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Abstract— Coverage services provided by LEO satellite con-
stellations have served as the base platform for various space
applications. However, the surge of space attacks such as
physical and cyber attacks are greatly endangering the security
of satellite constellations and the integrity of the coverage
services. As repairs of satellites are challenging, a distributed
protection mechanism is necessary to ensure the self-healing
of the satellite constellation coverage from different attacks.
To this end, this paper establishes a distributed framework to
empower a resilient satellite constellation coverage design and
control within a single orbit. Each satellite can make decisions
individually to recover from adversarial and non-adversarial
attacks and keep providing coverage service. We first provide
the average coverage cost to measure the coverage performance.
Then, we formulate the joint resilient coverage planning-control
problem as a two-stage problem by decoupling the coverage
planning and fuel-optimal control. A distributed algorithm is
proposed to find the optimal coverage configuration. The multi-
waypoint MPC methodology is adopted to steer satellites to the
target configuration. Finally, we use a typical LEO satellite
constellation as a case study to corroborate the results.

I. INTRODUCTION

Recent advances in space technology research and devel-
opment have inspired numerous applications of Low Earth
Orbit (LEO) satellite constellations, such as positioning [1],
communications [2], and remote sensing [3]. Among various
research and applications, satellite constellation coverage
plays a fundamental role, where multiple LEO satellites work
cooperatively to provide global or regional coverage service
[4]–[6]. As the satellite constellation coverage serves as the
platform for other space applications such as space-terrestrial
internet and TV signal transmission, one of the challenges in
LEO constellation design and control is maintaining a good
coverage performance. Apart from the classical approaches
to design global coverage [7], [8] and regional coverage
[9], recent research such as [10]–[12] have also studied the
optimal satellite deployment to maximize joint coverage.

However, the booming security threats in the space domain
make the satellites more vulnerable during the operation and
degenerate the coverage performance. For example, physical
attacks [13] such as laser attacks can directly destroy satellite
entities. Cyber attacks such as jamming [14], [15] can block
and disrupt satellite signals, causing degeneration or failure
to the coverage service. Apart from the adversarial attacks,
non-adversarial threats such as orbit debris can also put
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satellites at risk and harm the coverage service. It is estimated
in [16] that there have been more than one hundred satellite
attacks, including jamming and hijacking, since 1977, many
of which have caused a significant loss in navigation and
communication. Therefore, we need reliable mechanisms to
protect satellite constellations and improve the resiliency of
satellite constellation coverage for various attacks.

Resiliency ensures the survivability of satellite constella-
tions under successful attacks. It also provides flexibility
and adaptability to cope with security threats. However,
few works have focused on resiliency in the space domain
although it has been studied in other fields such as [17], [18].
Besides, centralized approaches for optimal LEO satellite
constellation design such as [5], [12] are insufficient to
address the security challenges for the following reasons.
First, most constellation designs do not consider satellite
control, making it harder for constellation recovery and
adjustment because satellite repair and replenishment can be
challenging. Second, not all satellites can connect to the same
central station simultaneously because they scatter in space,
which brings further difficulties for satellite coordination.

To this end, we develop a distributed framework that
enables a resilient satellite constellation coverage planning
and control in a single orbit under adversarial and non-
adversarial attacks. We first propose the average coverage
cost to measure the coverage performance of the single-orbit
satellite constellation by using the notion of the satellite con-
figuration. Next, we formulate an optimal planning-control
problem that jointly optimizes the coverage performance and
the fuel consumption for satellite constellation self-healing.
We further take advantage of the distributed nature of the
satellite constellation and reformulate the planning-control
problem to a two-stage problem, i.e., the planning and the
control stages. At the planning stage, we propose a dis-
tributed algorithm to find optimal coverage deployment under
both adversarial and non-adversarial attacks. At the control
stage, we use multi-waypoint Model Predictive Control to
achieve autonomous self-healing control. We also use a case
study to demonstrate that our distributed framework provides
resiliency to the satellite constellation coverage problem.

The rest of the paper is organized as follows. Section II
introduces the preliminary for satellite control and constel-
lation measurement. Section III formulates the satellite con-
stellation planning-control problem. We propose a distributed
coverage planning algorithm in Section IV and synthesize
our distributed planning-control framework in Section V.
Case studies on a typical LEO constellation are presented
in Section VI, and Section VII concludes the paper.
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II. PRELIMINARY

A. Clohessy-Wiltshire Equations for Satellite Control

Due to small orbit eccentricity, LEO satellites rotate in
nearly circular orbits. For satellite Si, we attach a mov-
ing frame Si-xyz called the local vertical local horizontal
(LVLH) frame shown in Fig. 1, where Si is the chief location,
x-axis points outward along the radial direction, y-axis points
to the velocity direction, and z-axis is perpendicular to the
orbital plane. Due to the nonlinearity, the relative motion
[19]—the satellite motion described in the LVLH frame—
is in general used to describe the satellite dynamics and is
captured by the Clohessy-Wiltshire (CW) equations [20]:

δẍ− 3ω2δx− 2ωδẏ = 0, (1)
δÿ + 2ωδẋ = 0, (2)

δz̈ + ω2δz = 0, (3)

where ω is the mean motion and (δx, δy, δz) ∈ R3 are
the displacements in the LVLH frame. The last equation (3)
indicates that the relative motion along z-axis is independent
from the one in xy-plane. We assume that the satellite does
not switch the orbit plane during the operation and ignore
(3) for satellite control. Let pi = [pix piy]T ∈ R2 and
vi = [vix viy]T ∈ R2 be the relative position and relative
velocity in xy-plane of the LVLH frame respectively, and
ui = [uix uiy]T ∈ R2 be the control thrust. We have

[
ṗi
v̇i

]
=

 0 0 1 0
0 0 0 1

3ω2 0 0 2ω
0 0 −2ω 0

[pivi
]

+

[
02×1

ui

]
:= A

[
pi
vi

]
+Bui,

(4)
When satellite Si moves to the relative position pi, it also

forms a deviation angle ∆φi(pi) with x-axis shown in Fig. 1.
Let rs be the orbital radius. Using geometry, we can compute

∆φi(pi) = sgn(piy) arccos

 pix + rs√
(pix + rs)2 + p2iy

 . (5)

B. Satellite Configuration

We consider n satellites rotating in the same circular orbit
with orbital radius rs and mean motion ω (period Ts = 2π

ω ).
We denote the i-th satellite as Si and the index increasing
direction is the same as the satellite moving direction.

Definition 1. A satellite configuration (or configuration) of
n LEO satellites in the same orbit refers to a stable passive
formation such that the relative position between any two
satellites remains constant.

To measure a satellite configuration, we introduce the
geocentric polar frame O-L shown in Fig. 1, which is fixed
on the earth surface. Then we define the configuration angle.

Definition 2. The configuration angle φi for satellite Si is
the angle between x-axis of the LVLH frame and OL axis.
The initial configuration angle (ICA) φ0

i corresponds to the
initial configuration (IC) at time τ = 0.

Fig. 1: [left-half] The LVLH frame on Satellite Si. [right-half]
Satellite configuration at time τ = 0.

For any IC, we define φ0
1 = 0 and ∆φi(0) = 0 for all

i = 1, . . . , n. Since all satellites are not stationary to the
earth, φi changes with time τ and the relative position pi:

φi(pi, τ) = φ0
i + ∆φi(pi) + ωτ, i = 1, . . . , n. (6)

Given an IC, any new configuration can be characterized the
relative position vector p = [pT1 · · · pTn]T ∈ R2n.

III. PROBLEM SETTING

In this section, we first introduce the coverage performance
measure of the satellite constellation and then formulate the
coverage planning-control problem as a two-stage problem.

A. Metric for Coverage Performance

Once all n satellites form a configuration, they start to
provide coverage services. Let µ : R → R be the global
demand intensity on the orbit ground track measured in O-
L frame. Due to the fast velocity of LEO satellites, we
assume that µ is time-invariant. We extend µ(θ) to a periodic
function with period 2π for computational purposes, i.e.,
µ(θ) = µ(θ+2kπ), k ∈ Z. At time τ , satellite Si covers part
of the earth surface shown in Fig. 2. Let αi be the coverage
angle, which is determined by the field of view (FOV) angle
with the coverage geometry. We denote Ci as the coverage
region and assume symmetric coverage to the ground. Then
we write Ci := Ci(pi, τ) = C+

i ∪ C
−
i ∪ {φi(pi, τ)}, where

C+
i := (φi(pi, τ), φi(pi, τ) + αi),

C−
i := (φi(pi, τ)− αi, φi(pi, τ)).

(7)

Note that Ci may overlap with Cj (j 6= i) to ensure
that the ground is fully covered. We define Ni as set
of satellites which share the overlapped coverage region
with satellite Si. Due to the ring structure of the satellite
configuration, we only consider the adjacent neighbors, i.e.,
Ni = {Si−1, Si+1}1. We use linear coverage intensity for
satellite Si in Ci. Let ψm

i be the maximum coverage intensity
and ki := ψm

i /αi, the local coverage intensity is defined by

ψi(θ, pi, τ) =
−ki(θ − ωτ −∆φi(pi)− φ0

i ) + ψm
i θ ∈ C+

i ∪ {φi}
ki(θ − ωτ −∆φi(pi)− φ0

i ) + ψm
i θ ∈ C−i

0 o.w.

(8)

To measure the overall configuration coverage, we de-
fine the global coverage intensity function ρ(θ,p, τ) =

1For clarity, satellite Sn+1 refers to S1 and satellite S0 refers to Sn.
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Fig. 2: Coverage geometry of a single satellite.∑n
i=1 ψi(θ, pi, τ). A good configuration should meet the

coverage demand as much as possible. Therefore, the average
supply-demand intensity difference is an indicator to measure
the coverage performance. Taking the periodicity into con-
sideration, we define the average coverage cost J : R2n → R
for a configuration

J(p) =
1

2Ts

∫ Ts

τ=0

∫ ωτ+2π

θ=ωτ

‖ρ(θ,p, τ)− µ(θ)‖22 dθdτ. (9)

A smaller J(p) indicates a better coverage performance.

B. Two-Stage Problem Formulation
When encountering adversarial or non-adversarial attacks,

some satellites’ coverage capabilities can be affected. The
current configuration may no longer be optimal to provide
the coverage service. Therefore, we formulate a two-stage
problem, i.e., the planning and control stages, as a resilient
and distributed architecture to (a) improve the resiliency of
the satellite constellation to adapt to insecure environments
and (b) take the satellite’s limited fuel supply for maneuver
into consideration.

The planning stage problem seeks a configuration that
minimizes the coverage cost when the current configuration
is no longer optimal. Since the configuration is characterized
by the relative position vector, we seek a vector p such that

min
p

J(p)

s.t. (pix + rs)
2 + p2

iy = r2
s , i = 1, . . . , n.

(Qp)

The constraints indicate that all satellites should remain in
the same orbit when the new configuration is found. This is
because changing the orbit can break the configuration and
makes it harder for satellite controls. It also increases the
probability of colliding with satellites in other orbits.

The planning stage problem (Qp) outputs the target con-
figuration pd to adapt to new attacks. The control stage
problem steers all satellites to pd by minimizing the fuel
consumption (measured by the total control cost). Let pd

i be
the i-th component of pd. Due to independent dynamics (4),
each satellite can autonomously drive to the target position
by its own fuel-optimal controls. For satellite Si, the control
stage problem can be formulated as

min
ui

1

2

∫ Tf

t=0

(
‖ui‖2Ri

+ ‖vi‖2Qi

)
dt

s.t.
[
ṗi
v̇i

]
= A

[
pi
vi

]
+Bui, ‖ui(t)‖2 ≤ u

m
i ,

pi(Tf ) = pdi , vi(Tf ) = 0.

(Qci)

The terminal constraints require that all satellites indeed form
the desired stable configuration after the control.

In the following sections, we suppress function arguments
for simplicity. For example, ρ stands for ρ(θ,p, τ).

IV. DISTRIBUTED COVERAGE PLANNING AND ANALYSIS

In this section, we introduce a distributed algorithm for
satellite constellation coverage planning. We also provide the
analysis of the target configuration found by our algorithm.

A. Distributed Structure of Coverage Measure

Despite the coupling in the coverage cost J , we can utilize
the configuration structure to design distributed algorithms to
find the local minimum. For satellite Si, from (8) we have

∂ψi
∂pi

=


ki

[
−piy

(pix+rs)2+p
2
iy

pix+rs
(pix+rs)2+p

2
iy

]
θ ∈ C+

i ∪ {φi}

−ki
[

−piy
(pix+rs)2+p

2
iy

pix+rs
(pix+rs)2+p

2
iy

]
θ ∈ C−i

0 o.w.
(10)

Following the definition of ρ, we have

∂J

∂pi
=

1

2Ts

∫ Ts

τ=0

∫
Ci

2(ρ− µ)
∂ψi
∂pi

dθdτ

=
1

Ts

∫ Ts

τ=0

∫
Ci

ρ
∂ψi
∂pi

dθdτ − 1

Ts

∫ Ts

τ=0

∫
Ci

µ
∂ψi
∂pi

dθdτ.

(11)

The ring structure of the configuration indicates that satellite
Si only needs to communicate with its neighbors to compute
∂J
∂pi

. With the assumption of the time-invariant demand µ, we
can further simplify (11) with the following lemma.

Lemma 1. Let f : R → R be a function with f(x) ≥ 0
and f(x) = f(x + T ). For any δ ∈ [0, T ), the function
G(x) = F (x+ δ)− F (x) is periodic with period T , where
F (x) =

∫
f(x)dx. Hence

∫ T
0
G(x)dx =

∫ T
0
G(x+ ε)dx for

any ε ∈ R.

Using Lemma 1, we arrive at the following proposition.

Proposition 1. The integral 1
Ts

∫ Ts

0

∫
Ci
µ∂ψi

∂pi
dθdτ in (11) is

equal to 0 for all satellite Si, i = 1, . . . , n.

Proof. The proof can be found in [21].

With Prop. 1, (11) becomes

∂J

∂pi
=

1

Ts

∫ Ts

0

∫
Ci

ρ
∂ψi
∂pi

dθdτ. (12)

Based on (12), we can design distributed gradient descent
(GD) methods for all satellites to jointly solve for (Qp).

B. Distributed Projected Gradient Descent Algorithm

The constraints in (Qp) indicate that all the satellites stay
in the same orbit during the operation. We use projected
gradient descent methods to find the local optimum of (Qp).
Let Ωi = {pi|(pix + rs)

2 + p2
iy = r2

s}. The iteration follows

p
(k+1)
i = projΩi

(
p

(k)
i − s(k) J(k)

∂pi

)
,

where (k) denotes the k-th iteration, s(k) is the step size, and
projΩi

(·) is the projection operator. Since Ωi are indepen-
dent, we propose the distributed projected gradient descent
(DPGD) algorithm for coverage planning in Alg.1.

When some satellite Si reach the condition ∂J
∂pi

= 0, it
does not implies that satellite Si terminates the algorithm.
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The influence from other satellites can propagate to Si and
perturb its gradient. We use a counter cnti to ensure the
gradient remains small enough for some time (lines 15-21).

Algorithm 1: DPGD for coverage planning.

1 Initialize: p(0)
i , exit

(0)
i ← false, cnti ← 0 for all Si ;

2 Activate satellite set SA ← {S1, S2, . . . , Sn} ;
3 All Si broadcast and receive (αi, ψ

m
i ) ;

4 k ← 0 ; // global iteration for DPGD
5 while SA 6= ∅ do
6 for Satellite Si ∈ SA (parallel) do
7 Broadcast p(k)

i , exit
(k)
i to Sj ∈ Ni ;

8 Receive p(k)
j , exit

(k)
j from Sj ∈ Ni ;

9 for Sj ∈ Ni do
10 if exit

(k)
j then

11 p
(k+1)
j ← p

(k)
j , exit

(k+1)
j ← true;

12 Identify C(k)
i with (αj , ψ

m
j , p

(k)
j ), j ∈ Ni ;

13 Compute ∂J(k)

∂pi
with (12) ;

14 if
∥∥∂J (k)/∂pi

∥∥ < εi then
15 cnti ← cnti + 1 ;
16 p

(k+1)
i ← p

(k)
i ;

17 else
18 cnti ← 0 ;

19 p
(k+1)
i = projΩi

(
p

(k)
i − s(k) J(k)

∂pi

)
;

20 if cnti > max cnt or k > max k then
21 exit

(k+1)
i ← true ;

22 SA ← SA\{Si} ;
23 k ← k + 1 ;

C. Analysis of Stationary Point
When the convergence is guaranteed, the DPGD algorithm

Alg. 1 generates a stationary point p∗ for (Qp). Since the
projection is involved at p∗, we must have2 either ∂J∗

∂pi
= 0

or ∂J
∗

∂pi
parallel to x-axis of the LVLH frame for i = 1, . . . , n.

However, the latter case can be ruled out by (10) because ∂ψi

∂pi
is never parallel to x-axis of the LVLH frame. Therefore, at
any stationary point p∗ generated by Alg. 1, we have∫ Ts

0

∫
C+

i

ρdθdτ =

∫ Ts

0

∫
C−

i

ρdθdτ, i = 1, . . . , n. (13)

Next, we show that the stationary point p∗ is the local
minimum under certain conditions. We discuss the scenario
where every satellite shares overlapping coverage regions
with its adjacent neighbors. i.e, Ci overlaps both with Ci+1

and Ci−1 for i = 1, . . . , n. From (12), we have

∂2J

∂p2
i

=
1

Ts

∫ Ts

0

∫
Ci

(
∂ψi
∂pi

)T
∂ψi
∂pi

+ ρ
∂2ψ

∂p2
i

dθdτ.

We can compute ∂2ψi

∂p2i
from (10). By referring to the station-

ary condition (13), at p∗ we have

1

Ts

∫ Ts

0

∫
Ci

ρ∗
∂2ψ∗i
∂p2i

dθdτ = 0, i = 1, . . . , n,

2We write J∗ = J(p∗) for simplicity.

where ρ∗ := ρ(θ,p∗, τ) and ψ∗
i := ψi(θ,p

∗, τ). Therefore,

∂2J∗

∂p2
i

=
2αik

2
i

[(p∗ix + rs)2 + p∗2
iy ]2

[
−p∗iy

p∗ix + rs

]
[−p∗iy p∗ix + rs] .

We also note that ∂
∂pj

∂ψi

∂pi
= 0 for j 6= i. Hence

∂2J

∂pi∂pj
=

1

Ts

∫ Ts

0

∫ ωτ+2π

ωτ

(
∂ψj
∂pj

)T
∂ψi
∂pi

dθdτ.

From (8), we see that ∂2J
∂pi∂pj

6= 0 if and only if Si and
Sj share an overlapped coverage region. Since only adjacent
neighbors are considered, for satellite Si, we have

∂2J

∂pi∂pi+1
=

1

Ts

∫ Ts

0

∫
Ci∩Ci+1

(
∂ψi+1

∂pi+1

)T
∂ψi
∂pi

dθdτ

=

(
∂ψi+1

∂pi+1

)T
∂ψi
∂pi

(φi − φi+1 + αi + αi+1).

Likewise,

∂2J

∂pi∂pi−1
=

(
∂ψi−1

∂pi−1

)T
∂ψi
∂pi

(φi−1 − φi + αi + αi−1).

Therefore, the Hessian ∂2J
∂p2 has a banded structure and we

have the following proposition to characterize the property
of the stationary point p∗.

Proposition 2. Let p∗ be the stationary point generated
by the DPGD algorithm. p∗ is a local minimum of J if∣∣φ0
i − φ0

i+1 + ∆φi −∆φi+1 + αi + αi+1

∣∣ ≤ √αiαi+1 for
all i = 1, 2, . . . , n − 1. For i = n, the term φ0

n − φ0
1 is

changed to 2π − φ0
n + φ0

1 due to periodicity.

Proof. The proof can be found in [21].

The condition in Prop. 2 indicates that for any two adjacent
satellites with an overlapped coverage region, one satellite’s
coverage region should not contain the center point of the
other satellite’s coverage region. Otherwise, the stationary
may not be optimal.

V. DISTRIBUTED COVERAGE CONTROL SYNTHESIS

After receiving the target configuration pd from (Qp),
each satellite is controlled independently by solving the
constrained-LQR problem (Qci). Due to convex input con-
straints, we reformulate (Qci) to the discrete counterpart and
solve it efficiently. Let ∆t ∈ R+ be the sampling period and
N = Tf/∆t. We denote pi,k ∈ R2, vi,k ∈ R2, and ui,k ∈ R2

as the position, velocity, and control thrusts of satellite Si
at time step k, k = 0, 1, . . . , N − 1. We write qi,k =
[pTi,k vTi,k]T ∈ R4, (Ad, Bd) as the corresponding discrete
system dynamics of (4), and Q̃i ∈ S4×4 as the augmented
weight matrix to penalize both position and velocity. Then,
the discrete counterpart of (Qci) can be written as

min
ui

∥∥∥qi,N − qdi ∥∥∥2
Q̃i

+

N−1∑
k=0

∥∥∥qi,k − qdi ∥∥∥2
Q̃i

+ ‖ui,k‖2Ri

s.t. qi,k+1 = Adqi,k +Bdui,k, k = 0, . . . , N − 1,

uT
i,kui,k ≤ (um

i )2, k = 0, . . . , N − 1.

(Q̃ci)

In practice, new attacks/incidents could happen during
the satellite maneuver, causing further degeneration in the
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coverage performance. To cope with these issues, we can
set multiple waypoints along the trajectory to the target
position. At each waypoint, the attack/incident detection
is enabled so that satellites can readjust their controls to
deal with the threats. More specifically, after receiving pd

i

from the DPGD algorithm, satellite Si sets Wi waypoints
{p̃(m)
i }Wi

m=1 with p̃
(Wi)
i = pd

i . If some satellite encounters
a new attack/incident, the satellite goes to the nearest way-
point and restarts the DPGD algorithm to find another new
configuration to adapt to the attack/incident.

We synthesize the DPGD planner and mwMPC controller
into the following DPGD-mwMPC framework in Alg.2.

Algorithm 2: DPGD-mwMPC framework

1 Initialize: Wi for satellite Si, i = 1, . . . , n ;
2 pd ← DPGD planning algorithm (Alg. 1) ;
3 for Satellite i = 1 to n (in parallel) do
4 Receive pd

i ;
5 Compute waypoints {p̃(m)

i }Wi
m=1 ;

6 for m = 1 to Wi do
7 do MPC(Q̃(m)

ci , p̃
(m)
i ) ;

8 if new attack detected then
9 goto DPGD planning algorithm (line 2);

MPC(Q̃(m)
ci , p̃

(m)
i ) means performing MPC to satellite Si

based on the problem Q̃(m)
ci with the target position p̃(m)

i .
The DPGD-mwMPC framework enables a distributed

and resilient approach for attacks and incidents that affect
coverage performance. Each satellite can react to the new
attack/incident in time by adjusting the number of waypoints.
If the environment is secure enough, all satellites can simply
set one waypoint during the maneuver. Otherwise, multiple
waypoints can be set to monitor threats in real-time.

VI. CASE STUDIES

In this section, we demonstrate the resiliency of our
framework by considering cyber attacks on coverage oper-
ations. We consider a satellite constellation with n = 25
homogeneous LEO satellites. Each satellite has the same
initial coverage parameters (α,ψm). We use normalized units
as some parameters are huge such as the earth radius. We
define 1 distance unit (DU) as 106m and 1 time unit (TU)
as 102s (earth radius Re = 6.378 DU). We set the orbital
altitude h = 800km (= 0.8 DU) and FOV = 48◦, which
are typical values for LEO satellites. The satellite period
is Ts = 6052.2s (= 6.052 TU). The maximum control
thrust for each satellite is assumed to be Tmax/m = 0.01
DU/TU2 := um. We normalize the coverage intensities by
setting ψm = 10 for all satellites. The demand intensity
µ(θ) is set as a truncated multimodal normal distribution
on [0, 2π) for the simulation purpose. The sampling period
∆t = 0.6 TU and the control horizon Tf = 18 TU.

A. Coverage under Cyber Attacks

Cyber attacks such as jamming attacks can degenerate
the coverage performance by reducing the FOV angle and

the maximum coverage intensity ψm
i . Since cyber attacks

generally do not destroy the physical equipment on satellites,
the attacked satellite may recover to a certain extent after the
attack is over. We consider the following attack-and-recovery
plan where 6 satellites are attacked and then recovered.
The attacked satellites’ coverage parameters are changed
according to Tab. I during and after the attack.

group # satellite # attack (FOV,ψmi ) recovery (FOV,ψmi )

group 1
1 (44, 8) (48, 10)
2 (42, 7) (47, 9)
3 (42, 7) (44, 8)

group 2 19 (44, 8) (47, 9)
20 (42, 6) (45, 7)

group 3 22 (46, 8) (48, 10)

TABLE I: Attack and recovery plan.

The entire process is shown in Fig. 3a, and we divide it
into three phases: initialization, attack, and recovery phases.
In the initialization phase, all satellites find a local optimal
configuration given the IC. The attack and the recovery
phases show the reactions of the satellite constellation during
and after the cyber attack, respectively. Three phases are
distinguished by the jumps in the coverage cost, showing
the destructiveness of the cyber attack to the coverage
performance. Our framework shows resilient satellite control
in all three phases. All satellites can not only adapt to
the given initial configuration, but also mitigate the attack
consequence and reduce the coverage cost. Eventually, a
local optimal configuration is reached to adapt to the cyber
attack. The zoomed plots show that all satellites actively
seek to mitigate the attack and successfully improve coverage
performance. In the recovery phase, the attack is over, and the
attacked satellites recover partial coverage capability. Then
all satellites readjust the configuration based on the recovered
capabilities to provide better coverage performance.

We also experiment with full recovery by considering the
same attack plan in Tab. I. The result is shown in Fig. 3b.
We observe that the satellite constellation can still achieve the
same coverage performance when the attack is over by using
our framework. The zoomed plot successfully demonstrates
the coverage performance converges to the pre-attack level.

We note that in all three phases, the coverage cost first
drops fast and then slows down. It indicates that most
satellites reach the target positions in a short time, and only a
small portion of satellites require a longer time to maneuver
due to limited mobility. Thus, we can use the DPGD-
mwMPC framework to generate suboptimal configurations
where some satellites only need to reach their intermediate
waypoints. It is especially convenient when consecutive at-
tacks happen. Besides, suboptimal configurations save more
fuel (less control costs), implying that our framework can
be used to balance the trade-off between the coverage
performance and the fuel consumption.

B. Comparison with Equal-Spacing Control Strategy

We compare our algorithm with the equal-spacing control
strategy, where all satellites aim to maintain an equal space
in the configuration. We experiment with the constellation’s
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(a) Partial recovery. (b) Full recovery.
Fig. 3: Coverage cost evolution under cyber attacks.

(a) Evolution of the coverage
cost after the attack occurs.

(b) Fuel consumption of each
satellite.

Fig. 4: Comparison of DPGD-mwMPC framework and equal-
spacing control under cyber attacks. We use the attack plan in Tab. I

reaction to the cyber attack in Tab. I by using the DPGD-
mwMPC framework and the equal-spacing control strategy.
The results are shown in Fig. 4a.

We observe that the equal-spacing control strategy has
barely changed the coverage performance when the attack
occurs, while the DPGD-mwMPC framework significantly
reduces the coverage cost and improves the coverage perfor-
mance. It shows that the equal-spacing strategy provides little
resiliency in satellite coverage compared with our frame-
work. We also plot the total control cost (representing fuel
consumption) in Fig. 4b. It is clear that the DPGD-mwMPC
framework requires more fuel to mitigate the attack and reach
a better configuration, showing the trade-off between the cov-
erage performance and the fuel consumption. However, the
fuel consumption of our approach is not significantly greater
than the one of equal-spacing control strategy. For some
coverage-critical tasks such as battlefield communications,
additional fuel consumption is tolerable. To save fuel, we
can also steer satellites to some suboptimal configurations.

We mention that the equal-spacing control strategy is not
effective for homogeneous satellite constellations because
all satellites have the same spacing with adjacent satellites
at the beginning. No matter what cyber attacks occur, all
satellites simply remain in their original positions, showing
zero resiliency and zero robustness.

VII. CONCLUSION

In this paper, we have investigated the satellite constella-
tion coverage in a single orbit under adversarial environments
by establishing a distributed and resilient planning-control
framework. The proposed framework has not only captured
the multi-objective of maximizing coverage performance
and minimizing fuel consumption for satellite constellation
readjustment, but also improved the resiliency of satellite
constellation coverage for cyber attacks. The developed dis-
tributed algorithm has shown effectiveness in searching for

optimal coverage configuration. The multi-waypoint MPC
methodology has achieved fuel-optimal control. Case studies
have demonstrated that the designed framework provides a
strong resiliency to cyber attacks compared with the equal-
spacing control strategy. For future work, we would consider
the coordination and resilient control of multi-orbit satellite
constellations. We would also investigate the impact of more
sophisticated attacks on the satellite constellation coverage.
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