rocess with a horizon 𝑇 , one agent 𝑖 is said to be informationally
uperior to another agent 𝑗, if the information structure of agent 𝑖 at
ime 𝑡 is a proper superset of that of agent 𝑗, for 𝑡 ∈ {0, 1,… , 𝑇 }, i.e.,
𝑡
𝑗 ⊊ 𝑡

𝑖 , for all 𝑡 ∈ {0, 1,… , 𝑇 }.

In this case, agent 𝑗 is said to be informationally inferior to agent 𝑖.
Furthermore, agent 𝑖 is said to informationally equal to agent 𝑗, if the
nformation structures of the two agents coincide.

It is natural to conjecture that information superiority leads to
ore accurate beliefs about the opponent, and hence, results in higher
ewards in the learning process. For example, in MARL, having access to
veryone’s actions and realized payoffs enables the learner to construct
tables of other agents, and further to learn its equilibrium policy

Greenwald & Hall, 2003; Hu & Wellman, 2003). By contrast, the
umerical results in Littman (1994) demonstrate that unobservability
of the opponent’s realized payoffs renders Q-learning ineffective when
facing multiple agents.

However, by the following example, we argue that this conjecture
does not hold for every situation. It is likely that acquiring more infor-
mation may lead to worse outcomes, which we termed as Information
Paradox.

Example 1 (Information Paradox). We consider a repeated zero-sum
game between two players, who have the same action space 1 = 2 =
[−1, 1]. The reward functions are defined as 𝑅1(𝑎1, 𝑎2) = −𝑅2(𝑎1, 𝑎2) =
−𝑎1 ⋅ 𝑎2. The player 1 is regarded as the learner who adopts fictitious
play, whereas the player 2 is unintelligent, and use the following policy

𝜋𝑡
2 =

⎧

⎪

⎨

⎪

⎩

−0.5, 𝑡 = 1,

1, 𝑡 is even,
−1, 𝑡 is odd and greater than 1.

In the repeated play, if the learner utilizes fictitious play with 𝑎11 = 0
as the initialization, then the learner’s action 𝑎𝑡𝑖 and the immediate
reward 𝑅1(𝑎𝑡1, 𝑎

𝑡
2), as well as the cumulative reward

∑𝑡
𝑘=1 𝑅1(𝑎𝑘1 , 𝑎

𝑘
2) can

be summarized in Table 1. As shown in Table 1, under the information
structure 0

1 = { , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ }, 𝑡
𝑖 = {{𝐴𝑡

𝑗}𝑗∈ }, 𝑡 ≥ 1, the
cumulative rewards for the learner tends to −∞, implying that the

learner has been exploited by the unintelligent opponent.
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Table 1
A summary of the repeated play. Even facing an unintelligent opponent, the learner
fails to form a correct belief about its opponent and keeps being exploited by the
opponent.
Round Action Immediate reward Cumulative reward

𝑡 = 1 𝑎11 = 0 0 0

𝑡 = 2 𝑎21 = 1 −1 −1

𝑡 = 3 𝑎31 = −1 −1 −2

𝑡 = 4 𝑎41 = 1 −1 −3

⋮ ⋮ ⋮ ⋮
𝑡 = 2𝑘 − 1 𝑎2𝑘−11 = −1 −1 −2𝑘 + 2

𝑡 = 2𝑘 𝑎2𝑘1 =1 −1 −2𝑘 + 1
⋮ ⋮ ⋮ ⋮

On the contrary, let 𝑡
𝑖 be the empty set for all 𝑡 ≥ 1, then the learner

is in fact better off under this new information structure, denoted by
̃𝑡
𝑖 . In this case, the learner is only aware of the game and cannot
observe anything during the learning. It may use its security strategy
(maxmin strategy or worst-case strategy) (Zamir, 2009), which leads to
a bounded cumulative reward.

The information paradox example provides a counterexample to the
aforementioned conjecture that information superiority leads to better
outcomes in learning. The counterexample necessitates the introduction
of a metric, termed the value of information (VoI), which quantitatively
evaluates the impact of the information structures on MAL algorithms.
To formally define the value of information, we introduce the following
notations. Let  be a given opponent model selected from the
our categories: ‘‘stationary opponents’’, ‘‘conjectured opponents’’, ‘‘cal-
brated opponents’’ and ‘‘sophisticated opponents’’. Denote 𝑅̄(0∶𝑇

𝑖 )
the time-averaged expected reward of agent 𝑖 under the information
structure 0∶𝑇

𝑖 using the model . Accordingly, we denote 𝑅̄() the
time-averaged expected reward of the optimal solution using planning
methods, e.g., linear programming for solving Markov games (Filar &
Vrieze, 2012).  is the MASDM problem defined in Definition 1.

Definition 6 (The Value of Information). For a given MASDM problem
, when agent 𝑖 applies the model , the value of the information
tructure 0∶𝑇

𝑖 is defined as

oI(0∶𝑇
𝑖 ) ∶=

𝑅̄(0∶𝑇
𝑖 )

𝑅̄()
.

When analyzing the difference brought up by different information
tructures in the same MAL problem, we can consider computing the
atio of one information structure over another. In the information
aradox example, the optimal policy for the learner is

𝑡
1 =

{

−1, 𝑡 is even,
1, 𝑡 is odd.

he time-average reward under this policy is 𝑅̄() = 1, as 𝑇 goes
to infinity. Under the original information structure 0∶𝑇

𝑖 , we have
𝑅̄(0∶𝑇

𝑖 ) = −𝑇 ∕2. While the average reward under ̃0∶𝑇
𝑖 is in fact

a random variable, which depends on the fixed policy adopted by the
learner. For simplicity, we assume the policy is the uniform distribution
over [−1, 1], then we obtain the expected reward is 𝑅̄(̃0∶𝑇

𝑖 ) = 0.
Therefore, VoI(0∶𝑇

𝑖 ) = −𝑇 ∕2, VoI(̃0∶𝑇
𝑖 ) = 0, and

VoI(0∶𝑇
𝑖 )

VoI(̃0∶𝑇
𝑖 )

= −∞,

implying that the original information structure deteriorates the learn-
ing, even though it enjoys information superiority.

Regarding the non-stationarity issue in MAL, we point out that the
learning process may not be convergent, nevertheless, 𝑅̄(0∶𝑇

𝑖 ) can
e replaced by the upper or lower bounds of the averaged rewards.
ur argument above still applies to non-convergent learning processes.
307
Finally, it should be noted that in Definition 6, the performance of
the optimal solution ̄ is chosen as the baseline, which bridge the
gap between the studies of learning and planning. Direct comparisons
can be made between learning methods and planning methods. Even
though many MAL works focus on convergence to certain equilibrium
point, it is reasonable to expect that learner may even do better than
simply employing the equilibrium strategy. For example, when it is
possible for it to exploit other irrational agents, the learner may achieve
more than the equilibrium payoffs.

5.3. Future directions

As we have mentioned at the beginning of this paper, as an ac-
tive research area, MAL is still in its infancy, and there are many
open questions. In this section, we present several promising lines of
research.

5.3.1. Design of information structures
The Information Paradox in Example 1 indicates that the relationship

etween information superiority and agents’ learning performance is
ot monotonic: more information does not necessarily leads to better
utcome. The root cause of this non-monotonicity is the mismatch
etween the information structure and the belief and policy generation
dopted by the learner. By wrongly assuming that the opponent is
tationary, the learner makes poor predictions about the opponent’s
lay, and then best responds to wrong beliefs, which resulting in itself
eing exploited by the unintelligent opponent.
Considering the three key components of MAL, i.e., information

tructures, belief and policy generation, there are three kinds of reme-
ies to free the learner from being exploited. The first one is to find
n information structure that fits the belief and policy generation.
s shown in Example 1, the learner gets better off by not observing
nything, if its belief generation follows ‘‘stationary opponent’’ model.
he second approach is to adjust the learner’s belief generation that
llows for a consistent conjecture on opponent’s non-stationary behav-
or. For example, if the learner adopts AWESOME learning (Conitzer
Sandholm, 2007) discussed in Section 4.1.3, it can detect the non-

tationarity of opponent’s strategy within one epoch, and hence, resort
o equilibrium strategy, i.e., maxmin strategy, achieving a lower bound
or possible loss. Finally, for the policy generation, a simple switch
rom best response to smoothed best response (see Section 4.2) leads
o a policy generation called follow-the-regularized-leader, which is
xtensively studied in MAB problems (see Section 2), and is shown to
chieve no-regret performance asymptotically (Shalev-Shwartz, 2011).
From the above discussion, we can see that the success of a MAL al-

orithm rests on the proper alignment of information structures, belief
eneration and policy generation. The existing literature has mostly fo-
uses on designing belief and policy generation under a given informa-
ion structure, such as learning under partial observations (Hernandez-
eal et al., 2019; Kaelbling et al., 1998) and coordinated learning over
networks (Li et al., 2021; Liu et al., 2020; Marden & Shamma, 2018;
Zhu, Tembine, & Başar, 2011).

In contrast, the design of information structures has remained
largely an uncharted territory. One goal of the design is to ensure the
compatibility of the information structure with respect to the agent’s
belief and policy generation. With a proper design of information
structures, each agent is enabled to make the most of its observations,
and learns to adapt to others’ non-stationary behaviors efficiently. In
addition to efficient learning with reasonable sample and computa-
tion complexity, the goal of the design also includes equipping the
agents with informational adaptability and resiliency, when the MAS
is deployed in a dynamic, uncertain and adversarial environment.
Specifically, following the same spirit of meta learning (Finn, Abbeel,
& Levine, 2017), by exposing agents to a family of properly designed
information structures, one can endow these learning agents with

informational adaptability. In this case, agents are not subject to any
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prescribed information structure, instead, they can quickly adapt to a
collection of closely related information structures in an online manner
through the interactions with other agents and the environment. This
informational adaptability makes the MAL resilient-by-design: when
part of the agents are compromised by the adversary, the rest can adapt
to the new information structure, and reconfigure their learning based
on the type of agents that they interact with. In this sense, a proper
design of information structures can increase the composability and
modularity of MAL, leading to a mosaic operation of MAS (Chen & Zhu,
2019b).

5.3.2. Heterogeneity in MAL
In our presentation of MAL algorithms, to simplify our argument,

we mainly address two-player cases. However, from the definition of
MAL in Definition 2, a MAL algorithm is said to be comprised of
three components: the information structure 𝑡

𝑖 , the belief generation
𝛤 𝑡
𝑖 and the policy generation 𝛱 𝑡

𝑖 , all of which are player-dependent. In
other words, it is possible to encounter several agents with different
learning characteristics, which include different information structures
as well as various belief and policy generation processes. The fact
that agents within the same multi-agent system may possess distinct
learning capabilities are referred to as the heterogeneity of the system.

The heterogeneity is one of the complicating factors in developing
and analyzing MAL algorithms. This heterogeneity is still theoreti-
cally manageable for algorithms within ‘‘calibrated opponent’’ and
‘‘sophisticate opponent’’, as these algorithms do not require too much
information regarding the opponent’s decision-making. However, it
should be noted that the size of the sample and computation complexity
due to the heterogeneity may render algorithms practically infeasi-
ble when it comes to the implementation of these algorithms. This
complexity issue will be further discussed in Section 5.3.3.

On the other hand, the heterogeneity issue brings up great chal-
lenges when using algorithms within the ‘‘Stationary Opponent’’ and
the ‘‘Conjecture Opponent’’. First, these algorithms heavily rely on
domain knowledge, for example, the opponent’s behavioral patterns.
However, in a heterogeneous system, it is not reasonable to assume
all agents are stationary opponents or follow the same conjectured
model, limiting the application of these algorithms. Second, even if the
assumption holds, it is much more complicated to study the learner’s
limiting behavior and the stabilized system outcome. This is because
the resulting dynamical systems of the learning schemes are much more
involved, and classical analyzing techniques, such as certain Lyapunov
functions in game-theoretic learning are not readily available. For
example, the convergence of fictitious play in network systems often
requires the introduction of an additional inertia term (Swenson et al.,
2017) and special game structures (Eksin & Ribeiro, 2017). For more
detailed discussions on heterogeneous learning, we refer to the reader
to Zhu, Tembine, and Basar (2013).

One way to cope with such a complex learning environment is
to characterize them across different dimensions. For example, agents
having the same reward structure can be labeled as one type, or agents
with the same information structure can be viewed as a team (Sunehag
et al., 2018; Tang et al., 2021). It may also be possible that agents can
be classified by the learning algorithms they use (Tardos et al., 2018).
Once agents are labeled according to some rules, each group of agents
can be viewed of the same type, where types are distributed according
to a prior distribution. Then, each type is treated as a new decision-
maker, and our proposed MAL framework still applies, which leads to
population-based MAL algorithms (Bard, Nicholas, Szepesvári, & Bowl-
ing, 2015; Tembine et al., 2014). Besides this population approach, a
multi-scale or multi-resolution approach is also worth exploring. The
multi-scale idea is intuitive: all agents are organized into different
groups, and the MAL problem is first solved at the group level, which
serves as an initialization for the search of the individual-level solution
(Bouvrie & Maggioni, 2012; Li & Zhu, 2019).
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5.3.3. The challenge of scalability
To handle non-stationarity, following our characterization of MAL

algorithms, each agent needs to consider the decision-making of others.
Depending on the specific model the agent utilizes, it may require in-
formation regarding joint actions, rewards, and messages of all agents,
whose dimension increases exponentially with the number of agents.
This is also referred to as the combinatorial nature of MAL (Zhang
et al., 2019), another issue in MAL studies, and can become even more
challenging when considering heterogeneity. The real-world applica-
tions of multi-agent systems, such as infrastructure networks (Chen
& Zhu, 2019a), usually include complex underlying topologies and
heterogeneous agents, which require a blend of multiple MAL learning
schemes, resulting in prohibitive sample complexity and computation
complexity. The scalability issue used to and continues to be one of
the primary factors that prevent MAL from being massively deployed
in reality.

As a long-standing challenge in MAL and even in broader artifi-
cial intelligence research, the scalability issue receives much attention
from the community, and there are many possible remedies. The most
straightforward one is to resort to function approximation (Geram-
ifard et al., 2013), especially deep neural networks (LeCun et al.,
2015), which has achieved many successes in past decades (Brown
& Sandholm, 2017; Lanctot et al., 2019; Mnih et al., 2015; Moravík
t al., 2017; Silver et al., 2014). However, the theoretical analysis of
AL with deep neural networks is almost uncharted territory due to
he limited understanding of deep learning theory. In addition, the
nterdependence between deep learning and decision-making further
omplicates the matter: poor approximation leads to poor decisions,
hich may further affect the representation learning. It remains un-
lear how the representation learning is connected to agents’ decision-
aking, and the mutual influence between function approximation and
ecision-making is quite difficult to quantify.
Another approach is to leverage the inherent structure of the en-

ironment. For example, the environment can be simplified if there
xist factorized structures of the reward functions and/or transition
ynamics with respect to the action/state dependence (Guestrin, Koller,
Parr, 2002). The resulting problem is simpler than the original one,
hich helps reduce the computation complexity. We refer the reader
o Guestrin, Koller, and Parr (2001) and Kok and Vlassis (2004) for the
riginal heuristic ideas and (Rashid et al., 2018; Sunehag et al., 2018)
or recent progress. However, this factorized structure does not solve
he root of the scalability problem.
The third approach is the idea of information reuse and knowledge

ransfer we have mentioned in the previous subsection. The specific
xamples include batch reinforcement learning (Bannon et al., 2020)
nd causal reinforcement learning (Bannon et al., 2020; Buesing et al.,
2018; Zhang & Bareinboim, 2017), where past experiences are reused
to model the current situations. By leveraging the learned knowledge,
agents do not need too many observations/samples to rebuild the model
from scratch. We refer the reader to Bannon et al. (2020) for a review
on these topics.

5.3.4. Novel learning objectives
Different from single-agent learning, where the goal is to maximize

the long-term rewards, the learning objectives of MAL can be vague.
This unclarity of what to be learned in MAL is the fundamental question
in many early MAL works, as argued in Shoham et al. (2007).

The most common goal in MAL is still related to rewards maximiza-
tion. The idea is to achieve optimality for multiple agents, which is
described by some equilibrium. For example, if the algorithm finally
converges to Nash equilibrium, no agent will deviate from the learned
policy, leading to a stable point of the learning dynamics. This is un-
doubtedly a proper solution concept in game theory, assuming that the
agents are all perfectly rational. In addition to the equilibrium concept,
the notion of regret captures agents’ rationality from another angle.
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As we have mentioned before, regret measures the algorithm’s perfor-
mance compared with the best hindsight static strategy. Compared with
the equilibrium concept, regret is a less restrictive criterion: conver-
gence to the equilibrium indicates that the MAL algorithm of question
achieves the optimality with other agents’ presence. In contrast, con-
vergence to a zero regret implies that the agent is not exploited by
others (Lattimore & Szepesvári, 2020). Naturally, in certain games, non-
xploitation leads to the equilibria (Xu & Zhao, 2020). In this case,
algorithms asymptotically achieving zero average regret guarantees the
convergence to the equilibria.

However, the two notions introduced above are related to the long-
term behaviors of the agents within the multi-agent system. From the
system viewpoint, MAL algorithms that aim at convergence to the equi-
librium or the no-regret policy, are more concerned with the stabilized
system-level performance than with the ongoing process of learning.
However, as argued in Hernandez-Leal et al. (2019), the transient
behaviors of learning agents also matters, especially in some safety-
critical MAL applications, such as autonomous driving (Shalev-Shwartz,
Shammah, & Shashua, 2016) and security-critical cyber–physical sys-
tems (Zhu & Başar, 2015). In these applications, the movements of
the learning agents must be constrained due to the safety requirement.
Hence, in these applications, the performance guarantee of transient
behaviors is equally important as that of limiting behaviors. Another
motivation behind this transient performance guarantee is that in some
MAL problems in the security domain (Zhu & Başar, 2015), the inter-
actions are often of limited horizons, which renders the convergence
analysis infeasible. To sum up, in addition to current long-term perfor-
mance criteria, there is a call for new learning objectives that account
for the desired transient behaviors in MAL. Even though previous works
consider combining constrained dynamic programming (Altman, 1999;
Borkar, 2005) with existing MAL frameworks, the area still remains
open for future investigation.

In addition to the goals concerning optimizing the return, sev-
eral other goals have also attracted increasing attention from MAL
researchers and practitioners. For example, Foerster, Assael, Freitas,
and Whiteson (2016b) and Kim et al. (2019) have investigated learn-
ing to communicate, where a communication protocol is learned to
achieve better coordination. Recent studies on the communication effi-
ciency of MAL are also inspired by the idea that better communication
leads to better coordination (Kim, Cho and Sung, 2019; Liu et al.,
2020; Ren, Haupt, & Guo, 2021) . Other important objectives revolve
around the robustness and resilience of MAL, and there are some
attempts on developing MAL algorithms for robustly learning with
either malicious/adversarial or failed/dysfunctional learning agents
(Li et al., 2019). Some of the existing works concerning the goals
mentioned above provide only empirical studies, leaving plenty of room
for theoretical investigation.

6. MAL in security applications

In this section, we review some MAL applications in the security do-
main. We first demonstrate that our proposed MAL framework provides
a mathematical toolset to analyze the learning processes considered
in these security applications, and then we discuss the importance of
information structures in security problems

Most security research and applications focus on intelligent attacks
because they can cause the worst damage to the target. In general,
many security problems can be formulated as a two-agent learning
problem with one attacker and one defender. It can be easily extended
to multi-agent cases if there are multiple attackers and defenders.
During the attack–defense process, the attacker and defender learn
the optimal attack and defense strategies from their observations and
eventually reach an equilibrium solution, where the attacker and the
defender cannot perform better by deviating the current attack/defense
309

strategy. d
When applying learning to security applications, the information
structure is of vital importance because it can affect security perfor-
mance. In most cases, intelligent attackers have information advantages
over defenders, which means attackers’ information such as the type
and relative parameters is not pre-known for security defenders. How-
ever, the information structure determines the defender’s perception
of its surroundings, as well as its awareness of the potential security
threats. Therefore, to overcome the information restrictions and per-
form better defense, the defender can use learning to gather the threat
information and to model the attacker.3 We elaborate on the impact
of the information structure in security applications from the following
two perspectives.

First, information structures can affect the learning paradigms
(Huang & Zhu, 2020b). For example, suppose that the defender is
only uncertain of some parameters about the attacker’s strategies.
In this case, the defender can use Bayesian learning to estimate the
parameter from the past information for better defense (Huang & Zhu,
2020a). If both the attacker and defender observe perturbed rewards of
each other but share no information, then distributed learning is more
suitable for learning to defend (Zhu & Başar, 2013). If both attacker
and defender face an unknown environment, reinforcement learning can
be applied to learn the optimal attack/defense policy (Huang & Zhu,
2019a, 2019b). We can also observe that the complexity of information
structures is related to the complexity of the learning algorithm. For
example, Bayesian learning is enough to handle the parameter esti-
mation problems, and RL is unnecessary. As the information structure
of interest becomes simpler, we need more sophisticated learning
algorithms to learn good attack/defense strategies. This perspective
confirms the value and the importance of information structures we
discussed before.

Second, a slight change in the information structure may lead to
security vulnerability or even system failure. For security applications,
the performance of the security strategy can be measured by the value
of the objective function and the convergence of the learning algorithm.
For example, Huang and Zhu (2020a) investigates the Advanced Per-
sistent Threats (ATP) in cyber–physical systems with one attacker and
one defender. Due to the information advantage, the defender does not
know the type of the attacker and needs to learn from observations for
better defense. Three different ISs are used for defense strategy learn-
ing: complete information for both agents, incomplete information for
the defender only, and incomplete information for both agents. From
their case study, we can observe that the complete information yields
a much better utility for the defender than two incomplete information
cases, which means the complete information can best protect systems
from APT attacks. Accordingly, the complete information yields the
lowest utility for the attacker, which means that the system is the
least likely to be compromised. In Nguyen, Alpcan, and Basar (2009),
the convergence of successful defense strategy relies on the defender’s
information structure. Additional perturbation or missing information
may lead to convergence failure, which means the defender cannot
defend the target satisfactorily, causing security vulnerability.

6.1. An illustrative example

We take the Moving Target Defense (MTD) problem in networks
(for example, IoT networks) as an example to better illustrate how our
framework analyzes the learning for security applications.

MTD is a proactive defense mechanism that allows the defender
to dynamically change the security strategies to limit the exposure of
network vulnerabilities by increasing the attack cost (Jajodia, Ghosh,
Swarup, Wang, & Wang, 2011). We adopt the setting in Zhu and Başar
2013) for MDT, where the defender has to protect a multi-layer system

3 The same argument applies to the attacker if he also needs to learn the
efender’s behavior.
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Table 2
A summary of M L algorithms from the four categories discussed in this paper. Related characteristics of these algorithms are provided in this summary, such as contexts where
they are applied, information structures, as well as the corresponding theoretical guarantees.
Category Algorithms Contexts Information structures Theoretical guarantees

Domain knowledge Online observability

Stationary Opponents

Fictitious Play (FP) (Brown, 1951) RG  , {𝑗}𝑗∈ , 𝑅𝑖 {𝐴𝑗}𝑗∈ NEa
Joint action learner (Claus & Boutilier,
1998)

RG  , {𝑗}𝑗∈ {𝐴𝑗}𝑗∈ NE

Two-timescale Q-learning (Leslie &
Collins, 2003)

RG 𝑖 𝐴𝑖 , 𝑅𝑖 NE

Individual Q-learning (Leslie & Collins,
2005)

RG 𝑖 𝐴𝑖 , 𝑅𝑖 NE

Distributed FP (Eksin & Ribeiro, 2017) RG  , {𝑖}𝑖∈ , 𝑅𝑖 {𝐴𝑗}𝑗∈ (𝑖) , {𝑀𝑗}𝑗∈ (𝑖) NE
Distributed Best Response (BR)(Swenson
et al., 2017)

RG  , {𝑖}𝑖∈ {𝐴𝑗}𝑗∈ (𝑖) , {𝑀𝑗}𝑗∈ (𝑖) , 𝑅𝑖 NE

FP in MG (Sayin et al., 2020) MG  , , {𝑗}𝑗∈ ,  , 𝑅𝑖 𝑆, {𝐴𝑗}𝑗∈ , 𝑅𝑖 NE
BR in MG (Leslie et al., 2020) MG  , , {𝑗}𝑗∈ ,  , 𝑅𝑖 𝑆, {𝐴𝑗}𝑗∈ , 𝑅𝑖 NE

Conjectured Opponents

Minmax Q-learning (Littman, 1994) MG  , , {𝑗}𝑗∈ 𝑆, {𝐴𝑗}𝑗∈ , 𝑅𝑖 NE
Nash Q-learning (Hu & Wellman, 2003) MG  , , {𝑗}𝑗∈ 𝑆, {𝐴𝑗}𝑗∈ , 𝑅𝑖 NE
Correlated Q-learning (Greenwald &
Hall, 2003)

MG  , , {𝑗}𝑗∈ 𝑆, {𝐴𝑗}𝑗∈ , 𝑅𝑖 CEb

Distributed Q-learning (Kar et al., 2013) MG  , , {𝑗}𝑗∈ 𝑆, {𝐴𝑗}𝑗∈ (𝑖) , {𝑀𝑗}𝑗∈ (𝑖) , 𝑅𝑖 Optimalityc
Multi-Agent Actor Critic (Lowe et al.,
2017)

MG  , , {𝑗}𝑗∈ 𝑆, {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ Empirical studyd

Counterfactual multi-agent policy
gradients (Foerster et al., 2018)

MG  , , {𝑗}𝑗∈ 𝑆, {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ Optimality

Multi-agent actor–critic with networked
agents (Zhang et al., 2018)

MG  , , {𝑗}𝑗∈ 𝑆, {𝑗}𝑗∈ , {𝑀𝑗}𝑗∈ (𝑖) , 𝑅𝑖 Optimality

Gradient-based learning (Mazumdar
et al., 2020)

RG  , {𝑗}𝑗∈ , 𝑅𝑖 {𝐴𝑗}𝑗∈ NE

Calibrated Opponents

Win-or-learn-fast gradient ascent
(Bowling & Veloso, 2002)

RG  , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ {𝐴𝑗}𝑗∈ NE

Win-or-learn-fast policy hill climbing
(Bowling, 2004)

RG  , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ {𝐴𝑗}𝑗∈ No regret

Change or learn fast (Cote, Lazaric, &
Restelli, 2006)

RG  , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ {𝐴𝑗}𝑗∈ Empirical study

AWESOME (Conitzer & Sandholm, 2007) RG  , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ {𝐴𝑗}𝑗∈ Best response or NE
Learning by trial and error (Young,
2009)

RG 𝑖 𝐴𝑖 , 𝑅𝑖 NE

Payoff-based learning (Marden et al.,
2009)

RG 𝑖 𝐴𝑖 , 𝑅𝑖 NE

RL with change-point detection (Hadoux
et al., 2014)

MDP  ,,  , 𝑅 𝑆,𝐴,𝑅 Optimality

RL with quickest change detection
(Banerjee et al., 2017)

MDP  ,,  , 𝑅 𝑆,𝐴,𝑅 Optimality

Sophisticated Opponents

Level-K (Costa-Gomes et al., 2001) One-shot game  , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ – Empirical study
Sophisticated experience-weighted
attraction learning (Camerer et al.,
2002)

RG  , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ 𝐴𝑖 , 𝑅𝑖 NE

Cognitive hierarchy (Camerer et al.,
2004)

One-shot game  , {𝑗}𝑗∈ , {𝑅𝑗}𝑗∈ – Empirical study

Interactive POMDP (I-POMDP)
(Gmytrasiewicz & Doshi, 2005)

MASDM  – Empirical study

Parameterized I-POMDP (Wunder et al.,
2011)

MASDM  – Optimality

aNE means convergence to Nash equilibrium.
bCE means convergence to correlated equilibrium.
cOptimality means that the algorithm achieves a pre-defined optimal condition, depending on the specific learning task.
dEmpirical study means that there is only empirical results available for the performance of the algorithm.
– For offline planning problems, online observability is not a matter to be discussed.
with𝑁 layers. At layer 𝑙 ∈ {1,… , 𝑁}, there are 𝑛𝑙 system vulnerabilities
that the attacker can exploit to compromise the system. We denote the
vulnerability set as 𝑙 ∶= {𝑣𝑙,1,… , 𝑣𝑙,𝑛𝑙}. A configuration 𝑐𝑙,𝑖 constitutes
a subset of vulnerabilities in 𝑙, and the subset is denoted as the
vulnerability map (also called the attack surface): 𝜋𝑙(𝑐𝑙,𝑖). There are
𝑚𝑙 possible configuration for layer 𝑙 and the feasible configuration set
𝑙 ∶= {𝑐𝑙,1,… , 𝑐𝑙,𝑚𝑙

}. The attacker can launch an attack 𝑎𝑙,𝑖 ∈ 𝑙 ∶=
{𝑎𝑙,1,… , 𝑎𝑙,𝑛𝑙} to exploit the vulnerability 𝑣𝑙,𝑖 ∈ 𝑖. The attack can
successfully cause damage 𝑟𝑙 if 𝑎𝑙,𝑖 ∈ 𝜋𝑙(𝑐𝑙,𝑖). Otherwise, the damage is
zero. Therefore, the defender tries to select the configuration 𝑐𝑙,𝑖 ∈ 𝑙 to
avoid the attack and protect the system. The attacker aims to maximize
the total attack damage by launching attacks for each layer, while
the defender seeks to minimize the overall damage by choosing the
310
proper layerwise configurations. The objective is to find the equilib-
rium attack/defense strategies. The information is incomplete in this
case due to practical considerations. More specifically, both attacker
and defender can only observe disturbed reward function 𝑟̂𝑙, and the
opponent’s actions are also unknown. Therefore, two players have to
use learning to gain more information about each other for better attack
and defense. The MTD problem can be viewed as a two-agent learning
problem.

Due to the noncooperative environment, there is no communication
between two agents at any time. So the information structure at layer 𝑙
and time 𝑡 in MTD for the defender and the attacker are 𝐷𝑡 = {𝑟̂𝑡 ,c𝑡 ∈
𝑙 𝑙 𝑙
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𝑙} and 𝐴𝑡
𝑙 = {𝑟̂𝑡𝑙 ,a

𝑡
𝑙 ∈ 𝑙}, respectively.4 Each agent uses the observed

eward sample to estimate the new average reward for future belief and
olicy generation:

𝐷 𝑟̄𝑡+1𝑙 (𝑐𝑙,ℎ) = 𝐷 𝑟̄𝑡𝑙(𝑐𝑙,ℎ) +
𝐷𝜇𝑡𝟏{c𝑡𝑙=𝑐𝑙,ℎ}(𝑟̂

𝑡
𝑙 −

𝐷 𝑟̄𝑡𝑙(𝑐𝑙,ℎ)), ∀𝑐𝑙,ℎ ∈ 𝑙 ,

𝑟̄𝑡+1𝑙 (𝑎𝑙,ℎ) = 𝐴 𝑟̄𝑡𝑙(𝑎𝑙,ℎ) +
𝐴𝜇𝑡𝟏{a𝑡

𝑙=𝑎𝑙,ℎ}
(𝑟̂𝑡𝑙 −

𝐴 𝑟̄𝑡𝑙(𝑎𝑙,ℎ)), ∀𝑎𝑙,ℎ ∈ 𝑙 ,

here 𝟏{⋅} is the indicator function and 𝐷𝜇𝑡, 𝐴𝜇𝑡 represent the learning
ate for the defender and the attacker respectively. For belief gener-
tion, each agent deals with the conjectured opponent. It is worth
entioning that there is no explicit belief variable or belief mapping in
his case. The belief of the opponents is included in the average reward
̄𝑡𝑙 and policy generation. In other words, the average reward

𝐷 𝑟̄𝑡𝑙 and
𝑟̄𝑡𝑙 are indicators of the belief on the attacker and the defender respec-
ively. For policy generation, we first denote 𝛥𝑙 and 𝛥𝑙 as sets of all
ossible mixed strategies over 𝑙 and 𝑙 respectively, and denote 𝐟𝑙 and
𝑙 as probability distribution vectors in 𝛥𝑙 and 𝛥𝑙 respectively. The
efender and the attacker solve an regularized optimization problem
DP) and (AP) respectively to generate the next-step policy:

𝐷𝑃 ) ∶ sup
𝐟 𝑡+1𝑙 ∈𝛥𝑙

−
𝑚𝑙
∑

ℎ=1
𝑓 𝑡+1
𝑙,ℎ ⋅ 𝐷 𝑟̂𝑡𝑙

(

𝑐𝑙,ℎ
)

− 𝐷𝜖𝑡𝑙

𝑚𝑙
∑

ℎ=1
𝑓 𝑡+1
𝑙,ℎ log

(

𝑓 𝑡+1
𝑙,ℎ

𝑓 𝑡
𝑙,ℎ

)

,

(𝐴𝑃 ) ∶ sup
𝐠𝑡+1𝑙 ∈𝛥𝑙

−
𝑛𝑙
∑

ℎ=1
𝑔𝑡+1𝑙,ℎ ⋅ 𝐴 𝑟̂𝑡𝑙

(

𝑎𝑙,ℎ
)

− 𝐴𝜖𝑡𝑙

𝑛𝑙
∑

ℎ=1
𝑔𝑡+1𝑙,ℎ log

(

𝑔𝑡+1𝑙,ℎ

𝑔𝑡𝑙,ℎ

)

,

where 𝐷𝜖𝑡𝑙 and
𝐴𝜖𝑡𝑙 are regularization parameters. Two optimization

roblems aim to find the best mixed strategies under the current av-
rage cost. Since there is no explicit communication, the best response
ynamics can be decoupled as (DP) and (AP). It is worth mentioning
hat by adding a regularization term to the policy generation problems
DP) and (AP), a closed-loop solution for next-step policy can be
btained, which leads to the following analytic learning dynamics:

𝑡+1
𝑙,ℎ =

(

1 − 𝑆𝜆𝑡𝑙
)

𝑓 𝑡
𝑙,ℎ +

𝑆𝜆𝑡𝑙

𝑓 𝑡
𝑙,ℎ ⋅ exp

(

−
𝑆 𝑟̂𝑡𝑙(𝑐𝑙,ℎ)

𝑆 𝜖𝑡𝑙

)

∑𝑚𝑙
ℎ′=1 𝑓

𝑡
𝑙,ℎ′ ⋅ exp

(

−
𝑆 𝑟̂𝑡𝑙

(

𝑐𝑙,ℎ′
)

𝑆 𝜖𝑡𝑙

) ,

𝑔𝑡+1𝑙,ℎ =
(

1 − 𝐴𝜆𝑡𝑙
)

𝑔𝑡𝑙,ℎ +
𝐴𝜆𝑡𝑙

𝑔𝑡𝑙,ℎ ⋅ exp
(

−
𝐴 𝑟̂𝑡𝑙(𝑎𝑙,ℎ)

𝐴𝜖𝑡𝑙

)

∑𝑛𝑙
ℎ′=1 𝑔

𝑡
𝑙,ℎ′ ⋅ exp

(

−
𝐴 𝑟̂𝑡𝑙

(

𝑎𝑙,ℎ′
)

𝐴𝜖𝑡𝑙

) .

It is proved that under mild conditions, the learning algorithm will con-
verge to the equilibrium solution. The optimal attack/defense strategies
can be successfully learned.

We mention that if the defender has perfect information (which
contains accurate action sets and the reward), the MDT problem exists
a unique mixed-strategy equilibrium solution, which can be explored
by learning algorithms such as fictitious play (Brown, 1951). From the
belief generation perspective, each agent only considers a stationary
opponent instead of a conjectured opponent. This observation also
demonstrates the value of the information structure and corroborates
our previous claim: the information structure can affect the complexity
of the learning algorithm.

7. Conclusion

With a mathematical characterization of MAL (see Section 2), this
review provides a systematic overview of the state-of-the-art MAL
algorithms, with a focus on the information structure. We identified
several principled approaches on how the learning agent generates a
belief of its opponent, based on the information structure, arriving at

4 The subscript 𝐷 and 𝐴 denote the defender and the attacker respectively.
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a new taxonomy of MAL with four categories: stationary opponents,
conjectured opponents, calibrated opponents and sophisticated opponent
(see Section 4). For each category, we elaborate on the role of infor-
mation structures using concrete algorithms and provide an extensive
list of state-of-the-art algorithms classified into these categories (see
Table 2). Furthermore, the strengths and limitations of these algorithms
are discussed in detail in Section 5. To quantitatively discuss the impact
of information structures, we introduce a metric the value of informa-
tion (see Section 5.2), which mathematically displays the information
paradox (see Example 1): more information does not necessarily lead to
better outcomes. Finally, we point out some promising lines of research
in MAL, and especially, we highlight the application of MAL in security
studies (see Section 6).

The readers are encouraged to position their research works using
our framework for ease of reference and navigation of related (future)
works. Meanwhile, by introducing the MAL definition and related
notions, such as information structures, the value of information, the
review seeks to provide the jump-off point for future research works
on MAL studies from the information perspective.
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