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Greater Consideration of Animals
Will Enhance Coastal Restoration
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As efforts to restore coastal habitats accelerate, it is critical that investments are targeted fo most effectively mitigate and reverse habitat loss and its
impacts on biodiversity. One likely but largely overlooked impediment to effective restoration of habitat-forming organisms is failing to explicitly
consider non-habitat-forming animals in restoration planning, implementation, and monitoring. These animals can greatly enhance or degrade
ecosystem function, persistenice, and resilience. Bivalves, for instance, can reduce sulfide stress in seagrass habitats and increase drought tolerance
of saltmarsh vegetation, whereas megaherbivores can defrimentally overgraze seagrass or improve seagrass seed germination, depending on the
context. Therefore, understanding when, why, and how fo directly manipulate or support animals can enhance coastal restoration outcomes. In
support of this expanded restoration approach, we provide a conceptual framework, incorporating lessons from structured decision-making and

describe potential actions that could lead fo better restoration outcomes using case studies to illustrate practical approaches.
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estoration is a key challenge of the twenty-first
century, because ecosystems are being increasingly

lost and degraded (McDonald et al. 2016, Gann et al. 2019,
Halpern et al. 2019, He and Silliman 2019, Williams et al.
2021). Conservation efforts have traditionally been focused
on the protection of intact habitats or the mitigation of
stressors, but these approaches have failed at times to reverse
widespread trends in ecological degradation (Lotze et al.
2011, Diaz et al. 2019, Griffiths et al. 2020). The restoration
of coastal and marine ecosystems is particularly important,
because over 775 million people depend on coastal systems;
they have a relatively high role in climate mitigation and
adaptation, and; have undergone widespread loss (Duarte
et al. 2013a, Selig et al. 2019, Dunic et al. 2021, Murray et al.
2022). Restoration is therefore necessary to reverse coastal
habitat loss and degradation, enhance biodiversity, and
reestablish ecosystem services such as fisheries production,
coastline protection, and climate change mitigation (Wood
et al. 2019, Abelson et al. 2020, Waltham et al. 2020, Buelow
et al. 2022). Coastal restoration efforts are consequently
accelerating, supported by international calls to action,
including the UN Decade of Ecosystem Restoration and
Sustainable Development Goals (Perring et al. 2015, Young
and Schwartz 2019, Sheaves et al. 2021). However, despite

some notable exceptions (Saunders et al. 2020), coastal res-
toration projects tend to be small scale and expensive and
have low survival rates of the habitat-forming species (Dale
et al. 2014, Bayraktarov et al. 2016, van Katwijk et al. 2018,
Cooke et al. 2019).

We posit that an often overlooked but ecologically sig-
nificant gap in the implementation of restoration is that
non-habitat-forming animals are not explicitly and holisti-
cally included in restoration planning, implementation,
and monitoring (Halpern et al. 2007, Jones and Davidson
2016, Hale et al. 2019). Only 13% of the studies in a review
of priorities and motivations of marine coastal restoration
research, for instance, measured non-habitat-forming ani-
mal responses (Bayraktarov et al. 2020), and only a small
proportion of seagrass restoration efforts explicitly manipu-
late animals (Zhang et al. 2021). In the present article,
habitat-forming animals are those that form the structural
habitat being restored, such as reef building corals and
oysters, whereas non-habitat-forming animals are all other
animals. Although the detrimental impacts that animals
can have on restored habitats are being considered in some
specific restoration efforts (e.g., in those that remove species
that predate or graze on transplanted habitat formers), many
animals perform a suite of vital functions that are necessary
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for ecosystem persistence, enhance ecosystem resilience
through assisting disturbance recovery, and drive many
of the services that restoration actively seeks to enhance
(figure 1; Halpern et al. 2007). Consideration of mutualisms
with animals that enhance habitat-forming species growth
and survival is particularly important for coastal habitats
that are frequently disturbed by natural and anthropogenic
sources that make restoration inherently difficult (Lewis and
Anderson 2012, Renzi et al. 2019, Gagnon et al. 2020). One
of the most well-known mutualisms likely to have significant
benefits for coastal restoration initiatives exists between
bivalves and coastal vegetation. Bivalves, for example, can
reduce sulfide stress in seagrass and mangroves and can
facilitate saltmarsh vegetation by providing nutrients and
reducing erosion (figure 1; also see Gagnon et al. 2020 and
the references within).

Despite hundreds of ecological papers showing that biotic
interactions are important to marine foundation species
growth and success, we suggest that this knowledge could be
better incorporated into coastal restoration planning, imple-
mentation, and evaluations of success. We argue that this is
true whether animals are a direct goal of restoration, are an
impediment to successful restoration, or provide functions
that improve outcomes for habitat formers and the ecosystem.
Several works describe these interactions within coastal eco-
systems, such as mangrove forests (Gedan and Silliman 2009),
saltmarshes (Derksen-Hooijberg et al. 2018), seagrass mead-
ows (Valdez et al. 2020), coral reefs (Shaver and Silliman 2017,
Seraphim et al. 2020), kelp forests (Eger et al. 2020), and oyster
reefs (Reeves et al. 2020). Furthermore, although these general
concepts are raised in restoration guidelines (e.g., McDonald
et al. 2016, Morris et al. 2020, Eger et al. 2022, Shaver et al.
2022) and although we acknowledge that there are successful
restoration projects in which animals have not been explicitly
considered, a better understanding of when, why, and how to
directly manipulate or support animals in restored habitats
could significantly improve outcomes for many coastal resto-
ration initiatives (Derksen-Hooijberg et al. 2018, Renzi et al.
2019, Gagnon et al. 2020).

Restoration objectives and how animals can be
incorporated into restoration actions

Coastal restoration efforts can have a range of different
objectives that vary both in the importance of animals
to meeting them and in the ways in which animals could
be manipulated or supported to improve outcomes. For
example, animals can be a direct or implicit goal of resto-
ration (e.g., enhancing fisheries or improving habitat for a
threatened species; Taylor et al. 2017), can be part of a more
holistic goal to restore whole ecosystems (e.g., restoring
habitats to reference conditions; McDonald et al. 2016), can
provide functions that can benefit alternative goals of eco-
system restoration (Abelson et al. 2016, Gagnon et al. 2020,
Valdez et al. 2020), or can be an impediment to restoration
goals (e.g., overabundant grazers or invasive species; Morris
et al. 2020). There is considerable risk that well-funded

hitps:/{academic.oup.com/bioscience

e [orum

coastal restoration will be attempted globally with limited
consideration of animals (Lee et al. 2019), subsequently
limiting the success of many projects with a strong or sole
habitat-forming species focus.

To encourage and guide scientists and managers to better
incorporate animals into coastal restoration planning, imple-
mentation, and monitoring, we describe four key contexts in
which animals could be manipulated and supported in restored
habitats and the actions that can lead to positive outcomes
(figure 2). We focus on six coastal marine ecosystems—
mangrove forests, saltmarshes, seagrass meadows, coral reefs,
macroalgae reefs, and oyster reefs—that have high intrinsic
and extrinsic value to society, have unique ecological niches,
are under accelerating threats from both land- and sea-based
stressors, and are seeing a rapid rise in restoration initiatives
(Perillo et al. 2018, Halpern et al. 2019, Bayraktarov et al. 2020).
‘We outline a conceptual framework for an expanded approach
that incorporates the benefits of a wider consideration of ani-
mals. Notwithstanding differences among restoration objec-
tives, we argue that greater consideration of animals within
planning, implementation, and monitoring can have benefits
for most coastal restoration initiatives, and we use case studies
to illustrate practical approaches (see box 1). Although there
are important logistical, financial, legal, permitting, and soci-
etal considerations, because these are complex, involved, and
require their own treatment to do them justice, we do not cover
these in detail in the present article.

Actively add animals to restored habitats (action A). The first
action involves situations in which animals could be actively
added into restored habitats. The Field of Dreams hypoth-
esis, whereby restoring vegetation and physical structure are
assumed to lead to animal colonization (iLe., “if you build it,
they will come™) and that is sometimes applied to restora-
tion projects, may not come to fruition; animals might not
colonize restored habitats because of, for example, dispersal
limitation or a lack of suitable source populations (Palmer
et al. 1997, Lewis III 2010, Sundermann et al. 2011). In
this instance, translocating animals into restored habitats
may benefit coastal restoration outcomes, whether the
animals are a direct goal (e.g.. recovering populations of
threatened birds that are incapable of colonizing restored
habitats unassisted; figure 2, action 1A) or provide impor-
fant functions that lead to improved restoration outcomes
(e.g., algae herbivory or predation of herbivores that sub-
sequently enhances the survival of the habitat-forming
species; figure 2, action 3A; Seddon et al. 2014, Davis et al.
2019). Even when natural colonization is possible, assisting
it through translocation may lead to substantial improve-
ments in the recovery and development of habitat formers.
For instance, transplanting mussels increased drought toler-
ance and vegetation growth by upward of 50% in restored
saltmarsh (box 1; Angelini et al. 2016, Derksen-Hooijberg
et al. 2018), incorporating sponges into coral reef restora-
tion more than doubled successful coral colonization (Biggs
2013), and clam inclusion greatly enhanced seagrass biomass
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Figure 1. Conceptual diagram depicting positive (black arrows) and negative (red arrows), indirect (dashed lines) and
direct (solid lines) inferactions (with respect to effects on the habitat-forming species) between non-habitat-forming
antmals and coastal habitats. The sets of blue arrows indicate a context dependent pathway of effect. Interactions

are categorized as (a) trophic interactions, (b) fear responses, (c) reproduction, (d) environmental alterations, and

(&) ecosystem resilience. References: ' Eger ef al. 2020, *Rotjan and Lewis 2006, *Seraphim ef al. 2020, *Christianen et al.
2014, *Gangal et al. 2021, *Grabowski 2004, “Tol et al. 2021, *Qiu et al. 2021, *Ellison et al. 1996, ""van der Heide et al.
2012, "' Angelini et al. 2016, "’ Hughes et al. 2016, *Foster ef al. 2021, *Hensel et al. 2021.
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Figure 2. Four key contexts (1-4) in which antmals could be manipulated and supported within coastal restoration, the
actions (A-D) that can lead to positive outcomes, and examples to illustrate links between contexts and actions.

and meadow growth in seeding experiments (box 1; Zhang
et al. 2021). Furthermore, adding animals to nursery rearing
tanks with habitat formers being cultivated for outplanting
can also improve outcomes (e.g., adding algal grazers to
enhance reared coral survival; Neil et al. 2021).

Restocking of animals is a common tool in the manage-
ment of nonmarine aquatic ecosystems, aimed at restor-
ing water quality and wvegetation characteristics (e.g.,
Angeler et al. 2003, Cowx and Gerdeaux 2004). Although
less applied in the marine environment, some attempts at
restocking have been carried out in marine ecosystems,
mainly as a fishery management tool targeted at com-
mercial fish populations (e.g., Lorenzen et al. 2010, Leber
2013). There have also been attempts at restocking inver-
tebrate species such as the grazing gastropod Trochus sp.
into coral reefs (e.g., Villanueva et al. 2010). Modeling
sugpests that restocking of grazing fish on coral reefs can
facilitate reef recovery and can become profitable within
several years (Obolski et al. 2016), and such an approach
has been proposed to both significantly benefit the restora-
tion of reef habitats and enhance fisheries stocks (Abelson
et al. 2016). Ultimately, when appropriate and feasible, the
active addition of animals that are the focus of restoration
efforts or that help maintain vital ecological processes can
enhance the success of coastal restoration initiatives (Swan
et al. 2016).
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Actively remove or exclude animals from restored habitats
(actiom B). The second action involves situations in which
animals could be actively removed or excluded from
restored habitats. Under some circumstances animals can
be detrimental to habitat-forming animals and, therefore,
restoration outcomes, particularly early on as the habitat-
forming species are becoming established (Poore et al
2012). Targeted animal removal and exclusion can limit
detrimental effects, such as impacts from bioturbation
from worms (figure 2, action 1B, box 1; Suykerbuyk et al.
2012), overconsumption of planted seagrass by herbivores
(figure 2, action 4B; Wendlander et al. 2019), overgrazing
of macroalgae by urchins (Eger et al. 2022), and grazing
and trampling of saltmarsh by ungulates (Davidson et al.
2017). Small-scale, manipulative experiments show that
exclusion of herbivorous wrchins and fish (Sharma et al
2021), and corallivorous snails (Shaver et al. 2018) enhance
coastal restoration outcomes via positive effects on habitat-
forming species. The optimal intervention will likely depend
on whether negative effects are expected or occurring,
and the density dependence of those effects. For example,
exclusion of urchins may only be necessary at the initial
phases of planting macroalgae, until algal density reaches a
point where positive density-dependent feedback processes
within the population maintain its abundance (Eger et al
2020). Although in many cases, the complete removal of
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Box 1. Case studies of manipulation or support of animals that did or could improve coastal restoration outcomes.

Adding clams during seagrass restoration in the United States (action A)

Zhang and colleagues (2021) planted seagrass seeds within experimental plots (20 x 20 centimeter plots of Zosfera marina) and added
juvenile quahog dams (Mercenaria mercenaria; figure 3a). The addition of ten clams per plot led to significantly increased seagrass
shoot length, a 500% expansion in patch size (versus no change in patches without clams), and ten times greater belowground biomass.
Aboveground biomass and metrics related to seagrass reproduction—despite being several times higher in patches with dams—were
not significantly different to control patches. The most likely casual mechanism was clams enhancing nitrogen availability. Zhang
and colleagues (2021) also added harvest-size clams to 50 x 50 centimeter plots with transplanted adult seagrass (Zostera maring and
Halodule wrightii), but clam addition had no effect.

i

Credit: Tim Lamaont - ik Cm;ll:l:it:.!{urt E!uhlrr‘llann

Flgure 3. Images related to the six case studies: (a) clams added to restored seagrass patches, (b) mussels added into
fransplanted saltmarsh, (c) a crushed shell layer added underneath transplanted seagrass, (d) urchins requiring
removal for macroalgae restoration, (e) healthy coral reef sounds played af degraded reefs, and (f) nesting mounds for
terrapins added to saltmarsh. See the main text for case study descriptions and references.

Adding mussels during saltmarsh restoration in the United States (action A)

Derksen-Hooijberg and colleagues (2018) cotransplanted ribbed mussels (Geukensia demissa) into transplanted saltmarsh plots
(Spartina alterniflora; 25 x 15 centimeter, diameter x depth) to evaluate the strategy for enhancing restoration success (figure 3b).
Twenty mussels per plot increased saltmarsh vegetation growth and clonal expansion by 50%, as a result of mussels increasing nutri-
ent levels and reducing sulfide stress. Following experimental vegetation removal that mimicked a disturbance event, vegetation in the
plots containing mussels exhibited three times greater survival.
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EBox 1. Continued.

Excluding lugworms during seagrass restoration in the Netherlands (action B)

Creating physical barriers to separate animals that damage restored vegetation can improve establishment success. For example,
Suykerbuyk and colleagues (2012) applied a crushed shell layer to shallow excavations underneath transplanted seagrass (Zosfera
noltii) to reduce interactions between seagrass and bioturbating lugworms (Arenicola maring; figure 3c). The shell layer reduced adult
lugworm density by over 80%, and therefore reduced the lugworms’ negative engineering effects. This was predicted to be the primary
driver of the 50%-140% enhancement in seagrass growth.

Removing urchins during macroalgae restoration in Japan (action B)

Herbivorous urchins can dominate rocky reefs and impede the restoration of macrolagal reefs, necessitating their removal (figure 3d;
Miller and Shears 2022). Watanuki and colleagues (2010) employed citizen scientists to remove urchins (Strongylocenfrotus nudus)
in order to restore macroalgae beds (Saccharing japonica var. religiosa and Undaria pinnatifida). After 8 months, urchin densities
were L1, 3.5, and 4.2 individuals per square meter for repeat removal, single removal, or no removal (control), respectively. Removal
significantly enhanced kelp colonization and growth, with average standing macroalgae biomass within these treatments of 865, 150,
and 0 grams per square meter, respectively.

Supporting colonization of reef fishes using acoustic enrichment in Australia (action C)

Larval fish can use acoustic cues when selecting habitats in which to recruit (Parmentier et al. 2015). Gordon and colleagues (2019)
recorded noises from a healthy reef at night and evaluated the effects of playing these recordings on attracting fish to degraded reefs
(figure 3e). Fish community development on acoustically enriched coral-rubble patch reefs was significantly enhanced across all
major trophic guilds relative to acoustically unmanipulated controls, with doubled overall abundance and 50% greater species richness.
Gordon and colleagues (2019) suggested that coupled with active restoration of coral reefs, acoustic attraction methods may expediate
TECOVETY PIOCESSES.

Building nesting mounds with protective boxes for terrapins in the United States (action C)

Animals can be supported in restored habitats by the provision of artificial refuges. Quinn and colleagues (2015) built nesting mounds
with protective boxes and electrified wire to reduce nest predation by raccoons and reduce road mortalities for diamond-backed terra-
pin (Malaclemys terrapin; figure 3f). The electrified wire significantly reduced predation rates, and excavated nest boxes afforded high
rates of egg survivorship and hatching success, thereby supporting terrapin populations within saltmarsh and adjacent ecosystems.
Deploying these within restored saltmarsh could therefore support the survival and reproduction of animals that are functionally

important or of conservation concern.

the population (i.e., eradication) can be too costly and even
impossible, suppression of the population to a point of “eco-
logical eradication” may be sufficient under certain circum-
stances (sensu Green and Grosholz 2021).

Supporting animals In restored habitats (actlom €). The third
action involves situations in which supporting animals (as
opposed to actively adding animals; action A) can aid system
recovery, enhance ecosystem resilience, and otherwise help
meet restoration objectives. Designing restoration programs
that identify and support key animal species and their func-
tions can therefore benefit habitat formers and the restored
system. Because animals use specific cues when selecting
habitats (e.g., host plants, prey species, conspecifics, refuges)
and require a suite of resources to persist in that habitat (e.g.,
sufficient prey resources; Van Dyck 2012), providing species-
specific cues and resources can help assist the colonization
and persistence of animals that are important for ecosystem
function, persistence, and resilience. In addition to design-
ing and modifying structural components of habitats to best
support animals, animals can also be encouraged to colonize
restored habitats through alternative means, such as with the
playback of reef sounds to encourage fish colonization of coral
reefs (see box 1; Gordon et al. 2019) or playing conspecific
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vocalizations to encourage bird colonization (Jones and Kress
2012). This requires knowledge of animal behavior and habi-
fat requirements and of the species most important to improv-
ing restoration outcomes (Hale et al. 2020).

Supporting and attracting animals to benefit coastal res-
toration is not new; for decades, marine protected areas, for
example, have been established in part to increase herbivore
and predator abundance, which should, in turn, help with
passive restoration of coral reefs (Topor et al. 2019) and kelp
forests (Eger et al. 2020). Similarly, sea otter populations in
the eastern North Pacific recovered dramatically following
various conservation actions implemented decades ago,
including restricting harvesting (Bodkin 2015). This recov-
ery and the subsequent decrease in urchin populations has
been important for the recovery of kelp at scale and may
in fact be the preferred or most feasible action to passively
restore habitat formers. Given animals can modulate ecosys-
tem structure and function, similar acknowledgement needs
to become the norm within active restorations (where man-
agement approaches such as distributing seeds, planting,
and constructing habitats are implemented, as opposed to
passive approaches that mitigate stressors preventing natural
recovery; following Bayraktarov et al. 2016). In fact, where
it is feasible, we argue that the explicit support of animals
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in restoration initiatives should be the rule rather than the
exception. In addition, by taking a more targeted, animal-
centric point of view both in design and in monitoring
responses coastal restoration outcomes could be enhanced,
even when the objective is not explicitly related to animals
(e.g., blue carbon projects; figure 2, action 3C). One interest-
ing avenue for future work with respect to supporting (or
actively adding) animals should be to systematically assess
whether a diverse suite of interactions from multiple animal
species could best facilitate restoration, rather than focusing
only a random or favorite one or two species.

Add habitat-forming species or improve abiotic environment only
(actlon D). The fourth action involves situations in which
animals are expected to colonize and persist in restored sites
following the restoration of habitat-forming species. There are
examples of successful coastal restoration efforts (with respect
to creating functioning wildlife habitat) in which animals have
not directly been manipulated nor habitats explicitly modified
to support specific animal species per se (although success
may still depend on healthy animal populations being able
to colonize). For instance, deploying oyster reefs in Moreton
Bay, Australia, led to rapid enhancement of fisheries species
(figure 2, action 1D; Gilby et al. 2021); broadcasting seaprass
seeds in Chesapeake Bay, in the United States, recovered
diverse animal communities (Orth et al. 2020); and trans-
planting seagrass in California, in the United States, quickly
recovered fish populations (Beheshti et al. 2021). Given the
likelihood of animals being integral to the long-term health
and resilience of restored habitats, ongoing animal monitor-
ing where feasible is recommended and likely beneficial.

Considerations, risks, and challenges. There are a series of impor-
tant considerations, risks, and challenges when undertaking
active interventions to directly manipulate or support ani-
mals. For instance, species translocations require sourcing
individuals, which can be costly and ethically complex when
removing individuals from wild populations (Pettorelli et al.
2018). Notably, many of the examples in this article involve
supplementing already existing populations, such as the vari-
ous bivalve species added to enhance seagrass or saltmarsh
restoration (Derksen-Hooijberg et al. 2018, Zhang et al. 2021),
with fewer risks relative to introducing new species. There
is also a suite of challenges with releasing hatchery-reared
animals that may, for example, perform worse in natural
environments than wild conspecifics would, in part because
of behavioral and cognitive differences (Lorenzen et al. 2013,
Abelson et al. 2016, Niaslund 2021). In addition, a detailed
understanding of the system's ecology and robust predic-
tions of the range of plausible outcomes are needed to help
minimize the probability of or to manage unintended con-
sequences (Sarrazin and Barbault 1996, Seddon et al. 2007).
Adding or supporting animals can also lead to conflict with
humans, such as the recovery of sea otter populations dis-
cussed above, which was unpopular in some regions because
of otters competing with humans for harvested species such
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as clams, crabs, and urchins (Gregr et al 2020). There are
also important ethical considerations with excluding animals.
The issue of turtles overgrazing seagrass restoration sites,
for example, raises unaddressed questions about the ethics
of turtle exclusion, because doing so may affect access to an
important food resource for a threatened species and result
in animal harm through starvation. There may also be com-
munity perception issues around culling animals, particularly
if it involves native species, and culling (as per introduction)
is likely to trigger a different set of permitting processes from
the other restoration activities.

The various considerations, risks, and challenges are highly
context specific and, in practice, should be evaluated in detail
on a case-by-case basis. Previous works articulate questions
that scientists and managers should answer or have some
knowledge about prior to directly manipulating or support-
ing animals in restored habitats, such as those related to
selecting source populations, the plausible implications for
the wider ecosystem, and various ethical, permitting, and
legal considerations (e.g., Sarrazin and Barbault 1996, Seddon
et al. 2007, Armstrong and Seddon 2008, Houde et al. 2015,
Nogués-Bravo et al. 2016, Berger-Tal et al. 2020). Resources
also exist to guide practitioners with respect to translocations
and species introductions, including general guidelines (e.g.,
IUCN 2013) and perspective reports with case studies (e.g.,
Soorae 2021), and these are also informative when attempt-
ing to attract and support animals. Ultimately, however, in
many cases there are still gaps in our understanding of the
ecology, which will lead to uncertainties in how and whether
the manipulation or support of animals will influence the res-
toration trajectory. This requires ecological research as well as
research on the cost-effectiveness of various actions.

Applying structured decision-making to incorporate
animals in restoration

‘We have argued for the benefits of explicit consideration of
animals in restoration, and our argument is supported by a
strong evidence base. One challenge now will be if, when,
and how to scale up experimental restoration that has dem-
onstrated how manipulating and supporting animals can
aid restoration. A key impediment to explicitly including
animals in restoration at scale will be demonstrating that
the benefits exceed the costs (e.g., time, resources, ethical
and legal requirements) and the risks (e.g., unintended
impacts stemming from a lack of ecological knowledge on
key processes, and uncertainty in outcomes). One useful
approach for assessing the case for restoration is structured
decision-making (SDM), a systematic and transparent
approach to natural resource management. SDM is highly
amenable to involving stakeholders in decision-making
processes and is gaining traction in ecosystem restoration
{Guerrero et al. 2017). SDM is based on decision theory
and risk analysis and typically has seven key steps, as
was articulated for kelp restoration in Gleason and col-
leagues (2021). We show how the SDM framework can
apply to the question of whether to explicitly include
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varying objective-dependent animal roles.

Table 1. Applying a stmplified structured decision-making (SDM) process to three hypothetical case studies with

Key steps

Hypothetical case studies

1. Problem formulation 1. Restore degraded saltmarsh to

reference condition.

Reach similar floral and faunal
species richness to reference
sites within 7 years.

A: Transhocate supporting animals
(e.g., bivalvas)

B: Plant saltmarsh

C: Remove exotic or damaging
species (e.g., ungulates)
Generate predictions for
outcomes of actions A, B, and
C. For example, using inferences
from studies on mussal

2. Set clear objectives

3. ldentify actions, including
parameterization of costs and
likelinoods of achieving objectives

4, Estimate consequences.This
text articulates the prediction of
outcomes for one of the actions
identified in step 3. A similar

approach would be taken for all translocations (e.g., Derksen-
actions, and the estimates used Hooijberg et al. 2018) and meta-
to inform 5. analyses that compare animal

populations between restored
and reference ecosystams

{e.g., Sievers et al. 2018). For
action A, we predict the benefits
of translocating mussels at
varous densities on drought
tolerance and growth of saltmarsh
vegetation, and relate this to
biodiversity benefits. Hypothetical
prediction for A: Richness
surpasses 80% of referance
levels within a 7-year timeframe.

5. Evaluate trade-offs

6. Maka decisions

A: Given the ease at which
manipulations occur, conduct
replicated experiment to examine
the effect of mussel addition (and
density effects) on marsh growth
and survival. Where possible,
extend monitoring to other
species in the food web. Measure
bicdiversity across restored and
reference sites.

7. Act, monitor and leam

2. Enhance fisheries via coral reef
restoration.

Increasa fisheries productivity by
30% within 10 years.

A: Translocate corals

B: Breed and release juvenile
fisheries species

C: Translocate supporting animals
(e.g., algae grazing gastropods)

Generate predictions for
outcomes of actions A, B,

and C. E.g., using numerical
fisheries models that predict

fish production from coral reef
condition (Rogers et al. 2018).
For action C, we predict the
benefits of translocating algal
grazers to the survival and growth
of newly transplanted corals, and
the subsequent cutcomes for fish
production. Hypothetical prediction
for C: Grazers will enhance coral
sunival by 30%-50%, leading to a
2-3 tons per hectare increase in
fish biomass after 10 years.

C: Monitor grazers, algal

growth, and coral growth and
sunival. Contrast outcomes with
unmanipulated areas. Develop
maodels to identify optimal grazer
densities (both densities the
system can support, and those
that maintain coral survival and
growth). Continue to monitor
fisheries productivity.

3. Expand seagrass area for
carbon sequestration.

Double carbon stock within 15
years.

A: Plant seagrass
B: Translocate supporting animals
{e.g., bivalves, algae grazers)

C: Exclude hindering animals
(e.g., harbivores)

Generate pradictions for
outcomes of actions A, B, and C.
E.g., using models that ict
ctrg; caphmi'e from mstulgdgd
seaprass extent (e.g., Duarte

et al. 2013b). For action C, we
predict the axclusion of herbivores
promotes seagrass growth (e.g.,
Burkholder at al. 20:1.3) and,

we can link this to predicted
carbon sequestration and stocks.
Hypothetical prediction for C:
Exclusion fences will eliminata
grazing by turtles, tripling
seaprass biomass, and leading to
a doubling of carbon stock within
15 years.

Evaluate trade-offs across alternative actions from 3 and 4 to determine which one or more best meets
that objective {dependent on importance, cost, benefit, degree of cartainty, risk, constraints, etc.).

Mzke decision on the basis of the information gained in steps 3-5, by assessing which options are most
likely to achieve the desired goals and objectives set out in steps 1 and 2 within the constraints of the
project (budget, time, feasibility, atc.).

C: Monitor seagrass growth

and survival. Once seaprass is
established, remove cages to
allow potential positive species
interactions. Maintain monitoring;
if overgrazing continues, refencing
may be needed. Quantify carbon
stock across natural and restored
Seaprass meadows.

Note: The SDM approach was based on steps in Gleason and colleagues (2021).

or exclude dependent fauna into restoration of habitat-
forming marine and coastal species using three case stud-
ies in table 1. This table is intended to be indicative and
would require further development to guide restoration
science and practice. In reality, applying SDM to restora-
tion requires greater detail, a more holistic understanding
of the system, and input from various stakeholders, and
ultimately, the best approach may involve a combination of
actions (e.g., Gleason et al. 2021).

Conclusions

Ongoing destruction and degradation of coastal habitats and
the subsequent loss of service benefits to people have neces-
sitated accelerating restoration efforts. But restoration with-
out animals may not achieve the desired outcome. Although
there are many impediments to effective coastal restoration,
identifying when, why, and how to directly manipulate or

hitps:/{academic.oup.com/bioscience

support animals can lead to substantial improvements in
outcomes for habitat-forming species and ecosystem ser-
vices. By outlining how animals play important roles across
different restoration objectives, articulating key contexts
in which animals can be explicitly incorporated in coastal
restoration, and illustrating these ideas with practical case
studies, we hope to encourage scientists and managers to
better incorporate animals into coastal restoration planning,
implementation, and monitoring,
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