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Abstract—The recent COVID-19 pandemic has led to an
increasing interest in the modeling and analysis of infectious
diseases. Our social behaviors in the daily lives have been
significantly affected by the pandemic. In this paper, we propose
a federated evolutionary game-theoretic framework to study the
coupling of herd behaviors changes and epidemics spreading.
Our framework extends the classical degree-based mean-field
epidemic model over complex networks by integrating it with
the evolutionary game dynamics. The statistically equivalent
individuals in a population choose their social activity intensities
based on the fitness or the payoffs that depend on the state of
the epidemics. Meanwhile, the spread of infectious diseases over
the complex network is reciprocally influenced by the players’
social activities. We address the challenge of federated dynamics
by breaking the analysis into the studies of the stationary
properties of the epidemic for given herd behavior and the
structural properties of the game for a given epidemic process.
We use numerical experiments to show that our framework
enables the prediction of the historical COVID-19 statistics.

I. INTRODUCTION

The COVID-19 pandemic has unprecedentedly impacted
our society in many ways. Many people work at home,
shop online, and communicate over zoom. During the past
years, we have witnessed a litany of policies regarding social
distancing, mask-wearing, and vaccination to prevent and
mitigate the spreading of the pandemic. The pandemic has
made a significant impact on the way we behave and interact
in our daily life. We have observed a strong interplay between
people’s behaviors and the pandemic. When the number of
COVID cases goes down, reopening policies enable more
social activities to return to normal. If not done carefully,
they would create additional infection waves, which we have
witnessed recently in many countries.

Herd behavior describes the collective behavioral pattern
of a population resulting from the behaviors of individuals in
the same fashion. It plays an important role in the pandemic
since it is often driven by policies or individual incentives.
For example, cities will design incentives for individuals to be
vaccinated to reach targeted herd immunity. Many countries
have enforced the policies of mask-wearing in public spaces
to create herd behavior that reduces the risk of mass infection.

Research on herd behaviors has focused mainly on topics
related to financial markets and economics [1]. At the

This work is partially supported by grants ECCS-1847056, CNS-2027884,
and BCS-2122060 from National Science Foundation (NSF), grant 20-19829
from DOE-NE, and grant W911NF-19-1-0041 from Army Research Office
(ARO).

The authors are with the Department of Electrical and Computer Engi-
neering, Tandon School of Engineering, New York University, Brooklyn, NY,
11201 USA (e-mail: s16803 @nyu.edu; yhzhao@nyu.edu; qz494 @nyu.edu).

978-1-6654-5196-3/$31.00 ©2022 AACC 593

00000

Media and Information

2

el Herd Behaviors Pandemic State | Ee:

Fig. 1. The federated evolutionary game framework. The herd behaviors
influence epidemic spreading among the population. The media reports
about the epidemic states stimulate strategy revisions, which reshape herd
behaviors.

same time, epidemic processes are often studied as stand-
alone dynamical processes without incorporating individual
behaviors into the model [2]. There is a need for an integrated
framework that gives a holistic understanding of the pandemic
together with herd behaviors.

In this paper, we propose a federated evolutionary game-
theoretic framework to model the herd behaviors that are
coupled with the spreading of epidemics. Motivated by the
vaccination game of [3], we consider evolutionary games
played by populations of players. However, instead of
considering the convergently stable Nash equilibria, we focus
directly on the evolutionary dynamics. The evolutionary game
dynamics [4] are population-level or mean-field dynamics
that describe the evolution or the adaptive revision of the
strategies when the populations interact with each other. They
explicitly describe the changes in herd behaviors.

One critical component of the evolutionary game frame-
work is the modeling of infectious disease. In this work,
we consider a class of mean-field epidemic models over
complex networks [2], [5], [6], [7] to capture the social
interactions among the individuals. The individuals over the
network are assumed to be statistically equivalent within the
same sub-population. The mean-field dynamics forthrightly
describe the influences of herd behavior on the spreading of
the epidemic. We use a complex network model characterized
by a degree distribution to represent the social interactions of
the populations. Each individual in the network is associated
with a degree of connections that determines the probability
of infection and thus the spreading of the disease.

The epidemic model is consolidated into the evolutionary
game as illustrated in Fig. 1. The spreading of the epidemic
among the populations is affected by the social activity
intensities of the individuals. As the information and the
policies concerning the epidemic are communicated to the
population through public media, individuals respond to them
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and adapt their social activities, constituting herd behavior at

the population level. It is clear from Fig. 1 that the state of

the epidemics and the herd behaviors are interdependent.
The federated framework in Fig. 1 can be mathematically

described by a system of coupled differential equations.

One set of differential equations represents the mean-field
evolutionary dynamics of the game strategies. The other set
of differential equations describes the epidemic process. It is
critical to examine the structural properties of the federated
dynamics, including the stability and the steady state. To this
end, we first discuss the stability of the epidemic dynamics
under fixed herd behavior and then analyze the structural

properties of the evolutionary game under the steady states.

We find out that, under certain conditions, there is a unique
nontrivial globally asymptotically stable steady state given the
herd behaviors. The players’ decisions in the game turn out to
be strategic substitutes. This property makes the evolutionarily
stable strategies (ESS) [4] or the Nash equilibria achievable
even when the individuals revise their strategies myopically on
their own. We also formulate a unified optimization problem
to compute the Nash equilibrium based on an equivalent
representation of the population game as a finite-player game
problem, where each population is viewed as a player. We
use numerical experiments to compare the simulated infection
curve with the COVID-19 statistics of the infected in New
York City. The prediction of two peaks in the pandemic over
a time interval of interest provides a promising analytical and
policy design tool for the pandemic.

In the full-length online version of our paper [8], we
extend the analysis of structural properties of the game to
different time scales and provide techniques for approximation
purposes. We also investigate the role of information in
shaping human behavior and study network structures as
the consequences of behavioral patterns.

We introduce the general framework in Section II. In
Section III, we present analytical results when the epidemic
evolves at a faster time-scale. Section IV presents the

numerical experiments. We conclude the paper in Section V.

II. PROBLEM SETTING

In this section, we describe our federated evolutionary
game framework in detail. We first introduce the general
framework and then turn to the setting under epidemic. We
will start by considering a finite number of players and show
later that the number can go to infinity.

A. Description of the General Framework

Consider N players (nodes) over a network. Each player
belongs to a subset in the set D := {1,2, ..., D} representing
its degree of connectivity, i.e., a player in d € D has degree
d. The number of players in d € D is Nm? € N,. The
degree distribution is then denoted by [m%]sep. Let = be
the finite state space of all the players and S% C [0, 1]"d
be the finite strategy space of players with degree d, with
|Z| = L and |S?¢| = n?, respectively. We use s¢ € S to
denote a typical strategy. Let S := [[,cp S? with |S|
> deD n® = n. Under the epidemic context, elements in

=
—
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describe the health status of individuals in an epidemic, such
as ‘Susceptible’, ‘Infected’, and ‘recovered’ in the classic
SIR model [5]. Elements in X are the individual actions that
affect the spreading of the virus, such as willingness to wear
a mask and the probability to take the vaccine.

Let wg(t) be the fraction of players with degree d who
are in state ¢ at time t. Let z¢(t) be the fraction of
players with degree d playing strategy s¢ at time t. We
use w(t) = (w'(t),...,wP(t) € W c RP?L and (¢)
(@ (t), s P (1)) € X = [Tyep X% C R X" o denote
the concatenations of wg(t) and z¢(t), respectively.

Suppose that players are constantly interacting physically
on the network. Physical interactions cause potential changes
in players’ states. We use the degree-based mean-field
approach [2] to capture the federated dynamical system on
the large network. The players are assumed to be statistically
equivalent if they have the same degree and the same strategy.
In other words, in the large population, the players are

distinguishable only based on their degree and their strategy.

Let Qg : W x X x [0,1]7 — R be a Lipschitz function
describing the dynamical evolution of the fraction of players
with degree d that are in state £. The federated dynamics of
players’ state transitions are as follows:

wi(t) = QF (w(t)7w(t)7 [md}dep) . VdeDNVEEE. (1)

Note that in (1), the dependence on w(t) emphasizes the
coupling of players’ state transitions, and the dependence on
[m?)4ep illustrates the effect of the network. We use w(x)

to denote the steady-state value of w(x).

As the epidemic evolves, the players receive information
from public media containing samples of the epidemic
state at times. We assume that the times between infor-
mation broadcasts are independent, and they follow a rate
T exponential distribution. We use a strategic interaction
to represent a round where players update their strategies
based on the current information broadcast. In a strategic
interaction, players update their strategies by considering
only the current information broadcast. The information
broadcast contains w and x at the time of sampling. Let
Rfj(w(t), x(t)) : Wx X — [0, 1] denote the probability of a
player with degree d switching from strategy s¢ to strategy s¢.
Next, we illustrate the evolution of the fraction of players wit
degree d playing strategy s¢. Consider a small time period dt.
There will be 7dt expected informational interactions during
this period. The change of the number of players with degree
d playing strategy s¢ is:

N

jeSd

d
T

(RS (w(t), z(t) — Y a(t) R (w(t), x(t)) | Tdt.
jEST
@)

By considering fractions of players in (2), we obtain the mean
dynamic as follows:

Lil) = 3 a0 RA (), 2(1)
sest 3)
- > @l (®)RG(w(t),x(1)),Vi € S*,Vd € D.
jesd

The evolutions of (1) and (3) constitute a system of federated
differential equations.
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Since the evolutions in (1) and (3) consider the fractions
of the players, we naturally interpret the above setting as
the interactions among populations when the total number of
players goes to infinity, i.e., N — +o0.

Let £ : W x X — R be the payoff function of a player
with degree d who plays strategy s¢. In general, F depends
on w(t) and x(t). The dependence on x(t) characterizes the
game-theoretic aspect of the framework. The dependence on
w(t) reveals the coupling of all players’ state evolutions. Let
F = (F,..,FP) e Rn x=xn”,

Connecting with the standard definition of evolutionary
games [4], we call z a social state and call, with a slight
abuse of terminology, R := (R, ..., RP) a revision protocol.
We refer to the game defined by the payoff function F, the
evolutionary dynamics (3), and the federated state dynamics
(1) as a federated evolutionary game.

Definition 1. Let NE(F') denote the set of NE of the game
defined by the payoff F' and the federated state transitions
(1). A social state x € X is a Nash Equilibrium (NE),
ie, v € NE(F), if for all d € D, 2¢ € m?BR(x),
where the set BRY(-) denotes the set of best responses,

e, BRY(z) := {z € Rf 172 = 1,2 > 0if s¢
arg max;ega Fi'(x, w(x))}.

The difference between Definition 1 and the standard NE
is that z is the best response to the payoffs generated by
x together with the steady-state value of (1) given x. This
definition integrates the coupling of (1) and (3) into the
definition of NE of our framework.

In the following, we assume that the strategies in each set
S% are listed in an increasing order, i.e., s;i > s;l if © > j.

B. The framework Under Epidemics

Consider the states of the players described by the
Susceptible-Infected compartmental model on a degree-based
network [5] with degree distribution [m?)gep. We use I%(t)
to denote the fraction of the infected players in population d
adopting strategy s¢ at time ¢. We regard a strategy s¢ as a
player’s social inactivity level, which is the opposite of the
social activity level (SAL). The SAL, represented by 1 — s¢,
describes the probability of a player behaving actively in face-
to-face social activities through all of her connections with
other players. A strategy s¢ close to 1 means that the player
is highly cautious when interacting physically through her
connections with others. Given social state x, the evolution
of I%(t) is also affected by a recovery rate v € Ry and a
contagion rate A € R;. The dynamical system, analogous to
(1), describing the time evolution of IZ(t) is

i) = 1w+ X (1-'m)dew, @

where A = A\(1 — s¢) denotes the activity- aware contagion
rate of a player W1th degree d and SAL 1 — s¢. The second
term on the right-hand side of (4) describes the events related
to contagion, whose probability is proportional to the activity-
aware contagion rate A\, the density of susceptible players
1 — I&(t), the degree of connections d, and the probability
©(t) that a link is connected to an infected player. This
probability can be expressed as follows:

Paep (Xicsa daf I (1))
> gep dm?

o) = )
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Since we have assumed the statistical equivalence of players
with the same degree and the same strategy, the contributions
of players to the probability O(¢) are lumped together
according to their degrees and strategies. The probability
of a link connecting to an infected player with degree d
choosing strategy s¢ is proportional to dx¢I¢(t). Hence, by
normalizing using the average degree, we obtain (5). The
consistency of (4) and (5) follows from a similar reasoning
as discussed in [5], since the effect of SAL has already been
considered in A{.

We remark that (5) couples the dynamics in (4) of each
strategy in each population. Let I(t) = (I'(t),...,I”(t)) €
[0, 1) . We use I and © to denote the steady states
of IZ(t) and ©(t). The concatenations are I and I%.

The payoff F? depends on the information broadcast at
the time of sampling. In general, it takes the form

Fo = sMUipa + (1 — sHUEE (6)

where L{act : [0,1] = R and Uipg = Tina € R_. In
(6), s8U;nq represents the expected utility of being socially
inactive. The term U;,, corresponds to isolating oneself
from others. Hence, we assume that Uf;,, is a negative
constant reward for all players. The term (1 — s))U%: in
(6) contrrbutes to expected utility of being socially active,
where Z/la(f corresponds to the reward from getting infected
through physical interactions on the network Therefore, we
set Z/{aélt to be a decreasing function of ¢, which represents
the probability that a player in population d playing strategy
s? is infected. The probability that a player is infected can
be equivalently understood as the fraction of infected players.
Then, we obtain n¢ = O%(I%(t)), where O is a player’s
observation of the infected fraction of players at the time
of an information broadcast. Note that the case of imperfect
observations will be considered later. For now, we consider
perfect observations, i.e., n¢ = I¢(t). Since the evolution
(4) is coupled and the term (5) depends on x, the payoff
satisfies the definition in Section II-A. We remark that the
rate parameter 7 determines the rate of the federated system
of differential equations. Therefore, the sampled epidemic
status is at a steady state if 7 —> oo and is tlme -dependent
otherwise. In this paper, we let Z/l(m = —7r4und for all players
with reward parameter r,.; € R4, for simplicity reasons.
By defining » = 7=e € R_ to be the relative reward of

being socially inactive" agarnst being socially active, we obtain
the payoff function suitable under (4) as follows:

Fid = sfr -(1- sf)nf. @)

Note that we drop the dependence of F? and 1¢ on the state T
when we analyze equilibrium behaviors since I is a function
of the social state x, as can be observed in Definition 1.

III. LONG-TERM BEHAVIOR

In this section, we study the behavior of our model when
% — oo. This setting means that information broadcasts
take place at the steady states of (4). The scenario where
a information broadcast takes place at time T < +oo
is considered in [8], where we adopt a different style of
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analysis and obtain extensions of results to be presented in
the following.

A. Steady States of Epidemic Dynamics Given Social States
From (4) and (5), we express the steady-state values as

- 00
d 7
where 04 = \d(1 — s¢), and
o= ZdeD (dzz‘esd x‘jfg) )
> gep dm? .

Let d := Y deD dm? denote the average degree of the
network. By combining (8) and (9), we obtain the equation
containing only © as follows:

C:)—d_lz(d

deD

dpnd Qo
3 "”féd@é . (10)
i€8d v i

From (10), we observe that ©y = 0 is always a solution.
Accordingly, I¢ ‘o = 0 for all d and i. We call the steady

state (IO, @0) the zero steady state (or disease-free steady
state), which refers to the proportion of the infected in players
playing all strategies in all populations are all zero and that
all links have zero probability to lead to an infected node. The
zero steady state is often referred to as the disease-free state
[6]. Meanwhile, positive steady states arise from dividing ©
from both sides of (10) when © £ 0:

1=a' Y (a2
N y+620 |-

deD ieSd

1)

In a positive steady state pair (I, (z),©0(z)), we have
O©4(z) € (0,1]. It shows that a link possesses a positive
probability to connect to an infected node. In addition,
I, (x) = 0 if and only if s§ = 1. This fact explains that
a player can be safe from the epidemic only if she lives a
totally isolated life. We remark that the positive steady state
pair depends on the social state x since (10) contains x. The
next result presents the conditions on the stability of the zero
steady state and the positive steady state. We refer the readers
to [8] for the proof.

Theorem 2. Given a social state x, the zero steady state
(I, ©0) is globally asymptotically stable if M <1
for all i € Sd_ and all d € D; the unique posmve steady
state (I(x),0©4(x)) is globally asymptotically stable if
M=) > 1 for all i € 8% and all d € D.

We will focus on the positive steady state pair

(I, (x),0,(z)) in the sequel, i.e., the scenario where

M > 1 for all i € S and all d € D. Note that
the uniqueness of positive steady state follows from the fact
that the right-hand-side of (11) is strictly decreasing in ©.

B. Numerical Computation of Steady States

— dpd
—1 ;072 .
Define M(z) = d™" > ,cp (dZiesd W) with z €
[0, 1]. The computation method to obtain a steady state relies
on the next result, whose proof is omitted.
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Theorem 3. M (-) is a contraction mapping on [0, 1].

Theorem 3 indicates that the steady state © can be obtained
by the fixed-point iterations using the mapping M (-).

C. Equilibrium Analysis

Before focusing on the NE, we first introduce an equivalent
D-player game associated with the population game. In this
equivalent game, a player with degree d plays a weighted-
mixed strategy x¢ from the set S?. By weighted-mixed
strategy, we refer to the restriction that 172¢ = m?. Given
a social state * = (2% 27?), where 2~¢ denotes the
population states of populations other than population d, the
expected payoff of player d playing z¢ is EF?(x?, 279 :=
()T Fi (2t 27%) = 3, cga 2l F (%, 7). The following
result on the NE is inspired by this equivalent game. The
proof can be found in the full-length paper [8].

Theorem 4. A social state x* is an NE of the game defined
in Section II if and only if it solves:
)+ Z y*m?

Z —EF(a®
deD deD

s.t. —Fd(m)> —y™1,4, Vde D,
z? >0, 172 —md7 Vd € D.

min
zEX,yeRP

(12)

Gradient-based algorithms can be used to numerically solve
(12). At each iteration of the algorlthrn the descent direction

consists of the gradient vector 3 i () for all i € 8¢ and for
all d € D. We provide below the explicit expression of the

gradient vector given a social state.
With a slight abuse of notation, we specify the dependence
on x by writing the steady-state quantities using O(z) and
( ). We express the gradient using the chain rule as
(1’) 1 S; )70 . @
7+9d@(¢))2 Ox
60 (z) leveraging (11). Define H : R x R* — R by

oz < dnd
H(O,2) = () Ygep (4 iese 55gt5 ) — L
from the definition that is continuously differentiable
with respect to both arguments. Suppose that, given x*,
the pair (©*,z*) solves (11), i.e., H(©* 2*) = 0. The
Jacobian of H with respect to the first argument at (©*, 2*)
is Jo(0*,2*) = 24 ((©*,2*)) € R. It can be observed
from (10) that ©* > 0 if z* is a social state. Hence,
Jo(©*,2*) < 0. Invoking the implicit function theorem,
we observe that there exists a neighborhood Vg of ©*
and a neighborhood V, of z*, such that there is a unique
continuously differentiable function h : V, — Vg satisfying
h(z*) = ©* and H(h(z*),2*) = 0. Furthermore, the
derivative of h(-) can be expressed as

oh , .. gty -1 98
@(m ) = —(Je(M(z"),z")) dad

7

(z). Next, we derive the term

It is clear

(h(z"),2"). (13)

Thus, the term 8—9(35) can be obtained directly using (13)

at the given s0c1agi state z. Therefore, the explicit gradient
vectors are of the form

OF; (1 - si)r0!

() = S0 o1
ox (v +60%0(x))?

(o). 0) G O
- (14)
where O(x) is obtained from the fixed-point iterations using
the mapping M (-) and
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0H - 1 1.01 D-6P
67(9(37)795) =7 (HQ%(@ M) - (15)
In general, the optimization problem (12) is nonconvex.
However, gradient-based algorithms are still promising meth-
ods for finding stationary points, i.e., points with sufficiently
small gradients. Moreover, we know from the proof of
Theorem 4 that the global optimal point yields a zero objective
value. Therefore, we can test the stationary point obtained
by the algorithms using the objective value to verify whether
it is a potential global optimal point, i.e., an NE social state.

D. Property of the Game

Stability studies the structural properties of the games
under which sequential plays following specific revision
protocols converge to an NE. In this section, we analyze
players’ incentives to change strategies when the game is
played sequentially.

Let DF(z) := L F(z) € R™*" denote the derivative of

the payoffs with respect to the social state. From (14), we
can express DF' as

DF(z) =
(-shol ol \T
(v+616(x))? y+016(x)
v _ _1 . 16)
1 (Jo (O, 2) . .
(1-s"5)00p D-07p
(00,602 ) \ 7700, 6()

In some classes of games, such as potential games and stable
games, various evolutionary dynamics show global stability.
These games require special structures of the derivative matrix
DF(z). Next, we study the structural properties of (16).

Theorem 5. Under the assumption that every information
broadcast takes place at the steady state of (4), i.e., T — 00,
the game defined in Section Il is a submodular game.

The proof can be found in [8]. A more transparent equiva-
lent explanation of the above result is that the decisions in
our evolutionary game are strategic substitutes, i.e., increases
in strategies of other players result in a relatively lower
strategy of a given player. This fact is straightforward in the
following sense. People are less likely to choose outdoors
if the streets are crowded owing to a higher likelihood of
infection. Otherwise, people tend to choose outdoors.

The counterpart to a submodular game is a supermodular
game [4], where decisions of players are strategic comple-
ments. In supermodular games, increases in strategies of
other players result in a relatively higher strategy of a given
player. This isotone property of the payoff function makes
the best response correspondences of players well-behaved
and the best-response dynamics with stochastic perturbation
converge to perturbed NE of the game [4]. The behavior of
learning dynamics in submodular games is more involved [9].
However, following [10] and [11], we can obtain guarantees

on the stability of simple learning processes.
Consider the best-response dynamics of the form

41 = m*BR"(zp)),Vd € D, (17)

597

d

where the subscript [k] represents iteration k. Let

min
(m?,0,...,0)7 and 24, = (0,...,0,m%)T denote the min-
imal and maximal state of population d. Let i, =
D D
(L, 2P ) and pax = (2l ..., 20, denote the

minimal and maximal social state. The following result [10]
characterizes the stability of the learning process (17).

Corollary 6. There exists a minimal point x;, € NE(F')

min
and a maximal point xf,. € NE(F). The best-response
dynamics (17) generate a monotonically increasing sequence
which converges to x, when the initial point is Tmins
(17) generates a monotonically decreasing sequence which

converges to xy,.. when the initial point is Tmax-

The results in Corollary 6 have the following interpretations.
The initialization at x,;, corresponds to the situation where
players pay little attention to potential infections caused
by the epidemic. In this scenario, players are at high SAIs
and interact actively over the network. Through sequential
revisions of strategies, players gradually become aware of the
potential risks from physical interactions and they become
increasingly careful about their physical interactions with
others. Hence, the sequence generated by (17) starting from
Tmin 15 increasing. The convergence to z; ;, shows that by
naively best-responding to current payoffs, the population
can eventually reach a point where no one has an incentive
to further revise her strategies. On the contrary, the scenario
where the starting point is x,.x indicates cautious plays at
the beginning, since players have no information about the
potential consequences of the epidemic. Through sequential
plays, players become better informed and behave more
audacious, i.e., the subsequent social states generated by (17)
after r,.x are decreasing. Finally, there is a point where
no one is willing to take more risks (e.g., going to the

supermarket without wearing a mask).

Note that the maximal and the minimal points z} . and
2y, do not, in general, correspond to the equilibrium points
where the payoffs of players reach the maximum and the
minimum, respectively [11]. Corollary 6 enables the monotone
convergence to the NE of the evolutionary dynamics of the
form:

i* = min{m?BR%(z)} — 2%, Vd €D, (18)
where min{-} selects the least element from a set. The
reason lies in the discretization of (18): z¢(t + §) =
Smin{m?BR(z(t))} + (1 — §)x%(t), which has the in-
terpretation that in a small period 6, only § portion of
the population revises their strategies to the one obtained
using the best-responses. The updates (17) correspond to
0 = 1. Suppose that ¢, and t;,; are two time instances
corresponding to iteration [k] and [k+1] in (17). Since starting
from in, (17) yields xfk] < xf’ml], and for any 6 € (0,1),

24t + 90) = Smin{m?BRY(z(t))} + (1 — d)ad(ty) =

5:c?k+1] +(1f§)xflk]. Then, xflk] < 2ty +9) < xflk,H]. If we
pick 0,01, -+ ,0ena € [0,1] such that 0 < §; < dg < +-+ <

dena < 1, the same relation follows: m‘[ik] < zl(ty +61) <
s < 2ty +bena) < mfkﬂ]. Therefore, the discretization of
(18) is monotone between t; and ¢ for arbitrary choices of
an increasing sequence of d. This fact shows the monotonicity
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of (18) and its convergence to the NE from x,,;,, when we
let & — 0. The scenario where the starting point is Ty ax
follows the similar reasoning.

IV. NUMERICAL EXPERIMENTS

In this section, we present the results of numerical experi-
ments. For presentation purposes, we use 2 populations with
the number of strategies being 3 and 2, respectively. We set
the parameters r, A, and v to values such that the unique
positive steady state appears under a given social state and
that there are no dominant strategies.

New reported cases

New
cases —

7-day
average

new infected density

epidemic evolution time

(®)

Fig. 2. Multiple peaks of new infections. (a) Statistics of COVID-19 in New
York [12]. (b) Predicted new infected density curve using our framework.

In Fig. 2, we compare the curve of the reported cases using
the historical COVID-19 data and the simulated curve of the
infected density using our framework. The multi-peak curves
in Fig. 2(a) and Fig. 2(b) correspond to different waves of
epidemic outbreak. The first wave is the natural outbreak of
an epidemic when it first starts to spread among infectious
individuals. The decreases of new cases between July 2020
and November 2020 in Fig. 2(a), and between time 20 to 50
in Fig. 2(b) correspond to the period when people start to
avoid close contacts and the policies are enforced to mitigate
the epidemic, such as wearing masks all the time. In Fig.
2(a), the second infection wave is a consequence of relaxed
social guidance [13] and the violations of existing quarantine
policies. At t = 50 in Fig. 2(b), we set the behaviors of the
populations to change. This change captures the populations’
overconfidence in the epidemic status as the number of new
cases decreases. When the populations become less careful,
i.e., more people play strategies close to s¢ in the set S, the
newly infected density curve increases and shows a second
peak. This second peak is an indication of the influence of
herd behaviors on the epidemic evolution.
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V. CONCLUSION

We have proposed a federated evolutionary game frame-
work that couples the epidemic state dynamics with the
evolution of strategies to study the herd behaviors over com-
plex networks. We have designed the mechanism containing
physical interactions and information broadcasts to combine
federated state transitions over a large network and sequential
strategy revisions in the populations. Taking the epidemic
model as a special case, we have found a unique nontrivial
steady state when the epidemic evolves faster. We have
characterized the Nash equilibrium of the game at the steady-
state. In addition, we have shown that decisions in the game
are strategic substitutes, which have enabled simple learning
processes to reach equilibrium. Our numerical examples
have indicated the predictive power of our framework by
comparing the simulated dynamics to the historical COVID-
19 statistics. The multi-peak pattern observed in the case
study has shown that the herd behaviors have been attributed
to multiple epidemic outbreaks.
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