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Abstract

This paper revisits distributed termination detection algorithms in the context of High-
Performance Computing (HPC) applications. We introduce an efficient variant of the Credit
Distribution Algorithm (CDA) and compare it to the original algorithm (HCDA) as well as to
its two primary competitors: the Four Counters algorithm (4C) and the Efficient Delay-Optimal
Distributed algorithm (EDOD). We analyze the behavior of each algorithm for some simplified
task-based kernels and show the superiority of CDA in terms of the number of control messages.
We then compare the implementation of these algorithms over a task-based runtime system,
PARSEC and show the advantages and limitations of each approach in a real implementation.

Keywords: Termination detection, credit distribution algorithms, task-based HPC application,
control messages

1 Introduction

A distributed application is terminated if all processes have completed the computations assigned
to them and no message is in transit within the interconnection network. Termination detection is
a fundamental issue for distributed systems, because — for dynamic applications — no process has
complete knowledge of the global configuration (the state of all processes and of the network) [9]. In
particular, an idle process may be reactivated by a message from another process, complete its new
assignment, send some work orders to be completed by remote processes, and then become idle again
and so on. Many active-to-idle and idle-to-active transitions can take place before the application
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eventually terminates. Since the pioneering work of Dijkstra, Scholten, and Francez [7, 10], countless
algorithms have been proposed for termination detection.

Many high-performance computing (HPC) applications can rely on straightforward techniques
for termination detection. For instance, many dense or sparse factorization algorithms terminate
when the bottom-right diagonal element of the matrix has been updated, and termination can safely
be declared right after the completion of that last operation. More generally, many HPC applications
are structured as a task graph with all dependencies statically known before execution. Termination
can safely be declared once all exit tasks (tasks without any successor task) of the graph have been
completed. However, there are also many HPC applications whose task graphs are dynamically
updated during the execution. These application task graphs are data dependent, and new tasks
may be created depending on the value of the output of another task. Typical examples are partial
differential equation (PDE) schemes, where the necessary degree of refinement is dictated by the
physics of the simulated material. For all of these applications, a distributed termination detection
algorithm must be implemented.

Our main contribution is the design of a new termination detection algorithm that is specialized
for HPC platforms. We adopt a simplified but realistic model for such platforms. For instance, mes-
sage loss and re-ordering are routinely managed by the network layer (e.g. MPI, OpenSHMEM etc.),
hence we can safely design algorithms that benefit from these features and assume that messages
are delivered in FIFO order. We focus on performance at scale and aim at minimizing the overhead
incurred by the termination detection algorithm on the application. Clearly, detection algorithms
that use many control messages will delay, or add extensive management of, application messages
and will be detrimental to application progress. In this work, we consider different classes of termi-
nation detection algorithms and evaluate their overhead in terms of the number of control messages
that are generated, as well as their practical time to solution in a real HPC implementation.

We distinguish and compare three main classes of algorithms for termination detection. First,
many algorithms use ascending and descending waves of control messages; from this class we discuss
the Four Counter algorithm (4C) — a state-of-the-art wave algorithm — in Section 3. The Credit
Distribution Algorithms (CDA) are another set of algorithms proposed independently by Huang [15]
and Mattern [20]. These algorithms are also known as weight-throwing algorithms, and they use a
controlling agent that initially distributes some credit to all processes. When sending an application
message, a process keeps a fraction of its current credit and transfers the remaining fraction through
the message. Upon receiving the message, the credit carried by the message is added to the credit
of the receiving process. Finally, when becoming idle, a process returns its credit to the controlling
agent. The controlling agent declares termination when all of the initially distributed credit has
been returned to it. We introduce the original algorithm, “Huang’s CDA” (HCDA), discuss several
existing variants, and propose a novel CDA algorithm dedicated to HPC platforms in Section 3.
Finally, the recently developed Efficient Delay-Optimal Distributed (EDOD) termination detection
algorithms [18], require a control message acknowledging the primary messages’ reception is sent
by the receiver of each application message back to the sender. This return message ensures that
the sender can be safely declared terminated once all of its messages have been acknowledged.
These control messages go up and down a control binary tree — independent of the application
communications. EDOD is carefully designed to minimize the latency of termination detection, and
we describe it in more detail in Section 3.

Our main contribution is the design and implementation of a novel CDA variant that drastically
improves performance, under the constraints of an HPC system. This variant boasts a more con-
servative but mathematically accurate credit management system, where the borrowing operation
can be satisfied by a neighbor process with more abundant resources. We evaluate the algorithms
in terms of the number of control messages, through a theoretical analysis for the token ring appli-
cation, and through simulations for synchronous tree-based task systems. As stated above, we focus
on the number of messages generated by each algorithm as the key indicator of performance and
overhead.

This paper extends the results presented in [3] by describing an optimized implementation of
the different algorithms and providing an experimental comparison of these implementations. It
is organized as follows. In Section 2, we present motivating applications and systems that require
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Figure 1: Sample application: 1—dimensional tree whose refinement locally depends on the slope of
the target function.

termination detection. We review 4C, HCDA, and EDOD in Section 3. We introduce our new
CDA algorithm in Section 4 and provide a theoretical comparison with HCDA, 4C and EDOD in
Section 5. In Section 6, we report experimental evaluations of the implementation of these algorithms
over the PARSEC runtime system. We then survey related work in Section 7, before we provide
concluding remarks and directions of future work in Section 8.

2 Dynamic Applications and Termination Detection

Termination detection is often implicit or trivial in regular, static applications, for which the control-
flow of the application and/or the initial load balance of the work is sufficient to decide the termina-
tion locally. The issue becomes more crucial for dynamic applications expressed over asynchronous
programming paradigms, for which the total amount of work is data dependent—and therefore
remains unknown until completion. Here, we focus on efficiently detecting that an application pro-
ducing supplementary work and messages from process-local criterion is globally complete.

To illustrate the concept, consider the example of k-dimensional trees that represent approxima-
tions of multidimensional functions and operators. Consider for k = 1 a function, f(z), that should
be approximated over a domain, [A, B]. A 1-dimensional tree is used to approximate the values of
f by splitting [A, B] into subdomains, [a;,b;). Figure 1 illustrates this approach. For each subdo-
main, a leaf in the tree is created that carries a single value: the average of f in that subdomain,
f: f(z)dxz/(b — a). The quality of the approximation can be improved by reducing the size of the
subdomain. Parts of the function that require more subdivision to reach a target precision increase
the depth of leaves in the branch of the tree that represent the function in that subdomain, and thus
require more work to be performed to compute the approximation in that subdomain.

A task-based approach to create such representations is used in the Multiresolution ADaptive
Numerical Environment for Scientific Simulation (MADNESS) [14], which is a high-level software
environment for the resolution of integral and differential equations in multiple dimensions using
adaptive and fast harmonic analysis methods with guaranteed precision. The operation of creating
a tree that represents a given function in a given domain for a target precision is called a “projection.”
A natural and efficient algorithm to implement the projection consists of walking down the tree in
parallel, with each task instantiating a node and deciding locally if a given node in the tree is refined
enough to reach the target precision, in which case it is defined as a leaf. If not, its 2k children are
spawned to increase the refinement. As the algorithm proceeds with refining the nodes, a mapping
defines which tasks/nodes are held by which process of the parallel application. Depending on the
targeted function, refinement, and data distribution, a process may be done with all current tasks
but still receive more tasks to instantiate higher refinements at any time—until all processes are
finished with all tasks.

A naive approach to detect termination for this algorithm would be to wait for the entire subtree
to complete before letting the task complete, whenever a task spawns refinement nodes. This
approach has multiple obvious drawbacks: if the wait monopolizes computing resources, a starvation
will occur when the number of nodes in the k-dimensional tree exceeds the number of computing
elements. Even if better strategies are implemented to avoid this resource consumption, control
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information about the completion of each task must be sent to the process holding the parent
node, thereby introducing large delays and costs. Because a process may receive work at any time,
local observations that the number of tasks to complete has reached zero is not sufficient to decide
termination, and a distributed termination algorithm is necessary.

This issue occurs in many tree-based algorithms and is a key part of composition. For example,
occurring frequently in MADNESS algorithms, multiple functions must be projected in order to be
derived, summed, multiplied, and integrated to compute a solution to the final problem. To reduce
overheads, all of these operations should start with maximum concurrency. However, knowledge
about the completion of dependent operations is necessary to ensure the correctness of the result.
Distributed termination detection algorithms rely on observing the activity of the processes, as
well as the injection and delivery of application messages, sometimes modifying them to piggyback
information. Since these roles are assigned to the runtime system, it is also natural to assign the
role of detecting the termination of global operations to the runtime environment.

3 Algorithms for Termination Detection

Sections 3.2 to 3.4 detail the main features of the three primary detection termination algorithms
from the literature: 4C (waves with in-transit message detection), EDOD (acknowledged primary
messages), and HCDA (Huang’s credit distribution), which we contrast with our own CDA al-
gorithm in Section 4. Beforehand, in Section 3.1, we review the system model common to all
algorithms.

3.1 System Model

We consider a distributed system comprised of a set of P processes with an independent clock and
a local memory. The processes are connected through an asynchronous interconnection network ca-
pable of carrying messages in 1-port duplex mode with an arbitrary, but finite, delay. Processes and
messages are considered here in the general sense: processes may employ internal shared-memory
parallelism (which is abstracted from the model), and remote memory accesses can be considered
as asynchronous messages. The processes and network are reliable, and we assume that the inter-
connection network is complete; that is to say: any process may send a direct message to any other
processes. We also assume that messages may not overtake; in other words, the network is assumed
to be FIFO, or the network library manages ordering and remission as necessary (e.g. MPI). Al-
though not required for the correctness of the algorithms, these assumptions simplify performance
analysis.

A parallel workload executes internal actions on the processes, either executing a task or creating
a new task. Task mapping (to processes) is determined by an application-provided mapping function,
and successor tasks may be mapped onto a remote process, which entails the emission of a message.
When the destination of a message is the local process, it is considered a local action.

In such a distributed system, we consider the termination detection problem. Termination de-
tection is achieved when all processes know that every process has completed the workload. More
formally, a process is still considered active when it has pending actions. This includes when it is
executing a task, has scheduled tasks to execute locally, or has pending emissions to perform. When
a process does not have any further pending local actions, it becomes idle. A process may exit from
the idle state and return to the active state only when it receives a message (i.e., tasks can be only
created upon completion of another task, possibly at another process). Without loss of generality,
we counsider that one process initially contains a startup task (there is a trivial transformation to
render any workload with multiple initial tasks compliant). The termination of the workload is a
global stable state that is reached when, in a global snapshot [4], every process is in the idle local
state, and there are no in-transit messages (since, otherwise, these in-transit messages could create
work for some of the idle processes). The termination is detected when every process has been
informed that this global state has been reached.

Termination detection algorithms are thus distributed algorithms that observe the global state
has been reached and then announce it to all processes. In some algorithms, the detection and
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announce phases may be merged or overlapped. The distributed termination detection algorithm
likely requires the exchange of secondary messages (i.e., supplementary control messages added to
the primary messages generated by the parallel workload). These secondary messages allow the
process states to be gathered/reported to a centralized entity or be part of a termination broadcast.

3.2 The 4C Wave Algorithm

In wave algorithms, when a process becomes idle, it initiates a wave to verify the state of other
processes in the system. The wave crosses the network and collects the status of individual processes
and their communication channels at some process — either at the initiator or at some external entity.
That process then inspects the collected global state to ascertain when the global termination state
has been reached. For example, a process that switches from active to idle may initiate a distributed
snapshot. The snapshot permits to detect in-transit messages, i.e., messages that have been emitted
before the beginning of the wave, but received after its beginning at another process. Thus, after
completing the snapshot, a process can report to the announcer if it was active, or if it has detected
an in-transit message at the logical time of the snapshot. Unfortunately, this approach requires
performing a large number of waves. Specifically, one wave for every process’s transition from active
to idle, which — in the worst case — may result in as many waves as primary messages. The approach
also suffers from a large termination detection delay.

The 4C wave algorithm, which has seen some practical uses in [14], can avoid some of these
caveats. In this algorithm, processes are organized along a secondary tree overlay, and the root
of that tree announces when termination is detected. Every process, p, counts how many primary
messages it has sent, s,, and received, r,. It also maintains two accumulating counters, 05; and
ory, initially set to 0, representing the cumulative number of primary messages sent and received by
all processes in the subtree rooted at p — as collected during wave 1.

Independent of their idle or active state, processes can be in the UP or DOWN state (UP
initially). When a leaf in the tree becomes idle in the UP state, it enters the DOWN state and
sends its two counters to its parent in a STOP message. When a node in the tree receives a STOP
message from its children, it accumulates the counters. When it becomes idle in the UP state and
has received a STOP message from all of its children, it enters the DOWN state and propagates the
counters to its parent.

When the root enters the DOWN state, it compares ost,,, o’ ., oricl and os'o),. If they are
all equal, it broadcasts the termination; otherwise, it sends down a REPEAT message (propagated
by all) that initiates the nodes’ transition from the DOWN state to the UP state (thus starting
another wave).

Comparing ost,,, and or’ , is not a sufficient condition for termination, as one has to account
for orphan messages, i.e., messages emitted by some process after the wave and received by some
other process before the wave. If the wave is crossed by orphan messages, the reception is counted in
the accumulator, o7’ ,, but its emission is not. Thus, an orphan message may cancel the difference,
ort,; — 08t .., even when an in-transit message is present, which would render the algorithm
incorrect. If the value of os!,,, remains constant during two consecutive waves, then the prior wave
had no orphan messages, hence the counter comparison in that prior wave is a valid estimator for
the absence of in-transit messages.

7

1

3.3 Optimal Delay Algorithm

Mahapatra and Dutt [18] note that many termination detection algorithms focus on optimizing for
the minimal number of secondary messages but often exhibit poor detection delay on commonly
used primary communication patterns, like k-ary n-cubes, especially when considering a bounded
port model, where message management time is considered. For this reason, the authors focus on
designing an algorithm whose purpose is to attain the optimal detection delay on arbitrary primary
communication patterns.

Their EDOD algorithm requires that primary messages be acknowledged by secondary messages
to prevent premature termination announcements. Their algorithm also uses a secondary static
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spanning tree to reduce status change messages to the root and to broadcast the termination an-
nouncement. The secondary overlay can be (but does not have to be) extracted as a subset of the
primary communication topology when it is known in advance. The root is then selected as a central
process at a minimal distance to all leaf processes.

When the root process becomes idle, it announces the termination. When a non-root process
becomes idle, it sends a STOP message to its parent. A process cannot become idle until it receives
a STOP message from all of its children.

During the normal course of the computation, the algorithm counts the outgoing primary mes-
sages. A process cannot become idle until it receives a secondary acknowledge message for every
outgoing primary message. When receiving a primary message, the receiver, r, may be active or
idle. When r is active, it acknowledges the reception using a direct ACK;, secondary message to
the sender s. When r is idle, it becomes active and sends a RESUME; , message to its parent. The
parent may receive the RESUME;, , message when it is active or idle. When an idle parent receives
a RESUME;S , message from a child, it becomes active, forgets the reception of the STOP message
from that child, and forwards the RESUME; , message to its parent. When an active parent receives
a RESUME; , message from a child, it forgets the reception of the previous STOP message from
that child, and sends the ACKj , to r, following the inverse path from the RESUME, , message,
then r sends ACK, , to s directly. In effect, delaying the ACK,, message prevents the root of the
subtree containing s and r from becoming idle when a potential RESUME;S , message is canceling
the STOP-message-induced actions on 7’s ancestors.

3.4 Credit Distribution Algorithms

In a credit distribution algorithm (e.g., HCDA), as originally proposed independently by Huang [15]
and Mattern [20], an initiator controlling agent starts the computation with Cjte; total credit, and
the initiator distributes the credit among processes according to the initial activity of the processes.
During execution, messages carry credit between processes: when a process sends a message, it sends
a fraction of its credit along with the message and keeps a fraction of the credit for itself. When
a process receives a message, it adds the message-carried credit to its own credit stash. When a
process becomes idle, it returns its entire stash of credit to the initiator. From there, the initiator
process can detect the termination of all other processes when it again has Cy,14; credits. Note that,
as usual, an idle process may reset to active as a result of receiving a message. In this case, the
process transitioning from an idle to an active state inherits the credit that has been carried in the
in-transit message, thus guaranteeing that the initiator misses a fraction of the C,tq; credits for as
long as any in-transit or active processes remain.

This approach is elegant in theory, but it suffers from multiple drawbacks that hinder its im-
plementation. In non-infinite precision arithmetic, the HCDA algorithm is subject to an underflow
problem when dividing the weight into two halves upon message emission. To partially alleviate this
problem, Mattern [20] suggests using only credits of the form X = 27Y, where Y is an integer, and
to encode Y = —log, X to represent X. This requires some modifications to the algorithm, outlined
below.

e Use 277 as the initial local credit, where 297! < P < 29, and total credit is now Cyprq = P279.

e An active node receiving a basic message returns the message-carried credit to the collecting agent,
instead of storing it locally, to keep its own summing simple.

Then, all message weights have a weight, 27, for some Y, and sending a message splits the weight
by incrementing Y. However, the complete summation is delegated to the controlling agent rather
than eliminated, and many secondary control messages are needed to return the non-locally summed
credit to the controlling agent.

Another variant suggested in [9, Ch. 6] allows a node without any remaining credit to create its
own credit currency and start a weight-throwing termination detection subcall. Then, that node
returns its weight to the initiator when it has become passive and its subcall has terminated. The
weights originating from the initiator and from the node must be maintained separately. Again, this
variant incurs additional control overhead and extra delays. In Section 4, we discuss how we build
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upon the basic HCDA strategy to design an algorithm suitable for extreme-scale, distributed HPC
systems in a manner that avoids producing a large number of secondary credit return messages and
operates without messaging delays.

4 CDA for HPC

We expand on the classical CDA algorithm with specific, original considerations for HPC platforms
executing large-scale, distributed dataflow programs. The major challenge with CDA stems from the
difficulty of avoiding credit attrition when using a non infinitely divisible credit representation. Yet
we will show that it is critical to ensure that credit summation and credit piggyback on messages can
be performed apace in an HPC setting where typical message latency is less than one microseconds,
which rules out using arbitrary precision arithmetic in that setting. Thus, in our CDA algorithm,
credit is represented as integer values (i.e., credit is not infinitely divisible and can be summed
efficiently without arbitrary precision arithmetic). In that context, our CDA algorithm strives to
achieve a low number of control messages while reducing the disruption caused by delays on the
exchange of primary messages. In this section, we describe how, given this non-divisible credit
requirement, the initial credit distribution is performed; how we reduce credit attrition and the
number of control messages when processes transition to the idle state; how we handle ’out-of-
credit’ scenarios that can arise from non-divisible credit; how we optimize credit separation during
emissions resulting from the completion of local tasks; and how we avoid delays on the emission of
primary messages.

4.1 Initial Credit Distribution

During the initial state, credit is distributed equally among nodes. Each process starts with an
initial credit of value, Cj,;:, known by all. The total amount of credit distributed initially is thus
Chotat = PCinit- Note that, in certain applications, not all processes are initially active, and an
application-specific policy may have achieved a more optimal initial distribution (e.g., by dividing
the credit among initially active processes) but at the expense of losing generality. Initial credit is
computationally generated and requires no secondary messages to be distributed.

4.2 Reducing Idle Transition Credit Attrition and Control Messages

We note that, in HCDA, when a process becomes idle, it returns its credit to the controlling agent
with a FLUSH secondary message. This strategy has two drawbacks: (1) it increases the number
of control messages, significantly in the worst case; and (2) it accelerates the rate of global attrition
of credit in non-initiator processes by removing the flushed credit from circulation (hence increasing
the chance that some active process will run out of credit).

Yet, in primary algorithms executed as a dataflow, the locally visible horizon of tasks scheduled
in the runtime is sufficient to detect that an outgoing message is terminal, that is, the last message
sent before a transition to idle. Thus we propose the following strategy when idle transitions occur:
when a process is about to transition to idle, it sends the whole locally available credit along with
pending terminal emissions. When sending a primary message, a process splits its locally available
credit (according to different policies detailed below) and “piggybacks” a fraction of the credit onto
the message. Because the piggyback is of fixed size (since our credit representation does not grow
to remain infinitely divisible, see below), the practical cost of adding the whole remaining credit as
piggyback to primary messages is trivial. This approach has multiple benefits: it reduces the number
of control messages as it avoids generating a FLUSH message, and maintains more credit available
among active processes, which can help both avoiding primary message delays and additional control
messages.
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4.3 Credit Creation and Accounting

As, in our approach, individual processes and messages carry non-infinitely divisible credit, it is
possible that a process that needs to emit primary messages would run out of locally available
credit. In this case, our algorithm has the process request (with a secondary BORROW message)
the allocation of supplementary credits from the controlling agent. For as long as a process is out
of credit (e.g., the time period required for the secondary BORROW request to round-trip to the
control agent), the process has to delay the emission of all primary messages, since it would otherwise
carry the risk of resetting the destination process to active without holding message carried credit.

On the controlling agent side, the agent counts how many credits have been created during the
execution in a counter that grows as necessary, thereby ensuring that the controlling agent will never
fail at providing supplementary credits. In this fashion, more credit than can be represented by the
maximum value of local and message credit may be in circulation in the system. If a non-controller
process receives a message containing more credit than it could accumulate in a single variable
without an overflow, its local credit is set to the maximum, and all remaining credit is immediately
returned to the controlling agent. In this fashion, the overhead of managing arbitrary precision
arithmetic in messages is completely avoided, and only controlling agents have to perform arbitrary
arithmetic summations in a time-sparse pattern (i.e., only when credit attrition has happened).

Because it entails control messages and delaying primary messages, running out of credit is a
major performance hurdle and should be avoided. To reduce the likelihood of running out of credit,
we devise two complementary strategies that we describe in the next sections: (1) a multi-regime
credit division and allotment, and a prefetch heuristic for credit borrowing.

4.4 Message Credit Allotment Strategy

The minimum credit that a primary message may safely carry is 1. While this strategy reduces
the attrition rate at the sender process (by leaving as much credit as possible at the source), it can
lead to credit exhaustion at the receiver process. That is, if a message reaches a process that has
little credit left (e.g., an idle process that had rid itself of all its local credit), then that process will
need to borrow credit from the controlling agent and delay the next primary message. Conversely,
if a process divides the credit into two halves for every message (as is customary in many CDA
algorithms, including HCDA), then local credit declines very quickly (at an exponential rate) with
the number of outgoing messages — leading to a high chance of the process running out of credit
before it receives credit naturally through its primary message receptions.

To address this tradeoff, we devise a multi-regime strategy that avoids both issues. When a
process holds abundant credit (i.e., above a threshold value, C¢,,) the process employs a credit
division strategy to improve the chances that destination processes may carry more message emissions
without borrowing. In addition, we note that multiple messages may be sent simultaneously (from
the view of the emitter process and independently of the port model of the network), for example,
when a task completion creates multiple successors at remote processes. Each individual successor
task may represent an individual emission, yet all are created during the same local step. Message
emissions may also appear simultaneous for a process when considering an implementation with an
asynchronous communication system that queues and schedules non-blocking emissions. Messages
may be scheduled from additional tasks that are completing at the local process before the initiation
of previously scheduled emissions at that same process. In both cases, our algorithm is that, instead
of dividing the credit by two for every message, credit is divided uniformly among all outstanding
emissions when message emissions are simultaneous. We maintain a counter of shares, S, which
counts how many shares are known for the current credit. S is equal to the number of outgoing
messages, plus one if the process remains active. Letting C\,, denote the current credit amount,
each message receives |Ceyr| /S| credits.

When local credit drops below C.,,, the algorithm in control of them allotment of credit per
message is modified to carry a fixed amount of credit per message W,,,. The goal is to conserve
the local credit to enable the process experiencing low availability of credit to keep issuing messages
with no delays, for as long as possible. Overall, the credit allocation function uses the following
formula to set the credit, w;, on an outgoing message, m;, at a process with current credit, C.,.,
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and S shares.

[ <5 if Ceur > Ceon
’LU,L- = C .
L cmz W con) if Cewr < Ceon

4.5 Credit Acquisition Prefetching

When a process does not have enough credit to allot to its emissions, it is forced to borrow credit
from the control process and delay emission until said credit is obtained. In order to avoid delaying
emissions, in our algorithm, when less than Ch,roq credit is available locally, a process proactively
issues a BORROW message to replenish its credit with additional credit from its control agent. The
amount of credit returned by the control agent is Cj,;;- In some cases, i.e., when the process receives
credit (from primary message receptions) before reaching an indivisible credit, this algorithm may
result in an overall increase in the number of control messages, as it may produce unnecessary BOR-
ROW secondary messages. However, the severe performance penalty resulting from delaying primary
messages supports the deployment of this optimization (as discussed in experimental results).

5 Analysis

In this section, we compare the 4C, EDOD, HCDA, and CDA algorithms in terms of the number of
control messages, which is the key parameter, to assess and compare their respective overhead. We
use two simple applicative kernels for this comparison: (1) the token ring, which is the archetype case
study for distributed algorithms; and (2) the projection operation in 1—dimensional trees described
in Section 2, which is representative of tree-based synchronous computations.

5.1 Token Ring Application

The token ring is a kernel widely used to assess the performance of distributed algorithms [22, 19, §|.
Informally, it consists of several steps, with a token randomly moving from one process to another
at every step, and a random number of steps. We use the following instantiation.

e The token is initially owned by process 0.

e With a fixed probability of p < 1, the token owner draws a process number randomly and uniformly
in [0, P—1] and sends a message (the token) to that process. The algorithm stops with a probability
ofg=1—p.

The expected number of steps (token moves) of the algorithm is %. At each step, the token owner

performs some computation, the precise length of which is not important but is assumed to be long

enough so that all control messages of the termination detection algorithm are processed before
the next step begins. In other words, we can view the steps as synchronized, with the termination
algorithm detecting termination (or not) at the end of each step.

The token ring mimics the termination pattern of an application that ends with a linear chain

of tasks, the length of which is data dependent. Our results are shown below in Theorem 1.

Theorem 1. The expected number of control messages of 4C, EDOD, HCDA, and CDA for the
token ring is the following:

o E(4C) > ¢ x P+ P +o(P)

(
e E(HCDA) = 5 + 71057(02%),1 +P + o(P)
e E(CDA) < 2P

We see that EDOD is more efficient than 4C at each step, and that CDA is the clear winner as
soon as the token circulates at least P times.
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Proof. At each step of the token ring algorithm, the sender node makes an active-to-idle transition,
while the receiver node is awakened by the token message and makes an idle-to-active transition.
Because we assume the steps do not overlap, these are the only two transitions during the step, and
all the other processes remain idle.

For the 4C algorithm, the sender initiates a chain of messages by notifying its parent in the
control tree. There are two cases described below.

e If the receiver is not an ancestor of the sender in the control tree, the receiver will notify its parent,
which in turn will notify its own parent, thereby eventually reaching the root. If the current step
is not the last step, the root will detect that the current wave has failed (because not all nodes
have reported being idle) and will propagate this information down to tree to all processes via
a descending wave; if this is the last step, the root will detect termination and send the final
descending wave; in both cases, the cost is P — 1 control messages.

e If the receiver is an ancestor of the sender in the control tree, the chain of messages from the sender
to the root will be blocked by the receiver. But this latter event has a small probability, because
there are at most log(P) nodes in the path from the sender to the root. Hence, the probability of
the receiver belonging to that path is at most %.

Altogether, the expected number of control messages per step is at least (1 — %)(P -1+ % X

1 ="P+0(P). Adding the cost, P —1, of the final notification broadcast, we get the result for E(4C),

since the expected number of steps is %. For the EDOD algorithm, we have the following analysis.

e Initially, every node transitions from active to idle, either immediately or after sending the first
message for the initiator, and sends a message to its parent in the control tree; therefore, there
are P — 1 messages.

e For each token message at each step, an acknowledge message is sent by the recipient to the sender.
It goes through a chain of resume and acknowledge all along the unique path in the control tree
connecting both nodes. The number of control messages is equal to the distance between both
nodes in the control tree. The average distance between two nodes in a complete binary tree of
P nodes is asymptotically 2log P [24]. As a side node, we see that this average distance is of the
same order as the diameter of the tree, which can be explained by the fact that the majority of
nodes are leaves of the tree (see [24] for further details).

e We have to add the stop messages, propagated by the sender up to the tree, which leads to log P
additional messages per token message. Altogether, the overhead is 31log P per step.

Adding the cost, P — 1, of the final notification broadcast, we get the result for E(EDOD). Finally,
we discuss the number of control messages for the credit distribution algorithms. For HCDA, we
count a message (to return the credit) every step and two messages (borrowing request and extra
credit) every log(Cint) steps, when the credit piggybacked in the primary message runs out. For
CDA, this means the following.

e After the first step, process 0 (the source node) becomes idle after the token message is sent, and
it transfers all its current weight, C;,;;, into the token message and has nothing to return to the
controlling agent. All nodes except the source node were active and became idle during the first
step, hence they return their total weight to the controlling agent, which amounts to P — 1 control
messages.

e While the token iterates during the following steps, the sender has weight, C;,;;, and transfers it
into the message, and then it has zero weight and does nothing more. The recipient had weight,
0, and gets ;i from the message.

e Upon termination, the recipient sends its weight, C,;:, back to the controlling agent.

Altogether, the overhead is P messages (out of which P —1 are sent during the first step), hence the
result for E(CDA) when adding the cost of the last termination broadcast. An important distinction
for CDA is that the total number of control messages is independent of the number of steps. O
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5.2 Non-deterministic Binary Trees Application

We consider now the projection operation in 1—dimensional trees described in Section 2. In practice,
we can model such an operation with a task graph that unfolds a binary tree, each node having two
children with some probability, and being a leaf otherwise. Since an exact analysis with arbitrary
task weights is out of reach, we present a simplified scenario to evaluate the average performance of
the four algorithms. The simulation works as follows: first, we precompute some application trees
with the following algorithm:

(1) Start with a complete tree of height L, = 3.

(2) For each leaf, at level [ with probability A, refine by replacing the leaf with a complete
subtree—the height of which is drawn uniformly and at random between 2 and 5 (i.e., we add
between 2 and 30 new nodes).

(3) Repeat the last step on all new leaves until no leaf is refined.
(4) Crop the tree if its height exceeds L.y qq-

The tasks of the tree are labeled using a breadth-first order: task 0 is at level 0, and tasks 1 and 2
are at level 1, and so on. We generated different sizes of trees using the following parameters: small
trees with A = 0.8 and L.;,4; = 30, medium trees with A = 0.9 and L,,,4; = 50, and big trees with
A =0.93 and L4, = 60.

For the simulation, we consider that all tasks at a given level, [, are processed at time, {. We
have two different mapping strategies for mapping tasks to processes: (1) a round-robin mapping,
where task x goes to process  mod P; and (2) a random mapping, where task = goes to a process
uniformly drawn in [0, P — 1].

We compute the messages sent by the application at each step (all tasks at a level in the tree),
and determine whether the processes become active or idle at the end of the step. When a process
was active and is again active at the end of the step, we model the inherent distributed aspect of
the algorithms using three different models:
® Sinstant: The node does not transition to idle during the step, it remains active throughout. This
corresponds to the case where computations and communications are instantaneous, thus a node
knows in advance whether it will stay active or not.
® Siocal: The node transitions to idle before returning to active, unless there is a message to itself.
This corresponds to the case where communications are very slow compared to computations, all
messages are received at the end of the step, so a process transitions to idle because it cannot know
in in advance whether it will stay active or not.
® Sioad: The node transitions to idle before returning to active only if it has no message for itself
and if its load is smaller than all the loads of the nodes that send a message to it: this is because in
that case, it terminates computing before receiving any load from the other guys. This corresponds
to the case where computations are long and messages takes very short time. We define the load
to be equal to the number of messages received at the previous step (each of them implying the
execution of a task, this corresponds to assuming that all tasks have the same weight).

To compare the performance of CDA to other algorithms, we compute the number of control
messages sent by each algorithm, as detailed below.

e HCDA and CDA: all messages carry credits, so there is no control message — except when one
process becomes idle and needs to return its credit to the controlling agent (flush), or when it
does not have credit anymore and needs to send a message to the controlling agent to continue
(borrow). Each time we detect that a process needs to flush or borrow, we add one control message.
Otherwise, when processes transition from idle to active or from active to idle, we do not count
anything, as these algorithms do not send messages for simple transitions.

e 4C: once the list of messages (sent during a step) is computed, we go through the list of all
processes in descending order. If a process becomes idle, we check if it belongs to the wave. If it
does not, it is added to the wave. If the process has children, they also belong to the wave. By
going through the processes in descending order, we ensure the wave goes as high as possible in
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Figure 2: Number of control messages per process for all algorithms (4C, EDOD, HCDA and
CDA) for a 47-task tree. The first row uses a round-robin mapping while the second row uses a
random mapping.
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Figure 3: Number of control messages per process for all algorithms (4C, EDOD, HCDA and
CDA) for a 397-task tree. The first row uses a round-robin mapping while the second row uses a
random mapping.

the control tree. Each time the root belongs to the wave, we account for 2(P — 1) messages (2x
the number of edges in the control tree).

e EDOD: each time a process, p;, transitions from idle to active, it means that it received messages
from a set of processes, S. We then compute the union of all paths from p; to each one of the
processes in the set S. Finally, we sum the number of edges in that union of paths, which accounts
for the number of control messages sent at this step by process p;. When a process, p;, transitions
from active to idle, we check that its whole subtree is composed of idle processes at the end of the
step. In that case, we account for one control message that goes up in the control tree; there are
n messages total, where n is the size of the subtree, because each node of the subtree is the root
of an idle subtree itself.

Figures 2 to 5 present the number of control messages for all algorithms. We had to use a
logarithmic scale on the Y-axis to report a range of different numbers. The data is presented for
a wide range of tree sizes, ranging from small (47 tasks in Figure 2) and medium (397 tasks in
Figure 3) to large (17,797 tasks in Figure 4) and very large (202,007 tasks in Figure 5), using
an initial credit, Cjn; = 232. First, all the simulations show that CDA dramatically outperforms
HCDA. Interestingly, the only occurrences of BORROW:s for CDA are when the mapping is random
and there are only a few processes. In this case, the processes may receive a lot of messages, thus
a lot of tasks to execute, and thus a higher number of messages to send afterward. With the credit
reducing quickly at the beginning because there is a good probability that a process is idle in the
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Figure 4: Number of control messages per process for all algorithms (4C, EDOD, HCDA and
CDA) for a 17,797-task tree. The first row uses a round-robin mapping while the second row uses
a random mapping.
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Figure 5: Number of control messages per process for all algorithms (4C, EDOD, HCDA and
CDA) for a 202,007-task tree. The first row uses a round-robin mapping while the second row uses
a random mapping.
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Tree size || 4C round-robin | 4C random || EDOD round-robin | EDOD random || HCDA round-robin | HCDA random
47 0.32 0.83 12.08 16.07 37.68 38.28
397 1.28 0.65 17.09 18.97 11.65 14.36
17,797 3.34 1.60 68.06 64.56 12.70 12.66
202,007 3.52 1.98 201.68 176.38 95.40 87.98

Table 1: Average ratio of the number of control messages generated by 4C, EDOD, and HCDA
over that of CDA, for the round-robin and random mappings, and for all tree sizes.

first steps, and there may be too many messages to send compared to the credit. Still, the number of
BORROWSs is — on average — null, especially when using round-robin mapping. The only overhead
in terms of messages added by CDA comes from the number of flushes (when a process becomes
idle and has no message to send). When using round-robin mapping, the number of flushes per
process is less than the number of control messages sent by the 4C algorithm (on average for the
first figure). However, when we set the mapping to be random, 4C proves to be more efficient than
CDA when P > 100. Between random and round-robin mapping, the number of control messages
for CDA does not change much, whereas random mapping drastically reduces the number of control
messages for 4C.

Overall, we expect CDA to send less messages than 4C, in particular when the number of
processes increases. Looking at the top-right plots in each figure, where the model is Sjpaq and
the mapping is round-robin (achieving more load balance than random), the number of flushes per
process tends to stay constant when the number of processes increases, whereas 4C produces more
messages.

Table 1 provides the average ratio, over the three models, of the number of control messages
generated by 4C, EDOD, and HCDA over that of CDA, for the four tree sizes. For the round-
round mapping, the best competitor is 4C which sends three times fewer messages for 47-task trees
but three and a half times more for 202, 007-task trees. For the random mapping, 4C is also the
best competitor, with a 20% gain for 47-task trees but twice more messages for 202, 007-task trees.
For both mapping, EDOD and HCDA generate an order of magnitude more messages than CDA.
Altogether, for large trees, CDA succeeds in dramatically reducing the total number of control
messages in comparison with the other three algorithms 4C, EDOD, and HCDA.

6 Experiments

6.1 Implementation

To evaluate the termination detection algorithms, we implemented them in the Parallel Runtime
Scheduling and Execution Controller (PARSEC), a micro-task system for distributed environ-
ments [2]. The Modular Component Architecture (MCA) of PARSEC enables dynamic module
selection to provide desired functionality. We extended PARSEC to integrate a new termination
detection framework capable of providing support for multiple termination detection strategies. We
interfaced the termination detection component with: (1) the scheduler, to determine if there is local
activity; (2) the domain-specific language (DSL), to determine if there is potential future activity;
and (3) the communication engine, to stay informed of outgoing and incoming messages and to
implement termination detection control messages. The communication engine is enhanced to allow
the termination detection module to piggyback information within primary messages (as needed to
implement CDA). Taking advantage of this MCA framework, we designed and implemented support
for all termination detection algorithms studied.

As stated previously, many applications can detect their own termination. The DSL or the
algorithm can “pre-compute” the entire set of local work, or the termination may occur at a single
terminal node of the workload task graph (e.g., fork-join parallelism). For such applications, we
provide the local and announce termination detection modules that simply inform the runtime of the
application-detected termination. The dynamic termination detection algorithms are implemented
in additional modules, which are then selected by the DSL when the application is dynamic.
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6.2 Benchmarks

To evaluate the different algorithms, we implemented a couple of micro benchmarks into one of
the PARSEC DSLs, a dataflow language, called the Parameterized Task Graph (PTG). The micro
benchmarks stress termination detection with different cases: the token-ring algorithm, which is
analyzed and described in Section 5.1, and the projection operation on a 1-D tree, which is described
in Section 2 and analyzed in Section 5.2.

The token ring benchmark aims to emulate an application where the workload moves across pro-
cesses during the execution (e.g., computing the cumulative distribution function — CDF — of another
function provided as a k-dimensional tree). For CDF, the input function must be summed at each
leaf to create the leaves of the target function; leaves with insufficient data precision may be further
refined by spawning additional local tasks. To emulate this behavior, we define a probability of
branching during the circulation of the token: while the main token continues circulating (emulating
the sum of leaves on the input tree), at each node, with probability ¢,, additional tokens that spawn
local refinement leaves are created. This benchmark represents a class of dynamic applications where
a pipeline of work terminates at a singular (or a limited) number of processes simultaneously.

The projection benchmark approximates the e =% function in the domain [—10, 10] with a variable
precision threshold (the finer the precision, the deeper the tree representing the approximation of
the function). As is done in MADNESS [14], tree nodes are distributed following a heuristic that
aims to balance the load while preserving some locality. Nodes at depth d < log,(P), where P is
the number of processes, are randomly assigned to a process, while nodes at depth d > loga(P)
are assigned to the same process as their closest ancestor with the same depth. This workload is
representative of the class of applications where multiple processes enter termination simultaneously.

6.3 Results
6.3.1 Experimental Setup

All experiments were conducted on Argonne National Laboratory’s Mira supercomputer — a Blue
Gene/Q system with 48 compute racks and 786,432 total compute cores (Power7) running at 1.6
Ghz. All experiments used a single midplane (512 compute nodes), and each compute node features
64 hardware threads. We deployed up to 32 MPI processes per compute node; every MPI process
has a computation thread and a communication thread, each bound to its own hardware thread,
hence 32 MPI processes across 64 hardware threads.

We ran each experiment 20 times and report all measurements using Tukey Boxplots — the boxes
delimitate from the 1st to the 3rd quartile and whiskers denote the lowest (respectively highest)
datum still within the 1.5 interquartile range of the lower (respectively highest) quartile.

6.3.2 Token Ring

First, we consider the Token Ring studied in Section 5.1. Figure 6 presents the number of con-
trol messages for each termination detection algorithm (i.e., secondary messages not issued by the
application), and the time between the last transition to Idle and the last process that detected
termination (detection latency).

At 16,384 processes, EDOD introduces so many control messages on the critical path that the
benchmark fails to complete within the maximum runtime limit (60 s). This result reinforces the
notion that comparing termination detection algorithms based on the number of control messages
only is not enough; their differences are more subtle. It also highlights a critical difference between
EDOD and 4C: both introduce a comparable number of messages in this case, but the impact of
these messages on the execution time is wildly divergent.

EDOD introduces congestions that have a drastic impact on the number of control messages: as
the token circulates, each process uses the tree to send the acknowledge and resume messages to the
token source. Control messages quickly overload the links of the spanning tree, as they compete with
the application messages for network resources. Comparatively, at most one wave is being deployed
at each instant with 4C. Although many serialized waves can be necessary, they do not compete
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Projection Precision
1077 | 107 | 107° 10710 107 10712
HCDA | 34,388 | 58,638 | 69,542 | 437,542 | 659,761 | 2,578,376
CDA 30,154 | 25,038 | 25,767 | 26,338 24,468 27,562

Table 2: Average number of control messages for HCDA and CDA (projection operation with 16,384
processes).

simultaneously for the network resources. CDA and HCDA behave the best in this setup. For
CDA, the credit circulates with the application token and the credit value remains constant, thus
very few control messages are necessary (about 2 per process, see Section 5). For HCDA, although
the credit expires every 32 steps, the number of control messages remains linear with the number
of steps and is smaller than for EDOD or 4C at scale. CDA, HCDA, and 4C behave efficiently
in terms of detection latency, while the control communication tree of EDOD is overloaded with
control messages, resulting in high latency.

Second, we looked at the projection operation. Because of its naive credit management strategy,
HCDA suffers from scalability issues, and we could not study a large problem with HCDA. To
illustrate this, we compared the number of control messages introduced by HCDA and CDA over the
projection operation on 16,384 processes and variable precisions (Table 2). The HCDA algorithm
quickly suffers from attrition due to early flushing and inefficient credit splitting heuristics (as
explained in Section 5.2), resulting in many more FLUSH and BORROW messages than CDA. As
the precision goes thinner, the problem size increases and a higher number of leaves appear in the
projected tree. For each leaf there is a potential for a flush message, forcing the processor that
created the leaf to flush its credit and borrow more when a subtree is subsequently discovered. The
number of control messages grows up to 100x larger in the HCDA algorithm compared to our CDA
algorithm.

Moreover, the BORROW messages in the CDA and HCDA algorithms are in the critical path of
the execution, and the centralized agent that must serve them is quickly overloaded upon attrition
by virtue of their exploding number for the HCDA algorithm. This is why attrition must be
avoided to obtain an efficient CDA implementation. Because of this, runs of the HCDA algorithm
would not complete in a reasonable time at a precision of 1073 on the platform we used. By
avoiding attrition, the optimized CDA has no measurable impact on the overall execution time of
this benchmark, similar to the other algorithms studied (EDOD and 4C). Hence, for the rest of
the evaluation, we discard HCDA and consider only EDOD, 4C, and CDA.
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Figure 7: Projection operation with threshold of 1013,

Figure 7 shows the number of control messages injected by each termination detection algorithm
and the impact on the detection latency for the projection operation. Note that, from the detection
latency perspective, the three algorithms exhibit similar performance despite a drastically different
number of control messages.

EDOD injects control messages for each application message, even before any process enters the
idle state. This significantly impacts the number of control messages, which is orders of magnitude
higher than for CDA and 4C. Because these messages compete with each other on the links of the
underlying control tree, contention becomes critical, and the detection latency suffers.

Although 4C behaves much better than EDOD in terms of the number of control messages, it
still creates many times more messages than CDA at a large scale. Note that the scales on both
axes are logarithmic due to the significant difference in the number of messages between the different
algorithms, which is consistent with our simulations. At a smaller scale, there are problem sizes for
which 4C introduces fewer control messages than CDA. The benchmark creates parallel work that
is evenly distributed among the different processes. As a consequence, the waves of 4C are relatively
slow to reach the root (all processes have to switch to the idle state at least once for a wave to reach
the root), and the number of waves remains small (the number of waves is the number of control
messages divided by twice the number of processes).

In the case of CDA, almost all control messages are FLUSH messages. In this application,
processes computing leaves have no further use for the credit they received when creating the leaves.
Thus, they initiate a flush every time they become idle after processing a leaf.

The FLUSH messages introduced by CDA are away from the critical path and only BORROW
messages may delay the execution. Similarly, the waves of 4C do not prevent the application from
progressing normally. For both algorithms, the noise introduced in the system does not measurably
degrade the performance.

6.3.3 CDA: Risk of Borrowing and Messages Delays

We detail our study of how CDA behaves during the projection operation in terms of the number
of control messages that have an impact on the application (e.g., the BORROW messages that
prevent primary messages from being delivered promptly). Unlike 4C or EDOD, CDA can run out
of divisible credit, which may cause slowdowns. Indeed, if a process needs to send a message but
no divisible credit is locally available, the emission must be delayed until some credit is acquired —
either from the root, through a borrow, or from an incoming message. In Figure 8, we show, for a set
of projections, how many times an application message emission was delayed and how many times
processes issued a borrow order. First, one can see that these two measures are strongly correlated.
This is to be expected as a borrow order is issued when a process runs out of credit.
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Second, one can also see that, depending on the number of processes (hence depending on the
number of tasks per process), the number of borrows and delayed messages vary significantly. On
one hand, as the scale increases, the number of tasks per process decreases (for a fixed problem size);
thus, the number of messages and the credits required to initiate messages also decreases. On the
other hand, at small scale, each process executes more tasks that are successors of tasks from remote
predecessors, and thus receives more credit from the application messages. This creates a trade-off
that is beneficial at each extremum but detrimental at the middle. However, even when the number
of borrows is maximal (at 2,048 processes), no process initiates more than one borrow throughout
the execution. Thus, despite producing a large number of delayed messages, that single disruption
has a negligible impact on the entire application runtime.

7 Related work

In [27], Misra proposes a method to precisely define the metrics of efficiency for distributed termi-
nation detection. We leverage this method in our analysis.

Termination detection has been studied extensively from the theoretical perspective: [25] demon-
strates that different classes of detectors are equivalent through automatic transformations; see Ch.
6 of [9] and Ch. 9 of [12].

Wave termination detection algorithms include [16], based on distributed snapshots, and [28],
designed for asynchronous wide-area networks by combining a reduction tree with a logical ring. De-
lay optimal algorithms include [23] and [18], and we compare one that is representative to this work.
Weight throwing, or distributed credit algorithms, have been extensively studied theoretically: [1]
proposes to use them to implement garbage collection mechanisms; [17] introduces the Doomsday
termination detection protocol that deals with migrating tasks; [11] uses a mobile agent to count
the weight remaining in the system; [21] and [5] consider the particular case of mobile networks;
and [26] considers resilient approaches to these algorithms. A recent work [13] introduces resilient
optimistic termination.

Few works compare, experimentally or practically, the different algorithms to evaluate the behav-
ior in average or real-world conditions. In [6], this comparison is conducted over a simple benchmark
consisting of 100 randomly generated nested graphs of tasks.
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8 Conclusion

This paper revisits distributed termination detection algorithms in the context of HPC applications,
motivated by the emergence of micro-tasks as one of the most effective programming paradigms to
tackle load imbalance and performance portability on current systems. This gives rise to an increased
relevance to efficiently detect termination of workflows for which the total number of tasks are data-
dependent and, hence, not known until during execution. In this paper we introduce an efficient
variant of the credit distribution algorithm, CDA, and compare it to the initial credit distribution
algorithm, HCDA, and two other termination detection algorithms, 4C and EDOD. We analyze
each algorithm for simplified task-based kernels and show the superiority of CDA in terms of the
number of control messages. We also analyze the practical performance of these algorithms on a
real deployment of relevant proxy applications on the Mira HPC system, within a production-grade
dataflow runtime (PARSEC).

Interestingly, the experiments — while in agreement with the model on the number of control
messages generated — demonstrate that analyzing the algorithm only in terms of the number of
control messages is useful, but incomplete. In some cases (for example, HCDA in project opera-
tion, EDOD in the ring application), the number of control messages is a clear predictor of poor
performance, essentially rendering the affected algorithms incapable of being used in practice for
these cases. The drastic reduction in the number of control messages generated by CDA versus
HCDA successfully alleviates these pathological cases for CDA. When comparing the CDA algo-
rithm to the 4C algorithm, the conclusion becomes more nuanced. Although 4C does generate a
substantially larger number of control messages, both algorithms produce similar execution times as
experienced by time to completion of the application. That is, both generate a low enough number
of control messages, in a pattern that avoids hotspots, and as a consequence do not substantially
impact the rate of execution of the primary algorithm. In our experience, having a measure of the
message delays imparted on the primary messages (i.e., a measure of the disruption caused by the
termination detection algorithm on the application’s communication pattern) is a more accurate
predictor of performance than the raw number of control messages, a metric that has often been the
sole focus in the past.
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