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RIGIDITY PERCOLATION IN DISORDERED 3D ROD SYSTEMS*
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Abstract. In composite materials composed of a soft polymer matrix and rigid, high aspect-ratio
particles, the composite undergoes a transition in mechanical strength when the incorporated particle
phase surpasses a critical density. This phenomenon, termed rheological percolation, is well known
to occur in many polymer-rod and polymer-platelet composites at a critical density that exceeds the
conductivity percolation threshold (which occurs when the conducting particles form a large con-
nected component that spans the composite). Contact percolation in rod-like composites has been
routinely exploited to engineer thermal or electrical conductivity in otherwise nonconducting poly-
mers, and the characterization of contact percolation is well established. Mechanical or rheological
percolation, however, has evaded a complete theoretical explanation and predictive description. A
natural hypothesis is that rheological percolation is due to a rigidity phenomenon, whereby a large
rigid component of inclusions spans the composite. Here we build an algorithm to detect the rigidity
percolation threshold in rod-polymer composites. We model the composites as systems of randomly
distributed, soft-core (intersecting at contact) rods and study the emergence of a giant (i.e., span-
ning) rigid component. Building on our previous results for two-dimensional composites, we develop
an approximate algorithm that identifies spanning rigid components through hierarchically identify-
ing and compressing provably rigid motifs—equivalently, decomposing a giant rigid component into
rigid assemblies of a hierarchy of successively smaller rigid components. We apply this algorithm to
random monodisperse systems that are generated in Monte Carlo simulations to estimate a rigidity
percolation threshold (critical density) and explore its dependence on rod aspect ratio. We show
that this transition point—Iike its contact percolation analogue—scales inversely with the excluded
volume of a rod. Moreover, this implies that the critical contact number (i.e., the number of contacts
per rod at the rigidity percolation threshold) is constant for aspect ratios above some relatively low
value and is lower than the prediction from Maxwell’s isostatic condition.
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1. Introduction. The application of the graph theoretic notion of rigidity to-
wards studying material properties has a long and fruitful history, tracing back to
Maxwell and finding a place in present-day technologies. In the simplest conception
(Mazwell counting or Mazwell’s isostatic condition), a system of particles is predicted
to be rigid when the number of inherent particles is met or exceeded by the number
of constraints between them [35]. This criterion has two subtle shortcomings. First,
it supposes that all constraints are independent. This has been corrected for in two-
dimensional systems using Laman’s condition; more generally, rigidity matroid theory
offers a solution that recovers the global count of (linearly) independent constraints in
systems of any dimension [17]. Second, this approach is directed towards the question
of whether all degrees of freedom in a system are bound—but in many applications
(in which it is used), the more appropriate question is whether or not the system
contains a giant rigid component, i.e., a spatially extended, spanning subgraph that
is rigid (rigidity percolation). The first of these shortcomings underpredicts the rigid-
ity percolation threshold, while the second overpredicts it—the relevance of Maxwell
counting depends on a balance of these effects [33]. Nonetheless, this approach is
used in many studies to characterize both simulations and laboratory experiments in
various systems.

In recent years, rigidity theory has received considerable attention. In particu-
lar, relating the rigidity theory of glasses to chemical composition has aided in the
development of Gorilla Glass [3, 34]—a highly useful and lucrative component of mo-
bile phones and other devices. Indeed, the application of rigidity theory to glasses
has a rich history, tracing back to Phillips and Thorpe’s simple constraint counting
exercise [45, 49]. In a system of covalently bonded atoms (in three dimensions), in-
teractions between atoms can be divided into (central force) two-body interactions
and (bond-bending) three-body interactions which are shared between all pairs of
second nearest neighbors. The sum of these constraints is given by <2i> + (2(c) — 3),
where (c) is the mean number of interactions per particle. Because the atoms each
have three degrees of freedom, this leads to the isostatic condition (c¢) = 2.4, which
is an estimate that has been shown to be quite accurate both in simulations [20, 60]
and experiments, and has been used to predict the onset of critical mechanical be-
havior in chalcogenides [51, 56, 58], oxide glasses [31, 48], glassy metals [18], and
proteins [46, 47].

Common amongst most systems in which the glass-forming condition is applied
is the assumption that the inherent particles are “atoms” that are approximately
spherical. Celzard et al. apply this same approximation to derive the relationship
between rigidity percolation and contact percolation® thresholds in systems of com-
pressed expanded graphite [9]. In particular, they load composites with increasing
densities of inclusion particles and measure the conductivity /rheological percolation
threshold as the (respective) inflection point in the observed relationship between the
number density (number of particles per unit volume) of inclusion particles and the
composite’s electrical conductivity /mechanical stability (elastic modulus).? Interest-
ingly, though the inherent components are no longer simple atoms in this system,
the glass-forming condition achieves success in predicting the ratio of the rheological
percolation threshold to the conductivity percolation threshold. While conductiv-

LContact /rigidity percolation have also been called “scalar” and “vectorial” percolation in [9]
and other studies.

2Rheological percolation has also been defined as a “sudden change in rheological properties on
account of the sudden onset of solid-like viscoelastic (or yielding) behavior” [37].
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Fic. 1. Conductivity percolation is driven by contact percolation, while rheological percolation is
driven by rigidity percolation. A-B. When the rod number density surpasses pmin,c, it becomes likely
that a system contains a spanning component of rods, which—if rod contacts are conducting—Ileads
to a nonlinear increase in the host system’s conductivity. C-D. At a larger number density pmin,r,
a giant rigid component emerges in the rod contact network, driving a transition in the mechanical
stability of the material.

ity (or electrical) percolation is frequently associated with contact percolation in the
(conducting) rod phase [52, 53|, Celzard et al. [9] constitutes the first study to our
knowledge that uses the microscale phenomenon of rigidity percolation to predict
the onset of rheological percolation in composite materials (see Figure 1). Generally,
there is a lack of theoretical study of the physical mechanism underlying rheological
percolation.

However, while [9] finds an experimental ratio of 1.7-1.8 for the ratio of the rhe-
ological/conductivity percolation thresholds (relatively similar to the glass-forming
prediction of 1.6), other studies using various composite materials have found ratios
as high as 3 and as low as 1, suggesting a need for further investigation [43]. Huis-
man and Lubensky apply a similar framework to a system of long filaments, which
is constructed from one long filament that crosses itself 1000 times and is then sub-
jected to a large number of Monte Carlo topology rewirings and segment cuttings.
In this system—unlike in the glass-forming condition—only rod-sharing second near-
est neighbors share bond-bending constraints [26]. Using a similar argument to the
glass-forming condition, they derive instead that the minimum number of connections
per junction (z) required for rigidity is 13—0 (combining this with the contact percola-
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tion prediction gives pimin,r/Pmin,c = 10/6).> They argue that this is the appropriate
isostatic condition for the system and demonstrate the efficacy of this prediction in
simulations.

Critical to Huisman and Lubensky’s study [26] is the assumption that rods can
rotate about but stay fixed to one another at their respective point of contact; i.e.,
the point of contact acts as a socket joint about which each rod can independently
rotate. We can similarly derive Maxwell’s isostatic condition in a rod-socket system*
in which rods are randomly dispersed in space and contact at intersections. Because
each rod has 2D — 1 degrees of freedom in D dimensions, and each contact constrains
D degrees of freedom, the system becomes rigid when (c) > 452 where (c) is the
average number of contacts per rod. In two-dimensional systems of random dispersed
rods with socket/hinge-like contacts, the estimate (c) = 3 is rather inaccurate—the
real value is about 4.25 [23, 33]—whereas it is quite accurate in the system of Huisman
and Lubensky [26].

Several studies have studied rigidity percolation in three-dimensional rod-like sys-
tems (including [5, 6, 26]); however, none have characterized the problem in systems
such as the one we describe here (in which rods are randomly distributed and oriented
in space). Understanding rigidity percolation in these systems is an important task
because it is a priori unclear whether any model created via lattice perturbations
or long filament segmentations has sufficiently similar network topologies to systems
of randomly positioned fibers. Moreover, while results in analogous 2D systems of
randomly dispersed rods can be used to qualitatively characterize experimental find-
ings regarding rheological percolation, there are certain features of networks in three
dimensions that are unique. Although our approach also makes simplifications (e.g.,
that these rod dispersions are random and isotropic, and that contacts can be ide-
alized as intersections), our study marks the first attempt to characterize rigidity
percolation in 3D systems of randomly dispersed rods with socket-like contacts.

In this study, we extend the rigid graph compression (RGC) algorithm to three-
dimensional rod systems. We previously demonstrated that RGC can be used to
approximate the rigidity percolation threshold with high accuracy in two-dimensional
rod systems [23]. First (section 2), we review the construction of this algorithm, which
identifies components of mutually rigid rods through a set of hierarchical rules, and
we develop the essential theory necessary to extend it to three dimensions (section 3).
Then, we use this algorithm to identify a rigidity percolation threshold in systems
of randomly placed and oriented rods, conducting numerical experiments at various
system sizes and aspect ratios and using a finite-size scaling analysis to estimate
the transition and associated correlation length exponent (section 4). We use two
approaches to assess the validity of this approximation and find that the approach
robustly identifies a reasonably tight upper bound on the true threshold (sections 4.4—
4.5). Finally (section 5), we show that the rigidity percolation threshold (like the
contact percolation threshold in the slender body limit) varies with the reciprocal of

3We use (z) here to refer to the average degree in a network wherein nodes represent contact
points and edges represent the rod segments between contacts; and (c) to refer to the average degree
in a network wherein rods/particles are represented by nodes and pairwise contacts correspond to
edges.

4In two dimensions, positional (but not angular) constraint-inducing contacts between rods are
equivalently hinge-like and socket-like. In that case, intersecting rods may rotate with one degree of
freedom about the point of contact. We describe such contacts as socket-like in three dimensions,
since the contacts allow intersecting rods two degrees of freedom about their respective contact point.
Therefore, while the two-dimensional study [23] used the term “rod-hinge system” to describe the
corresponding network, “rod-socket system” is more appropriate here in three dimensions.
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the excluded volume and generally lies below Maxwell’s isostatic condition.

2. Background. In this section, we define the mathematical problem of interest
to this paper—identifying rigidity percolation in systems of overlapping capped cylin-
ders or spherocylinders (“rods”) that stay fixed at but can pivot about their contact
points (“socket joints”)—and outline previous work related to this topic in two- and
three-dimensional systems. In particular, section 2.1 gives a general overview of rigid-
ity theory, section 2.2 describes the problem of applying it to our system, section 2.3
gives the linear formulation of rigidity theory in graphs, section 2.4 applies this to the
current system, and section 2.5 describes how this application can be operationalized
into a useful algorithm. Readers familiar with rigidity theory but not our previous
study of two-dimensional systems [23] may skip to section 2.3, while readers familiar
with our previous study can skip to section 3.

2.1. Rigidity percolation and rigidity detection algorithms. Suppose that
Np rods of aspect ratio v = £/2r, where ¢ gives the lengths of their core cylinders
and r the radii, are positioned in a finite D = 3 dimensional box of depth L > /¢
(i.e., volume V = L?) such that both their centers and orientations are drawn from a
uniformly random probability distribution (we defer the study of sequentially packed
rods to future research). We allow the box to have periodic boundary conditions on
all sides, meaning a rod intersecting the box in one dimension(s) will appear on the
opposite end in the same dimension(s). We allow the rods to intersect one another
and associate each pairwise intersection with a single contact point that constrains
the relative motions of the rod pair. That is, intersecting rods may individually rotate
about but remain connected to one another at their shared contact point in accord
with experimental findings that carbon nanotubes (CNTs), for example, form inter-
connected networks with bonds that freely rotate and resist stretching [25]. We call
the resultant system a rod-socket system. Our general problem is to identify for all L
the critical number density pmin,r = Ngr/ LP above which these rods will with high
probability form a subgraph that is spanning (intersecting both sides of the box do-
main along one dimension) and rigid (having no internal degrees of freedom). We
additionally wish to determine the scaling of the size of the largest rigid component
for p > ppin,r, as well as the dependence of both the transition threshold and the
scaling exponent on the rod aspect ratio, 7.

In our study, we borrow from insights that we learned from studying the same
problem in analogous two-dimensional systems. In particular, we know of at least
four methods that have been used to understand rigidity percolation in this setting.
We have already described Maxwell’s isostatic condition (which is a global mean
field estimate), as well as its shortcomings. A second method relies on a spring-
based relaxation algorithm that involves joining intersection points along shared rods
via springs. When the positions of these intersection points are perturbed but then
allowed to relax, the evolution of the system will recover initial distances (resting
lengths) between points along shared rods, and in theory it will recover the initial
distances between intersection points on rods in a mutually rigid cluster, while ran-
domizing distances between intersection points in separate rigid clusters (alternatively,
a singular value decomposition of the resulting matrix can be employed to the same
effect [42]). While the relaxation algorithm is generalizable to a variety of systems and
applications [5, 6, 26, 64], its implementation in rod-socket systems is numerically un-
stable, though it has been shown to be tractable in the two-dimensional setting [64].5

50ur own efforts to apply this method in three dimensions have been unsuccessful so far.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/01/22 to 129.170.28.168 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RIGIDITY PERCOLATION IN DISORDERED 3D ROD SYSTEMS 255

A third method used for rigid cluster detection originates from a graph theoretic the-
orem, Laman’s condition [32], which gives a local combinatorial condition for rigidity
in two-dimensional planar graphs that can be utilized algorithmically (the “pebble
game” [28]) in large systems and can be adapted to 2D rod-hinge/socket systems [33].
Unfortunately, this condition does not apply exactly to three dimensions, though it
can be accurate in certain 3D systems, including bond-bending networks [29] (which
are frequently used to model proteins [30]) and perturbed lattices [12]; but the problem
of combinatorial characterization of rigidity of graphs (and in particular rod-socket
systems) in 3D remains open. See also [41, 55].

While these latter two methods (spring relaxation and the pebble game) may at
some point be utilized to characterize rigidity percolation in our system of interest,
our contribution here lies in extending a fourth method, rigid graph compression
(RGC), from 2D [23] to 3D. Like the pebble game, RGC utilizes a graph of rod
connections to identify rigid components (rather than explicitly using the location
of the rods/intersections in space, as in spring relaxation) and thereby determines
if a system has a spanning rigid component. While the pebble game approximation
identifies certain floppy components as rigid in 3D [12] (it is exact in 2D), RGC
exclusively identifies rigid components in both 2D and 3D. However, RGC may fail to
identify some rigid components, and it therefore gives a sufficient but not necessary
condition for identifying a subgraph as rigid or not. In contrast, the 3D pebble game
approximation gives a necessary but not sufficient condition. In the remainder of this
section, we describe the formulation of RGC in detail and highlight the results of its
implementation in 2D. We then extend RGC to 3D in the next section.

2.2. Rigidity theory for rod-socket systems. Before discussing the applica-
tion of rigidity matroids to our system, we briefly frame our model system in light of
the wider study of rigidity theory. Most work in this general topic relates to rigidity
of graphs that can be described by pairwise constraints that fix distances between
nodes (also called bar-joint networks with central force constraints and bond-bending
constraints if second nearest neighbors have angular constraints) [61]. While we rely
on these developments (which we discuss in the subsection to follow) in setting up
our own methodology, our system differs in that individual particles are rods—while
there are pairwise constraints between points on the rods (e.g., endpoints or contact
points), certain peculiarities of the system necessitate specialized treatment.

Our work here is somewhat parallel to the study of 3D body bar networks (we
refer interested readers to [61]), but our system has certain properties that these
networks do not accommodate. Body bar networks are described by “bar” constraints
between rigid bodies that have the same dimension as the system but arbitrary shape
(these are often used to represent biomolecules [24, 63]). Whereas most analyses of
body bar networks assume contacts are noncollinear, rods often have collinear contact
points, which in certain cases form redundant constraints. Moreover, these bodies are
generally treated as having the same dimension as the system in which they are
studied and lack any special symmetry (unlike axisymmetric rods). Similarly, one
may be tempted to relate our rod system to body-hinge systems, which are described
by hinges that connect along D — 2 dimensions, but the hinges in 3D space are line-
hinges as opposed to point-sockets in our system (and again, “bodies” in our system
are rods that necessitate special treatment) [27, 62].

2.3. Rigidity matroid theory for spatially embedded graphs. RGC de-
pends explicitly on being able to prove that certain contact patterns between compo-
nents, which are themselves rigid, can be used to identify a larger rigid component
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that contains these individual rigid components. In particular, we use a dynamical
systems framework in rigidity matroid theory to derive these rigid contact patterns or
rigid motifs. Rigidity matroid theory uses a graph’s embedding in Euclidean space,
or “framework,” a(G),% to characterize its rigidity through the language of linear al-
gebra [13, 17, 21]. Consider the set of node positions of some graph G(V, E) to be a
dynamical system such that p;(¢) is the D-dimensional position of node ¢ at time t¢.
The condition that each edge e;; € E maintains a fixed distance d;; between nodes
i and j requires ||p;(t) — p;(t)||5 = d3; Ve;; € E. Since this quadratic system is not
computationally convenient, it is common to linearize by differentiating with respect
to time, obtaining

(2.1) (Pi(t) = p;(1)) - (wit) —u; (1)) =0 Vey; € E,

where wu;(t) = dp;(t)/dt is the instantaneous velocity of node i. The totality of these
constraints informs an |E| x D|V| matrix, X—the rigidity matrix of a(G)—satisfying
Xu = 0, where u is the D|V|-vector of velocities. A vector u satisfying Xu = 0 is
an infinitesimal motion of a(G), and the right nullspace of X includes the full set of
such motions. If G is embedded in Euclidean R” and the right nullspace of X spans
only the D(D + 1)/2 rigid-body motions of translation and rotation, the framework
a(@G) is said to be infinitesimally rigid. Otherwise, a(G) is infinitesimally flexible.

Importantly, it has been shown generically that if a framework «(G) is infinitesi-
mally rigid, then almost all other embeddings of G in space are infinitesimally rigid,
the exceptions of which form a set of measure zero [1]. Therefore, one can (generically)
infer rigidity from the topology of a graph itself, rather than from any particular em-
bedding in space (section 3 of [1]). We note that this argument breaks down when at
least one nontrivial minor of X has a zero determinant—however, these cases occur
with probability zero in random systems. Practically, determining the rigidity of a(G)
thus reduces to computing the rank of X, and using the rank nullity theorem to then
determine the dimension of the matrix’s nullspace, which corresponds injectively to
the count of the underlying graph’s degrees of freedom.

2.4. Rigidity matroid theory for interacting rigid components. While it
may seem appealing to use rigidity matroid theory to capture rigidity percolation,
computational rank estimation is subject to numerical difficulties, and, more impor-
tantly, the rank calculation can only be used to give a system count for the number of
degrees of freedom, rather than finding a spanning rigid component. In our prior work
(section 3.1 of [23]) we instead proposed to use rigidity matroid theory to study the
motions of small numbers of interacting rigid components, or rigid motifs. These rigid
motifs are essential “building blocks” that hierarchically compose giant or spanning
rigid motifs. We review our study of rigid motifs here and in the next subsection.

The motions of any D’-dimensional rigid component in D dimensions can be
fully determined from D’ 4+ 1 points contained in the component, the translations
and rotations of which together generate the Special Euclidean group SE(D) [8].
(In principle, fewer coordinates are needed if employing angular constraints, but for
simplicity we work with D’ + 1 points.) Hence, for some rigid body R ¢ R?", which
we define as the union of volumes enclosed within some integer number r > 0 of one-
dimensional rods, we affix a coordinate labeling of R, composed of either D’ +1 = 2

SWe note that in other papers, p is frequently used to denote a framework. Instead, we reserve

p to denote number density.
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(singleton rod),” 3 (planar), or 4 (nonaxisymmetric, nonplanar) points {p;} which
fully capture the rigid motions of R. Importantly, no more than two points in a
coordinate labeling may be collinear, or else the coordinate labeling will only capture
a subset of the available rigid motions of the corresponding body. Due to the rigidity
D'+1

9 ) constraint

of R, the pairwise distances between the points are fixed, providing (
rows in the corresponding rigidity matrix X, each having the form

(2.2) Apij-ui — Apij-u; =0,

where u; and u; are the instantaneous velocities corresponding, respectively, to the
points p; and p; (each of dimension D) that are affixed in R and Ap; ; = p; — p;.
When two or more rigid components R;, Rs,... are in contact, we denote the
composite system by Rp * Ro*... and the corresponding composite rigidity matrix by
X% Xo%.... For such systems, we construct a minimal coordinate labeling, defined as
the union of coordinate labelings for each involved R; such that coordinate labelings
include interaction points between rigid components wherever possible. For a given
set of coordinate labelings of all included rigid components, we construct a constraint
graph encoding the topology of physical constraints between the rigid components
(Figure 2 here or Figure 3.1 in [23]). This graph is constructed by creating for each
rigid component R; with S; coordinate labels an (S;)-clique—that is, an all-to-all
connected subgraph. The constraint graph is defined as the union of these cliques.

2.5. Rigid motifs and RGC. In [23] and in the present study, we develop a
methodology to use rigidity matroid theory—supplemented with the use of coordi-
nate labelings—to develop rules for aggregating 2D rods (line segments) and non-
axisymmetric composite rigid bodies into larger composite rigid bodies. These rules
are expressed as primitive rigid motifs, which represent topological “building blocks”
of rigidity in rod-socket systems. We use the term “primitive” because these motifs
may not be decomposed into simpler motifs, yet many larger, more complicated pat-
terns of interaction can be constructed from these motifs, analogous to the formation
of Laman graphs from Henneberg constructions (in bar-joint systems) [22, 59]. In [23]
and the present work, rigid components will be rods or sets of connected rods, but the
formalism does not necessarily require the individual particles to be rod-shaped, and
the methodology may with only slight modification be extended to ellipsoids, curvi-
linear filaments, and other axisymmetric shapes, so long as the interactions between
the particles are socket-like.

In [23] and here, we use these primitive rigid motifs to identify large-scale rigid
components agglomerated from rigid components identified at smaller scales, starting
from the microscopic scale of primitive rigid motifs acting on individual rods (Fig-
ure 3.2 in [23] and Figure 3 here). Our approach relies on constructing rod contact
networks in which each node represents a rigid component and edges indicate which
components intersect with one another (similar to body bar networks). This net-
work construction contrasts the constraint graphs described earlier (in which nodes
represented coordinate labelings and edges represent rigidity constraints).

In [23], we leverage these rigid motifs into a graph-compression algorithm (RGC)
that decomposes large rod-socket systems into their rigid components. The RGC al-
gorithm involves initialization (Step 1), followed by iterative identification and com-
pression of rigid motifs (Steps 2 & 3):

"Note that regardless of the dimension of the rod network, if R includes only a single rod, then
it has a spatial dimension 1, and so only two points are needed to specify its rigid motions.
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1. given a set of interacting particles (i.e., a rod-socket system), construct a
contact network of rods represented as nodes and contacts between rods rep-
resented as edges;

2. identify rigid motifs in the contact network;

3. compress each rigid motif instance into a single node, yielding a reduced set
of rigid components and an updated contact network;

4. return to Step 2.

This algorithm terminates when no more rigid motifs can be identified. In [23], we
show that RGC is a useful framework for identifying rigidity percolation in 2D rod-
hinge/socket systems, and in particular that an implementation using only 3 rigid
motifs can identify the rigidity percolation threshold to within 0.6% relative error.
Moreover, we show that the 2D algorithm is robust to the order in which motifs
are identified/compressed—i.e., the order has no effect on the final rigid components
identified.

3. RGC in three dimensions. Our main contribution herein is to extend RGC
to 3D systems. As the application of interest (rheological percolation) occurs generally
in 3D systems, it is of paramount interest to understand rigidity percolation in this
more complex domain. In section 3.1 below, we first discuss methodological challenges
facing such an extension. We then present 3D rigidty motifs in section 3.2 and our
3D RGC algorithm in section 3.3.

3.1. Methodological challenges in 3D. The core approach of RGC in 2D
and 3D is essentially the same—in a graph of connections between interacting rods,
we identify specific motifs and compress these based upon physically meaningful rules
(rigid motifs) until no more can be identified. However, we can identify at least five
challenges that complicate the 3D approach, which we enumerate here.

(1) In 3D, contacts are not points but are rather three-dimensional volumes.
Therefore, when designing these rules, we specify how many instances in which the
relevant rigid components intersect. By an instance, we precisely mean the unique
intersection of two rods in the physical rod network. While two nonaxisymmetric
rigid components may intersect in any number of instances, and the same is true for
one nonaxisymmetric rigid component and one rod, pairs of rods only intersect in
one instance. Our strategy is then to choose a point within each contact intersection
(shrinking the intersection volume to a point), which we henceforth refer to as the
contact point. We use set notation (N, U, /) to indicate intersections, unions, and set
differences between the volumes in respective rigid components. For example, Ry U Ry
gives the set of all volumes enclosed in the rods composing R; and R, while Ry N Ro
gives the volumes corresponding to any intersections between the rods composing Ry
and those composing Ro.

(2) In 2D, it was only necessary to consider interactions in which pairs of rigid
bodies share < 2 contacts. Owing to the increased number of degrees of freedom for
rigid bodies in 3D, this will not always be the case in the rigid motifs of the next
subsection. Strictly speaking, rod-sharing contacts may not necessarily be collinear
if they do not lie along the same axis of a finite-aspect-ratio rod. However, for high
aspect-ratio rods, they will in most cases be nearly collinear. In order to establish
an upper bound for the rigidity percolation threshold, we assume in the derivation of
the rigid motifs below that all rod-sharing contact points are collinear except where
3 or more rigid components intersect in the same volume (for which we choose cor-
responding contact points that are noncollinear). Additionally, as in two dimensions,
we assume generic conditions in which no pair of rods is precisely parallel.
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(3) In 2D, rods and planar rigid bodies have the same number of degrees of free-
dom (3). However, rods (and other axisymmetric rigid bodies) have 5 distinguishable
degrees of freedom in 3D while nonaxisymmetric rigid bodies have 6. Therefore, the
rigid motifs that we identify must discriminate between the two, and the algorithm
must keep track of which nodes represent rods and which do not as the graph com-
presses. (We note that composite rigid bodies constructed from multiple rods are
always nonaxisymmetric.)

(4) In [23], we showed for RGC algorithms with three primitive motifs that dif-
ferent orderings of these specific motifs in RGC would yield the same identification
of rigid components upon compression. Moreover, rigid clusters in 2D “come in one
piece” [12], meaning that no rod could be a member of more than one rigid clus-
ter. Neither of these conveniences is true in 3D, as we show by counterexample in
Appendix B. We consider empirically the implications of this issue in section 4.4.

(5) For 2D rod-hinge systems, we were able to compare the performance of RGC
to exact rigidity analyses based on the pebble game [23, 33]. However, for our study
of disordered 3D systems, there does not currently exist such a “ground truth” with
which to compare.

3.2. Rigid motifs in 3D. Here, we present seven rigid motifs that we will utilize
to design 3D-RGC algorithms for identifying rigid components in 3D. To simplify our
discussion, we adopt the naming schema “Motif xDyz” with x indicating the spatial
dimension (3), y indicating the number of aggregating rigid components in the motif,
and z indicating an alphabetical index if there are different motifs associated with the
same x and y. We prove in this subsection that Motifs 3D2A and 3D2B are rigid and
outline the similarly constructed proofs for the various other motifs in Appendix A. In
Figure 2, we offer a visual guide to these proofs by depicting an exemplifying physical
rod network, coordinate labeling, and constraint graph for each respective motif.

THEOREM 3.1 (rigidity of Motif 3D2A and Motif 3D2B). The composition of
two nonazrisymmetric rigid components R and Ro that intersect at three or more
instances, which are not all rod-sharing, is rigid in three dimensions (3D2A). If one
of these components is azisymmetric (say, Ry), then only two of these intersections
(p1,p2) are necessary (3D2B).

Proof. We first show that motif 3D2A is rigid. Let p;, p2, ps be points in each
of the intersections between the two bodies (R1 N Rz). Let us first assume that these
nonaxisymmetric rigid bodies are nonplanar. In this case R; and Rs have four points
apiece in their coordinate labelings. We choose three of these points in each labeling to
lie respectively in the pairwise intersections, giving the respective coordinate labelings
{P1,P2,P3, PR, } and {p1, P2, P3, PR, }, Wwhere pg, is a point in R1\ Ry and vice versa.
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Physical rod network Coordinate labeling Constraint graph

Motif 3D2A

Motif 3D2B

Fic. 2. Depiction of two rigid motifs in three dimensions. Left column: Rigid components
(distinguished here by shade), which may be individual rods or sets of connected rods, intersect with
two specific motifs as described in section 3.2 to form larger-scale rigid components. Intersections
within the same rigid component (e.g., in Ra) are depicted as black/gray x’s, while those between
rigid components are depicted as red z’s. Middle column: Coordinate labelings are affized to each
rigid component. Four moncollinear points are required to describe the motions of a 3D rigid com-
ponent consisting of multiple rods, whereas individual rods require only two points. For each motif,
we identify a set of minimal coordinate labelings that include intersection points whenever possible.
Right column: The coordinate labelings give rise to constraint graphs in which edges (black lines)
indicate the fized distance constraint between the points they connect. The dashed ellipses group
the points according to which rigid component they belong (i.e., Ri1,R2). By Theorem 3.1, these
constraint graphs, and the motifs that generate them, are rigid. (Color available online.)

Such selections give the rigidity matrices for R; and Ra:

Apia  —Api2 0 0 0
0 Aps3  —Apa3 0 0
Ap13 0 —Ap13 0 0
3.1 X, = : : ,
(3:-1) ! Ap1, R, 0 0 —Apir, O
0 Aps R, 0 —Apsr, O
L O 0 Ap3,]21 _Ap3,R1 O i
[ Ap1o  —Apio 0 0 0 1
0 Apz23  —Apsz 0 0
Api 3 0 —Ap13 O 0
3.2 X, = ’ ’
(32) > | Apir, O 0 0 —Apig,
0 APQ,R2 0 0 7Ap27R2
| 0 0 Apsr, 0 —Apsg, |

Note that X; and X are each of size 6 x 15, and each column represents infinitesimal
motion of a point in R?. Note that there are 6 rows in each rigidity matrix, since
there are (;1) = 6 possible pairwise constraints between four points. For the composite

system, there are 9 rows since there are (g) = 10 possible pairwise constraints between
5 points; however, there is no constraint between points pr, and pgr,. The composite

9 x 15 rigidity matrix X * X5 is given by the intersection of these rows (taking row
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permutations where convenient):

Apio  —Apip 0 0 0
0 Apzs  —Apy3 0 0
Ap13 0 —Ap13 0 0
Ap1 R, 0 0 —Ap1 g, 0
(3.3) X1+ Xy = 0 Aps R, 0 —Apo R, 0
0 0 Apsr, —Aps.r, 0
Ap1 R, 0 0 0 —Ap1, R,
0 Apa g, 0 0 —Ap2 R,
. 0 0 Aps R, 0 —Aps R, |
Consider that it is a block triangular matrix with diagonal blocks:
—Apss —Ap1R, —Ap1,R,
(3.4) [ Apr2 —Apip } ) [ _A ’ ] ;| —Ap2r, |, | —Ap2r,
P13 —Aps3 R, —Aps R,

Because the interaction points between R; and Rs are chosen to be noncollinear, and
because we have excluded the case that the intersection points are all rod-sharing
(collinear), these blocks have ranks 1, 2, 3, and 3, respectively. Therefore, the block
triangular matrix and the original composite rigidity matrix are both full rank, i.e.,
rank(X;*X2) > 9 and dim(null(X;+X>)) < 6. Since a rigid body in three dimensions
(lacking any symmetries) has six degrees of freedom, we conclude that Ry U Ry is
rigid, where we use N/U notation to indicate the union or intersection of all rods in
the respective bodies.

Now, suppose one of the two rigid bodies (say, R1) is planar (as in Figure 2)—in
this case, only three points are necessary to specify its coordinate labeling. Then,
rows 4-6 in (3.3) may be dropped, as can columns 10-12 (recalling that each entry in
the displayed matrix represents a 1 x 3 block), leading to block diagonalization that
is equivalent to (3.4), except that the third block is dropped. Finally, these linearly
independent diagonal blocks have ranks that sum to 6, while the column space has
dimension 12, so the matrix again has rank 6 and is rigid. The case in which both R
and Ry are planar follows similarly.

Next, we turn to the motif (Motif 3D2B) in which one of the rigid bodies is
a rod (say, Rp) that intersects the nonaxisymmetric rigid body Ry at two or more
points p1,ps,.... In this case, we simply choose p; and ps as the coordinate la-
beling for R;—and, if the body Ry is nonplanar, we choose its coordinate labeling
{P1,P2, PRy, PR, }» Where the latter two points are chosen such that no three mem-
ber subset of the labeling is collinear. If instead R, is planar, only one of these latter
points is necessary. In either case, the composite rigidity matrix is exactly the same
as the rigidity matrix Xy, which is rigid by hypothesis. a0

The other rigidity motifs that we study are visualized via their contact network
representations in Figure 3 and are proven in Appendix A.

3.3. Implementation of RGC in 3D. Aside from the difficulties described in
section 3.1, implementation of RGC in 3D (Figure 3) is a straightforward extension of
the 2D implementation that we described in section 2.5 and in [23]. However, we make
a few practical notes here. Rather than identifying instances of Motif 3D3B directly,
we make use of an available fast algorithm for identifying k-clique communities, which
are sets of k-cliques (complete subgraphs on k nodes) that are joined pairwise at
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k — 1 points [19, 40]. In particular, any 3-clique community of rods (see Figure 3)
is necessarily a composite rigid motif in 3D, as it can be generated via repeated
application of Motif 3D2B to Motif 3D3C. Furthermore, every instance of Motif 3D3C
(triangular arrangements of rods) is a member of a 3-clique community, although the
same cannot be said for Motif 3D2B.

We note that the second and third considerations discussed in section 3.1 ne-
cessitate careful implementation of the motif identification step in RGC (step 2 in
section 2.5). Specifically, we construct the contact network as an attributed multi-
graph representation, wherein multiple contacts between rigid bodies are represented
as multiple edges—this is the same representation as the contact network for body bar
systems, but we note that in our case, the network changes as the number of nodes
shrinks through the compression process (starting with a network in which all nodes
are rods and no multi-edges are present). Through the course of the compression
process, we preserve a mapping of the edges in the multigraph representation to the
corresponding edges in the original rod contact network in order to keep track of which
contacts are rod-sharing. Furthermore, a node attribute is used to specify nodes as
being singleton rods or nonaxisymmetric rigid bodies. Finally, we address the fourth
consideration of section 3.1 (the importance of motif ordering) through randomizing
the order in which the motifs are applied. In particular, we show that while different
orderings of the motif identification/compression may lead to different identifications
of rigid components (Appendix B), this quandary appears to have little effect on the
identification of the rigidity percolation threshold (section 4.4).

Primitive 3D Rigid Motifs

Contact Network E. .%.

Physical Rod Dispersion

Non-primitive
3D rigid motif

Fic. 3. Schematic depiction of 3D-RGC. Left: In each simulation, spherocylinder rods are
randomly placed in a periodic box. From these rods, a contact network is extracted in which rods
are represented as nodes (small blue squares), which share edges if the underlying pair intersect
physically. Then, the RGC algorithm is used to find and iteratively compress the network’s rigid
components—sets of nodes that are provably mutually rigid—into single nodes (larger blue squares,
with the larger size indicating they correspond to > 1 rod). This algorithm proceeds until conver-
gence, which is attained when the algorithm has achieved a minimal decomposition of the network
into components of mutually rigid rods (i.e., until no rigid motifs are identifiable). Here, rods 1—
8 form one rigid component, while rod 9 is a second distinct rigid component (i.e., it can rotate
about its contact point with the other component). Right: We prove in section 3.2 and Appendiz A
that the contact networks depicted here are rigid motifs; i.e., the constraint-inducing intersections
(represented by edges) fully constrain the nontrivial degrees of freedom of the inherent rods or non-
azisymmetric rigid bodies (nodes). (Color available online.)
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4. Numerical experiments. Like rod-hinge/socket systems in two dimensions,
rod-socket systems in three dimensions undergo a rigidity percolation transition at a
critical rod number density. In order to capture this transition using RGC, we run
numerical experiments described in section 4.1. In section 4.2, we use a finite-size
scaling analvsis to extract the rigiditv percolation transition point and associated
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Fic. 4. Estimation of parameters associated with the rigidity percolation transition for vary-
ing rod aspect ratio. A. For each aspect ratio, we calculate v(v) via OLS using the relation de-
scribed in (4.5). B. We estimate the cumulative probabilities pz(L,~) and fit these as linear func-
tions of L= to find a unified estimation of the transition point Pmin,r(y) as L — oo (i.e.,
L=vtn o 0). Here, we have plotted p — pmin,r along the vertical azis—rather than just p—in
order to include all points in the same plot window. C. For each aspect ratio, we plot our estimations
of mv(p, L) according to the scaling collapse ansatz given by (4.1) and qualitatively find this ansatz
to be appropriate. The vertical line corresponds to pyin,r (7).

4.1. Experimental protocol. In order to study the rigidity percolation tran-
sition, we implement 3D-RGC on systems of varying rod number density, wherein
the rods are monodisperse spherocylinders with aspect ratio v = % € {23,48,98},
which are randomly placed and isotropically oriented in cubic boxes (with periodic

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/01/22 to 129.170.28.168 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

264 HEROY, TAYLOR, SHI, FOREST, AND MUCHA

boundary conditions) of varying system length 5 < L < 10. For the remainder of
this paper, we assume L has been nondimensionalized by ¢ (i.e., L/¢ — L). We per-
form 100-500 Monte Carlo (MC) simulations at each nondimensionalized rod number
density p = Nr/L? (Ng is the number of rods), and we run more simulations for
smaller L, since we find that their associated rigidity transitions are steeper than
those associated with larger L. For each simulation, we use 3D-RGC to identify the
absence/presence of a spanning rigid cluster that contacts both system boundaries
along one dimension. Since 3D-RGC' identifies no false positives, we identify a system
as having a spanning rigid component if any of the trials are positive. Finally, we
perform the same analyses at lower rod densities in order to compute the contact per-
colation threshold, which we associate with the presence of a component that contacts
both system boundaries along one dimension.

4.2. Finite-size scaling analysis. In accord with percolation theory [57], we
take the ansatz that the probability 7., (p, L) of a system containing a spanning rigid
component varies for fized 7y as the difference between the system’s particle density and
the rigidity percolation threshold py,in (7). This difference is scaled by some inverse
power of the system length. This power is called the correlation length exponent v(7),
and is associated with the divergence of the probability of a system having a spanning
component around ppmin (7):

(4.1) 7o, L) = £ (10 = pminr (VL)
We expand this equation for p — ppmin.»(7) to give

dm.,

d
4.9 =0y v 2 o LYvn Y
(42) i i ([p Prmin,r (V)] )

Then, as in [57], we define py,(7y) as the average density at which a rigid spanning
cluster appears:

(4.3) Pav(7) = /OOO p (%) dp.

Combining the last two equations, we then have that
< d 1
(44) pav(’Y)_pmin,r(V) = / pL /V(’Y) |:dpf’y ([p - pmin,r<'7)]L /V(’Y)):| dp_pmin,r-
0

Using the substitution z = (p — pminr(7))L'? reduces the right hand side to
L=1/v() fzdf;—f(f)dz, where the integral is a proportionality constant (see [57]) that
a priori may or may not have dependence on . Practically, it is easy to show that
the left hand side scales as the standard deviation of p,(y). This deviation—which
we express as Appn (L, y)—Trepresents the expected width of the rigidity transition
region. Therefore, (4.4) shows that for fixed - the width of the transition decays as
an inverse power of the system size:

(45) Apmin,r(Lapy) ~ Lil/u(’Y)'

Our general procedure is to first estimate the correlation length exponent using
(4.5) and then calculate the transition point pyn. (7). More specifically, we estimate
7 (p, L) as the MC average probability of a system having a rigid spanning component
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for varying (p, L) at each 7. Then, we estimate Appn (L, ) by first fitting for each
(L,7) pair a cumulative logistic distribution Fr - (p;p,s) = 1/(1 + e~ “5") to the
observations 7 (p, L), and then setting Apy,in (L, y) equal to the standard deviation
sm/+/3 about the estimated mean p. (Parameter s is a scale parameter proportional
to the standard deviation.) Then, we perform linear regression of log(Apmin,r(L, 7))
against log L to estimate v(y) via (4.5) (see Figure 4). We use a simple resampling
(with replacement) method to simultaneously determine confidence intervals for v(7)
by resampling estimates of 7, (p, L) and using the same procedure as above to estimate
7(v). We use the tilde to indicate one resampling across all (p, L,~y). We then use the
collection of these resampled estimates to calculate the corresponding 95% confidence
intervals for the critical parameters, which are presented along with the corresponding
estimates for each « in Table 1.A.

Table 1.A Estimates (and 95% confidence intervals) of the correlation length exponent and
the rigidity percolation threshold.

y=23 | v =48 | v =98
Pmin,r(7) | 39.51 (39.35, 39.64) | 89.18 (88.82, 89.49) | 190.00 (188.92, 190.98)
v(v) 0.804 (.705, .920) 0.769 (.673, .891) 0.729 (.655, .806)

Table 1.B Estimates (and 95% confidence intervals) of rod contact numbers at the rigidity
percolation threshold.

Contact number ‘ v =23 ‘ v =48 ‘ v =98

(co(pmin,r(7v))) | 3.18 (3.17, 3.19) | 3.17 (3.15, 3.18) | 3.17 (3.15, 3.19)
(c1(Pmin,r(7))) | 3.35(3.34, 3.36) | 3.33 (3.32, 3.34) | 3.33 (3.32, 3.35)
(c2(pmin,r(7))) | 3.61 (3.60, 3.61) | 3.58 (3.57, 3.59) | 3.58 (3.57, 3.59)

Table 1.C Estimates (and 95% confidence intervals) for the contact percolation transition
points, the associated correlation length exponents, and the rod contact numbers at the
respective thresholds.

| y=23 | y=48 | =98
Prmin,c(7) 19.21 (19.14,19.27) | 38.69(38.55,38.83) | 75.10(74.89,75.33)
ve(y) 0.847(.781,.911) 0.841(.775,.914) 0.801(.729,.879)
(co(pminr(7))) | 1.55 (1.54,1.55) 1.37(1.37,1.38) 1.25(1.25,1.26)

Having estimated v(y), we now expand (4.1) around p = pmin(7y) and invert,
deriving the condition that

(4.6) pa(L,7y) = (constant) - L) 4 pri (),

where p;(L,~) is the probability distribution such that 7, (ps(L,v), L) = « for some
x € [0,1]. We use this equation to extrapolate the values of p,(L,7) as L — oo for
x € {0.25,0.4,0.5,0.6,0.75}, which allows us to estimate pyn, () using (4.6) and the
following procedure. First, we estimate p, (L, ) for each z and L via inverse prediction
from the corresponding cumulative distributions Fy, ,(p; i, s) that we have already
fitted. Then, we use least squares linear regression to fit p,(L,~y) against L=Y*) for
each z, given the constraint® that the collection of these fitted lines must intersect
as L — oo in accord with the hypothesis that p, ,(c0) is constant for « € (0,1). We
thereby estimate pyn,»(7) and find the scaling collapse ansatz according to (4.1) to

8When we relax this assumption, each of the individual fits (for varying L) has an intercept that

is within .01 rods per unit volume of the pooled estimate.
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be accurate for each « (see Figure 4 and Table 1.A). We again use a case resampling
procedure to determine confidence intervals for ppn. »(7)—we use the same estimated
sample values {7(7)} as above, and for each sample estimate P (7), we use (4.6)
again to fit each p, (L) against L=1/7(%) 50 as to simultaneously estimate confidence
intervals for both v(y) and ppin» (7). Finally, we repeat this analysis at lower densities
to compute the contact percolation thresholds ppin.. We present our results in
Table 1.C.

4 2 (Critical cantact nuimhere Far each cdimulated road-encket evatem in the

A
37 38 39 40

Candidate rigid motifs )

Fic. 5. Candidate rigid motifs and possible effects on the rigidity percolation threshold. A. We
identify 6 possibly rigid motifs of size Nr = 4 containing either rods/nonazisymmetric rigid bodies
as the included particles, and 2 rigid motifs of size Ng = 6 containing only rods as the included
particles. B. Including all these candidate rigid motifs into 3D-RGC lowers the rigidity percolation
threshold (dashed vertical line) by 3.9%. We conclude from this analysis that the threshold we identify
in the previous subsections (vertical solid line) is likely an overestimate of the true threshold (for
each v), but that the true threshold is not likely to be very much lower.

4.4. Global consistency. As discussed in Appendix B, 3D-RGC may iden-
tify different rigid components in different implementations on the same rod-socket
system, as the final results depend on the order in which rigid motifs are identified
and compressed. Determining whether or not a system contains a spanning rigid
component may therefore require an exhaustive number of stochastic 3D-RGC imple-
mentations. Because the algorithm is sufficient but not necessary, any single positive

9The findings agree fairly well with the rod contact equation derived in [44].

10The 1-core corresponds to the largest connected component of the rod contact graph, and the
2-core corresponds to the graph’s largest connected subgraph in which the minimum degree is 2.

11We calculate these by simply using the same linear fit of the contact numbers against p to
linearly predict the contact numbers at each end of the 95% confidence intervals for ppin,r(v). As
noted, the linear fits are quite precise: the uncertainty of the linear predictions is generally smaller
in magnitude than the uncertainty of the pmin,r(L,~y) estimations.
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implementation (detecting a spanning rigid component) indicates that a system has
a spanning component.

To assess the effect of this ordering, we implemented 3D-RGC many times on
the same systems, randomizing the order of motif compression. In practice, there
are relatively few discrepancies across implementations, and the difference between
running one implementation and running 40 is rarely significant. For instance, running
40 implementations reduces our estimate of ppn.»(7 = 480) by less than 0.001%.
Moreover, we performed the procedure of section 4.2 for random subsets of these 40
implementations at v = 48 and found that using only 10 implementations almost
always (> 90% of the time) results in the ezact same estimations of pyin,-(v) and
v(y) as using 40. Because we are most interested in capturing the nature of the
transition across v and in relation to pmn.(7) (alongside computational burdens)
rather than pinpointing the transition point to the highest precision possible, we only
use 10 implementations for the calculations of the previous two subsections.

4.5. Accuracy. In section 3.2 and Appendix A, we rigorously prove that the
rigid motifs incorporated into 3D-RGC are indeed rigid. Any rod-socket system iden-
tified as rigid using this algorithm is therefore rigid. However, it is not the case that
every rigid rod-socket system would be identified as rigid using this algorithm—i.e.,
the algorithm is sufficient but not necessary. On the other hand, we can identify
several necessary but insufficient conditions for rigidity. In particular, first, any rigid
motif (wherein the individual components are rods) must identify Maxwell’s isostatic
condition, as there must be sufficient constraints to bind all degrees of freedom. Sec-
ond, the rigid motif must be contained within its 2-core (any rods with less than two
contacts would necessarily have nontrivial degrees of freedom). Finally, a motif must
contain sufficient contacts in its rigidity matrix in order to constrain the inherent
particles’ degrees of freedom (this condition encompasses the former two).

In order to assess the accuracy of 3D-RGC at alocal scale (i.e., to address whether
we have identified a sufficient number of rigid motifs to design an accurate algorithm),
we examine a database containing all possible respectively nonisomorphic, connected
graphs of small sizes [36]—and compare the results of 3D-RGC with implementation
of these other conditions on these graphs. Specifically, for graphs containing N nodes
(rods), we implement 3D-RGC and also examine where they meet the necessary but
insufficient conditions for rigidity discussed above. If they do meet such conditions,
we label the graphs as “candidate rigid motifs.” We find that 3D-RGC identifies as
rigid all candidate rigid motifs of size Ng < 5 (see Figure 5), but does not identify
2 potentially rigid motifs of size Ng = 6. The only candidate motifs of size Np =7
that the algorithm does not identify contain one of these Np = 6 candidate motifs
as subgraphs. However, we also detect 8 irreducible candidate motifs of size N = 8,
suggesting it is unfeasible to count all rigid motifs.

We hypothesize, in supposing 3D-RGC' to be an accurate approach, that these
other candidate motifs and larger ones that we have not detected are exceedingly rare
in random systems. However, we also use the same analysis wherein all the rigid
components are allowed to be nonaxisymmetric rigid bodies and find that 3D-RGC
identifies all rigid bodies with < 3 components in this case but does not identify 6
(irreducible) motifs containing 4 components. Inclusion of these multiscale motifs is,
in our intuition, more likely to influence the rigidity decomposition.

Finally, we use these candidate motifs to characterize 3D-RG(C’s accuracy for
estimation of the rigidity percolation threshold. That is, we implement a second
version of 3D-RGC wherein we include the candidate rigid motifs of size N, < 7
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F1G. 6. Aspect ratio dependence for the rigidity/contact percolation thresholds and the Mazwell
prediction. A. We find an inverse relationship between the rigidity percolation threshold and the
average excluded volume of a rod (Veg). The gray line denotes the linear regression fit wherein the
exponent m (slope in the log-log plot) is allowed to vary, while the black dotted line has a fized
ezponent of 1 (i.e., only the intercept varies as in the log linearization of (5.2)). B. The ratio of
the identified rigidity percolation threshold to its contact analogue increases with aspect ratio and
seems to converge near m in the slender body limit. C. We find a nearly constant value for the
critical contact numbers (mean degree, and 1-core and 2-core mean degrees at the estimated rigidity
percolation threshold) across v, even as higher aspect-ratio rod metworks have different network
properties. In particular, the dotted line in panel B depicts the mean clustering coefficient [39] for
the different contact networks.

(including higher-scale motifs described above) (see Figure 5) in addition to the motifs
included in our simpler base version of 3D-RGC used above. We examine the output
of this algorithm for the same candidate v = 23 and lower L systems as above (the
more inclusive second version becomes prohibitively slow on larger systems). Using
this approach, we repeat the procedures of section 4.2 in order to estimate a new
rigidity percolation threshold of ppin,» = 38.01 (95% CI: 37.75,38.26). We cannot
conclusively state whether this newly identified threshold is either above or below the
true threshold, as the candidate motifs we identify in this subsection are only possibly
rigid (they contain the appropriate number of constraints in their rigidity matroid).
However, the relative closeness of this new estimate to that we identify in section 4.2
(Pmin,» = 39.51) indicates that sequentially adding additional motifs will likely have
only a tempered effect on the resulting estimate. Adding more motifs will tend to
monotonically decrease the threshold, but the corresponding change decays with the
complexity of the candidate motifs. Therefore, we conclude that the estimated rigidity
percolation thresholds identified in section 4.2 are very close to the true thresholds,
and that our insights regarding the nature of the rigidity transition are valid.

5. Interpretation of numerical findings. We now examine the implications
of our findings from section 4.2 in more detail. In particular, we review previous
results regarding the relationship between contact percolation and excluded volume
(section 5.1) in order to study the ratio of the rigidity percolation transition point to its
contact percolation analogue (section 5.2), as well as the agreement with our findings
and Maxwell’s isostatic condition for the critical rod contact number (section 5.3).
Finally, we discuss our findings regarding the correlation length exponent (section 5.4).

5.1. Excluded volume and the contact percolation threshold. Here, we
briefly review and reproduce certain findings with regards to contact percolation for
the purpose of comparing the rigidity percolation transition to the contact percolation
transition. Specifically, we note a finding that was originally proposed by [2] and
analytically derived by [7] for random rod systems: the contact percolation transition
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density has reciprocal dependence on the average excluded volume of a rod, V. (7),
in the slender body limit. The excluded volume of a rod refers to the volume of space
containing the rod in which no other rod can be centered if the two rods are not
overlapping. Taking into account the slender body approximation, this relationship
may be summarized as

1+ s(y)
Vea(v)

where s(7) has power law dependence on the rod aspect ratio and approaches zero
as v — oo [38]. When we combine (5.1) with the rod contact equation derived
by Philipse [44], we find that at the percolation transition, the contact number
(co(pPmin,c(7))) = 1 + s(7), which is a simple and interesting result shown by [2].
This finding—which we confirm experimentally in Figure 8—can also be compared
to percolation for Erdés—Rényi networks, which are characterized by nodes having
identical binomial degree distributions, where the contact percolation transition (in
the large network limit) coincides with the contact number surpassing one [14].

(51) Pmin,c =

5.2. Rigidity percolation and a proposition for the slender body limit
of pr.min/Pe,min. We observe in Figure 6A an apparent reciprocal dependence of
Pmin,r(7) on Vey(yy, which is similar to what we observe for the contact percolation
case. However, for the aspect ratios that we studied, we do not find that this rela-
tionship requires a slender body approximation parameter s() in (5.1). Instead, we
simply find evidence for a constant multiplicative factor b that is valid across all :

(52) pmzn,r(’y) = b/‘/em (7)

Our ability to determine the precise nature of the relationship between pyin,-(y) and
Ver(7) is limited (as we only have three data points), but we find evidence nonetheless
that this simple model is a good fit. For each bootstrapped estimation of the rigidity
percolation threshold ppin,r, we fit (using linear regression) for each sample in the
distribution the equation 10g pmin.r = B110g(1/Veu(7)) + Bo (i-e., the log-linearization
of Prmin,r = e’ V.. (v)™"1). Across these bootstrapped regressions, we find that the
95% confidence intervals for 8 are [0.994, 1.002] so we cannot reject the null hypothesis
given by (5.2) that py,in,» varies exactly with Ve;%y) as in the slender body limit of the
contact percolation case. We display the mean of the two-parameter fit as well as 95%
confidence intervals in Figure 6A. Additionally, we display the naive fit of ppin.r(7) =
b/ Ve () (wherein b = 3.17 is simply the mean value of ppin.r(7) X Ver (7))-

Now, we pay heed to the implications of (5.2). Combining this with (5.1), we
observe that

pmin,r(’y) _ b
pmz‘n,e(’Y) 1+ s(v)

If we take the slender body assumption (r — 0), then s — 0 and the ratio converges
to b = 3.17 (Figure 6B). Is this finding sensitive to the algorithm’s accuracy? Our
analysis in (5.2) suggests that the effect of adding additional motifs will only slightly
decrease prin -, but we lack sufficient evidence to conclude whether or not the effect
will be uniform across varying aspect ratios (i.e., does adding a new motif bring about
a fixed percentage reduction in pyn () across all v?). If so, then only b in (5.2)
will be sensitive to the algorithm’s accuracy—i.e., adding more motifs will simply
reduce b without necessitating any revision of the functional form. This would also

(5.3)
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mean the ratio in (5.3) holds, except that b will be the true threshold rather than our
approximation. It is possible, however, that, upon further examination, an additional
slender body approximation parameter may be needed in (5.2) similar to s(y) in the
contact percolation case. As long as this parameter shrinks to zero in the slender body
limit, then pmin.r/Pmin,c Will still approach a fixed point, but the small v behavior
would require this additional slender body approximation parameter.

5.3. Maxwell’s isostatic condition. Now, we assess the accuracy of Maxwell’s
isostatic condition in this system. Using the rod-contact equation, given by p =
(€)/Vey [44], we can use the prediction of (5.2) to find that

(54) <CO (pm1n,7(7))> = ba

which—like the prediction of Maxwell’s isostatic condition (section 1)—is independent
of ~y, but is lower than Maxwell’s estimate (co(pmin,r(7))) = 10/3.

Empirically (Figure 6C), we find that the critical contact number {(co(pmin.(7)))
agrees well with (5.4). However, we find that the mean contact number within the
giant component (ci(pmin,r(7))) approximately coincides with the prediction using
Maxwell’s isostatic condition. This discrepancy indicates that at the rigidity perco-
lation transition point, many rods may still be disconnected even as a critical mass
forms the giant rigid component. Moreover, imposing the constraint that all rods have
degree 2—which is a prerequisite for rigidity—increases the critical contact number
(c2(pmin,r(7))) far beyond the Maxwell estimate. This finding demonstrates that a
nontrivial number of redundant constraints are present in these random systems at
the rigidity percolation threshold. Finally, because 3D-RGC represents a sufficient
but not necessary characterization of rigidity percolation, these critical contact num-
bers all represent upper bounds on the true critical contact numbers. The Maxwell
prediction is therefore possibly a useful summary approximation, but it overestimates
the true threshold.

While the critical contact numbers are at least similar for varying aspect ratios, we
find for fixed L that Apyn - increases with v (Figure 4A). This dependence coincides
with a decreasing relationship between rod aspect ratio and the average clustering
coefficient of the network (Figure 6C), which measures the average tendency of rods
to participate in triangular motifs [39]. Based on these findings, we surmise that, for
fixed system size, rod clustering may be associated with the width of the range over
which 0 < 7, (L,v) < 1. While systems of equal rod density but varying aspect ratio
have approximately equal contact numbers, lower aspect ratio systems have more rigid
motifs (most apparently with regards to Motif 3D3A, which has a prevalence that is
directly proportional to the clustering coefficient). This tendency has no effect on
b/Vesz(7y) but seems to have a decreasing effect on Apsin, r.

5.4. Possible aspect ratio invariance of the correlation length exponent.
Our ability to infer the correlation length exponent is especially limited because we
cannot bound it (as we can pmin,r), but our findings suggest that it is likely to
be similar across . Generally, we find similar estimates (0.7-0.8) for the correlation
length exponent v() across the three rod aspect ratios that we studied (see Table 1.B).
Because we only choose 5 system sizes for each aspect ratio due to computational
limitations, the precision of our estimation of v(y) is limited. Nonetheless, we compare
the bootstrapped distributions 7(y) for varying v. We find only marginally significant
evidence (p = .09) for inequality—in particular, that 7(98) has a lower mean than
both 7(48) and ©(23). That is, our findings at least do not strongly suggest that the
correlation length exponents differ across ~.
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6. Discussion. It is well known for completely penetrable or “soft-core” isotrop-
ically oriented rods of aspect ratio y that the contact percolation threshold varies with
the reciprocal of the excluded volume of a rod in the slender body limit. The slender
body limit, which can be derived analytically, is approached rather slowly in prac-
tice (s > 0.2 for v < 100) [7, 38, 44]. This dependence on excluded volume has two
important corollaries for high aspect-ratio rods: (1) the transition packing fraction,
Gmin,c(V) = Pmin,c(7) X (# + #) ,12 scales approximately linearly with the rod as-
pect ratio «y for high aspect-ratio rods [44]; and (2) the critical contact number at the
contact percolation transition point is approximately invariant for very slender rods
only (v > 100). We observe here that rigidity percolation also varies with the recip-
rocal of the excluded volume of a rod, but the slender body approximation seems to
hold at a much lower aspect ratio (subject to our algorithm’s accuracy). This means
that (1) holds for rigidity percolation, while (2) seems to hold even for rods with
smaller aspect ratios.

Why would the rigidity percolation transition achieve high aspect-ratio behav-
ior at a lower aspect ratio than the contact analogue? This question merits further
study, but we suspect that the origin of the deviation for lower aspect ratios may lie
in network properties. For instance, low-aspect-ratio rod systems have highly clus-
tered contacts (see the dependence of the average rod clustering coefficient on aspect
ratio in the rod contact networks, Figure 6) that differentiate these networks from
random graphs. Chatterjee and Grimaldi [11] formulate these networks as random
geographic networks to derive the contact percolation threshold from degree distribu-
tions. Perhaps this approach might be extended to recover the s(y) dependence on
aspect ratio. Better understanding of this contact percolation aspect ratio deviation
might help us improve our understanding of the possible lack of such deviation for
rigidity percolation.

Our investigations here are motivated by a desire to better understand the nature
of the rheological percolation threshold that is observed in a variety of composite
materials [9, 15, 25, 43]. One overlooked but easily observed feature of many of
these composites is the spatial heterogeneity of the stiffening phase. For instance,
carbon nanotubes and other nanoparticles often tend to be highly clustered, leading
to departure from the behaviors expected in systems wherein particles have uniformly
random position. Additionally, many composites may experience degrees of alignment
on account of preparation stages and complex physical phenomena. We surmise that
this heterogeneity gives rise to the wide variety of experimentally calculated ratios of
the rheological percolation threshold to the conductivity threshold, which has been
observed to be as high as 3 and as low as 1 [43]. Whereas the glass forming condition
predicts this ratio (for uniformly random systems) to be 1.6 and another mean field
prediction based on semiflexible fiber system predicts it to be 5/3 (see section 1),
we estimate the ratio to have aspect ratio dependence and approach b = 3.17 for
slender body rods. Future work connecting contact/rigidity percolation to relevant
experimental findings might examine the dependence of the corresponding thresholds
upon spatial heterogeneity within the rod network, since agglomeration (see [54] for
an example) might lead to drastically different estimates from the uniformly random
case. Additionally, we might expect that the nature of interactions between “hard-
core” (impenetrable) rods [4, 11, 50] will affect the position of the rigidity percolation
threshold, since it has also been shown to affect the contact percolation threshold.

12The right-hand factor here is simply the volume of a rod divided by #3, which comes about due

to nondimensionalization of the number density.
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Finally, future work should also aim to connect the current findings to other stud-
ies in rigidity percolation in order to understand how the network generation (e.g.,
random rods versus diluted lattices) influences the associated transition. Latva-Kokko
and Timonen show that rigidity percolation on 2D rod-hinge networks (“Mikado net-
works”) falls within the same universality class as rigidity percolation in 2D central-
force networks, showing agreement between the respective correlation length expo-
nents and fractal dimensions of the incipient giant clusters [33]. However, rigid-
ity percolation and contact percolation in these networks fall under different classes
(see [10] for a thorough discussion of universality classes). The rigidity percolation
transition in 3D diluted central-force networks is thought to be first-order (i.e., it is
discontinuous in an appropriate order parameter), while that for 3D bond-bending
networks is second-order (i.e., the order parameter varies continuously, but its de-
rivative is discontinuous) [12]. There is not sufficient evidence here to definitively
conclude the order of the transition in our system (though visual examination of the
scaling collapse in Figure 4 tempts us to surmise that it is continuous, we have not as
yet conducted any rigorous tests), nor to attempt to place it in a known universality
class. It would be interesting in future work to explore whether our RGC framework
can aid in establishing a rigorous connection between rigidity matroid theory and
universality classes.

Appendix A. Rigidity motifs. Here, we present and sketch the proofs
of many rigid motifs for the construction of composite rigid components in three
dimensions. As was the case in two dimensions [23], this list is nonexhaustive (and
there is no reason to suggest that constructing an exhaustive list is possible). In
order to avoid creating a new litany of symbols, we do not distinguish rods from other
rigid components—both are called R; for some i—mnor do we notationally distinguish
rod-sharing contacts from other contacts. Rather, we just indicate the number of
rods contained in rigid component i as n’. Finally, we note that in cases in which
there is more than one motif with z rigid bodies (as the distinction between rods from
other rigid bodies opens up this possibility), we distinguish between the different rigid
motifs by lettering: rigid motif 3DzA, 3DzB, .. ..

THEOREM A.1 (rigidity of Motif 3D3A). Let Ry, Ra, and R3 be intersecting non-
axisymmetric rigid bodies (nl,n2,n3 > 1) such that Ry and Ry intersect at > 1
instance, Ry and Rs intersect at > 2 instances, and Ry and R3 intersect at > 2
instances. Let p1 € Ry N Ry, let ps, p3 be points in two of the instances comprising
Ry N R3, and let py,ps be points in two of the instances comprising Ro N R3. The
composition Ry U Ry U Rg is rigid, unless one of the following occurs: py shares a rod
with both po and ps; p1 shares a rod with both py and ps; or ps, P3, Pa, and ps all

share the same rod (excluding these cases via hypothesis).

Proof. First, we assume none of the rigid bodies are planar. We choose as the co-

ordinate labelings {p1, p2, ps, Pr, } for Ry; {p1, P4, ps, Pr,} for Ry; and {p2, p3, pa, ps}
for Rs, where pg, lies in Ry\(R2 U R3) and pg, lies in Ry\(R; U R3). Combining the
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pairwise constraints within each labeling gives the rigidity matrix

(A.1)
r Apy R, [} [} 0 s} —Apy Ry 0 =
o] Apzle o o o] 7Ap2,R1 o
o o Ap3 Ry o o —AP3, Ry o
Apy o —Apy o o o o o o
Apjy 3 (o] —Ap13 o o] o] o
o Ap2 3 —Ap2 3 o o o] o
AP1, Ry o o o o o —Apy R,
X1 % X2 % ‘X3 — o) (o) o) AP4,R2 o o AP4,R2
o [ [¢] (o] Aps, R, [ —AP5 Ry !
Ap114 o o _Apl,él o o o
Apy 5 [} 0o 0 —Apy 5 s} o
o (o) (o) Ap4’5 7Ap4’5 o o
o Ap2,4 o —Apg 4 o o o
o Apg 5 o o —Apy 5 o o
(o] o Ap3 4 —Ap34 o] o] o
L o o AP35 o —Ap35 o o _

where the constraint rows 1-6 derive from R; U Rz, 7-12 derive from Ry U R3, and
13-16 derive from R3 only. We use row permutations to find that X; x X5 x X3 is
rank equivalent to the block triangular matrix

[ Api2 —Api,2 0 0 0 0 0 7
Api 3 0 —Ap1,3 0 0 0 0
0 Ap2zs  —Apags 0 0 0 0
Api,4 0 0 —Ap1,4 0 0 0
0 Ap2 4 0 —Ap24 0 0 0
0 0 Ap3,4 7Ap314 0 0 (0]
Ap: 5 0 (0] 0 —Ap15 0 0
0 0 (0] Ap4,5 —Ap4,5 0 0
(AQ) 0 Aps 5 0 0 —Ap2s 0 0
0 0 Ap3 s 0 —Ap3;5 0 0
APLRI 0 0 0 0 7API,R1 (0]
0 APZ,RI 0 0 0 —Ap2yR1 0
0 0 Ap&Rl 0 0 7Ap31R1 0
Aplsz 0 0 0 0 0 7Ap1132
0 0 0 Apa, iy 0 0 —Apa r,
L 0 0 0 0 Aps5, Ry 0 —Aps, r, |
We show in the following paragraph that the diagonal blocks
(A.3)
—Apy s —Api,4 :25;: —Api, R, —Ap1, R,
[ Api12 — Api 2 ] B ’ —Ap24 B ’ —Ap2 R, —Ap4, R,
’ Apz 3 | A ’ Apas |7 )
—Ap3.4 —Apss —Aps3, R, —Aps, R,

have ranks 1, 2, 3, 3, 3, and 3, respectively.

The first two and last two of these claims are trivial under the hypotheses that
{p1,p2,p3} and {p1,p4,ps} are not rod-sharing sets. The third block would lose a
dimension if some three-member subset of {p1, p2, p3, P4} were collinear, but we now
show they are not. First, {p1,p2,ps} is assumed to be noncollinear. In addition,
neither {py, p2, p4} nor {p1, ps, p4} may be collinear under the generic conditions we
have assumed, as each of these sets contains points from Ry, R», and R3. Because each
of these sets contains two points on two separate rigid components (with one being
an intersection between them), collinearity would imply that two distinct components
contain at least one shared rod, which we exclude by construction. If {ps,ps3, ps}
were collinear, then interchanging of p, and ps (which are indistinguishable in our
hypothesis) would preserve the block rank of three, which we show now. Because
{Pp2, P3, P4, P5} is assumed to be noncollinear, collinearity of the set {ps, ps, p4} guar-
antees noncollinearity of the set {pa,ps,ps}. As interchanging p, and ps does not
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affect the rank of the previously discussed blocks, we conclude that proper choice of
p4 and ps ensures full rank of the third diagonal block.

The fourth block has rank < 2 only if either a four-member subset of
{p1, P2, D3, P4, P5} is collinear or two three-member sets of the involved constraints
are both collinear. The first case is impossible, as {p2, 3, P4, Ps} is assumed to be
noncollinear and any four-member set containing p; includes points from all three
components. Generically, if such a set were to be collinear, then the intersection of all
three components would be nonempty—because intersections between (distinct) com-
ponents are pairwise, this is impossible. This latter situation (that is, two collinear
three-member subsets) is also impossible because Ap; 5 cannot generically be collinear
with any of the other three constraints in the block, since it necessarily connects
points on separate rods. This statement follows from the hypothesis that {p;, ps, ps}
is not collinear, and from the observation that neither {p1,ps2,ps} nor {p1,ps, ps}
can be collinear (for the same reason that neither {p1, p2, p4} nor {p1, ps, P4} can be
collinear). Therefore, this fourth block has rank 3, and, because the rank of a block
triangular matrix is bounded below by the sum of the ranks of its diagonal blocks,
the composite rigidity matrix X; * X5 * X3 has rank 15, and the right nullspace has
dimension six.

Finally, we turn to the case that any subset of the rigid bodies is planar. If
either Ry or R5 is planar, then we choose minimal coordinate labelings appropriately
(i.e., omitting pr, and/or pg, so as to keep only three points in the corresponding
coordinate labeling). The proof proceeds equivalently, except that the rigidity matrix
loses rows/columns that include pgr, and/or pgr,. However, if Rz is planar, then
we must choose a nonminimal coordinate labeling for R3, containing the four points
{p2,P3, P4, p5}. The resulting composite matrix has rank equivalence to the matrix
in (A.1), and the rank may be bounded by examining the same diagonal blocks as
above. Now, however, the third block in (A.3) has rank 3 in the generic case that p;
(which is not not contained in Rj3) is noncoplanar with R3. The fourth block also has
rank 3: Apys, Apas, Aps s are three parallel vectors spanning R?, but since Ap; 5
is (generically) noncoplanar with Rs, this block has rank 3. ]

THEOREM A.2 (rigidity of Motif 3D3B). If two nonazisymmetric rigid bodies Ry
and Ry (nl,n? > 1) intersect at > 2 instances (e.g., letting p1,p2 be points in two
of the instances comprising Ry U Ry ), and also each intersect another distinct rod R3
(n2 = 1) at ezactly 1 instance apiece, such that p3 € Ry N Rz and py € R2 N R3, then
the composite body is rigid—so long as neither ps nor py is collinear with both p1 and

D2.

Proof. First, assume R; and Ry are nonplanar. We choose as coordinate labelings

{p17p27p37pR1} for Rla {pla D2, D4, pRz} for R27 and {p37p4} for R3- We assume that
PR, is not collinear with any pair of points in {p;, p2, p3}, and pr, to not be collinear
with any pair of points in {p1, p2, p4}. Upon row rearrangement, this choice gives the
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rigidity matrix

(A.4)
i Aplﬁz —APLQ 0 0 0 0 1
Aplyg 0 —Ap1,3 0 0 0
0 Apz,g —Ap2,3 0 0 0
Ap174 0 0 —Ap174 0 0
0 Ap274 0 —Ap274 0 0
0 0 Ap3,4 —Ap3,4 0 0
XixXox Xg =1 Ap o 0 0 0 —Apin, 0 ’
0 Apgle 0 0 —ApgRl 0
0 0 Aps.Rr, 0 —Aps, R, 0
Apl’R2 0 0 0 0 7Ap17R2
0 Apzsz 0 0 0 —APQ,RZ
L 0 0 0 Ap4,R2 0 —Ap4,32 |
which has diagonal blocks
(A.5)
—Ap; - —Ap1,4 —Ap1,r, —Ap1,R,
[ Api2 —Api2 |, { _Ap1,3 ] | —Ap2a |, | —Ap2r, |, | —Ap2r,
P23 —Ap3 4 —Ap3 R, —Ap4 R,

Because we have chosen pr, and pg, to not be collinear with any pair of points in their
respective coordinate labelings, and because of noncollinearity of the sets {p1, p2, p3}
and {p1,p2,ps}, the first, second, fourth, and fifth of these blocks trivially have full
rank. To establish that the third block has full rank, we first claim that neither po
nor p; lies collinear with ps and py. Otherwise, one of py or p; would lie within
R3. Because R; and R, intersect Rs at only one instance apiece, this would mean
that all Ry, Ro, R3 intersect, and so we could apply the special case noted in the
second paragraph of section 3.2. That is, we would choose p; (or pg) explicitly so
that it is noncollinear with ps and p4. The sets {p1, P2, p3} and {p1, P2, p4} are also
noncollinear, implying that {p1, p2, ps, bmps} is nonplanar, and so the block consists
of three vectors spanning R® (i.e., it has full rank). Therefore X; * X5 * X3 has
rank 12 and right nullspace dimension 6. The case in which either Ry or R is planar
proceeds similarly, choosing minimal coordinate labelings appropriately. ]

THEOREM A.3 (rigidity of Motif 3D4). If one nonazisymmetric rigid body Ry
(nl > 1) intersects three rods Ra, R3, Ry (n2,n2,nt = 1) at the instances—each
containing one of the points p1,p2, P3; Ro intersects Rz at one instance containing
p4; and Rz intersects Ry at one instance containing ps, then the composite body is
rigid unless p1, p2, and ps lie along one rod.

Proof. We choose as minimal coordinate labelings {p1, p2, P3, Pr, } for Ry (which
is assumed to be nonplanar)—where pg, is a point in Ry that is not collinear with
any pair of points in {p1,p2, ps}; {P1,ps} for Rs; and {ps, p5} for Ry. However, the
rod R3 contains three intersection points. Therefore, either pair can be chosen as an
appropriate coordinate labeling (we choose {p4,ps}), but an augmented constraint
must be added to enforce the condition that these three points must remain collinear
(as in Motif 2D5 in [23)):

dpz  dpy dps
(A.6) il =35 L +(1-y9) q

where s = %. Letting I3 be the 3 x 3 identity matrix, and 03 the 3 x 3 all-zero
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matrix, these augmented constraints give the composite rigidity matrix

HEROY, TAYLOR, SHI, FOREST, AND MUCHA

(A.7)
Api2  —Apip 0 0 0 0 T
Ap1,3 0 7Ap1,3 0 0 0
0 Apas  —Apz2s 0 0 0
APl,Rl 0 0 —ApLRl 0 0
_ 0 Ap2 R, 0 —Apa, R, 0 0
Xl % XQ * X3 * X4 = 0 0 Ap?,,Rl —Ap:;,Rl 0 0
Api,a 0 0 0 —Apia 0
0 0 Ap3,5 0 0 7Ap3,5
0 0 0 0 Ap4’5 —Ap4,5
03 13 03 03 SI3 (1 — 8)13 ]
Elementary row operations give that this matrix is rank equivalent to
[ Apio —Ap12 0 0 0 0 1
ApLg 0 7Ap1’3 0 0 0
0 Apo 3 —Aps3 0 0 0
APLRI 0 0 —Aplle 0 0
0 Ap2 R, 0 —Apa R, 0 0
0 0 ApB,Fh _Ap?),R] O 0 ?
Ap1 4 0 0 0 —Ap1 4 0
0 —T=Apss  Apsgs 0 T5Aps35 0
0 1115 Apa s 0 0 (1 + ﬁ) Apy s 0
L 03 —I3 03 03 813 (1 — S)I3 i

which we claim has full rank diagonal blocks of rank 1,2,3,3, and 3 (the first block
being 1 x 6, the second being 2 x 3, and the rest being 3 x 3). The first and last of
these claims are trivial. Given that {p1, P2, P3,Pr, } is chosen as a coordinate labeling
with no three-member subset collinearities, the second and third blocks are full row
rank. Finally, the fourth block is full rank because Api 4, Aps 5, and Apy 5 lie along
three distinct (noncollinear) rods (and their coefficients are scalars). This argument
ensures that the matrix has rank at least 12, and thus right nullspace dimension at
most 6. The proof in the case that R; is planar proceeds similarly. 0

The final two motifs proven here involve individual rods only. The first (Motif
3D3(C) is obviously analogous to Motif 2D3 in [23], although Motif 3D3B is only
applicable at the scale of single rods. Together, Motifs 3D3C and 3D2B show that
a 3-clique community is also rigid in three dimensions. The last motif is analogous
to Motif 2D5, but an additional rod is needed to constrain the rigid motions of
this structure in three dimensions. Before moving to the relevant theorems/proofs,
we note that rigidity is a generic property of graphs that is generalizable to many
different systems including central-force networks, body-hinge systems, and body bar
networks [1, 16, 62]. While interested readers should refer in particular to [1], the
argument in very nonrigorous terms may be stated as follows. If a rigidity matrix
for a rigid body has rank k(= 3|V| — 6 in D = 3), then the polynomial P(p) in
D|V| variables given by the sum of determinants of all k£ x k submatrices of the
rigidity matrix is nontrivial, and the set of “regular points,” given by the positions of
the vertices in any rigid configuration, forms a dense open subset of RP"V. Fubini’s
theorem furthermore finally allows us to conclude that the set of singular points of P
has Lebesgue measure zero. We could not apply this in the proofs above for various
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reasons amounting to either the individual components being of different scales (rods
or nonaxisymmetric rigid bodies) or the need to attend to possibly singular cases in
which contacts could be collinear. However, the two proofs below relate to individual
rods.

THEOREM A.4. Motif 3D3C: A 3-clique of rods (n:,n2,n3 = 1), wherein R;
intersects Rz at p1, Ry intersects Ro at one instance containing ps, and Ry intersects
R3 at one instance containing ps, is rigid.

Proof. Choose as the coordinate labelings the respective intersection points. The
resulting rigidity matrix is of size 3 x 9 and trivially has full row rank. ]

THEOREM A.5 (rigidity of Motif 3D6). If six rods (nl =1,...,nS = 1) intersect
in the strutted fashion of Motif 2D5 [23]—such that p; € (R1 N R3), p2 € (R2 N R3),
p3 € (R1NRy), pa € (R2NRy), ps € (RN Rs), ps € (R2NRs), pr € (RN R), and
ps € (Ro N Re)—then their composition is rigid.

We choose as minimal coordinate labelings {p1,p7} for Ry, {p2,ps} for Ra,

{p1,p2} for R, {ps3,ps} for Ry, {p5,ps} for Rs, and {p7, ps} for Rs. Asin Motif 2D5
and Motif 3D4A, we introduce augmented constraints to ensure that the positioning

of ps and ps each stays fixed relative to p; and p; (and both ps and pg each stay
fixed relative to ps and pg) for all time.

(A8) Xix*---xXs

[ Api> —Apio 0 0 0 0 0 0 ]
0 0 Ap3 s —Apsza 0 0 0 0
Ap1,7 0 0 0 0 0 —Ap1,7 0
0 0 0 0 Apss —Apse 0 0
_ 0 Ap2. g 0 0 0 0 0 —Ap2 g
- 0 0 0 0 0 0 Apr,s —Ap7s ’
8113 03 —Ig 03 03 03 (1 - 81)13 03
03 s3ls O3 —Is O3 O3 03 (1 —s3)Is
s2l3 03 03 03 —1I3 03 (1 —s2)Is 3
L 03 5413 03 03 03 713 03 (1 — 84)13 .
_ Ap1sll2 _ lApislle _ lAp24|l2 _ lAp2gll2
where s; = Tapral’ 52 = Taprl’ 53 = [Apsslla’ 54 = T[Apssls” We construct

one (generic) realization for this system in R? and show that it has full rank in silico,
therefore concluding that any generic realization does as well.

Appendix B. Algorithmic details for 3D-RGC and the effect of com-
pression ordering. In [23], we showed that the ordering of motif compression was
not consequential to the final results, as different orderings of compressing the three
2D rigid motifs in RGC always produced the same final state. However, as we show
by counterexamples in Figure 7, this is certainly not the case in three dimensions.
Moreover, as further discussed in [12], any particle in a 2D rod-hinge system, or more
generally a 2D central force network, may only be a part of one rigid component,
wherein one particle may be part of many such components in a 3D rod-socket sys-
tem. Given that our algorithm necessarily identifies each rod as being part of one
component, we attempt to solve this problem by running 3D-RGC on the same net-
works many times in order to assess the global consistency of the algorithm, with
the hypothesis that 3D-RGC will usually identify the largest rigid component in each
system at least one of these times. While we certainly cannot claim this hypothesis to
be definitively true (there are a combinatorial number of ways to compress these large
systems), we see in section 4.4 that using one implementation is usually sufficient, and
using 10 implementations almost always achieves the same results as using 40.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/01/22 to 129.170.28.168 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

278 HEROY, TAYLOR, SHI, FOREST, AND MUCHA

Motif 3023/ \ 3D4 3D3B

0
N
o

Fic. 7. Depending on which motif identification/compression is performed first on the top
contact network representations, two different (irreducible) outcomes are possible through 3D-RGC
in each case. This comes about because our algorithm is based on the premise that rigid components
“come in one piece” (see section 3.1). However, we give evidence that the order of motif application
does not largely affect our estimation of pmin,r(7y) in section 4.4.

Appendix C. Contact percolation results. In Figure 8, we display results for
the detection of the contact percolation threshold, which we described in sections 4.1
and 5.1 and reported in Table 1.C. We also reproduce the scaling of s with aspect
ratio'® that has been observed in other studies, i.e.,

(C.1) s =c1(1/2v)%.

[¢]

1.6
G

:"1.4
g
=

DO 1.2

) .01 .02 .03 .04 ! 1 1.2 1.4 1.6
((p = peymin)) LHV" 1/~ 1+ s(y)

F1G. 8. Recovery of contact percolation findings. A. Scaling collapse for v = 23,48,98 (analogue
of (4.1)). B. Fit of deviation parameter according to (C.1). C. Fit of mean critical degree against
deviation parameter.

13Generally, these report a scaling with r/¢ = 1/(2), which we repeat for simplicity.
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