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Abstract—The COVID-19 lockdowns have created a sig-
nificant socioeconomic impact on our society. In this paper,
we propose a population vaccination game framework, called
EPROACH, to design policies for reopenings that guarantee post-
opening public health safety. In our framework, a population of
players decides whether to vaccinate based on the public and
private information they receive. The reopening is captured by
the switching of the game state. The insights obtained from
our framework include the appropriate vaccination coverage
threshold for safe-reopening and information-based methods to
incentivize individual vaccination decisions. In particular, our
framework bridges the modeling of the strategic behaviors of
the populations and the spreading of infectious diseases. This
integration enables finding the threshold which guarantees a
disease-free epidemic steady state under the population’s Nash
equilibrium vaccination decisions. The equilibrium vaccination
decisions depend on the information received by the agents. It
makes the steady-state epidemic severity controllable through
information. We find that the externalities created by reopening
lead to the coordination of the players in the population
and result in a unique Nash equilibrium. We use numerical
experiments to corroborate the results and illustrate the design
of public information for responsible reopening.

I. INTRODUCTION

The COVID-19 pandemic has created a significant socioe-
conomic impact on our society. Due to the massive infections,
many cities have been locked down. Restrictions, including
social distancing, closure of restaurants and schools, and mask
mandates, have been in place for nearly two years. With the
advent of vaccines, many cities are considering reopening
plans. One essential issue concerning the reopening policies
is to reach a reasonable vaccination coverage rate so that
the return to normal social activities does not generate new
outbreaks. Once a threshold is determined, cities can focus
on the post-opening policies on mask-wearing and social
distancing to reduce further risks threatening public health
safety. Apart from them, a concomitant question is to find
ways to incentivize or nudge individuals to vaccinate. The
decision of an appropriate coverage threshold and the ways
to reach it are high-priority for the cities to prepare for
reopening.

They, however, are accompanied by several challenges.
First, the threshold should take into account strategic decisions
of human behaviors and guarantee effective herd immunity
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in the population. Second, the post-opening policies and the
individual vaccination decisions are interdependent. Reopen-
ing of the city signals to the public that the pandemic is
ending and makes people less compliant to mandates and
restrictions. The threshold or the reopening policies should
take into account the human behaviors before and after the
announced policies.

Challenges also arise when we aim to reach the determined
threshold. Due to many reasons, people may choose not to
vaccinate. For example, misinformation plays an important
role in making people believe the conspiracy theory behind
the vaccination. People may seek for a free ride hoping
that others are vaccinated. These facts make the individual
independent vaccination choices hard to predict.
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Fig. 1. During the pandemic, an authority determines whether or not to
reopen a city. The risk of a post-reopening outbreak is the key concern
for this decision. The authority designs and disseminates information to
incentivize vaccination to reduce the risk.

To address the above challenges, we propose a framework
called the epidemiological reopening game of connected
health (EPROACH). EPROACH is a vaccination game frame-
work integrated with the compartmental epidemic models.
We use a population game to capture the behavioral patterns
resulting from individual decision-making. In particular, we
focus on vaccination decisions based on the well-being
of individuals in the epidemic over a period of time. We
incorporate public and private information into the game.
These two types of information shape individual beliefs of the
severity of the epidemic and guide the vaccination decisions.
They also serve as the means to control the epidemic. To
capture the relations between the vaccination decisions and
the effects of social policies before and after the reopening,
we consider two regimes for the game. These two regimes
model the restricted and the reopened cities, respectively.
The regimes influence the population’s behavior patterns
through the spreading of the epidemic. We use two distinct
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epidemic models to quantify the risks of the outbreaks
under various social policies adopted in the regimes. These
risks drive people’s vaccination decisions and determine the
accompanying social policies such as mask-wearing. The
direction of the evolution of the epidemic states eventually
explains whether we arrive at herd immunity. The integration
of individual rational decision-making, private and public
information, epidemic dynamics, and regime-switching in
EPROACH helps quantify the outcomes of reopening and the
potential risks attached. We propose incentive mechanisms
based on the Nash equilibrium (NE) of EPROACH to ensure
public health safety after the reopening of cities.

We break the analysis of EPROACH into three parts. The
first part studies the externalities of the game. While the
decisions are made by individuals under either restricted or
reopened regimes, they arrive at a pattern of coordination
when an appropriate regime-switching is triggered. In the
second part, we show the conditions for a unique NE. The NE
characterizes the individual behaviors at the equilibrium under
the perceived infection risks in different regimes. The analysis
of the NE provides a way to understand and predict the
behavioral patterns of the population under various reopening
policies. In addition, we study the interdependence between
information and the NE and show the impact of information
on the outcomes of both vaccination coverage threshold and
epidemic status. The third part leverages this observation
to create an informational epidemic control mechanism to
achieve social good by manipulating public and private
information. Our method serves as a scalable and low-cost
tool to incentivize vaccinations.

We provide a brief literature review in the next section. The
formulation of EPROACH is discussed in Section III. Section
IV presents the game analysis. Section V introduces the in-
formational epidemic control method, which is demonstrated
in Section VI using numerical experiments.

II. RELATED WORK

One constituent of EPROACH is the compartmental epi-
demic model. We use the degree-based mean-field model
over complex networks [1] to capture the average effect of
the contagion within a networked population. Control of
epidemics has been discussed in many recent works. The
authors in [2] consider epidemic control of two competing
viruses. Recently, [3] proposes a framework unifying individ-
ual decision-making processes and the epidemic dynamics
to study herd behavior. The review [4] summarizes and
classifies popular game-theoretic models. Our game-theoretic
framework emphasizes the interplay of human behavior and
epidemics and investigates the role of information in epidemic
control.

EPROACH builds on population games [5]. By adopting
public and private signals, we can study herd behaviors in the
setting of incomplete information. This approach has been
investigated in [6] for understanding equilibrium selection.
The monograph [7] motivates a class of global games and
their applications in macroeconomics. Its variants include [8],
[9], [10]. We consolidate complex networks into this class of
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games to capture strategic population-level interactions over
networks.

III. FORMULATION OF EPROACH

Consider a population of heterogeneous players with mass 1
exposed to the infections of a virus. Each player is associated
with a distinct degree d € 2 :={1,2,...,D}. The mass of
players with degree d is m? € (0,1) with ¥ycm? =1 and
d =Y cdm®. The degrees capture the players’ intensities
of interacting with other players over the complex network
defined by the degree distribution [m?];c4. The interactions
affect the likelihood of getting infected. We focus on the mean
effect of interactions among the players over the complex
network.

Let B € (0,1) denote the probability that a vaccinated
individual is protected from being infected. Each individual
makes a one-time choice of whether or not to vaccinate at
the beginning of the game. The decision is based on the
anticipations of the player’s individual infection risk at time
T > 0. Let the time interval (0,7),T > 0, be the period of
interest. The action set of the players is given by o := {0, 1}.
Action i =0 means that a player does not take the vaccination,
and action i = 1 means that she takes the vaccination.

Vaccination decisions influence the regime of the game s
chosen from the set {‘+’,°-’}. Regime s =+’ is the reopened
state where there is no social restriction on the players.
Regime s =*-’ is the restricted state where the intensity of
social activities is reduced to oo~ = ¢ € (0,1). By default,
we set ot =1 to denote the intensity of restriction-free
social activities. The switching of the regimes depends on
two factors: the average action of players A € R and the
vaccination coverage threshold 6, which is a random variable
with support R. Since A captures the vaccination coverage
rate, the state is ‘+” if A>0 and is - if A < 0.

In this work, we view 6 as the public signal of the game.
The distribution of 6 is common knowledge, but players
perceive O heterogeneously. This heterogeneity is captured
by the information type space ¢ :={1,2,...,K}. A player
with information type k € ¢ receives a signal x; = 0 + &,
where & is the random perception bias of type k. We call
X the private signal of type k since the distribution of &
is only observable to type-k players. The private signals are
essential in shaping players’ behaviors since they correlates
with the threshold 6.

We assume that players with the same degree d € Z and the
same information type k € %~ are statistically equivalent. This
assumption is motivated by the following facts. Firstly, the
payoffs of the players depend on their risks of getting infected.
This risk depends on a player’s intensity of interactions
captured by the degree. Secondly, players’ decisions are
made based on their anticipation of the regime changes.
It varies for players with different types, since the beliefs
of regimes are formed according to the correlations of the
public signal 6 and the private signals x;. Let md’k denote the
proportion of players with degree d e P and type ket who
select action i € o7. Let m? = Y md * and mk =Y e m
The mean action of the populatlon can be expressed as
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A=Yico Zke/ml = Y.geom{ = Le x m}. Note that when
the subscript i is dropped, we do not distinguish the players
who play either i=1 or i =0.

Under the statistical equivalence assumption, we specify
the payoffs of players under different regimes. Let ¢ € (0,1)
denote the relative cost of vaccination. Let r € R denote the
morbidity risk of the virus. When the regime is s =*-, i.e.,
A < 0, a player with degree d and type k observes dpayoff
ué’kﬁ = —rlg’k’f(T) under action 0 and payoff u{™ =

—c— rlf’k’f(T) under action 1, where Ii ~(T) denotes the
infection probability at the end of the period of interest
when she plays action i under regime s =‘-’. The infection
probability Ifi K~ in the population is governed by the
epidemic process with recovery rate y € (0,1) and contagion
rate A € (0,1) as follows:

B8 () = o T())ade (1), (1)

where Ai=Aifi=0and ;=BAifi=1.In (1), @ (¢) :=
d ' Yyeq Yeen Licw dm! "1”’ *7(1) denotes the probability
that a link is connected to an infected player at time ¢. For the
consistency of @~ (¢), see [11]. When the regime is s =+,

ie,A>0,a dplayer with degree d and type k observes a;payoff
ug,k.+ — (T) + g under action 0 and payoff u} kot —

—c— r]i”“r( T)+g? under action 1, where g? denotes the
utility gain a degree d player generates after reopening. Note
that this utility gain can be affected by psychological issues
caused by quarantines and isolation. Its dependence on d
characterizes the differences in the gains received by players
having different degrees of social connections. The term

Ilfj’k’Jr is the counterpart of Il.d *~ under state s =*+". The
corresponding epidemic process is

1)+ Ai( 1—

(550 = =T 0+ (= 1R ())at a0t (1), @)

where O (1) :=d ' Yyc o Yren Licw dm* 177 (¢). The ini-
tial infection probabilities are assumed to be increasing in
players’ degrees and independent of the types. It is based
on the practical concern that a player with a higher degree
should have a higher initial infection probability.

IV. EQUILIBRIUM ANALYSIS

In this section, we first analyze the structural property of
(1) and (2). It helps understand the incentives of the players
and makes (1) and (2) more tractable. Then, we prove the
uniqueness of the equilibrium based on the incentives.

Assume that the vaccination coverage threshold 6 follows
a normal distribution with mean g and variance é, ie.,
0~ AN (u, %) We set the nominal threshold represented
by u to be in (0,1). Among all the possible realizations
of 6 from the support (—co,4o0), the negative values mean
that reopening does not rely on vaccinations; values that are
larger than 1 mean that the city is always restricted no matter
what the vaccination rate is. The perception bias of type k
is assumed to have a precision level sz, ie, &~ A(0, é)
The results in this section also hold with general distributions

[7].

A. Incentive Analysis

Externality plays an important role in game-theoretic
situations. Network effects generate externalities. Based on
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different communication structures, the externalities can be
either global or local. The systems of coupled differential
equations (1) and (2) describing the epidemic evolution over
the complex network are the sources of externalities of the
players in our population game. While (1) and (2) capture
the local interactions of players in an averaged sense, the
externalities of players show global patterns of incentives.
The following result shows that when social distancing
is sufficiently effective, the decisions in the game with
potential regime switching are strategic complements [5]; i.e.,
a player’s incentive to raise her action is non-decreasing in the
other player’s actions. This fact implies that ud kot dhet >

W gt foralld € 2 and ke ¥

Proposition 1. Assume that the initial conditions of (1) and
(2) are non-decreasing in players’ degrees d and independent
of the types k. Then, if ®(¢t) > a®~ (t) is satisfied for t €
[0,T], the decisions in the population game with the possibility
of regime-switching are strategic complements.

The proof follows similar steps as Theorem 6 of [3]. Note
that the condition ®F (¢) > @~ (¢) means that the effect of
social restriction policy ¢ makes the likelihood of linking to
an infected player in the restricted state s ="-" lower than in
the reopened state s ="+".

Strategic complementarity can be considered as a co-
ordination of individual decisions. It indicates that the
public health connected through the complex network is
coordinated. A game is supermodular when the decisions
of the players in this game are strategic complements [12].
In a supermodular game, there are often multiple equilibria
and simple evolutionary dynamics converge monotonically to
these equilibria. Proposition 1 lays the foundations for both
analyzing the game from the perspective of players’ incentives
and solving the game using computational methods. Note that
from Proposition 1, the property of strategic complements
does not depend on the utility gain g of switching from
s ==’ to s =‘+". This utility gain makes the payoffs under
the state s =‘+ more attractive for the players. However, it
is the effectiveness of social policies, i.e., &, which shapes
players’ decisions to become strategic complements.

The following result follows from a similar reasoning as
in Proposition 1.

Proposition 2. Assume that the initial conditions of (1)
and (2) are non-decreasing in the players’ degrees d and
independent of their types k. If the switching of the regimes
is absent, or, in other words, when the state is always either
s="‘4+"or s ="-’, the decisions in the population game are
strategic substitutes.

The conflict in incentives shown in Proposition 1 and
Proposition 2 arises from the possibility of the regime
switching. On the one hand, players’ incentives to vaccinate
exhibit rationality in the scenario of Proposition 2. This
rationality nudges individuals to protect themselves from
getting infected without taking others’ health conditions
into consideration. On the other hand, players’ incentives
to vaccinate show a pattern of coordination in the scenario of
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Proposition 1. The coordination effect is the congruence
with the anticipations of the game. The players tend to
mimic others’ vaccination decisions since under condition
Of(t) > a® (1), the only incentive to vaccinate is the
possibility of switching to the reopening regime.

The coordination phenomenon found in Proposition 1
implies a convenient structure of the incentives of the players
when the outcome is captured by the NE. Our equilibrium
analysis in the next section leverages this structural property.

B. Equilibrium Analysis

Strategic complementarities generate multiple equilibria
[12]. The next result shows that a unique NE is selected
when the public and private signals in our game satisfy
certain conditions. This equilibrium describes the vaccination
decisions of the players when they observe their private
signals. The result extends Proposition 1 of [10] to the case
containing multiple private signals. We omit the proof due
to the page limit.

Proposition 3. The global vaccination game admits a unique
equilibrium in switching strategies if

mf’c Vo

<—
ke Ok o

3

Condition (3) requires that the private signals are suf-
ficiently precise compared to the public signal. Since the
population’s mean action involves the terms ®(oy(x; —6))
for k € ', the public information is scaled by oy. Hence,
(3) involves variance — of the public signal but the standard
deviation Gi of prlvate signals. The reason why (3) is
independent of players’ degrees is as follows. Firstly, the
strategic complements property allows us to focus on the
behavioral patterns of the population rather than the strategy
revisions of individuals. It means that the property has already
taken into account the degree-dependent effects of infection
risks captured by the coupled epidemic processes. Secondly,
the independence of degrees and types allows us to describe
the behaviors of players with different degrees using one
single posterior probability P(x; < x;|@) for the players who
have the same type k.

We have consolidated many elements into our framework
including switching regimes, public and private signals, and
epidemic processes to capture the multifaceted behaviors
of the players. Under such complex settings, Proposition 3
shows that the players’ vaccination decisions turn out to be
predictable; i.e., the actions are captured by ([x;]vke.r,0").

V. INFORMATIONAL EPIDEMIC CONTROL

The long-term behaviors of the epidemic processes (1)
and (2) are tightly connected with practical epidemic control
policies. When a non-trivial steady state of the epidemics
is considered, we often seek social policies which either
decrease the total proportion of the infected or reduce the
period required for reaching a desired level of the infected.
The reason lies in the fact that the disease-free steady state
often requires strong assumptions on the contagion rate and
the recovery rate of the epidemics. On the contrary, the
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integration of the epidemic spreading and the population
game of incomplete information in our framework makes the
disease-free steady state reachable through proper designs of
the information. In particular, we will show in the following
that the public and private signals serve as tools to nudge
people to vaccine.

We assume ﬁ < 1,Vd € 9. 1t is the condition that
guarantees that the virus does not die out by itself [3].

Let (©7,IT) denote the steady-state pair of (@7 (r),I1(r))
when the regime is ‘+’. The pair (@T, /") satisfies

ot =d! Y, dm It @
deg ket icd/
and
YT = (1 =5 aet ©)
Equations (4) and (5) yield
A+ dk N
M

i

We observe from (6) that (@F,77) = (0,0) is the disease-free
steady-state pair. The next result shows a sufficient condition
under which a disease-free steady state in a “reopened” regime
is approachable through a proper design of players’ accuracy
of signals oy,Vd € 2.

Proposition 4. There exists L4* C R,Yd € 9 ,Yk € ', such
that if Oy € NgeyX®, the disease-free steady-state pair
(@T, 1) = (0,0) is globally asymptotically stable (GAS).

Proof. Using the technique introduced in Theorem 1 of [3],
we can show that the disease-free steady-state pair is GAS if

ax . MG -1
ml" ZT,VdGQ,VkEJX/ (7)
Observing that x; follows a normal distribution with mean
U and variance é + 12, we obtain that the cumulative

distribution function of xk is given by
o2+o0
de(xk) = ( xk — / 62O_zk )
= mé* Py (x;) with

\/o2+ 0@ (c)+0%u— (6> +07)6*

2 I’
7Gk

We know that m‘f’k

*
X =

where 6* satisfies the following fixed-point equation:

\/02+ 62D 1 (c)+ o2u — 620"
9*=Zm’<cp( RO b ) @®)

ket —Ok
Therefore, combining (7) with & (x}) yields, for all k € %"

R o!
0*>0":=u-+ (©) + Ok o ey, (9)
\/0'2+Gk2 0'\/0'2+0k2
v
where e, := 4 Next, we need to guarantee that 6* solves

the ﬁxed—point equat10n (8) and satisfies the inequalities (9)
simultaneously. Recall from the proof of Proposition 3 that 8*
solves the fixed-point equation (8) if and only if W(6*) =0,
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and that W (-) is a continuous function and limg_,; W(6) < 0.

Hence, it suffices to show that for 6* = 8*, w(6*) > 0. By
combining the definition of W(0) and equation (9), we obtain
the following limit points for all k € ¢

1
lim W (0 f—q) 10
lim WO = ¥ nfey—u— o), ()
and
|-
clklglooW kezfm (1—-c) ,ufgfb (eq), (11)
It can be shown that limg_,0W(6*) < 0 and

limg, W (0*) > 0 if ®(o(l—c—p)) < p+ Ld71(c);
and that limg, ,oW(6*) > 0 and limg, .. W(0*) < 0 if
P(o(l—c—u)) >pu+ %@‘%c). Therefore, we conclude
that the disease-free steady state is GAS. The existence
of 4% Vd € 9 Vk € # follows from the fact that W (6*)
is continuous in oy and the limit points of W(6*) have
opposite signs. This completes the proof. [

Proposition 4 has corroborated the existence of private
signals that guarantee the disease-free steady state of the

epidemic process to be GAS under the reopened regime.

The private signals, when chosen from the sets Myc X,
nudge players to take the vaccine and drive the epidemic
to extinction. The vaccination coverage threshold which
guarantees safe reopening is obtained in (9).

Next, we provide another sufficient condition for the
stability of the disease-free steady state.

From the proof of Proposition 4, we know that a sufficient
condition for (@*,71)
From the definition of W(-), we obtain

W(6*) =

o ~1
)t —F——=9 (e)
kel ( ,/024—62 \/o2+a}
_ <H+ > !(c) O

+ ® '(eq) |-
\/0'2+sz 0'\/0'2+sz
(12)

The first term on the right- hand side of (12) is always
itive. Define Y(0;) := _©)

positive. Define Y (0y) == p + — py 6\/62+ ~P

If the condition Y (o) <0 is satlsﬁed the disease-free

steady state is GAS. Observing that Y(-) is continuously

differentiable on (0,+e0), we obtain Y (oy) < 0 if and only

if limg, oY (o) <0, limg, 1Y (0r) <0, and Y (6;) <0,
where 6, = 02 !(ey) 2409

> 1(c) “do;
point of Y (-). By expressing explicitly these three conditions,
we arrive at the following result.

solves

=0 being the stationary

Proposition 5. The disease-free steady state (@+,I) =
is GAS if the following condition holds for all d € 9:
1+ P! (ed)

1.
—1(o))2 —T(e,))2
V(@ () +(@ (d))(13)

(0,0)

ou < min{—® (), —d (ey), -

The product o in (13) measures the concentration of the
distribution of 0. Its reciprocal Gi, called the coefficient of

= (0,0) to be GAS is W(6*) > 0.

eq)-

variation, measures the dispersion of a probability distribution.
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Condition (13) requires the value of ou to be small. This
indicates that it is the informational uncertainty about the
vaccination coverage threshold which drives the epidemic
process to the disease-free steady-state globally.

Since p € (0,1), the interesting case happens when the
precision of the public signal goes to infinity, i.e., ¢ — +oo.
We leave the case with 0 — 40 and fixed i and oy in the
numerical experiments. Now, suppose that the precision of
the private signals also goes to infinity, but the ratio of the
precisions of the public signal and the private signals satisfies

3), i.e., Op —> oo, —2 =< ‘/E . Then, (8) becomes

0 = Y mo (l(—)*—lu—kdf (c)).
ket

(14)

Leveraging the implicit function theorem, we express the
change of 6* with respect to U as:

—1
=— ( Y mbo(16* —ip+ @' (c))i - 1)

ket
. ( )y mk¢(16*—lu+cbl(c))l) >0.

ket
Hence, the solution to (14) increases in (. In this extreme
scenario where ¢ — oo, if (13) is satisfied, we need u — 0
to hold. Then, the vaccination coverage threshold 6* solves

0°= Y mo (19*+q>*1(c))7

ket

96"
du

15)

which yields the minimum threshold when the public signal

is infinitely precise and concentrates approximately at 0.
Another perspective toward (13) is by focusing on the
vaccination cost ¢, which is also a parameter that we can
control. From (13), we obtain the following inequality of c:
1+ (D I(e

¢ <‘\/ (o)

The upper bound of ¢ in (16) suggests the pricing of the
vaccines to the authorities. A high vaccine price demotivates
people from vaccination. It results in a low vaccination
coverage rate which fails to subdue the virus in the long
run. The lower bound of ¢ in (16) appears since (13) is only
a sufficient condition. The sufficiency arises from using the
Lyapunov’s method and the relaxation of the condition (12).

VL

In this section, we continue the discussion of Proposition 5
using numerical experiments. We provide a suggested region
of the precision of the public information which guarantees
the disease-free epidemic steady-state while maintaining a
high probability of reopening under the NE. Our goal in
the experiments is to study the effect of public information.
Hence, we set the degrees of all players to be equal for
illustration purposes. We consider two information types. The
parameters c, U, Ok, B,e4 are chosen so that there is a unique
NE and —®~!(c) is the minimum element in the right-hand
side of (13). Note that when the parameters does not satisfy
(3), simple learning algorithms still converge to the extreme
points of the set of NE [12].

In Fig. 2, we plot two indices for a given reopening
plan. The first index, the reopening probability, increases

—(o-! (ed))2> <c<P(—ou). (16)

NUMERICAL EXPERIMENTS
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Fig. 2. The changes of the reopening probability and the steady-state
epidemic severity are plotted for varied precision of the public information.
Let the desired probability of reopening be 0.9, and we find the region of
reopening with high probability. Aiming to eliminate the virus, we find the
region of disease-free steady state. The suggested region of the precision of
the public information is the intersection of these two regions.

monotonically as the precision of public information becomes
higher. The second index, the epidemic severity at the steady
state, is a piece-wise curve increasing in the precision of
public information. Suppose that the authority wants a high
probability (chosen as 0.9 in Fig. 2) for reopening so that
the city has a higher likelihood of resuming its activities.
Then, the desired public information lies above the value
of the precision of public information which yields the
reopening probability of 0.9 (shown using the dashed lines).
Meanwhile, the way to control the outbreaks and the spreading
of the virus affects the reopening plans. Hence, the authority
keeps the public information in the disease-free region. As
a consequence, our framework suggests a region of the
precision of public information obtained at the intersection
of the region of reopen with high probability and the disease-
free region. Within this suggested region, condition (13) is
satisfied and the disease-free epidemic steady state is GAS.
The public information in this region is also precise enough,
since individuals, upon receiving their private signals, have
a posteriori belief that the probability of regime-switching
is high. These beliefs will lead to affirmative vaccination
decisions of a large proportion of the population, leading to
the reopening of the city.

VII. CONCLUSION

In this paper, we have proposed EPROACH to capture the
interplay between the population-level vaccination decisions
under private and public information and the regime-switching
of the epidemics. This framework has been motivated by
developing reopening policies for cities when an increasing
number of people become vaccinated. The analysis of the
externalities has shown that the self-centered individual
vaccination decisions become coordinated because of their
anticipation of reopening. Leveraging the coordination effect,
we have found a unique Nash equilibrium of the game. We
have characterized players’ vaccination decisions and the
vaccination coverage threshold for safe reopening at the
equilibrium. The uniqueness of the Nash equilibrium has
informed the design of reopening plans with the proposed
informational epidemic control method. We have observed
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that by choosing the resolution of the information, we can
nudge the population to achieve the targeted vaccination
threshold. In the numerical experiments, the informational
epidemic control method has provided a suggested region
of the resolution of the public signal. In this region, the
reopening probability is high and the steady-state epidemic
is eliminated after the reopening.
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