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M
ultiagent deci-
sion m a k i n g 
over networks 
has recently at-
tracted an expo-

nentially growing number of 
researchers from the systems 
and control community. The 
area has gained increasing 
momentum in engineering, 
social sciences, economics, 
urban science, and artificial 
intelligence as it serves as 
a prevalent framework for 
studying large and complex 
systems and has been widely 
applied to many problems, 
such as social networks anal-
ysis [1], [2], smart grid man-
agement [3], [4], wireless and 
communication networks [5]–
[7], cybersecurity [8]–[10], crit-
ical infrastructures [11]–[13], 
and cyberphysical systems 
[14]–[16].

Due to the proliferation of advanced technologies and 
services in modern network applications, solving decision- 

making problems in multiagent networks calls for novel 
models and approaches that capture the following charac-
teristics of emerging network systems and the design of 
autonomous controls:

»» the heterogeneous nature of the underlying network, 
where multiple entities (represented by the set of 
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nodes) aim to pursue their own goals with indepen-
dent decision-making capabilities

»» the need for distributed or decentralized operation of 
the system, when the underlying network is of a com-
plex topological structure and is too large to be man-
aged in a centralized approach

»» the need for creating network intelligence that is 
responsive to changes in the network and the envi-
ronment as the system often operates in a dynamic or 
an adversarial environment.

Game theory provides a natural set of tools and frame-
works for addressing these challenges and bridging net-
works to decision making. It entails the development of 
mathematical models that qualitatively and quantitively 
depict how the interactions of self-interested agents with 
different information and rationalities can attain a global 
objective or lead to emerging behaviors at a system level. 
Moreover, game-theoretic models capture the impact of 
the underlying network topology on the process of dis-
tributed decision making, where agents plan their moves 
independently according to their goals and local infor-
mation available to them, such as their observations of 
their neighbors.

In addition to game-theoretic models over networks, 
learning theory is indispensable when designing decentral-
ized management mechanisms for network systems to 
equip networks with distributed intelligence. Through the 
combination of game-theoretic models and associated 
learning schemes, such network intelligence allows hetero-
geneous agents to interact strategically with each other and 
learn to respond to uncertainties, anomalies, and disrup-
tions, leading to desired collective behavior patterns over 

the network or an optimal system-level performance. The 
key feature of such network intelligence is that even though 
each agent’s decision-making process is influenced by the 
others’ decisions, the agents reach an equilibrium state (that 
is, a Nash equilibrium as we elucidate later, in an online and 
decentralized manner). To equip networks with distributed 
intelligence, networked agents should adapt themselves to 
the dynamic environment with limited and local observa-
tions over a large network that may be unknown to them. 
Computationally, decentralized learning scales efficiently 
to large and complex networks and requires no global infor-
mation regarding the entire network (which is more practi-
cal compared with centralized control laws).

This article discusses the confluence of networks, 
games, and learning, which establishes a theoretical under-
pinning for understanding multiagent decision making 
over networks. We aim to provide a systematic treatment of 
game-theoretic learning methods and their applications in 
network problems, which meet the three requirements 
specified in “Summary.” As shown in Figure 1, emerging 
network applications call for novel approaches. Thanks to 
their decentralized nature, game-theoretic models and 
associated learning methods provide an elegant approach 
for tackling network problems arising from various fields. 
Specifically, the objectives are threefold:

1)	 to provide a high-level introduction to game-theo-
retic models that apply to multiagent decision-mak-
ing problems

2)	 to present the key analytical tool based on stochastic 
approximation and Lyapunov theory for studying 
learning processes in games and pinpoint exten-
sively studied learning dynamics

Summary

Modern network systems with heterogeneous entities call for 

distributed and intelligent operations that are responsive 

to uncertainties, anomalies, and disruptions within a dynamic 

or an adversarial environment. The combination of game-theoret-

ic models and learning-based approaches equips the system 

with decentralized intelligence, allowing heterogeneous agents 

to strategically interact with each other and learn to adjust their 

behaviors accordingly. This article presents an overview of 

the confluence of networks, games, and learning, providing 

a game-theoretic framework for multiagent decision making 

over networks. Its focus is on widely applied game-theoretic 

models and equilibrium concepts as well as associated learn-

ing schemes in games. According to their distinct natures in 

exploration, learning schemes are categorized into two main 

classes: exploitative reinforcement learning and exploratory 

reinforcement learning. A comparison of the resulting dynam-

ics of learning algorithms from the two classes is presented, 

highlighting the connections and differences in their explora-

tion processes as well as equilibrium-convergence properties. 

To demonstrate the broad applicability of this game-theoretic 

framework, this article discusses, in detail, some representa-

tive research on next-generation wireless networks, smart 

grids, and distributed machine learning (ML), while pointing the 

reader to other emerging networks applications. In addition to 

existing research on game-theoretic learning over networks, 

this article also highlights several new angles and research on 

learning in games that are, in part, driven by and closely related 

to recent advances in ML and artificial intelligence, including 

the study of equilibrium convergence in generic multiplayer 

games, acceleration techniques for speeding up learning pro-

cesses, and extending learning algorithms to more compli-

cated dynamic games. The overall objective is to provide the 

reader with a clear picture of the strengths and challenges of 

adopting game-theoretic learning methods within the context 

of network systems, and further identify fruitful future research 

directions in both theoretical and applied studies.
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3)	 to introduce various multiagent systems and net-
work applications that can be addressed through 
game-theoretic learning.

This work provides a clear picture of the strengths and 
challenges of adopting novel game-theoretic learning 
methods within the context of network systems. In this 
article, complete-information games are the basis of the 
subject, for which a brief introduction to both static and 
dynamics games is provided. More comprehensive treat-
ments on this topic as well as other game models such as 
incomplete information games can be found in [17] and 
[19]. As most of the network topologies can be character-
ized by the structure of the utility function of the game [1], 
[20], we do not articulate the influence of network topolo-
gies on the game itself. Instead, we focus on its influence on 
the learning process in games (where players’ information 
feedback depends on the network structures) and present 
representative network applications to showcase this influ-
ence. Refer to [1] and [20] for further information on games 
over various networks.

The discussions are structured as follows. The “Non-
cooperative Game Theory” section introduces noncoop-
erative games and associated solution concepts, including 
the Nash equilibrium and its variants, which capture the 
strategic interactions of self-interested players. The 
“Learning in Games” section moves to the main focus of 
this article: learning dynamics in games that converge 
to the Nash equilibrium. Within the stochastic approxi-
mation framework, a unified description of various 
dynamics is provided, and the analytical properties can 
be studied using ordinary differential equation (ODE) 
methods. The “Game-Theoretic Learning Over Net-
works” section discusses applications of these learning 
algorithms in networks, leading to distributed and 
learning-based controls for network systems. Finally, the 
“Conclusion” section closes the article. For the reader’s 
convenience, notations that are frequently used are sum-
marized in Table 1.

NONCOOPERATIVE GAME THEORY
Game theory constitutes a mathematical framework with 
two main branches: noncooperative and cooperative game 
theory. Noncooperative game theory focuses on the strate-
gic decision-making process of independent entities or 
players that aim to optimize their distinct objective func-
tions without any external enforcement of cooperative 
behaviors. The term noncooperative does not necessarily 
mean that players are not engaged in cooperative behav-
iors. Induced cooperative or coordinated behaviors do arise 
in noncooperative circumstances within the context of the 
Nash equilibrium, a solution concept of noncooperative 
games. However, such coordination is self-enforcing and 
arises from decentralized decision-making processes of 
self-interested players. This will be further discussed in the 
“Game-Theoretic Learning Over Networks” section where 

Symbol Meaning 

N  The set of players 

,i j N!  Subscript index denoting players 

( )iN  The set of neighbors of player i 

A i  The set of actions available to player i 

( )A iT  The set of Borel probability measures 

(The probability simplex in RAi  for finite 
action set )A i

s S!  State variable 

:u A Ri j N j "P !  Player i’s utility function 

Aai i!  Action of player i 

a A,i j N j i j! P !!-  Joint actions of players other than i 

Aa i iN! P !  Joint actions of all players 

( )Ai iT!r  Strategy of player i 

( )A,i j N j i jT!r P !!-  Joint strategy of players other then i 

( )u i ir-  or u R A
i

i! ; ; Player i’s utility vector in finite games 

( )D ai  The individual payoff gradient of player i 

( )D a  The concatenation of { ( )}D ai i N!  

Ii
k  The feedback of player i at time k 

U Ri
k !  The payoff feedback received by player 

i at time k 

u R A
i
k i! ; ;t  Estimated utility vector at time k 

U R A
i
k i! ; ;t  Estimator of ( )u i i

kr-  at time k 

BRi  Best response mapping for player i 

QRe  Regularized best response or quantal 
response 

TABLE 1  The table of notations.

Learning Network

Game Theory

FIGURE 1 The confluence of networks, games, and learning. The 
combination of game-theoretic modeling and learning theories leads 
to resilient and agile network controls for various networked systems. 
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game-theoretic methods for distributed machine learning 
(ML) are introduced.

As briefly discussed, noncooperative game theory natu-
rally characterizes the decision-making process of heteroge-
neous entities acting independently over networks, which is 
the main focus of this article. The following introduces vari-
ous game models and related solution concepts, including the 
Nash equilibrium and its variants. Generally speaking, a 
game involves the following elements: decision makers’ (play-
ers’) choices available to each player (actions), knowledge that 
a player acquires for making decisions (information), and 
each player’s preference ordering among its actions (utilities 
or cost). The following is a short list of these concepts, which 
will be further discussed and explained in this section:

»» Players are participants in a game, where they com-
pete for their own good. A player can be an individ-
ual or encapsulation of a set of individuals.

»» Actions of a player, in the terminology of control theory, 
are the implementations of the player’s control.

»» Information in games refers to the structure regarding 
the knowledge players acquire about the game and 
its history when they decide their moves. The infor-
mation structure can vary considerably. For some 
games, the information is static and does not change 
during the play. For other games, new information 
will be revealed after players’ moves as the “state” of 
the game (a concept to be elucidated later) is deter-
mined by players’ actions during the play. In the 
latter case, the information is dynamic. Both types of 
games are addressed in this article.

»» A strategy is a mapping that associates a player’s move 
with the information available to him or her at the time 
when he or she decides which move to choose.

»» A utility or payoff is often a real-valued function cap-
turing a player’s ordering preference among possible 
outcomes of the game. Using the terminology in con-
trol theory, this can also be viewed as a cost function 
for the player’s controls.

This list refers to elements of games in relatively impre-
cise common language terms, and more formal definitions 
are presented in the next section. To facilitate this discus-
sion, noncooperative games are categorized into two main 
classes: static and dynamic games, based on the nature of 
the information structure.

Static Games
Static games are one shot, where players make decisions 
simultaneously based on prior information on the games, 

such as sets of players’ actions and their payoffs. In such 
games, each player’s knowledge about the game is static 
and does not evolve during the play. A static noncoopera-
tive game is mathematically defined as follows.

Definition 1 (Static Games)
A static game is defined by a triple : A ,, ( ) , ( )G uN i i i iN N= ! !  
where

»» 	� { , , , }N1 2N f=  is a finite set of players.
»» 	�Ai  with some specified topology denotes the set of 

actions available to the player .i N!

»» 	� A:u Ri j jN "P !  defines player i’s utility, and ( , )u a ai i i-  
gives the payoff of player i when taking action ai, given 
other players’ actions : ( ) .a a ,i j j N j i= !!-

In static games, each player develops its strategy (a prob-
ability distribution over his or her action set) with the objec-
tive of maximizing the expected value of its own utility. If 
players have finite action sets, then such a static game is 
called a finite one. In this case, a strategy is a finite-dimensional 
vector in the probability simplex over the action set, that is, 

A A( ) : { | ( ) , , ( ) } .a a a0 1R A| |
i i i

i
i6! ! $ !r r r rD R= =Aa!  

If πi is a unit vector A,e aa i!  with the ath entry being one 
and zero for others, then it is a pure strategy (selecting 
action a with probability one); otherwise, it is a mixed strat-
egy (choosing actions randomly under the selected proba-
bility distribution). Similarly, for infinite action sets, the 
strategy is defined as a Borel probability measure over the 
action set, with a Dirac measurement being the pure strat-
egy. By a possible abuse of notation, denote the set of Borel 
probability measurements over Ai  by A( ) .iD  Unless speci-
fied otherwise, the static games considered in this article 
are all assumed to be finite, where the player set and the 
action sets are all finite.

As a special case of games with infinite actions, the mixed 
extension of finite games is introduced in the sequel. Con-
sider a two-player finite game : A ,, ( ) , ( )G uN i i i iN N= ! !  where  

{ , },1 2N =  and the action sets are finite A , .i Ni 31 !  
Given the mixed strategies of players, A( ),i i!r D  t he 
expected utility of player i is [ ( , )] .u a aE ~ , ~a a i 1 21 1 2 2r r  With a 
slight abuse of notation, denote this expected utility by  

:( , ) [ ( , )] .u u a aE ~ , ~i a a i1 2 1 21 1 2 2r r = r r  Then, studying the play-
ers’ strategic interactions is equivalent to considering the fol-
lowing infinite game G =3  A ,, ( ( )) , ( )uN i i i iN NT ! !  where 
ui denotes the expected utility. In ,G3  an action is a vector 
from the corresponding probability simplex, a convex and 
compact set with a continuum of elements. Similar to the 
notations used in the definition, for the mixed extension 

,G3  the joint action of players other than i is denoted by 

Information in games refers to the structure regarding the knowledge players 

acquire about the game and its history when they decide their moves.
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: ( ) .,i j j j iNr r= !!-  Furthermore, let ( )u R A| |
i i

i!r-  be the util-
ity vector of player i, given other players’ strategy profiles 

,ir-  whose ath entry is defined as :( ) ( ) ( , ) .a u eui i i a ir r=- -  
Due to the definition of expectation, ( , )ui i ir r-  can be 
expressed as an inner product , ( ) ,ui i iG Hr r-  which will be 
used frequently later when discussing learning algorithms 
in finite games. This mixed extension provides a geometric 
characterization to the Nash equilibria of finite games, based 
on variational inequalities, as discussed in the “Solution 
Concepts” section. Meanwhile, this inner product expres-
sion connects learning theory in finite games with online 
linear optimization [21], where the generic player’s decision 
variable is πi and the loss function specified by , ( )ui i$G Hr-  is 
linear in .ir

Even though widely applied in modeling behaviors of 
self-interested players, the static game model is far from 
sufficient to cover multiagent decision-making problems 
arising in different fields. For instance, when playing poker 
games, new information will be revealed during game play 
(such as cards played at each round) based on which play-
ers can adjust their moves. There are many games where 
players’ information about the game changes over time, 
which cannot be suitably described by static games. There-
fore, dynamic game models are needed to capture informa-
tion changes.

Dynamic Games
To explicitly represent the dynamic nature of the decision-
making process, system theory terminology and the state 
of the game should describe its evolution over a period of 
time (which could be finite or infinite). Roughly speaking, 
the current state specifies the current situation of the 
dynamic game, including the set of players who are about 
to take actions, actions available to them, and their utilities 
at this time. The fundamental difference between static 
and dynamic games is that, for the latter, the game changes 
over time as players implement their sequences of actions 
during the play. Hence, players’ knowledge regarding the 
game also evolves as players can fully or partially observe 
the current state.

In the following, a subclass of Markov games is intro-
duced as an example of dynamic games, which is a very 
popular game model for studies on multiagent sequential 
decision making under uncertainties (such as multiagent 
reinforcement learning [22]).

Definition 2 (Markov Games)
An N-person discrete-time infinite horizon discounted 
Markov game consists of

»» a player set , , , N1 2N f= " ,
»» a discrete time set : , , ,1 2N f=+ " ,  with actions by 
players taken at each k N! +

»» a set Ai  with some specified topology (defined for 
each ),i N!  corresponding to the set of actions or 
controls available to player i

»» a set S  with some specified topology, denoting the 
state space of the game, where ,s Sk !  k N! +  repre-
sent the state of the game at time k;

»» a transition kernel A: ,T S Si iN "# TP ! ^ h  according 
to which the next state is sampled; ( , ),s T s ak k k1 ++  
where ( , , )a aak k

N
k

1 f=  is the N-tuple of actions at 
time ,k N! +  and s S1 !  is sampled from an initial 
distribution

»» an instantaneous payoff: A: ,u RSi i i "#P  defined 
for each i N!  and ,k N! +  determining the payoff 
( , )u s ai

k k  received by player i at time k;
»» a discounting factor .c  Given , , , ; , , , ,s s a ak k1 1f f f f" ,  
the discounted cumulative payoff for player i is 

( , ) .u s ai
k k

k
k

1cR3
=

This definition characterizes only one special case of 
dynamic games. Based on this definition, many other game 
models can be derived. For example, state transitions can 
be independent of players’ actions as well as the current 
state, yielding a special case of stochastic games (which 
will be further discussed in another article in this special 
issue of IEEE Control Systems [23]). We can also consider 
continuous-time dynamic games where the transition is 
described by a differential equation, leading to a differen-
tial game model. For extensive coverage of dynamic game 
models, refer to [17].

With full observation of states, consider the stationary 
strategy A: ( ),Si i"r D  by which players plan their moves 
based only on the current state .s S!  In this case, the state 
variable s characterizes players’ knowledge of the game as 
the actions, utilities, and next possible states are all deter-
mined by the current state. For dynamic games under par-
tial observation and/or non-Markovian transition, refer to 
[17] as these topics are beyond the scope of this article.

Solution Concepts
The solution or outcome of any given game is more or less 
a matter of understanding game rules and relationships 
between players. However, besides these concrete matters, 
there exist general principles that dictate players’ behav-
iors and apply to all games. These principles revolve 
around the notion of rationality, based on which we intro-
duce the solution concept of Nash equilibrium and some of 
its variants. Mathematically, a solution to an N-person 
game is a collection of all players’ strategies, which has 
attractive properties expressed in terms of payoffs received 
by the players. In addition, players can admit different 
strategies depending on how the game is defined and, in 
particular, the information that players acquire. The fol-
lowing discussion on solution concepts begins with static 
games, where the information structure is relatively simple.

Compared with single-agent optimization problems, the 
analysis of games is more involved as each player’s utility is 
determined not only by its own decision but also by others’ 
moves. Hence, when a player takes an action, it must con-
sider possible moves of the other players (which leads to the 
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notion of best response). To introduce “best response,” for 
clarity, but without any loss of conceptual generality, we 
focus on games with two players. For player  1, given the 
other player’s strategy ,2r  the optimal choice is

:( ) , ( ) ,argmaxBR u1 1 2 1 2
( )A1

! G Hr r r r=
T!r

" ,  (1)

which is referred to as a best response of player 1 to player 
2’s strategy .2r ( )BR1 $  is the best response set of player 1. 
Similarly, given player 1’s strategy ,1r  a best response of 
player 2 is :( ) , ( ) .argmaxBR uA( )2 2 1 2 12! G Hr r r r= T!r " ,  Hence, 
a point-to-set mapping A A:BR 2 A A( ) ( )

1 2
1 2"#T T #T T^ ^h h  can 

be defined as the concatenation of BR1 and BR2. Given a 
joint strategy profile ( , ),1 2r r r=

:( ) ( , )| ( ), ( ) .BR BR BR1 2 1 1 2 2 2 1! !r r r r r r r= l l l l" ,  (2)

If a fixed point of this best-response mapping ( , )1 2r r r=) ) )

can be found [that is, ( )],BR!r r) )  then when both players 
adopt the corresponding strategy in this profile, they could 
do no better by unilaterally deviating from the current 
strategy. In other words, this fixed point corresponds to an 
equilibrium outcome of the game, which further leads to 
the definition of Nash equilibrium.

Definition 3 (Nash Equilibrium)
For a static game A ,, ( ) , ( )uN i i i iN N! !  the Nash equilib-
rium is a strategy profile ( , )i ir r r=) ) )

-  with the property 
that for all ,i N!

( , ) ( , ),u ui i i i i i$r r r r) ) )
- -  (3)

where ir is an arbitrary strategy of player i, and ir =)
-

( ) ,j j j iNr)
!!  denotes the joint strategy profile of the other 

players. If the inequality holds strictly for all ,i i!r r)  then it 
is referred to as a strict Nash equilibrium.

Note that the preceding definition naturally carries over 
to games with infinite action sets; refer to [17, Ch. 4] for 
more details. Furthermore, for infinite games, if some topo-
logical structures are imposed on the action sets and regu-
larity conditions on the utility functions, then a geometric 
interpretation of the Nash equilibrium is derived from the 
inequality in (3). Toward that end, consider a (static) game 
with compact and convex action sets A( )i i N!  and smooth, 
concave utilities:

A( , )  , .u a a a a iis concave in  for all N
,

i i i i i j
j j iN

! !
!!

- - %

In such a game, the number of actions available to each 
player is a continuum, and the utility function is continu-
ous; these games are referred to as continuous-kernel or con-
tinuous games. In this case, a pure-strategy Nash equilibrium 

A( , )a aa i ii i N!P=) ) )
!-  is defined by the inequality

A( , ) ( , ),u a a u a a a ifor all and all .Ni i i i i i i i$ ! !) ) )
- -  (4)

Further assuming that ( , )u a ai i i-  is continuously differen-
tiable in Aai i!  for all ,a i-  by the first-order condition, the 
Nash equilibrium in (4) can be characterized by

A( ), ,  , ,D a a a i0 for all a Ni i i i i# ! !G H-) )

where :( ) ( , )D u a aai a i i iid= -  denotes the individual payoff 
gradient of player i, and ( , )u a aa i i iid -  represents differentia-
tion with respect to the variable .ai  Rewriting the aforemen-
tioned inequality in a more compact form yields the following 
variational characterization of the Nash equilibrium

A( ), , ,D 0 for alla a a a i
i N

# !G H-) )

!

%  (5)

where ( )D a  is the concatenation of ( ) ,D ai i N!" ,  that is, ( )D a =

( ( ), , ( )) .D Da aN1 f  Geometrically, (5) states that for concave 
games, a)  is a Nash equilibrium if and only if ( )D a)  lies within 
the polar cone of the set :A A| ,a a a ai i i iN N!P P- = -) )

! !" ,
as shown in Figure 2.

In addition to concave games, such a variational inequal-
ity characterization has been studied in much broader con-
texts, such as in monotone games [24], which bridges the 
gap between the theory of monotone operators and Nash 
equilibrium seeking. For a detailed discussion, the reader 
is referred to another article in this special issue of IEEE 
Control Systems [25]. The variational inequality (5) is denoted 
as the Stampacchia-type variational inequality (SVI) [26], and 
a similar variational inequality of this kind can also be 
derived in the context of the mixed extension. As a special 
case of continuous games, the mixed extension of finite 
games also satisfies regularity conditions: The action 

a a∗

D (a∗)

PC(a∗)

TC(a∗)

Ai∏
i∈N

FIGURE 2 The variational characterization of a Nash equilibrium a)

in concave games. ( )TC a)  and ( )PC a)  denote the tangent and the 
polar cone, respectively, of .A ai iNP - )

!  According to the varia-
tional inequality (5), a)  is a Nash equilibrium if and only if the 
payoff gradient ( )D a)  lies in the polar cone.
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spaces are probability-simplex regions (which are compact 
and convex), and the utility function is naturally smooth 
and concave (due to its linearity with respect to any player’s 
mixed strategy). Therefore, the mixed-strategy Nash equi-
librium can be characterized by a variational inequality as 
well. Thanks to the inner product expression of the utility 
in the mixed extension, the individual payoff gradient is 
simply ( ),ui ir-  and denote the concatenation of ui i N!" ,  by 

:( ) ( ( )), ( ( )), , ( ( )) ,t t tu u u uN N1 1 2 2 fr r r r= - - -6 @  which is also 
referred to as the joint utility vector under the strategy pro-
file .r  Similar to (5), a strategy profile r)  is the Nash equi-
librium of the underlying finite game if and only if the 
following SVI holds

	 A( ), , ( ) .0 for all u
i

i
N

T# !G Hr r r r-) )

!

% � (SVI)

As shown in the “Nash Equilibrium and Lyapunov Stabil-
ity” section, this variational characterization of Nash equi-
librium bridges the equilibrium concept of games and the 
equilibrium concept of dynamical systems induced by 
learning algorithms.

In the same spirit of (3), Nash equilibrium in dynamic 
games can also be defined accordingly. For Markov 
games, given players’ stationary strategy profile ,r  the 
cumulative expected utility of player i (starting from the 
initial state )s s1 =  is

	 :( ) ( , )| ,V s u s s saE ,i s T
k

k
i

k k

1

1
ak k1 c= =

3

+ +
r

r

=

+ ; E/ � (6)

which is referred to as the state-value function in a Markov 
decision process [27]. Vi

r  is the utility under the strategy 
profile ,r  and following (3), the Nash equilibrium is defined 
for the Markov game, where the inequality holds for every 
state. In other words, regardless of the previous play, as 
long as players follow r)  from the current state s, they 
achieve the best outcome for the rest of the game, and no 
player has any incentive to deviate from the strategy dic-
tated by .r)  Hence, this kind of Nash equilibrium is referred 
to as a subgame perfect Nash equilibrium, which is widely 
used in the study of dynamic games [28], [29].

The Nash equilibrium serves as a building block for 
noncooperative games. One of its major advantages is that 
it characterizes the stable state of a noncooperative game, 
in which no rational player has an incentive to move uni-
laterally. This stability idea will be further discussed in 
the “Nash Equilibrium and Lyapunov Stability” section, 
which relates the stability theory of differential equations 
to the convergence of learning algorithms in Nash equi-
librium seeking.

LEARNING IN GAMES
Learning in games refers to a long-run nonequilibrium pro-
cess of learning, adaptation, and/or imitation that leads to 
some equilibrium [30]. Unlike pure equilibrium analysis 
based on the definition, learning in games accounts for 

how players behave adaptively during repeated game play 
under uncertainties and partial observations. Computa-
tionally, computing the Nash equilibrium based on equilib-
rium analysis is challenging due to the computational 
complexity [31], which hardly accounts for the decision-
making process in practice (where players have limited 
computation power and information). Hence, learning 
models are needed to describe how less than fully rational 
players behave to reach equilibrium. Equilibrium seeking 
or computation motivates learning in games [29].

If the learning process is viewed as a dynamical system, 
then the learning model can predict how each player 
adjusts its behavior in response to other players over time 
to search for strategies that will lead to higher payoffs. 
From this perspective, a Nash equilibrium can also be 
interpreted as the steady state of the learning process, 
which serves as a prediction of the limiting behavior of the 
dynamical system induced by the learning model. This 
viewpoint has been widely adopted in the study of popula-
tion biology and evolutionary game theory, as shown more 
clearly when discussing reinforcement learning and repli-
cator dynamics [32].

In this section, various learning dynamics are presented 
in the context of infinitely repeated games for Nash equi-
librium seeking. Consider a number of players repeatedly 
playing the game A, ( ) , ( )uN i i i i NN! !  infinitely many 
times. At time k, players determine their moves based on 
their observations up to time k – 1. They then receive feed-
back from the environment, which provides information 
on past actions. In finite games, based on the information 
available to it, player i constructs a mixed strategy 

A( ),i
k

iT!r  from which it samples an action aik  and imple-
ments it. It will then receive a payoff feedback related to 
( , ),u a ai i

k
i

k
-  which evaluates the performance of aik  and helps 

the player shape its strategy for future plays. In such a 
repeated game, the amount of information that players 
acquire in repeated plays directly determines how players 
plan their moves at each round and further influences the 
resulting learning dynamics. Besides theoretical impor-
tance, information feedback in the learning process (such 
as players’ observations of their opponents’ moves) is also 
of vital importance in designing learning-based methods 
for solving network problems. As shown more clearly in 
“Game-Theoretic Learning Over Networks,” networked 
agents observe only their surroundings in many network 
applications, without any access to global information 
regarding the whole network. Therefore, due to its signifi-
cance in learning processes, existing feedback structures 
are first discussed in the following section.

Feedback Structures in Learning
The feedback structure for a player in a repeated game 
includes its observations regarding the game and repeated 
plays, which is a subset of every player’s histories of plays 
and payoffs. To make the discussion more concrete, the 
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following notation is introduced. Let Iik  be the feedback of 
player i up to time k. Denote the payoff received by player i 
at the kth round by : ( , )u u a ai

k
i i

k
i

k= -  and the sequence of pay-
offs received up to time k by : , , .u u u:

i
k

i i
k1 1 f= " ,

The simplest feedback structure is called the perfect 
global feedback, where

, ,I u a: :
i
k

j
k

j j
k

j
1 1

N N=
! !$" ", , .

indicating completeness of feedback from both the tempo-
ral and spatial senses. Furthermore, consider the noisy 
feedback of payoffs, ,Ui

k  defined as

( , ) ,U u a ai
k

i i
k

i
k

i
kp= +-

where i
kp  is a zero-mean martingale noise process with a 

finite second moment, that is, | , ( ) |0E EF Fi
k k

i
k k1 2 1p p=- -6 6@ @ 

is less than a constant, and the expectation is taken with 
respect to the -v field F k 1-  generated by the history of 
play up to time k – 1. Simply put, the noisy feedback Ui

k  is 
a conditionally unbiased estimator of ui

k  with respect to 
the history, which is a standing assumption when address-
ing the convergence of learning dynamics in games. For 
noisy feedback in general, or equivalently, i

kp  being a 
generic random variable, the discussion will be imple-
mented in a different context. In that case, a system state 
should be introduced, which accounts for the uncertainty 
in the environment, and the learning problem becomes 
Nash equilibrium seeking in stochastic games (see Defini-
tion 2). For more detailed discussions, the reader is 
referred to another article in this special issue of IEEE 
Control Systems [23].

Perfect global feedback is of limited use in practice when 
designing learning algorithms as global information is dif-
ficult or even impossible to acquire for individuals in large-
scale network systems. For example, in distributed or 
decentralized learning over heterogeneous networks, play-
ers may have no access to others’ utilities due to physical 
limitations. Therefore, we are interested in the scenario 
where players only have direct or indirect access to their 
own utilities as well as their neighbors’, and hence players’ 
feedback can be dependent on the topological structure of 
the underlying network that connects them.

Consider a repeated game over a graph : ( , ),G N E=  
where , , , N1 2N f= " , is the set of nodes representing the 
players in the game who are connected via the edges in 

( , )| , .i j i j are connectedE = " ,  To simplify the exposition, 
assume that the graph is undirected. Note that the direc-
tion of the edges does not affect the discussion as long as 
the neighborhood is properly defined. For example, in a 
directed graph, when in neighbors or out neighbors specify 
to whom the player in question can pass information, 
the following characterizations of feedback structures still 
apply. For a more comprehensive treatment of games over 
networks, refer to [20].

Each player is allowed to exchange payoff feedback with 
its neighbors through the edges and observe their actions 
during the repeated play, whereas the information regard-
ing the rest is hidden from him or her. In this case, the feed-
back structure for player i is

:, , ( ) |( , ) .I u a i j i jN E: :
( )( )i

k
j
k

j i i j
k

j i i
1 1

N N != =
, ,! !$" " "" ", , . ,, ,

Note that the player’s feedback regarding payoffs and 
actions may not be consistent. For example, in a multiagent 
robotic system where only the sensors network is effective, 
each agent can observe only its neighbors’ movements 
through sensors. In this case, without any information of 
others’ utilities, the information feedback of agent i reduces 
to , .I u a: :

( )i
k

i
k

j
k

j i i
1 1

N=
,!$" " ", , .,  In summary, if the players can 

receive feedback only from their neighbors, then players’ 
feedback structures are related to the underlying topology, 
which is referred to as local feedback. In accordance with this, 
an extreme case of local feedback is one where the player is 
isolated in the network, and no information other than its 
own payoff feedback and actions are available to it. This 
extreme case is referred to as individual feedback, which is a 
typical information feedback considered in fully decentral-
ized learning and will be further elaborated on when dis-
cussing specific learning dynamics later in this section.

In addition to refinements from the spatial side, con-
sider feedback with various temporal structures. If the 
player has perfect recall of previous plays, the resulting 
feedback is said to be perfect, and the feedback structures 
introduced previously all fall within this class. Otherwise, 
players have access to imperfect feedback, and two common 
cases of imperfect information feedback are discussed in 
the following: windowed and delayed feedback.

For simplicity, perfect feedback ,I u a: :
i
k

i
k

i
i k1= " , is used as 

a baseline to illustrate that different missing parts of Iik  lead 
to different kinds of imperfect feedback. If the head of u :

i
k1  

and/or a :
i
k1  is not available to the player (that is, there exists 

a window m k01 1  such that the player recalls only 
, ),u a( ): ( ):

i
k m k

i
k m k- -  then the corresponding feedback I( ):

i
k m k

=
-  

,u a( ): ( ):
i
k m k

i
k m k- -" , is called windowed feedback, with a window 

size of m. Similarly, if the tail of u :
i
k1  and/or a :

i
k1  is not avail-

able (that is, the player recalls only ,u :( )
i

k m1 -  ),a :( )
i

k m1 -  then the 
imperfect information feedback is , ,I u a:( ) :( ) :( )

i
k m

i
k m

i
k m1 1 1

=
- - -" ,  

which is called m-step delayed feedback.
For learning in games, each player learns to select 

actions by updating the strategy based on the available 
feedback at each round. To describe this in mathematical 
terms, let Fi

k  be the strategy learning policy of player i. The 
learning policy produces a new strategy i

k 1r +  for the next 
play according to

	 ( ) ( ),F I1i
k

i
k

i
k

i
k

i
k

i
k1r m r m= - ++ � (7)

where i
km  is the learning rate, indicating the player’s capabili-

ties of information retrieval. Different feedback structures 
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lead to different learning dynamics in repeated games. 
Under the global or local feedback structure, each player’s 
feedback is influenced by its opponents’ actions and/or pay-
offs, which makes the players’ learning processes coupled 
(as shown in Figure 3).

In the case of fully decentralized learning under indi-
vidual information feedback, players learn to play the game 
independently, and such a learning process is said to be 
uncoupled. Uncoupled learning processes are of great sig-
nificance in both theoretical studies [33] and practical 
applications. Theoretically, learning with such limited 
information feedback is much more transferable in the 
sense that learning algorithms under this feedback also 
apply to online optimization problems, where the online 
decision-making process is viewed as a repeated game 
played between a player and the environment [21].

Considering its theoretical importance, we focus on 
learning with individual feedback in the sequel, and the 
reader is referred to [34] for a survey on learning methods 
under other kinds of feedback. We first present reinforce-
ment learning for finite games, where the learning algo-
rithms are characterized into two main classes due to 
their distinct nature in exploration. We then proceed to 
gradient play for infinite games and elaborate on its con-
nection to reinforcement learning. The convergence 
results of presented algorithms are discussed in the 
“Convergence of Learning in Games” section based on 
stochastic approximation [35], [36] and Lyapunov stabil-
ity theory.

Reinforcement Learning
Reinforcement learning has been studied in many disci-
plines and become a catch-all term for learning in sequen-
tial decision-making processes where the players’ future 
choices of actions are shaped by feedback. In general, rein-
forcement learning consists of two functions: the score 
function (evaluating the performance of actions) and the 
choice mapping (determining the next move). Note that in 
ML literature [37], the score function and the choice map-
ping are also called the critic and the actor, respectively. 
Different score functions and choice mappings lead to dif-
ferent reinforcement learning algorithms. We first provide 
a generic description of the score function and choice map-
ping in reinforcement learning from a dynamic system 
viewpoint, then give a characterization of various rein-
forcement learning algorithms based on different natures 
in choice mappings. Finally, relations among introduced 
reinforcement learning algorithms are discussed.

We first show how the score function can be constructed 
using the information feedback recursively. As the player 
has no direct access to its utility function in this case, it can 
construct an estimator u R A| |

i
k i!t  based on Iik  to evaluate 

actions A .a i!  Using this estimator, the player can com-
pare its actions and choose the one that can achieve higher 
payoffs in the next round. In mathematical terms, the 

estimator (score function) is given by the following dis-
crete-time dynamical system:

	 ( ) ( , , , ),G U a1u u ui
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k1 n n r= - ++t t t � (8)

where A A: ( )G R R RA A| | | |
i
k

i i
i i"# # #T  is the learning 

policy for utility learning, i
kr  is the policy employed at time k, 

and i
kn  is the learning rate. Based on the score function, the 

player can modify its strategy accordingly in the sense that 
better actions shall be played more frequently in the future. 
With a slight abuse of notations, the strategy update is

	 ( ) ( , , , ),F U a1 ui
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k1 1r m r m r= - ++ +t � (9)

where A A A: ( ) ( )F R RA| |
i
k

i i i
i "# # #T T  is the learning 

policy for strategy learning, yielding a new policy for the 
next play. Compared with (7), the preceding discrete-time 
systems [(8) and (9)] explicitly show how feedback shapes 
the player’s future play. According to (8), the player recur-
sively updates its estimate of the utility function based on 
the feedback it receives after playing i

kr  and determines its 
move in the next round following (9). Intuitively, ( , )ui

k
i
k 1r +t  

can be viewed as the information extracted from Iik  for 
updating the player’s strategy.

In reinforcement learning, the choice mapping plays 
an important role in achieving a balance between exploi-
tation and exploration. On one hand, the player would 
like to choose the best action that is supposed to incur the 
highest payoff based on the score function. However, this 
pure exploitation often leads to myopic behaviors as the 
score function may return a poor estimate of the utility 
function at the beginning of the learning process. Hence, 
to gather more information for a better estimator, the 
player also needs some experimental moves for explora-
tion, where suboptimal actions are implemented. In sum-
mary, the tradeoff between exploitation and exploration is 
of vital importance to the success of reinforcement learn-
ing, and it depends on construction of the choice mapping. 
Different choice mappings result in different reinforce-
ment learning algorithms. Based on their distinct natures 
in exploration, the algorithms can be categorized into two 

πi π–i

I–iIi

FIGURE 3 A player’s strategy learning with the corresponding feed-
back. Under the global or local feedback structure, players’ learn-
ing processes are coupled as their feedback is influenced by their 
opponents’ moves. In contrast, players learn to play the game 
independently under individual feedback. 
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main classes: exploitative reinforcement learning and explor-
atory reinforcement learning.

Recall that in strategy learning (9), the next strategy pro-
duced by the corresponding choice mapping is

( ) ( , , , ),F U a1 ui
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k1 1r m r m r= - ++ +t

where ( )1 i
k

i
km r-  is referred to as the cognitive inertia (or 

simply, inertia), describing the player’s tendency to repeat 
previous choices independent of the outcome. When deter-
mining its next move ,i

k 1r +  the player considers both its pre-
vious strategy i

kr  and the increment update using the 
strategy learning policy .Fi

k  Therefore, players’ exploration 
at ( )k 1+ -th round stems either from this inertia or the 
strategy learning policy .Fi

k  The former is called passive 
exploration (as it relies on the player’s tendency to repeat 
previous choices), while the latter is referred to as active 
exploration (as the player deliberately tries actions based on 
what was learned from previous plays).

As the new strategy is a convex combination of the inertia 
term i

kr  and the learned incremental update ( , , , ),F U aui
k

i
k

i
k

i
k

i
k1r +t  

there is no clear-cut boundary between passive and active 
exploration. In fact, reinforcement learning is a continuum 
of learning algorithms. The following illustrates such a 
continuum by three prominent learning schemes. The first 
is the best response dynamics (BR-d) (located on the left 
endpoint), which is an example of exploitative reinforce-
ment learning. Solely relying on the inertia for passive 
exploration, BR-d adopts a purely exploitative learning 
policy: the best response mapping in (1). In contrast to the 
exploitative one, dual-averaging dynamics (DA-d) is an 
example of exploratory reinforcement learning, which only 
leverages the learning policy for exploring suboptimal 
actions without any cognitive inertia. In between, there lies 
the smoothed BR-d (SBR-d), where both the inertia and 
strategy learning policy are used to achieve a balance 
between exploration and exploitation.

Exploitative Reinforcement Learning
For exploitative reinforcement learning, the strategy learn-
ing policy always outputs the best strategy based on the 
score function, which can be viewed as a natural extension 
of the best response idea in the context of a Nash equilib-
rium (1). In the repeated-play scenario, given the oppo-
nent’s strategy at the kth round ,ikr-  from player i’s 
standpoint, the best he or she can do is to choose the best 

response ( ) { , ( ) }argmaxBR uA( )i i
k

i i
k

i|r r r= T!r- -  (which is 
purely exploitative). In this case, the strategy learning 
scheme becomes

	 ( ) ( ).BR1i
k

i
k

i
k

i
k

i i
k1 !r m r m r- ++
- � (10)

In general, the best response mapping is a point-to-set map-
ping and, differential inclusion theory [36] is needed to ana-
lyze the associated learning dynamics, which makes the 
convergence analysis more involved, as discussed in the 
“Nash Equilibrium and Lyapunov Stability” section.

Under the noisy feedback { , },I U a: :
i
k

i
k

i
k1 1=  the score func-

tion of player i is the estimated utility ,ui
kt  which is updated 

according to the following moving average scheme [38]:

	 1
A( ) ( ) ( )

( )
, ,a a

a
U a1u u { }

i
k

i
k

i
k

i
k

i
k
a a

i
k

i
1 i

k

!n n
r

= - ++ =t t � (11)

where 1{·}  is an indicator function. Note that in (11), the 
importance sampling technique (which is common in 
bandit algorithms [21]) is utilized to construct an unbiased 
estimator of ( ).ui i

kr-  To see this, define a vector U R A
i
k i! ; ;t  

whose a-th entry is 1( ) / ( ),a U aU { }i
k

a a i
k

i
k

i
k| r= =

t  and then, 
[ ( ) ] ( , ).a u aUE Fi

k k
i i

k1; r=-
-

t  Hence, (11) can be rewritten as

	 ( ) ,1u u Ui
k

i
k

i
k

i
k

i
k1 n n= - ++t t t � (12)

and ( )aui
k 1+t  gives the averaged payoff incurred by a in the 

first k rounds. This importance sampling technique can be 
viewed as compensating for the fact that actions played 
with a low probability do not receive frequent updates of 
the corresponding estimates so that when they are played, 
any estimation error ( )U aui

k
i
k

i
k- t  must have a greater influ-

ence on the estimated value than if frequent updates occur. 
Refer to [21] and [30] for more details on importance sam-
pling and its use in learning processes.

With a slight abuse of the notation of best response map-
ping in (2), define the corresponding best response under 
the noisy feedback as

	 ( ) : { , }.argmaxBR u ui i
k

i
k

A( )i

r=
T!r

t t � (13)

The strategy learning scheme under the noisy feedback 
[30] follows

	 ( ) ( ).BR1 ui
k

i
k

i
k

i
k

i i
k1 !r m r m- ++ t � (14)

In general, reinforcement learning consists of two functions:  

the score function (evaluating the performance of actions) and  

the choice mapping (determining the next move).
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Fictitious Play

Consider the repeated play between two players, with 

each player knowing their own utility function. Further, 

each player can observe actions of the other player and 

choose an optimal action based on the empirical frequency 

of these actions.

In fictitious play, from player 1’s viewpoint, player 2’s strategy 

at time k can be estimated as ( ) / , ,1 Aa k a{ }
k

s
k

a a2 1 2s
2 !r R= = =  

which is the empirical frequency of actions player 2 has im-

plemented up to that point. k
2r  can be computed by a moving 

average scheme:

.k k e1 1 1k k
a2 2

1 k
2r r= - +-` j

Using this, player 1 chooses the best response: 

( , )argmaxa u aA
k

a
k

1
1

1 21 r= !
+  for the next play. The empiri-

cal frequency of player 1’s implemented actions is updated 

according to

,k k e1 1
1

1
1k k

a1
1

1 k
1

1r r= -
+

+
+

+ +` j

where ( )Aea 1k
1

1 T!+  is exactly given by ( ),BR k
1 2r  and the 

equation is the same as the one in (10), with the learning 

rate being / .k1 1k
1m = +  Hence, in fictitious play, a player’s 

empirical play follows best response dynamics. Further-

more, if the best response mapping BR is replaced with 

the quantal response ,QRe  an important variant is obtained: 

stochastic fictitious play [30].

The resulting dynamical system under the noisy feedback 
is a coupled system as 

	
( ) ,
( ) ( ).BR

1
1

u u U

u
i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i i
k

1

1 !

n n

r m r m

= - +

- +

+

+

t t t

t
�

(BR-d)

Originally proposed as a computational method for Nash 
equilibrium seeking [38], [39], the BR-d is built directly 
upon the best response idea and has been widely applied 
to evolutionary game problems [40]. One prominent exam-
ple of (BR-d) is fictitious play [41], where a player’s empiri-
cal play follows (BR-d); and more details are included in 
“Fictitious Play.” As shown, (BR-d) adopts passive explora-
tion, and the best response mapping (·)BRi  encourages 
greedy actions that might be myopic. As a result, exploit-
ative reinforcement learning may fail to converge [30], [42].

Exploratory Reinforcement Learning
In contrast to the inertia-based passive exploration in  
(BR-d), dual averaging (as introduced in this section) relies 
only on the strategy learning policy Fi

k  for exploring sub-
optimal actions to avoid myopic behaviors due to poor esti-
mates of the utility function. In dual averaging, given the 
player’s utility vector ,ui  the strategy learning policy is a 
regularized best response [43] defined as

	 ( ) { , ( )},argmaxQR hu ui i i i
A( )i i

| r e r= -e

T!r

� (15)

where (·)h  is a penalty function or regularizer and e  is the 
regularization parameter. According to [44], a proper regu-
larizer (·)h  defined on the probability simplex should be 
continuous over the simplex and smooth on the relative 
interior of every face of the simplex. Moreover , h should be 
a strongly convex function, and these assumptions ensure 
that ( )QR $e  always returns a unique maximizer. The QRe  
mapping is referred to as a quantal response mapping [45], 
which allows players to choose suboptimal actions with 
positive probability. To see how this regularization contrib-
utes to active exploration, consider the entropy regularizer 
( ) .logh x x xx i iiR=  In this case, QRe  is

	 A( ) ( )
,

,
, ,

exp

exp
QR a

u a

u a
a1

1
u
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i

a
i i

i i

i

i

| !

e
r

e
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-

-

l
l

`
`

^
^

hj
hj/

� (16)

which is also known as the Boltzmann–Gibbs strategy map-
ping [46] or the soft-max function parameterized by .02e  On 
the one hand, the Boltzmann–Gibbs mapping produces a 
strategy that assigns more weight to the actions leading to 
higher payoffs, that is, the larger ( ) ( , )a u aui i ir= -  is, the 
larger ( ) ( )QR aui

e  becomes. On the other hand, it always 
retains positive probabilities for every action when .02e  
Note that QRe  can induce different levels of exploration by 
adjusting the parameter .e  When e  tends to zero, the 

strategy (16) simply returns the action that yields the high-
est payoff, implying that QRe  reduces to the best response 
mapping (·)BRi  in (2). As e  gets larger, /1 e  tends to zero, 
and the strategy does not distinguish among actions, lead-
ing to equal weights for all actions.

Similar to the previous argument, with the noisy feed-
back, replace ui  by the estimator ,ui

kt  and the definition of 
quantal response mapping is then modified accordingly as

A( ) ( ) , .
exp

exp

a

a
QR a a1

1
u

u

u

A

i
k

a
i
k

i
k

i

i

| !

e
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!

e

l
l

t
t
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`

^
^
hj
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Due to the active exploration brought up by ,QRe  consider 
an inertia-free reinforcement learning scheme where the 
choice map is simply the strategy learning policy .QRe  The 
corresponding strategy learning scheme is then

( ),QR ui
k

i
k1 1r = e+ +t

where the score function ui
kt  is updated according to the 

following [47]:

	 .uu Ui
k

i
k

i
k

i
k1 n= ++t t t � (17)
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To recap, the learning algorithm operates in the following 
fashion: At each time k, an unbiased estimator Ui

kt  is con-
structed as introduced in (11) using importance sampling, 
and the score function is updated according to (17). Then, the 
next strategy is produced by the mapping ,QRe  acting on the 
score function ,ui

k 1+t  as shown in

	
,

( ).QR

u

u

u Ui
k

i
k

i
k
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i
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1

1 1

n

r

= +

= e

+

+ +

t t t

t
�

(DA-d)

(DA-d) is also referred to as dual averaging, pioneered by 
Nesterov [47], which was originally proposed as a variant 
of gradient methods for solving convex programming 
problems. We elucidate the term dual averaging later when 
discussing the relationship between dual averaging and 
gradient play, where it is demonstrated that (DA-d) can be 
viewed as a gradient-based algorithm in finite games, with 
ui

kt  being the gradient. Finally, note that in (DA-d), the score 

function is updated in a manner different than in (BR-d). 
However, this is merely a matter of presentation. By select-
ing a proper ,e  the moving averaging scheme (12) is essen-
tially the same as the discounted accumulation (17) [47], 
[48]. By adopting the discounted accumulation (17), a con-
nection can later be drawn between dual averaging and 
gradient play.

Apparently, (DA-d) does not depict how ( )tir  evolves 
in A( ),iT  and it is not straightforward to tell how those 
good actions bringing higher payoffs are “reinforced” in 
the sense that probabilities of choosing them increases as 
the learning process proceeds. “Replicator Dynamics” 
presents that when choosing entropy regularization, 
(DA-d) is equivalent to the replicator dynamics (one of the 
well-known evolutionary dynamics [49]–[51]), which 
explicitly displays a gradual adjustment of strategies 
based on the quality of each action. Using an example of 
population games, it is shown that this connection brings 

Replicator Dynamics

Recall that continuous-time learning dynamics under dual 

averaging is
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Now consider the entropy regularizer ( ) logh x x xx i iiR=  and let 

1e =  for simplicity. Differentiate the strategy ( )tir  with respect 

to time variable in the continuous-time version of DA-d (DA-c), 

arriving at
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(S1) (RD)

From this equation, it is shown that for a certain action a, 

if its outcome ( , ( ))u a ti ir-  is above the average ( ( ), ( )),u t ti i ir r-  

then it will be “reinforced” in the sense that the probability of 

choosing a gets higher as time evolves. Equation (S1) is re-

ferred to as replicator dynamics (RD) and has been widely 

used in evolutionary game theory to understand natural se-

lection and population biology. Consider a two-population sys-

tem and reinterpret the elements in the two-player game using 

population biology language. For population 1, there are A1; ; 

types, and each type is specified by an element, .Aa 1!  Let 

( )t,a1r  be the percentage of type a in population 1 at time t, 

and assume that ( )t1r  is differentiable with respect to time t as 

the population (which is infinitely large) interacts with the other 

population in a continuous-time manner.

Population 2 has similar notions. If individuals from the two 

population meet randomly, then they engage in a competition 

or a game with a payoff dependent on their types. For example, 

if type a1  from population 1 competes with type a2  from popu-

lation 2, then payoffs for the two types are given by ( , )u a a1 1 2  

and ( , ),u a a2 1 2  respectively. For population i, if it is assumed 

that the per capita rate of growth is given by the difference 

between the payoff for type a and the average payoff in the 

population (a rule studied in [49]), then the percentage of differ-

ent types within a population is precisely described by

( )
( , ( )) ( ( ), ( )),dt

d t
u a t u t t1

,

,

i a

i a
i i i i ir

r
r r r= - -

which is exactly the RD (S1). In addition, as shown in [44], dif-

ferent regularizers lead to different learning dynamics, which 

display different asymptotic behavior accounts for the evolu-

tionary process under different circumstances.

With (S1) and other related evolutionary dynamics, biologists 

can predict the evolutionary outcome of the multipopulation 

system by examining the Nash equilibrium of the underlying 

game, which brings strategic reasoning into population biol-

ogy and has a profound influence on evolutionary game theory 

[50], [51]. Moreover, the Nash equilibrium in this population 

game, characterized by the limiting behavior of the dynam-

ics under proper conditions [51], represents an evolutionarily 

stable state of the population (which is an important refinement 

of the Nash equilibrium). When this stable state is reached, 

natural selection alone is sufficient to prevent the population 

from being influenced by mutation [40], [50]. For more details 

on this refinement and its application in biology, refer to [17], 

[40], [50], and [51].
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learning in games to the broader context of evolutionary 
game theory [40], [50].

As mentioned previously, reinforcement learning is a 
continuum of learning algorithms, and (BR-d) and (DA-d) 
are the two endpoints of the continuum. Naturally, rein-
forcement learning methods with a blend of both passive 
and active exploration can be considered, where the explo-
ration stems from both the inertia term and the strategy 
learning policy, as presented in the following.

Instead of choosing actions greedily, replace the best 
response (·)BRi  in (14) with ( ),QR $e  the quantal response 
for active exploration. We then obtain the strategy learning 
scheme [30]

( ) ( ).QR1 ui
k

i
k

i
k

i
k

i
k1r m r m= - + e+ t

Similar to (BR-d), if utility learning follows the moving 
average scheme in (11), the resulting reinforcement learn-
ing has the following discrete-time learning dynamics
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(SBR-d)

Considering its similarity to (BR-d), (SBR-d) is referred to as 
(SBR-d) in [30] and [52]. Specifically, if the entropy regular-
izer is adopted, the resulting learning process is called 
Boltzmann–Gibbs reinforcement learning [53] or entropic rein-
forcement learning, which has been extensively studied in 
the context of Markov decision processes [54].

Relationships Among Reinforcement Learning Algorithms
Before concluding the discussion of reinforcement learning 
in finite games, we examine relationships among the intro-
duced learning algorithms. Note that reinforcement learn-
ing corresponds to a continuum of learning algorithms, 
where one algorithm can be converted into the other by 
adjusting the learning rate i

km  in strategy learning (7) and/
or the exploration parameter .e  The diagram of such a con-
version is presented in Figure 4. The discussion associated 
with this diagram revolves around the learning rate i

km  and 
the exploration parameter .e  For simplicity, suppress the 
subscript and superscript of the learning rate and denote 
them by .m

We begin the discussion with the learning rate .m  
Unlike (DA-d), the (BR-d) and (SBR-d) are actor-critic 
learning [38], [55], [56] due to a positive learning rate .02m  
Under the actor-critic framework such as (BR-d)-(SBR-d), 
the player maintains two recursive schemes for updating 
the estimated utility vector and strategy, respectively. The 
recursive schemes lead to coupled dynamical systems of 
ui

kt  and .i
kr  In contrast, even though (DA-d) also consists of 

both the updating schemes for estimated utility vector and 
the strategy, as the learning rate is zero, there is only one 
effective dynamical system: the one induced by the esti-
mation of utility vector (17). Another way to see the 

difference between actor-critic learning (BR-d)-(SBR-d) 
and (DA-d) is through the corresponding continuous-time 
learning dynamics in the “Learning Dynamics and Sto-
chastic Approximation” section.

Even though (DA-d) is not an actor-critic learning, its 
trajectory is closely related to that of (BR-d)-(SBR-d)’s. Intu-
itively speaking, (DA-d) only differs from the smoothed 
best response in that (DA-d) does not acquire an inertia 
term, as the learning rate is zero. Hence, i

kr  in (SBR-d) can 
be seen as the moving average of ( )QR ui

ke t  in (DA-d). There-
fore, it is reasonable to expect that the time average of the 
trajectory produced by (DA-d) is related to the one pro-
duced by the smoothed best response. This intuition is 
verified in [44] and [57], where it is shown that the time-
averaged trajectory of (DA-d) follows (SBR-d) with a time-
dependent perturbation ( ) .te

Apart from the difference in the learning rates, learn-
ing algorithms also display distinct asymptotic behavior 
due to the difference in the exploration parameter. The 
exploration parameter e  has less drastic consequence 
under (DA-d) than under the actor-critic learning (BR-d)-
(SBR-d). As observed in [44], adding a positive e  is equiva-
lent to rescaling the regularizer [that is, replacing ( )h $  
with ( )] .h $e  As long as ,02e  the regularization ( )h $e  is still 
proper (15). This implies that even though the choice of e  
affects the speed at which (DA-d) evolves, the qualitative 
results remain the same. The reader is referred to [44] and 
[58] for a detailed discussion. There is no exploration or 
inertia for (DA-d) when ,0e=  and in this case, players 
always choose their actions greedily according to the best 
response mapping

	 , ,argmax ui
k

i
k1

A( )i

G Hr r=+

T!r

t" , � (FTL)

Dual AveragingBest Response

Follow the Leader

0 ←
 ε

0 ←
 ε

λ → 1

λ → 1

ε

←

0

λ

←

1

Smoothed
Best Response

FIGURE 4 The relationships of reinforcement learning algorithms. 
For 0 11 1m  and ,02e  we obtain exploratory reinforcement 
learning: smoothed best response dynamics (SBR-d), where 
exploration arises from both the inertia and learning policy. If the 
active exploration vanishes as e  goes to zero, SBR-d reduces to 
BR-d, an example of exploitative reinforcement learning. In con-
trast, dual-averaging dynamics is obtained if m  tends to one. 
Finally, if e  goes to zero while m  tends to one, players always 
choose their actions greedily according to follow the leader.  
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where ui
kt  is the score function of player i (based on its his-

tory of play up to round k) that can be updated following 
(11) or (17). In the online learning literature [21], the afore-
mentioned greedy policy is known as follow the leader (FTL) 
and can also be obtained by eliminating the inertia term in 
(BR-d). Due to a lack of exploration, FTL is too aggressive 
and can be exploited by the adversary, resulting in a posi-
tive, nondiminishing regret [21]. The regret is a measure-
ment of the performance gap between the cumulative 
payoffs of current-policy FTL and that of the best policy 
in hindsight.

The exploration parameter plays a more important role 
in the actor-critic learning, which balances exploration 
and exploitation [37]. (SBR-d), which is a perturbed ver-
sion of the best response, can only use the regularization 

( )h $e  for encouraging active exploration. Thanks to the 
positive exploration parameter, (SBR-d) enjoys an -e no-
regret property (a weak form of external consistency stud-
ied in [57] and [59]), which is desired in an adversarial 
environment [21]. In contrast, (BR-d), due to the myopic 
nature of the best response mapping (2), does not possess 
similar properties.

Gradient Play
Thus far, discussions have been limited to learning pro-
cesses in finite games, where the score function (8) and the 
choice mapping (9) act on finite-dimensional vectors. For 
continuous-kernel games, it is not straightforward to 
extend reinforcement learning as a suitable score function 
is required to evaluate a continuum of actions, and con-
structing such a score function can be very challenging. 
Even though function approximators such as linear [60], 
[61] or nonlinear [62] ones can be of some help, there is a 

mathematically more elegant way of leveraging the rein-
forcement idea based on gradients of utility functions. In 
other words, instead of seeking the maximizers, we seek a 
better response by searching along the gradient direction. 
Such gradient-based learning algorithms, referred to as 
gradient play, are popular in a variety of multiagent settings 
due to their versatility, ease of implementation, and depen-
dence on local information.

For simplicity, we restrict the discussion to a pure-strat-
egy Nash equilibrium in continuous games [see (4) for the 
definition and (5) for its variational characterization], to 
avoid measure-theoretic issues when studying the mixed-
strategy case. Further assume that utilities are smooth 
functions and perfect feedback is available to players, 
implying that each player can compute the gradient of 
the utility function given current iterates: ( , ).D u a ai

k
a i i

k
i

k
id= -  

Even though perfect feedback is assumed here, it is purely 
for the simplicity of exposition. It is viable for players to 
estimate the gradient based on the realized payoff under 
noisy individual feedback by simultaneous perturbation 
stochastic approximation [63], [64]. Based on this gradient, 
players update their actions according to
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where ( )projAi $  is the Euclidean projection operator, and 
(GD) is the online gradient descent or projected gradient 
descent [48]. One extensively studied variant of (GD) 
[48], [65] is
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(LGD)

where Yi
k  is an auxiliary variable that aggregates the gradi-

ent steps. Such an algorithm is referred to as the lazy gradi-
ent descent (LGD) [47] because the algorithm aggregates the 
gradient steps “lazily,” without transporting them to the 
action space as (GD) does. The difference between the two 
algorithms is illustrated in Figure 5. Note that based on the 
gradient descent idea, (LGD) and (GD) share the same 
asymptotic behavior [21], and the two coincide when Ai  is 
an affine subspace of .Rn

Unlike a purely primal-based algorithm such as (GD), 
where the trajectory of the algorithm evolves only in the 
primal space (the action space), (LGD) is a primal-dual 
scheme, and the interplay between primal variables 
(actions )ai

k  and dual variables [gradients ( )]D ai
k  is of great 

significance. The main idea of (LGD) is as follows. At the 
kth round, each player computes the gradient ( )D ai

k  based 
on the knowledge of utility functions and observations of 
the opponent’s move. Subsequently, players take a step 
along this gradient in the dual space (where gradients live) 
and “mirror” the output back to the primal space (the action 
space) using the Euclidean projection.

Yi
1 = 0

Yi
2

Yi
3

+ µiDi
1 1

+ µ iD i
2 2

+ µ iD i
2 2

ai
1

ai
2 2
(GD) = ai

3ai

Ai

(LGD)

3ai (LGD)

(GD)

FIGURE 5 An illustration of the difference between gradient descent 
(GD) (18) and lazy GD (LGD). a ( )i

k
GD  and a ( )i

k
LGD  denote the iterates 

generated by (18) and LGD, respectively. The LGD first aggre-
gates the gradient steps and then projects the aggregation onto 
the primal space to generate a new gradient step. 
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Gradient-based learning algorithms are further investi-
gated in another article in this special issue in the context of 
generalized Nash equilibrium seeking [25]. The following 
presents a generalization of (LGD): mirror descent (MD) 
[47], [65]. Starting with some arbitrary initialization ,Yi

1  the 
MD scheme can be described via the recursion,
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where QRe  is the quantal response mapping in the context 
of the continuous game, defined as

( ) , ( ) .argmaxQR Y Y a h a
Aa i

G H e= -e

!

" ,

When choosing the Euclidean norm as the regularizer (that 
is, ( ) ( / )h x x1 2 2

2
=  and ),1e =  QRe  reduces to the projec-

tion operator .projAi  Geometrically, the gradient search 
step is performed in the dual space, and the primal update 
is produced by the mapping .QRe  As QRe  “mirrors” the 
gradient update in the dual space back to the primal space, 
it is also referred to as the mirror map in the online optimi-
zation literature [21].

Mirror Descent as Reinforcement Learning 
in Continuous Games
MD and reinforcement learning (DA-d) share the same 
choice map, and they are closely connected. It is demon-
strated in the following that as a gradient-based algorithm, 
(MD) can also be cast as a reinforcement learning scheme 
in continuous games, with Yi

k  being the “score function.”
To evaluate a certain action Aa i!  at time k, consider 
( , )a a i

k
1Rx

x
= -  (the cumulative payoff had player i imple-

mented a in the past). The higher the sum, the better action 
a is as playing a could have resulted in higher payoffs. 
Hence, the player can choose the next action that is optimal 
in hindsight:
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where ( )h $e  is the regularization introduced in (15), 
encouraging exploration in the learning process. Based 
on the optimality in hindsight, this action selection is 
known as follow the regularized leader (FTRL) [66]. More-
over, if ui  is well behaved in the sense that it can be 
approximated by the first-order Taylor expansion (that 
is, ( , ) ( , ) ( ), ),u a a u a a D a aai i i i i i i. G H+ -x x x x x

- -  then FTRL is 
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which is exactly (MD), despite using an auxiliary variable 
Yi

k  to aggregate these gradients weighted by the learning 
rates .ikn  In other words, using the first-order expansion, 
the sum of gradients living in the dual space serves a linear 
functional for evaluating the quality of the actions. Hence, 
the sum (or equivalently, )Yi

k  can be treated as a “score 
function,” based on which the mirror map outputs a better 
action in hindsight, yielding a reinforcement procedure.

Reinforcement Learning as Mirror Descent  
in Finite Games
In the aforementioned discussion, (MD) is interpreted as 
“reinforcement learning” in continuous games. This sec-
tion further shows that the idea of MD can also be 
employed in finite games, and the resulting learning 
dynamics is in fact the exploratory reinforcement learning 
scheme (DA-d).

In finite games, the utility function is not differentiable 
with respect to the action, as action sets are finite. To lever-
age gradient play, consider the mixed extension of finite 
games and the expected utility ( , ) , ( ) .u ui i i i i ir r r r=- -  
Then the gradient of the expected utility with respect to 
player i’s strategy ir  is given by ( ).ui ir-  Naturally, (MD) 
can be applied to this mixed extension without difficulty. 
Furthermore, if the gradient is not directly available (for 
example, learning under noisy feedback), we rely on the 
unbiased estimator of ( ),ui i

kr-  ,Ui
kt  which can be viewed as 

an estimator of the payoff gradient Di  in (MD). It can be 
seen that (MD) for this induced continuous game reduces 
to the exploratory reinforcement learning in (DA-d). Conse-
quently, the learning scheme (DA-d) is called dual averaging: 
the dual variables, the gradients ,Ui

kt  are aggregated first 
within the dual space and are then “mirrored” back to the 
primal space by the mirror mapping [47]. A schematic rep-
resentation of dual averaging is provided in Figure 6.

ui
1∧

ui
2∧

ui
3∧

ui
4∧

∧
+µi

1Ui
1

∧
+µi

2Ui
2

∧
+µi

3Ui
3

Ai

QRP

πi
1

πi2
πi3 πi4 ∆ (Ai)

FIGURE 6 A schematic representation of dual averaging. There are 
no explicit dynamics in the primal space ( ).A iT  Instead, the dual 
variables U i

kt  are first aggregated within the dual space R A i; ;  and 
are then “mirrored” back to the primal space via the mirror map-
ping .QRe

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:38:45 UTC from IEEE Xplore.  Restrictions apply. 



50  IEEE CONTROL SYSTEMS »  AUGUST 2022

Convergence of Learning in Games
This section examines the asymptotic behavior of learning 
algorithms introduced in the previous section, with the 
focus on convergence results of the introduced learning 
algorithms. Due to the close connection between gradient 
play in continuous games and reinforcement learning in 
finite games, the scope is limited to reinforcement learning 
algorithms in finite games. The reader is referred to [43], 
[64], and [67]–[69] for the treatment in continuous games. In 
this section, the discussion is primarily based on stochastic 
approximation and Lyapunov stability theories [36], [70]. A 
generic procedure of applying such analytical tools con-
sists of three steps: 1) develop mean-field continuous-time 
dynamics using stochastic approximation theory; 2) study 
continuous-time learning dynamics using ODE methods, 
relating its Lyapunov stability to Nash equilibria of the 
underlying game; 3) derive convergence results of discrete-
time algorithms using asymptotic convergence of corre-
sponding continuous-time dynamics. As the third step is a 
direct corollary of the results of the first and second steps, 
the first two steps are articulated in the sequel. Refer to 
“Stochastic Approximation Theory” and references therein 
for details on the relationship between discrete-time trajec-
tory and its continuous counterpart.

Learning Dynamics and Stochastic Approximation
With proper Fi

k  and ,Gi
k  learning algorithms allow the play-

ers to reach the Nash equilibrium of the game in the limit. 
Hence, the problem reduces to analyzing limiting behavior 
of discrete-time systems (BR-d)-(DA-d)-(SBR-d), that is, 
whether its global attractor comprises equilibria. Direct 
investigations into such learning dynamics are challenging 
as stochasticity enters updating rules. For example, the 
action at time k, ,aik  is sampled from the strategy ,ikr  and the 
payoff feedback Ui

k  also incurs randomness.
The celebrated stochastic approximation theory allows for 

shifting focus to the continuous counterpart of the discrete-
time dynamics: an ODE whose trajectory enjoys the same 
asymptotic property. From a technical standpoint, continu-
ous-time dynamics often produce a more comprehensible 
picture for analysis with fruitful tools. One of the most pow-
erful tools is Lyapunov stability theory. Such a continuous-
time framework also allows for connecting learning theory 
with extensive literature on game dynamics in biology and 
evolutionary theory [30], where the time interval between 
two repetitions of the game is infinitesimally small.

Recall that reinforcement learning adopts two coupled, 
discrete-time, dynamical systems: one for the score func-
tion (8) and the other for choice mapping (9)
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In the following, the continuous-time dynamics asso-
ciated with (8) and (9) is obtained via stochastic 

approximation, which paves the way for the ODE-based 
convergence analysis. We begin with a generic description 
of learning dynamics under reinforcement learning, and 
then specify the learning dynamics corresponding to 
(BR-d)-(DA-d)-(SBR-d). For more details regarding sto-
chastic approximation, refer to “Stochastic Approxima-
tion Theory” and references therein.

For simplicity in exposition, assume that the learning 
policies in (8) and (9) are time invariant (denoted by Fi  and 

,Gi  respectively). When the learning policies are time vari-
ant, stochastic approximation theory still applies (refer 
to [53] for more details). Let the mean-field components 
of (8) and (9) be denoted by ( , ) [ ( , ,f Fu uEi i

k
i
k

i i
k

i
k1 1r r=+ +t t
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respectively. Then note the coupled differential equations
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which are closely related to (8) and (9). Using stochastic 
approximation theory (see “Stochastic Approximation 
Theory”), the linear interpolations of sequences { }ikr  
and { }ui

kt  are the perturbed solutions to the aforemen-
tioned differential equations, which are arbitrarily close 
to the true solution as time approaches infinity. In other 
words, the convergence results of (8) and (9) can be 
obtained by studying limiting behavior of the associated 
differential equations.

Following the same argument, the learning dynamics of 
(BR-d) can be written as
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( ( )) ( ),

( )
( ( )) ( ).

dt
d t

t t
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d t

BR t t
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i
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i
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(BR-c)

If (BR-d) is adopted by every player, then continu-
ous-time dynamics of the strategy profile of all players 
( ) [ ( ), ( ), , ( )]t t t tN1 2 fr r r r=  can be studied under the 

joint best response [see (2)]. Denote the joint utility 
vector by ( ( )) [ ( ( )), ( ( )), , ( ( ))],t t t tu u u uN N1 1 2 2| fr r r r= - - -  
and similarly, joint estimated utility vector by 
( ) [ ( ), ( ), , ( )].t t t tu u uu N1 2| f=t t t t  Then, for the strategy profile 
( ),tr  continuous-time learning dynamics under the best 

response algorithm is

	
( )

( ( )) ( ),dt
d t

t t
u

u ur= -
t

t � (18)

	
( )

( ( )) ( ).dt
d t

BR t tu!
r

r-t � (19)

From its associated learning dynamics, (BR-d) [or equiva-
lently, its continuous-time mean-field dynamics (BR-c)] is 
an actor-critic learning [37], where the approximation ( )tut  
given by (18) serves as the actor evaluating the performance 
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Stochastic Approximation Theory

Following the multiple timescale stochastic approximation frame-

work developed in [35] and [S1], (8) and (9) can be written using 

discrete-time stochastic approximation
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(S2)

where ( , )ufi i
k

i
k 1r +t  and ( , )ugi i

k
i
kr t  are the mean-field compo-

nents of (8) and (9), respectively, and are defined as

( , )

( , ) [ ( , , , ) ].
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With the mean-field part defined as the aforementioned equation,  

( , , ,uM F Ui
k

i i
k

i
k

i
k1 1 1r=+ + +t ) ( , )ua fi

k
i i

k
i
k1 1r-+ +t  and i

k 1C +  take a 

similar form. ,ik i
km nr r  are time-scaling factors dependent on the 

learning rates , ,i
k

i
km n  which account for adjustment of the origi-

nal step sizes in asynchronous schemes [35], [70]. In synchro-

nous cases, time-scaling factors coincide with original step 

sizes. Similar to the discussion in the main text [see (18) and 

(19)], consider the dynamical system of the joint strategy profile 
kr  and utility vector ukt
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(DSA)

where f and g are concatenations of { }fi i N!  and { } ,gi i N!  re-

spectively. ,k km nr r  and ,Mk kC  take similar forms.

As discussed in the “Convergence of Learning in Games” 

section, to obtain an approximately accurate score function, the 

two coupled discrete-time systems in (DSA) should operate on 

different timescales: the score function ukt  should be updated 

sufficiently many times until near convergence before updating 

the strategy. This two-timescale iteration can be achieved by 

adjusting the time-scaling factors: kmr  and knr  are chosen so 

that / .lim 0k
k km n ="3
r r  To understand this timescale system, it 

is instructive to consider a coupled, continuous-time dynamical 

system, as suggested in [35]:
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(S3)

where f  tends to zero. Hence, ( )u tt  is fast transient while ( )tr  

is slow. The long-run behavior of the aforementioned coupled 

system can then be analyzed as if the fast process is always 

fully calibrated to the current value of the slow process. This 

suggests investigating the ordinary differential equation 

	
( )

( , ( )),
u

udt
d t

g tr=
t

t � (S4)

where r  is held fixed as a constant parameter. Suppose (S4) has 

a globally asymptotically stable equilibrium ( ),rK  where the map-

ping (·)K  satisfies regularity conditions specified in [36] and [70]. 

Then, it is reasonable to expect ( )u tt  given by (S4) to closely track 

( ) .rK  In turn, this suggests that the investigation into the coupled 

system (S3) is equivalent to the study of the single-timescale one

	
( )

( ( ), ( ( ))),dt
d t

f t t
r

r rK= � (S5)

which would capture the long-run behavior of ( )tr  in (S3) to a 

good approximation [35].

Informally speaking, to study the convergence of (DSA), its 

discrete-time trajectory can be related to that of (S3), which is 

further equivalent to ( ( ), ( ( )))t tr rK  specified by (S5). There-

fore, Lyapunov stability theory can be applied to (S5) to derive 

convergence results of the original discrete-time algorithm. We 

begin with the linear interpolation process of the discrete-time 

trajectory, which connects (DSA) and its continuous-time coun-

terpart (S3), (S5). Under some regularity conditions [36], for 

{ }kr  [the sequence generated by (DSA)], the continuous-time 

process ( ) : ( )At R " Tr +r  is constructed based on the linear 

interpolation of { } .kr  Letting 00x =  and ,kk
s

s
1x mR= =
r  define

( ) ( ) , [ , ).t t tk k
k k

k k
k k

1

1
1| !r r x

x r
r r x x= + -

-
-

+

+
+r

Similarly, define a continuous-time process ( )u tr  corresponding to { }.ukt

As shown in [36] and [70], such a linearly interpolated process 

( ( ), ( ))ut trr r  is closely related to flow of the differential equations
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(S6)

Note that (S6) is defined for ease of presentation, and the actual dif-

ferential inclusion systems involve rearrangement of several terms 

(refer to [70] for more details). Further, denote the flow of (S6) by

( , ) {( ( ), ( )) ( ( ), ( )) is a solution to (S ),

with ( ) , ( ) }.

u u u

u u

t t t t

0 0

6t
0 0

0 0

| ;r r r

r r

U =

= =

t t

t

The key to the stochastic approximation theory lies in the fact 

that in the presence of a global attractor for (S6), the continu-

ous-time process ( ( ), ( ))t u trr r  asymptotically tracks the flow with 

arbitrary accuracy over windows of arbitrary length [36],

dist{( ( ), ( )), ( ( ), ( ))} ,uulim sup t s t s t t 0
[ , ]t s T

s
0

r rU+ + =
"3 !

r r r r

where {·, ·}dist  denotes a distance measure on ( ) .A RA#T  

Refer to ( ( ), ( ))ut trr r  as an asymptotic pseudotrajectory of the 

dynamics (S6). In other words, to study the convergence of 

(DSA), the convergence analysis of (S6) is used, which can 

be addressed by Lyapunov stability theory, as depicted in [36] 

and [70]. The key conclusion is that if there is a global attractor 

A for (S5), then the interpolated process ( ( ), ( ))ut trr r  [or simply, 

( , )uk kr r ] converges almost surely to ( , ( )).A AK
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of the current strategy profile, while the strategy update 
(19) is the critic that improves the strategy.

As observed in the literature [37], the performance of the 
actor-critic learning relies on the quality of evaluation from 
the actor. One approach to obtain a satisfying actor in 
learning is to leverage the two-timescale idea [35], accord-
ing to which (18) should operate at a faster timescale than 
(19). Intuitively speaking, to obtain a ( )tut  that can approxi-
mately evaluate the current strategy profile ( ),tr  the player 
must wait until ( )tut  nearly converges before it updates the 
strategy using (19). To analyze the convergence of two-tim-
escale dynamics, one can study its equivalent single-times-
cale dynamics. As the actor (18) runs at a faster timescale, 
the system (18) and (19) can be “decoupled” in the following 
way: By fixing ( ) ,tr r=  the faster timescale update (18) 
converges to ( ),u r  where r  is viewed as a parameter, Then, 
after the convergence of the fast dynamics to an equilib-
rium ( ),u r  the slow dynamics (19) is set in motion, where 
( )tut  is replaced by its equilibrium point ( ( ))tu r  and the 

resulting learning dynamics is

	
( )

( ( )) ( ).dt
d t

BR t t!
r

r r- � (20)

As illustrated in “Stochastic Approximation Theory,” the 
coupled dynamics (18), (19), and the single-timescale (20) 
share similar asymptotic behaviors. Hence, we can focus 
on the much simplified one (20) for the derivation of the 
convergence results. For more details about the two-times-
cale learning and the derivation of the equivalent dynam-
ics, refer to “Stochastic Approximation Theory” and 
references therein.

Applying the same argument to (SBR-d) yields

	

( )
( ( )) ( ),

( )
( ( )) ( ),

dt
d t

t t

dt
d t

QR t t

u
u

u

u

i
i i i

i
i i

r

r
r

= -

= -e

-

t
t

t
�

(SBR-c)

and its equivalent dynamics regarding the joint strategy 
profile is

	
( )

( ( ( ))) ( ).dt
d t

QR t tu
r

r r= -e � (21)

Unlike (BR-d) and (SBR-d), (DA-d) does not belong to the 
class of actor-critic methods. To see this, note its continu-
ous-time dynamics
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(DA-c)

Similar to the previous argument, learning dynamics for 
the strategy profile is
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(DA)

where the dynamics regarding ( )tut  does not produce an 
approximation of ( ( )).tu r  Instead, it gives the cumulative 
payoff: ( ) ( ( )) ( ).t d 0uu u

t

0
r x x= +t t#  It is straightforward to 

see that as there is only one differential equation in (DA), 
the resulting autonomous dynamical system is related only 
to ( ).tut  Hence, there is no additional dynamics regarding 
the strategy update, which makes (DA) fundamentally dif-
ferent from (BR-c) and (SBR-c).

Nash Equilibrium and Lyapunov Stability
As the various learning algorithms belong to different 
classes, discussions regarding the convergence results of 
the introduced learning dynamics are organized in the fol-
lowing way. We begin with (DA-d) [or equivalently, its con-
tinous-time dynamics (DA)], a type of gradient-based 
dynamics, then proceed to (BR-c) and the (SBR-c).

Dual Averaging
Consider learning dynamics of the joint strategy profile 
and the estimated utility vector under (DA)
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(DA)

This compact form implies that (DA) is an autonomous 
system evolving in the dual space. Similar to the discussion 
in the “Gradient Play” section, the terminology in [47] and 
[48] is adopted, where the gradient ( ( ))tu r  is the dual vari-
able and the corresponding space is termed dual space. As 
shown in [44], (DA) is a well-posed dynamical system in the 
dual space in that it admits a unique global solution for 
every initial ( ).0ut  Furthermore, it can be shown that the 
dynamics of ( )tr  on the game’s strategy space induced by 
(DA) under steep regularizers is also well posed [44], [58]. 
However, well posedness of the induced dynamics under 
generic regularizers remains unclear [44]. The reason lies 

To analyze the convergence of two-timescale dynamics,  

one can study its equivalent single-timescale dynamics.
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in the fact that under steep regularizers such as the entropy 
regularizer, the projected dynamics regarding ( )tr  evolves 
within the interior of the simplex, and the resulting ODE is 
also well posed in the primal space (which need not hold 
for nonsteep regularizers). For more generic choices of QR 
and related stability analysis, refer to [44].

Even though studying stability of the induced dynam-
ics in the primal space may not be viable due to the well-
posedness issue, the asymptotic behavior of ( )tr  can be 
characterized by investigating its dual ( ).tut  Toward that 
end, ( ) ( ( ))t QR tur = e t  is referred to as the induced orbit of 
(DA) (or simply, orbit), and the following notions regarding 
the stability and stationarity of ( )tr  are introduced (which 
are adapted from [44]).

Definition 4
Denote by )QRim( e  the image of .QRe  For ( ) ( ( )),t QR tur =  
an orbit of (DA), a fixed A( )i iNT!r P)

!  is
»» stationary, if ( ) ( )t QRim!r r= ) e  for all ,t 0$  when-
ever ( )0r r= )

»» Lyapunov stable, if for every neighborhood U of ,r)  
there exists a neighborhood Ul of r)  such that 
( )t U!r  for all ,t 0$  whenever ( )U QRim0 +!r el

»» attracting, if there exists a neighborhood U such that 
( )t "r r)  as ,t " 3  whenever ( )U QRim0 +!r e

»» globally attracting, if r)  is attracting, with the attract-
ing basin being the entire image ( )QRim e

»» asymptotically stable, if r)  is both attracting and 
Lyapunov stable

»» globally asymptotically stable, if r)  is both globally 
attracting and Lyapunov stable.

Similar to the Folk theorem of evolutionary game theory 
[40], there is an equivalence between the stationary points 
of (DA) and the Nash equilibria [40], [44]: any stationary 
point is a Nash equilibrium, and conversely, every Nash 
equilibrium that is within the image of the mirror map (15) 
is a stationary point. In addition to the relationship between 
the Nash equilibrium and the stationary point, another 
important question is “Are Nash equilibria of the underlying 
game (globally) asymptotically stable under (DA)?”

Answering this question requires revisiting a varia-
tional characterization of the Nash equilibrium, which 
bridges the equilibrium concepts associated with two dif-
ferent mathematical models: games and dynamical sys-
tems. Recall that the Nash equilibrium is equivalent to the 
solution of the variational inequality

	 A( ), ,  ( ).0 for allu
i

i
N

T# !G Hr r r r-) )

!

% � (SVI)

As the utility function ( , )ui i ir r-  is linear in ,ir  the SVI is 
equivalent to the Minty-type variational inequality

	 A( ), ,  ( ),0 for allu
i

i
N

T# !G Hr r r r- )

!

% � (MVI)

which implies that the Nash equilibrium r)  is the solution to 
the (MVI) [26]. Then, to answer the question of interest, it 
suffices to investigate whether the solution to the (MVI) is 
attracting under (DA). As discussed in [67], the answer is 
negative: not every Nash equilibrium of an N-player, gen-
eral-sum game is attracting. To ensure the convergence of 
(DA), an additional condition must be imposed on the (MVI).

Definition 5 (Variational Stability) [44] 
r)  is said to be variationally stable if there exists a neigh-
borhood U of r)  such that

	 ( ), ,  ,U0 for allu # !G Hr r r r- ) � (VS)

where equality holds if and only if .r r=)  In particular, if 
A( ),U i iNT rP= )

!  is said to be globally variationally 
stable.

The definition of variational stability (VS) can be extended 
to sets [44]. Let a subset A( )i iNT1P P)

!  be closed and non-
empty. P)  is said to be variationally stable if there exists a 
neighborhood U of P)  such that

	 ( ), ,  , ,U0 for allu # ! !G Hr r r r r P- ) ) ) � (22)

where equality holds for a given !r P) )  if and only if 
.!r P)

“VS” is proposed in [44] as a relaxation of the monoto-
nicity condition of the pseudogradient mapping of the 
game, such as ( )u r  in the mixed extension of finite games 
or ( )aD  in continuous games. VS alludes to the seminal 
notion of evolutionary stability introduced in [49], which is 
in a spirit similar to the variational characterization of the 
evolutionarily stable state studied in [40]. An equivalent 
notion is developed in the work on gradient-based learning 
[67], named locally asymptotically stable Nash equilibria 
(LASNE). As its name suggests, Nash equilibria satisfying 
the VS are asymptotically stable under gradient-based 
dynamics. Likewise, the equilibria satisfying global VS are 
globally asymptotically stable Nash equilibria (GASNE). 
Refer to [67] and references therein for more details about 
this characterization of Nash equilibria.

What is presented in this section provides a generic crite-
rion for examining the convergence of gradient-based 
dynamics (DA). Based on the notion of VS, the following 
discusses some concrete cases where the learning dynamics 
converge, either locally or globally, to Nash equilibria. As 
shown in [43], for any finite games, every strict Nash equi-
librium satisfies (VS) and hence is LASNE. Therefore, every 
strict Nash equilibrium in finite games is locally attractive. 
On the other hand, to ensure global convergence, the under-
lying Nash equilibrium must be GASNE or equivalently 
satisfy the global VS. For finite games, the existence of a 
potential implies monotonicity, which further implies the 
existence of globally variationally stable Nash equilibria 
[43]. Hence, for potential games [44], [71] and monotone 
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games [43], [72], regardless of the initial points, the orbit of 
(DA) always converges to the set of Nash equilibria. These 
discussions are summarized in the following, where 1) and 
2) are direct extensions of the folk theorem of evolutionary 
dynamics [40], while 3)–5) are corollaries of variational 
characterization of Nash equilibria in [44] and [67].

For every finite game, the Nash equilibrium can be char-
acterized using the language of Lyapunov stability [44], 
[58]. For a fixed A( ),i iNT!r P)

!

1)	 if r)  is stationary, it is a Nash equilibrium.
2)	 if r)  is Lyapunov stable, then r)  is a Nash equilib-

rium.
3)	 if r)  is a Nash equilibrium and it falls within the 

image of the mirror map, then it is stationary.
4)	 if r)  is a strict Nash equilibrium, it is asymptoti-

cally stable.
5)	 if r)  is a Nash equilibrium of a potential game or a 

monotone game, it is globally asymptotically stable.

(BR-d)
The analysis of (BR-d) [or equivalently, (20)] is more involved 
than that of (DA-d) [or equivalently, (DA)]. The theoretical 
challenge is mainly due to the discontinuous, set-valued 
nature of the best response mapping (2). As a differential 
inclusion, (20) typically admits nonunique solutions 
through every initial point [36]. Early works have established 
the convergence results on (BR-d) for games with special 
structures: (BR-d) converges to the Nash equilibrium in 
zero-sum games [39], [68], [73] (where the Nash equilibrium 
is essentially a saddle point), two-player strictly supermodu-
lar games [50], and finite potential games [36], [39]. However, 
although most of these works still rely on the Lyapunov 
argument [36], [39], [68], [73], they do not directly reveal any 
generic relationship between Lyapunov stability and Nash 
equilibrium in general multiplayer nonzero-sum games and 
are mostly on an ad hoc basis.

Recent endeavors on the study of (BR-d) have helped 
shed some light on the asymptotic behavior of (BR-d) by 
relating the best response vector field ( )BR r r-  to the gra-
dient field ( ),u r  which renders (BR-d) in some potential 
games [74], [75] as an approximation of the gradient-based 
dynamical system [74]. For the finite potential games con-
sidered in [74], additional regularity conditions are imposed 
(which are closely related to the notion of VS introduced in 
the previous section). Therefore, variational characteriza-
tion of the Nash equilibrium and VS becomes relevant 
under (BR-d). Following this line of reasoning, it is shown 
in [74] that in regular potential games, (BR-d) is well posed 
for almost every initial condition and converges to the set 
of Nash equilibria.

Smoothed Best Response
As shown from the explicit expression, (SBR-d) only differs 
from (BR-d) in the operator ( ),QR $e  which serves as a per-
turbed best response [76]. The perturbation is determined 

by e  [57]. Hence, if e  tends to zero, it is straightforward to 
see that (SBR-d) will enjoy the same asymptotic property as 
(BR-d), which implies that identical results should also be 
achievable for smoothed best response with vanishing 
exploration. This intuition is verified in [52], [69], where 
(SBR-d) [or equivalently, (21)] is shown to converge in zero-
sum, potential, and supermodular games.

On the other hand, with a constant ,e  it is not realistic to 
expect (SBR-d), essentially a fixed-point iteration, to always 
converge to the exact Nash equilibrium. Hence, a new equi-
librium concept is introduced in the literature, which is 
termed the perturbed Nash equilibrium in [77] and [78] or 
Nash distribution in [38] and [56]. The new equilibrium is 
defined as the fixed point of the regularized best response map-
ping in (15). This article does not include detailed discus-
sions on this topic as the convergence analysis still rests on 
the standard Lyapunov argument, and the epistemic justi-
fication of such equilibrium [30], [39] is beyond the scope of 
this article. The reader is referred to [30], [56], [69], and [78] 
for a rigorous treatment of this new equilibrium.

Beyond Stochastic Approximation
In addition to stochastic approximation and related ODE 
methods, another class of widely applied learning algo-
rithms is built upon Markov chain (MC) theory [79], which 
is termed learning by trial and error (LTE) [80]. Even though 
the name of the proposed learning suggests its similarity to 
reinforcement learning, the learning process is quite differ-
ent in the sense that there are no explicit score functions or 
choice mappings in the proposed method. In LTE, there are 
two basic rules: 1) players occasionally experiment with 
alternative strategies and keep the new strategy if and only 
if it leads to a strict increase in payoff and 2) if the player 
experiences a payoff decrease due to a strategy change by 
someone else, it starts a random search for a new strategy. 
Eventually, it settles on a new strategy with a probability 
that increases monotonically with its realized payoff. In 
other words, the “error” part relies on the realized payoff, 
and no advanced device (such as score functions like 
Q-functions [110] or estimated utilities) is needed, while the 
“trial” part is a random search procedure implemented 
according to the two basic rules. A novel feature of the pro-
cess is that different search procedures are triggered by dif-
ferent psychological states or moods, where mood changes 
are induced by the relationship between players’ realized 
payoffs and their current payoff expectations. To be spe-
cific, there are four moods: content (C), hopeful (H), watchful 
(W), and discontent (D), and different moods lead to differ-
ent random search procedures. Briefly, players will explore 
new strategies with high probabilities when in W and D, 
while keeping the current one with high probabilities if the 
mood is C or H. The details can be found in [80], and a con-
cise summary is provided in [81].

This mood-based trial and error is different from rein-
forcement learning introduced in the previous section, 
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where the exploration is not determined explicitly by the 
score function and the choice mapping. Hence, LTE does 
not fit the stochastic approximation framework introduced 
in the previous section. Instead, the associated convergence 
proof relies on perturbed MC theory [79], [82]. It is shown in 
[80] that in a two-player finite game, if there exists at least a 
pure Nash equilibrium, then LTE guarantees that pure 
Nash equilibrium is played at least 1 e-  of the time (where 
e  is the probability of exploring new strategies). For an 
N-player finite game, if the game is interdependent [80] and 
there exists at least one pure Nash equilibrium, the same 
theoretical guarantee for the two-player case also holds. It 
is not surprising that LTE does not achieve convergence in 
conventional ways (that is, almost sure convergence and 
convergence in the mean as players will always explore 
new strategies with positive probability at least ).e  The pro-
posed learning method and its variants have also been 
applied to learning efficient equilibrium [83] (Pareto domi-
nant, maximizing social welfare), learning efficient corre-
lated equilibria [84], achieving Pareto optimality [85], and 
other related works in engineering applications, such as 
cognitive radio problems [34].

The idea of trial and error in LTE leads to many impor-
tant variants, such as sample experimentation dynamics 
in [82] and optimal dynamical learning [81], [85], which 
also rely on perturbed Markov processes for equilibrium 
seeking. Even though the convergence results of these 
algorithms all rest on MC theory [79], analysis of their 
performance remains unclear due to computation com-
plexity of the inherent MC generated by these algorithms. 
To circumvent the dimensionality issue regarding the 
number of states in the original MC, an approximation-
based, dimension-reduction method is proposed in [81], 
which allows numerical convergence analysis for LTE and 
its variants based on Monte Carlo simulations. Also note 
that a simplified trial-and-error algorithm is theoretically 
analyzed in [86], where the optimal exploration rate is iden-
tified and the associated convergence rate is discussed. It is 
not unrealistic to expect that a similar argument may apply 
to LTE and its variants. However, technical challenges 
regarding the dimensionality should not be downplayed.

Resurgence of Learning in Games
With ML algorithms being increasingly deployed in real-
world applications, there is a resurgence in research endeav-
ors on multiagent learning and learning in games [87]. In 
addition to the line of research driven by evolutionary 
dynamics dating back to 1950s [40], [50], the current wave of 
learning theory development is mainly driven by a desire to 
better understand and improve the performance of ML 
algorithms in a competitive environment. In general, there 
are two possible roles that game-theoretic methods can play 
in ML study: 1) Game-theoretic methods are an add-on for 
improving the performance of ML algorithms. 2) Certain 
ML problems manifest the game features, which call for 

game-theoretic tools. For supervised learning, the recent 
interest in adversarial learning techniques serves as an 
example of how game-theoretic models and learning meth-
ods can be used to robustify ML [88], [89], where potential 
attacks or disturbances are viewed as strategic moves of an 
opponent. On the other hand, there are problems in unsu-
pervised learning where game-theoretic models are no 
longer tools for solving the problem but the problem itself. 
Generative adversarial networks (GANs) [90] are an approach 
to generative modeling using deep learning methods, in
volving automatically discovering and learning the pat-
terns of input data in such a way that newly generated 
examples output by the generative model (generator) cannot 
be distinguished from the input. In game-theoretic lan-
guage, the training process of a GAN is essentially a learn-
ing process in a zero-sum game between the generator and 
the discriminator, where the generator tries to generate new 
samples that plausibly could have been drawn from the 
original data set, while the discriminator tries to select 
those fake ones produced by the generator. We do not intend 
to provide a comprehensive survey for these ML applica-
tions; instead, the reader is referred to [87] and [88].

Despite different contexts under which the learning 
theory is studied, recent research efforts mainly revolve 
around the following three aspects:

1)	 learning dynamics in general multiplayer repeated 
games

2)	 learning dynamics in repeated games with accelera-
tion design

3)	 learning dynamics in dynamic games in a decentral-
ized manner.

The first research direction is a natural follow up to the 
study of evolutionary dynamics [40], [50], which aims to 
bring learning in games to a broad range of ML applica-
tions because in ML, the game structure is specified by the 
underlying data and may not enjoy any desired properties. 
Recall that convergence results and asymptotic behaviors 
regarding the three dynamics, (BR-c)-(SBR-c)-(DA-c), are 
discussed with the assumption that the underlying game 
acquires special structures, such as potential games, super-
modular games, and zero-sum games. However, for games 
with fewer assumptions on the utility function, there is still 
a lack of understanding of the dynamics and the limiting 
behavior of learning algorithms. One of the central ques-
tions of this direction is “What are the relationships between 
Nash equilibria and stationary points as well as attracting sets 
under the learning dynamics?” Recent attempts try to answer 
this question from a variational perspective [91] and pro-
vide various characterizations of Nash equilibria with 
desired properties under gradient-based dynamics [58], 
[67], [92]. Furthermore, considering its applications in ML 
problems, learning algorithms in stochastic settings are of 
great significance in recent studies. Refer to [67] and [93] for 
more details and [23] for an introduction to stochastic Nash 
equilibrium seeking.
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The second research direction (which attracts attention 
from the ML, optimization, and control communities) is 
directly related to the design of ML algorithms. The goal is 
to develop acceleration techniques that improve the perfor-
mance of learning algorithms. Based on the understanding 
of first-order, gradient-based dynamic games such as (18) 
(LGD), recent research efforts have focused on high-order 
gradient methods (which can be dated back to Nesterov’s 
momentum idea [48]), with researchers endeavoring to pro-
pose a general framework that generalizes the momentum 
for generation of accelerated gradient-based algorithms 
[91]. On account of the close relationships among Nash 
equilibrium, variational problems, and dynamical systems 
[26], one approach for developing acceleration is to general-
ize the concept momentum by formulating the equilibrium 
seeking as a variational (optimization) problem [26], [94], 
and then investigate acceleration methods within the opti-
mization context using, for example, variational analysis 
[91], extragradient [94], and differential equations [95]. In 
addition to these works, the reader is referred to [25] for a 
review on the optimization-based approach. On the other 
hand (as depicted in Figure 3), a learning process, in gen-
eral, is a feedback system, and it is not surprising that con-
trol theory can play a part in designing the acceleration. For 
example, recent studies on reinforcement learning demon-
strate that passivity-based control theory can be leveraged 
in designing high-order learning algorithms [96], [72], 
where the learning rule is the control law to be designed. In 
[97], the use of memory in best response maps is promoted 
to accelerate convergence in Nash seeking and demon-
strates substantial improvements. In addition to the previ-
ously mentioned references, the reader is referred to [98] for 
a review on control-theoretic approaches on distributed 
Nash equilibrium seeking, and [99] for the use of extreme 
seeking in the learning process.

The recent advance in the third research direction is, in 
part, driven by multiagent reinforcement learning and its 
applications such as multiagent robotic control [100]–[102]. 
Unlike the first two directions, where the learning dynam-
ics are primarily studied in the context of repeated games, 
the third research direction focuses on games with dynamic 
information (see the “Dynamic Games” section). In this 
context, the appropriate learning objective, out of practical 
consideration [22], is to obtain stationary strategies that are 
subgame perfect [103] (see the “Dynamic Games” section 
for the definition of subgame perfectness). Unlike the first 
two, where the change to payoffs resulting from a certain 
action completely stems from the opponents’ move, the 
feedback each player receives in dynamic games not only 
depends on other players’ moves but also the dynamic envi-
ronment. Moreover, when making decisions at each state, 
players must trade off current stage payoffs for estimated 
future payoffs while forming predictions on the opponent’s 
strategies. A dynamic tradeoff makes the analysis of learn-
ing in stochastic games potentially challenging [104].

The earlier works for such Markov perfect Nash equilib-
ria are largely based on dynamic programming [105], [106], 
which requires global information feedback (a restrictive 
assumption in practice). The recent efforts focus on various 
approaches to lessen this requirement. Currently, there are 
mainly three areas of research regarding learning in 
dynamic games. The first approach is to extend learning 
dynamics in repeated games to dynamic ones. Built upon 
similar ideas in (BR-d), two-timescale dynamics for zero-
sum Markov games is considered in [104] and [107]. Mean-
while, gradient play is also investigated in linear-quadratic, 
zero-sum games [67], [108], [109]. The key challenge in the 
approach, particularly in the case of Markov games, is to 
properly construct the score function (which balances cur-
rent stage and future payoffs). Refer to the mentioned refer-
ences for more details and [87] for an overview. 

The second approach is to extend learning methods 
in single-agent Markov decision processes to Markov 
games. However, the direct extension of methods such as 
Q-learning [110], policy gradient [37], and actor-critic [55] 
often fail to deliver desired results due to the nonstation-
arity issue [111]. One natural way to overcome the nonsta-
tionarity issue is to allow players to exchange information 
with neighbors [112], [113], enabling players to jointly 
identify nonstationarity created by the dynamic environ-
ment. For more details regarding this approach, refer to 
recent reviews [87], [111]. Finally, the third approach con-
siders a unilateral viewpoint of dynamic games. Unlike 
the first two approaches where learning processes are 
still investigated in a competitive environment, the third 
one interprets learning in Markov games as an online 
optimization problem [114], [115], where players make 
decisions independently based on the received feedback. 
This approach accounts for fully decentralized learning 
where, from each player’s perspective, other players are 
considered as a part of the environment. The key idea 
of this approach is to leverage the regret-minimization 
technique [21], which leads to many successes in solving 
extensive-form games of incomplete information [116]. 
Despite recent advances regarding the first two approaches 
[67], [87], [104], [107], [117] and positive results for the last 
one [114], [115], [118], we still lack a unified framework 
and thorough understanding regarding the learning pro-
cess in general Markov games. Decentralized learning in 
dynamic games remains an open area for researchers 
from diverse communities.

GAME-THEORETIC LEARNING OVER NETWORKS
Learning in games is not only intellectually interesting 
but also practically useful. When combined with game-
theoretic modeling, such learning methods (thanks to 
their decentralized and adaptive nature) provide a com-
prehensive tool kit for designing resilient, agile, and com-
putationally efficient controls or mechanisms for diverse 
applications of networks.
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This section demonstrates that such a combination of 
game-theoretic models and associated learning dynam-
ics, referred to as game-theoretic learning, has become indis-
pensable for modern network problems. On the one hand, 
these networks often admit complex topological struc-
tures and heterogeneous nodes, resulting in large-scale 
complex systems (making centralized controls or mecha-
nisms either impractical or costly). In contrast, game-the-
oretic models treat each node in the network as a rational 
and self-interested player. The heterogeneous nature 
is captured by players’ distinct utilities and action sets 
as well as information available to them, leading to a 
bottom-up approach for designing decentralized and 
scalable mechanisms and controls. On the other hand, 
modern networked systems (such as wireless communi-
cation networks and smart grids) operate in a dynamic 
or adversarial environment, calling for learning-based 
mechanisms that are responsive to changes in the envi-
ronment or malicious attacks from adversaries. As shown 
in the previous section, game-theoretic learning provides 
a self-adaptive procedure for each player in the system, 
according to which players adjust their moves based on 
feedback from the environment (resulting in desired col-
lective behaviors).

Thanks to its advantageous features over the central-
ized approach, game-theoretic learning has gained popu-
larity among researchers working on multiagent systems 
and network applications. There have been numerous 
encouraging successes in many fields, ranging from wire-
less and Internet of Things (IoT) communication networks 
[119]–[123], smart grid and power networks [3], [4], [124], 
[125], and infrastructure systems [126]–[129], to cybersecu-
rity applications [130]–[134]. In the following, some repre-
sentative works in these fields are presented. The section 
focuses on the applications of learning methods in wireless 
communications, smart grids, and distributed ML. Other 
related applications will be briefly discussed at the end of 
the section.

Next-Generation Wireless Networks
Next-generation wireless communication technologies 
offer an accommodating and adaptive solution that meets 
the requirements of a diverse range of use cases within a 
common network infrastructure, providing the necessary 
flexibility for service heterogeneity and compatibility [7]. 
Such architecture, as noted in [135], aims to meet the fol-
lowing demands:

»» increased indoor and small cell/hot spot traffic 
(which will comprise the majority of mobile traffic 
volume), leading to complex network structures

»» higher numbers of connected heterogeneous devices 
(stemming from the IoT), which will support massive 
machine-to-machine communications and applications

»» improved energy consumption or efficient power 
control for reducing carbon footprint.

From a system science perspective, these requirements 
impose a large-scale, time-variant, and heterogeneous net-
work topology on modern wireless communication sys-
tems, as shown in Figure 7. Hence, it is impractical to 
manage/secure the wireless communications network in a 
centralized fashion. To address this challenge, game-theo-
retic learning provides a scalable, distributed solution 
with adaptive attributes. In the following, the dynamic 
secure routing mechanism is used to illustrate how game-
theoretic learning contributes to a resilient and agile com-
munication system.

Security of routing in a distributed cognitive radio (CR)  
network is a prime issue, as the routing may be compro-
mised by unknown attacks, malicious behaviors, and unin-
tentional misconfigurations (which makes it inherently 
fragile). Even with appropriate cryptographic techniques, 
routing in CR networks is still vulnerable to attacks in the 
physical layer, which can critically compromise perfor-
mance and reliability. Most of the existing work focuses on 
resource-allocation perspectives, which fail to capture a 
user’s lack of knowledge of the attacker due to the distrib-
uted mechanism. To address these issues, [120] provides a 
learning-based secure scheme that allows the network to 
defend against unknown attacks with a minimum level of 
deterioration in performance.

Consider , ,G N Ew w w|= ^ h  which is a topology graph for a 
multihop CR network, where { , , , }n n nNw N1 2 f=  is a set of 
secondary users, and Ew  is a set of links connecting these 
users. The system state s indicates whether nodes are occu-
pied by the primary users. The objective of the secondary 
user is to find an optimal path to its destination. In multi-
hop routing, a secondary user ni  starts with an exploration 
of neighboring nodes that are not occupied and then 
chooses a node among them, to which the user routes data. 
The selected node initializes another exploration process 
for discovering the next node, and the same process is 
repeated until the destination is reached.

Let ( , ) {( , ), { , , , , }}L n l l L0 0 1 2Pi i i i i i| f!=  be the multihop 
path from the node ni  to its destination, where Li  is the 
total number of explorations until it reaches its destination. 
Suppose there are J jammers in the network, the set of these 
jammers is given by { , , , }.J1 2J| f=  Let , ,jR Jj !  be the 
set of nodes that are under the influence of jammer j. 
Denote the joint action of the jammers by [ ] ,rr j j J= !  where 

.r Rj j!  A zero-sum game formulation is proposed in [120], 
where secondary users aim to find an optimal routing path 
by selecting ( , ),L0Pi i  while the jammers aim to compro-
mise the data transmission by choosing r. The expected 
utility function is

[ ( , ( , ), )] ,lnu s L q0 rE EP ( , )
( , )

( , )
( , )

s i i i s n l
n l

n l
n l

l

L

1 1
1

i i

i i

i i

i i

i

i

mx=- +- -
=

` j= G/

where q( , )
( , )
n l
n l

1i i

i i
-  is the probability of successful transmissions 

from node ( , )n l 1i i -  to node ( , ),n li i  and ( , )
( , )
n l
n l

1i i

i i
m -  is the 
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FIGURE 8 An illustration of a random network topology for 500 sec-
ondary users with a source (S) and a destination (D), and routes 
generated by an ad hoc on-demand distance vector (AODV) algo-
rithm and the proposed secure routing algorithm in a 2-km × 2-km 
area. The primary user (PU) footprint denotes the set of nodes not 
available to secondary users. Without an attacker, the AODV 
establishes (a) the route path described by the solid line, while (b) 
the route path (the blue dashed line) is generated by the 
Boltzmann–Gibbs learning method. Even though the AODV path 
is the shortest path between the source and the destination, it is 
disrupted by the presence of malicious attacks. In contrast, the 
learning method can develop (c) a new route path that circumvents 
jammers, leading to a resilient routing mechanism.

transmission delay between these two nodes. Here, the 
expectation [·]Es  is taken over all the possible system states.

Due to the lack of complete knowledge of adversaries 
and payoff structures, Boltzmann–Gibbs reinforcement 
learning (SBR-d) is utilized to find the optimal path because 

of its capability of estimating the expected utility. The 
resulting secure routing algorithm can spatially circum-
vent jammers along the routing path and learn to defend 
against malicious attackers as the state changes. As shown 
in Figure 8, the routing path generated from the proposed 
routing algorithm in [120] and [136] can avoid the nodes 
that are compromised by the jammers. Thus, the routing 
algorithm stemmed from the proposed game-theoretic for-
mulation provides more resilience, security, and agility 
than the ad hoc on-demand distance vector (AODV) algo-
rithm as AODV fails to dynamically adjust the routing path 
in the case of a malicious attack. Moreover, the proposed 
routing algorithm can reduce the delay time incurred by 
the attack due to its adaptive and dynamical feature (and 
thus is more efficient than the AODV).

The Smart Grid
The gradual replacement of conventional energies with 
renewable energies greatly helps with the reduction of green-
house gases and mitigation of climate change. Currently, 
more microgrids are being integrated with the main power 
grid, which are green systems that rely on renewable distrib-
uted resources such as wind turbines and fuel cells. As dis-
played in Figure 9, the integration of microgrids can enhance 
the stability, resiliency, and reliability of the power system as 
they can operate independently from the main power grid in 
an autonomous manner. Such integration (together with 
smart meters and appliances) leads to the smart grid, a 
modern infrastructure for reliable delivery of electricity.

The future smart grid is envisioned as a large-scale cyber-
physical system comprising advanced power, communica-
tions, control, and computing technologies. To accommodate 
these technologies employed by different parties in the grid 
(and to ensure an efficient and robust operation of such het-
erogeneous and large-scale cyberphysical systems), game-
theoretic methods have been widely employed in smart grid 

Main Power Grid

Network of Microgrids Composition of Microgrid

Microgrid

FIGURE 9 The integration of microgrids. A microgrid consists of a controller, consumers, generators, and energy storage. In the grid, 
microgrids can either be connected to the main grid or other microgrids, and these networked microgrids can operate, communicate, 
and interact autonomously to efficiently deliver power and electricity to their consumers.
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management problems. Microgrids are modeled as self-
interested players that can operate, communicate, and inter-
act autonomously to efficiently deliver power and electricity 
to their consumers. Here, a microgrid management mecha-
nism developed in [124] is presented. Such a mechanism is 
built on game-theoretic learning and enables autono-
mous management of renewable resources.

The system model considered in [124] includes genera-
tors, microgrids, and communications. As illustrated in 
Figure 10, generators in the upper layer determine their 
amount of power to be generated and the electricity price, 
then send them to the bottom layer. A microgrid can gener-
ate renewable energies and make decisions by responding 
to the strategies of the generators and other microgrids to 
optimize their payoffs, which is specified in the following 
game-theoretic model.

Let { , , , , }r N1 2Nd df=  be the set of N 1d +  buses in a 
power grid, where r denotes the slack bus. Assume that a 
smart grid is composed of load and generator buses, and let 

,p pg l
i i , and ii  be the power generation, power load, and 

voltage angle, respectively, at the ith bus. Note that the 
active power injection at the ith bus satisfies

, ,p p p i Ni i i d
g l 6 != -

while the balance of the grid gives .p pi i i i
g l

N Nd dR R=! !  Let 
: { , , ..., }N1 2N Nd3=  be the set of N buses that can generate 

renewable energies, such as wind and solar power.
In the game considered in [124], the utility function of 

the ith bus not only measures economic factors related to 
power generation but also the efficiency of the microgrids. 
Before giving the mathematical definition of the utility 
function, we first introduce the following notations. Let ci  
be the unit cost of generated power for the ith player, and c 

the unit price of renewable energy for sale defined by the 
power market. ,c ci  are quantities relevant to the profit 
gained by the bus. For efficiency, denote by ri  a weight-
ing parameter that is a measurement of the importance 
of regulations of voltage angle at the ith bus. Further, 
[ ] [ ] ,s b, ,ij i j ij i j

1
NNd d=-! !

-  where bij  is the imaginary part of the 
element (i, j) in the admittance matrix of the power grid. 
Moreover, each microgrid has a maximum generation, 
which is denoted by .pi

g
r  Finally, note that as a physical con-

straint, [ ]sij  and [ ]pi  satisfy (23) due to the power flow  
equation [124]

	 , ,s p s p s p i N
\

ij j
j

ij
j i

j i ii i
NN Nd

6 !i+ = -
!! !

/ / � (23)

where ii  is the voltage angle of the ith bus. Using the afore-
mentioned notations, the utility function of the ith bus is 
defined as

( , ) ,

 , .

u p p c p c p p r s p

p p i

2
1

0 N

i i i i i i i i ij
j

j

i i

g g g l g 2

g g

Nd

|

# # !

=- - - -
!

-

r

^ ch m/

To seek the Nash equilibrium, three learning methods 
are proposed, all of which are based on (BR-d). The first 
two algorithms are the parallel-update algorithm (PUA) 
and random-update algorithm (RUA) studied in [119]. PUA 
is essentially (BR-d), with the learning rate i

km  being zero 
for all i, and all players updating their strategies in parallel. 
As its name suggests, RUA incorporates randomness into 
(BR-d), resulting in an greedy-e  algorithm: players update 
their strategies according to (10) with probability ,1 e-  
with ( , )0 1!e  and retain their previous strategies other-
wise. Players always update their strategies in every round 
when :0e =  in this case, RUA reduces to PUA.

However, [as special cases of (10)] 
PUA and RUA require global infor-
mation regarding the grid, includ-
ing the specific generated power of 
generators as well as other players› 
active power injections (which are 
assumed to be private in practice). 
Hence, implementing these algo-
rithms requires communication net-
works to broadcast information to 
players, which is costly and not con-
fidential. In this case, incorporating 
utility estimation is a possible remedy, 
and (SBR-d) can be applied as in the 
wireless setting introduced in the 
previous section. Another simpler 
approach, shown in [124], is to modify 
(BR-d) using power flow equations 
in the smart grid. Based on a phasor 
measurement unit (PMU), the third 
algorithm [termed a PMU-enabled 

Generators

Communication
Tower

Renewable Energy Generators

Power Transmission Line

Communication Link

FIGURE 10 The smart grid hierarchy model. The upper layer containing conventional gen-
erators forms a generator network, and the distributed renewable energy generators in the 
bottom layer constitute the microgrid network. The information exchange (such as the elec-
tricity market price and amount of power generation) between two layers is through the 
communication network layer in the middle.
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Microgrids
Load
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Distributed Controller

Storage

Power
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FIGURE 11 The framework used to implement the phasor-measurement-unit (PMU)-enabled distributed algorithm. A PMU measures the 
voltage angle at the bus, and the controller generates a command regarding the amount of microgrid-renewable energy injected from 
the local storage to the grid based on the received voltage angle. 

distributed algorithm (PDA)] enables each player to compute 
the aggregation of others’ actions, with the player’s voltage 
angle ii  being the only information needed. Therefore, by 
considering the power flow equation (23), a player does not 
need other players’ private information of active power 
injection when using a PDA (as shown in Figure 11). Com-
pared with the other two, a PDA requires much less infor-
mation and is more self-dependent as players need only 
their real-time voltage angles ii  and common knowledge 
of the electricity price.

As indicated in [124], effectiveness and resiliency of the 
algorithm have been validated via case studies based on 
the IEEE 14-bus system: the game-theory-based distributed 
algorithm not only converges to the unique Nash equilib-
rium but also provides strong resilience against fault 
models (generator breakdown, microgrid turn off, and 
open circuit of the transmission line) and attack models 
(data-injection attacks, unavailability of PMU data, and 
jamming attacks). Strong resilience enables the microgrids 
to operate properly in unanticipated situations. Moreover, 
the distributed algorithm enables autonomous manage-
ment of renewable resources and plug-and-play feature of 
the smart grid. The proposed learning algorithm only 
requires the players to have common knowledge without 
revealing their private information, which increases secu-
rity and privacy and reduces communication overhead.

Distributed ML Over Networks
The rise of big data has led to new demands for large-scale 
ML systems that promise adequate capacity to digest mas-
sive data sets and offer powerful predictive analytics. With 

the unrestrainable growth of data, large-scale ML must 
address new challenges regarding the scalability and effi-
ciency of learning algorithms with respect to computa-
tional and memory resources. Compared with classical ML 
approaches that are designed to learn from a single inte-
grated data set, one of the promising research areas of 
large-scale ML is distributed ML over networks (DMLONs), 
which aims to develop efficient and scalable algorithms 
with reasonable requirements of memory computation 
resources by allocating the learning processes among sev-
eral networked computing units with distributed data sets.

The key feature of DMLONs is that data sets are stored 
and processed locally on these computing units, which 
enables distributed and parallel computing schemes in large-
scale ML systems. Compared with centralized approaches, 
distributed ML not only avoids maintaining and mining a 
central data set but also preserves data privacy as these net-
worked units exchange knowledge about learned models 
without the exchange of raw, private data.

Based on the idea of “local learning and global integra-
tion,” DMLONs utilizes different learning processes to 
train several models from distributed data sets, then pro-
duces an integration of learned models that increases the 
possibility of achieving higher accuracy (especially on a 
large-size domain). For example, in federated learning 
[137], global integration is created by a third-party coordi-
nator other than computing units, which makes networked 
computing units collaboratively train an ML model using 
their data in security. On the other hand (as indicated in 
[138]), such a global integration can also stem from the 
collective patterns of local learning without external 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:38:45 UTC from IEEE Xplore.  Restrictions apply. 



62  IEEE CONTROL SYSTEMS »  AUGUST 2022

enforcement. The key behind this bottom-up integration is 
that each computing unit is modeled as a self-interested 
player that learns the learning model based on the local 
data set as well as the feedback from its neighbors. It is 
shown in [138] that by modeling DMLONs as a noncooper-
ative game, game-theoretic learning methods lead to com-
munication-efficient, distributed ML where the global 
outcome is characterized by the Nash equilibrium result-
ing from players’ self-adaptive behaviors.

Specifically, the networked system of computing units is 
described by a graph with the set of nodes { , , , }N1 2Nm| f=  
representing these units. Each node i Nm!  possesses 
local data that cannot be transferred to other nodes. In 
the game model considered in [138], instead of fixing the 
network topology, nodes can determine connectivity of 
the network based on their attributes when they perform 
learning tasks (which results in a network-formation 
game). In mathematical terms, the action of node i con-
sists of two components: the learning parameter Ri

d!i  
and network-formation parameter .e Ri

N 1! -  The first 
component ii  corresponds to weights or parameters of 
the ML model that capture the local learning process at 
node i. The corresponding empirical loss (given the local 
data) is denoted by ( ) .Li ii  In addition to this learning 
parameter ,ii  the network-formation parameter ei  plays 
an important role in the global integration. The parameter 

( ) [ , ]e e 0 1,i i
j

j i j
N 1

N| != ! !
-  denotes the concatenation of 

weights on the directed edges from node i to other nodes, 

where ei
j  can be interpreted as the attention node i pays to 

the local learning at node j (which further influences com-
munication among nodes). During the distributed learn-
ing process, each node can choose to communicate with its 
neighbors to exchange learning parameters if their objec-
tives are aligned. Otherwise, the corresponding edge 
weight ei

j  is set to zero. For node i, the communication cost 
is ( , , ).C ei i i ii i-  In the game considered in [138], each node 
aims to maximize its utility function, defined as

( , , , ) ( ) ( , , ).u e e L C ei i i i i i i i i i i|i i i i i=- -- - -

In this definition, the first term ( )Li ii  captures the local 
learning process at node i, whereas the second term 

( , , )C ei i i ii i-  depicts interactions among nodes. The objec-
tive of each node is to improve the performance of learning 
while reducing communication overhead.

A two-layer learning approach is proposed in [138] to 
find the Nash equilibrium of the game, and a schematic 
representation is provided in Figure 12. The outer layer cor-
responds to network-formation learning, where each node 
decides its network-formation parameter ei  with the learn-
ing parameter fixed, and the joint parameters of all nodes 

( )e ei i Nm= !  give rise to a new network topology (leading 
to efficient communication). In network-formation learn-
ing, each node decides its optimal parameter ei  using 
gradient play (18). Computing the individual payoff gra-
dient ( , , , )u e ee i i i i iid i i- -  relies on the stabilized learning 
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FIGURE 12 A schematic representation of two-layer learning. The directed red lines represent communication between nodes. In the 
network-formation layer, the nodes learn to eliminate/establish links with other nodes to achieve efficient communication. In the distrib-
uted ML layer, the nodes communicate their parameters with their neighbors and perform their own learning tasks. 
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parameters ,i ii i-  given by the inner layer: the distributed 
learning layer. In this inner learning, the network-forma-
tion parameter is fixed, and each node implements online 
MD for seeking the Nash equilibrium with the local feed-
back under the current network topology (as the networked 
nodes can exchange information with their neighbors).

Compared with existing works on distributed ML, the 
game-theoretic method studied in [138] enables distributed 
ML over strategic networks. On the one hand, the global 
outcome characterized by the Nash equilibrium is self-
enforcing, resulting from the coordinated behaviors of 
independent computing units. This bottom-up approach, 
compared with the external enforcing one in federated 
learning, scales efficiently when additional computing 
units are introduced into the system. On the other hand, 
strategic interactions over the network (described by the 
network-formation decision of each node) create a network 
intelligence that allows each computing unit to adaptively 
adjust the underlying topology, resulting in a desired dis-
tributed learning pattern that minimizes communication 
costs during the learning process.

Emerging Network Applications
The aforementioned examples demonstrate that game-the-
oretic learning provides a natural, scalable design frame-
work that creates network intelligence for autonomous 
control, management, and coordination of large-scale 
complex network systems with heterogeneous parties. The 
following offers thoughts regarding various applications 
of game-theoretic learning in a broader context, showing 
that such a design framework is pervasive for diverse net-
work problems.

Interdependent infrastructure networks (including 
wireless communication networks and smart grids) play a 
significant role in modern society, where IoT devices are 
massively deployed and interconnected. These devices are 
connected with each other and to cellular/cloud networks, 
creating multilayer networks (referred to as networks of net-
works [139]). The smart grid is one prominent example, where 
wireless sensors collect the data of buses and power trans-
mission lines, forming a sensor network built on power net-
works for grid monitoring and decision-planning purposes 
[140]. The networks-of-networks model has also been exten-
sively studied in other infrastructure networks. For instance, 
in an intelligent transportation network, apart from vehicle-
to-vehicle (V2V) communications, vehicles can also commu-
nicate with roadside infrastructures or units (which belong 
to one or several service providers) to exchange various 
types of data related to different applications, such as GPS 
navigation. In this case, the vehicles form one network while 
the infrastructure nodes form another. The interconnections 
between two networks lead to intelligent management and 
operation of modern transportation networks.

Due to heterogeneous and multitier features of interde-
pendent networks, the required management mechanisms 

or controls vary for different networks. For example, the 
connectivity of sensor networks in smart grids or V2V com-
munication networks requires higher security levels than 
infrastructure networks because cyberspace is more likely 
to be targeted by adversaries [122]. Therefore, to manage 
and secure interdependent infrastructure networks, game-
theoretic learning methods (especially heterogeneous 
learning [46], [53]) can be used to design decentralized and 
resilient mechanisms that are responsive to attacks and 
adaptive to the dynamic environment (as different parties 
in interdependent infrastructure networks may acquire 
different information). For further information on this 
topic, refer to [53], [139]. and references therein.

Similar to distributed optimization and ML based on 
game-theoretic learning, the control of autonomous mobile 
robots can also be cast as a Nash-equilibrium-seeking 
problem over networks, where the equilibrium is viewed as 
the desired coordination of all robots [101], [102]. For appli-
cations of this kind (where the nature of robot movements 
determines the network topologies), dynamic games over 
networks are considered, and corresponding learning algo-
rithms are employed. Based on their observations of the 
surroundings, robots rely on game-theoretic learning (such 
as reinforcement learning) to develop self-rule policies, 
leading to a decentralized operation of multiagent robotic 
systems. Moreover, when combined with powerful func-
tion approximators such as deep neural networks, rein-
forcement learning has proven to be effective for real-world, 
multiagent robotic controls. This area of research, termed 
deep multiagent reinforcement learning [87], [141], is growing 
rapidly and attracting the attention of researchers from 
ML, robotics, and control communities.

In addition to these prescriptive mechanisms in engi-
neering practices, game-theoretic learning also provides a 
descriptive model for studying human decision making and 
strategic interactions in epidemiology and social sciences, 
where the Nash equilibrium represents a stable state of the 
underlying noncooperative game. For example, a differential 
game model is proposed in [142] to study viruses or diseases 
spreading over the network, and authors develops a decen-
tralized mitigation mechanism for controlling the spread. 
Such an approach is further explored in [143], where an opti-
mal quarantining strategy is proposed to suppress two 
interdependent epidemics spreading over complex net-
works. Furthermore, such a strategy is shown to be robust 
against random changes in network connections [143].

CONCLUSION
This article provided a comprehensive overview of game 
theory basics and related learning theories, which serve as 
building blocks for a systematic treatment of multiagent 
decision making over networks. We elaborated on game-
theoretic learning methods for network applications drawn 
from spanning emerging areas such as next-generation 
wireless networks, smart grids, and networked ML. In each 
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area, we identified the main technical challenges and dis-
cussed how game theory can be applied to address them 
using a bottom-up approach.

From the surveyed works, it was demonstrated that non-
cooperative game theory is one of the cornerstones of 
decentralized mechanisms for large-scale complex net-
works with heterogeneous entities, where each node is 
modeled as an independent decision maker. The resulting 
collective behaviors of these rational decision makers over 
the network can be mathematically depicted by the solu-
tion concept: the Nash equilibrium. In addition to various 
game models, learning in games is of great significance for 
creating distributed network intelligence, which enables 
each entity in the network to respond to unanticipated situ-
ations (such as malicious attacks from adversaries in cyber-
physical systems [140]). Under local or individual feedback, 
the introduced learning dynamics leads to a decentralized 
and self-adaptive procedure, yielding desired collective 
behavior patterns without any external enforcement.

Beyond the existing successes of game-theoretic learning 
(which mainly focus on learning in static repeated games), it 
is also of interest to investigate dynamic game models and 
associated learning dynamics to better understand the deci-
sion-making process in dynamic environments. The motiva-
tion for studying dynamic models and related learning 
theory stems, on the one hand, from the pervasive presence 
of time-varying network structures such as generation and 
demand in the smart grid [124]. On the other hand, by defin-
ing auxiliary state variables, the problem of decision making 
under uncertainties can be modeled as a dynamic game, 
where the state of the game includes the hidden information 
players do not have access to when making decisions. For 
example, the state variable can capture uncertainty of the 
environment (as discussed in the context of the dynamic 
routing problem [120]) or global status of the entire system 
(as shown in the example of distributed optimization [144]). 
The dynamic game models not only simplify construction of 
players’ utilities and actions (providing a clear picture of the 
strategic interactions under uncertainties in the dynamic 
environment) but also offer a scalable design framework for 
prescribing players’ self-adaptive behaviors, which leads to 
equilibrium states under various feedback structures.

This article presents a comprehensive overview of 
game-theoretic learning and its potential for tackling chal-
lenges emerging from network applications. The combina-
tion of game-theoretic modeling and related learning 
theories constitutes a powerful tool for designing future 
data-driven network systems with distributed intelligent 
entities, which serve as the bedrock and a key enabler for 
resilient and agile control of large-scale artificial intelli-
gence systems in the near future.
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[53] Q. Zhu, H. Tembine, and T. Başar, “Hybrid learning in stochastic games 
and its application in network security,” in Reinforcement Learning and Ap-
proximate Dynamic Programming for Feedback Control. Hoboken, NJ, USA: Wi-
ley, 2012, pp. 303–329.
[54] G. Neu, A. Jonsson, and V. Gómez, “A unified view of entropy-regular-
ized Markov decision processes,” 2017, arXiv:1705.07798.
[55] V. R. Konda and V. S. Borkar, “Actor-critic–type learning algorithms 
for Markov decision processes,” SIAM J. Control Optim., vol. 38, no. 1, pp. 
94–123, 1999, doi: 10.1137/S036301299731669X.
[56] D. S. Leslie and E. J. Collins, “Individual Q-learning in normal form 
games,” SIAM J. Control Optim., vol. 44, no. 2, pp. 495–514, 2005, doi: 10.1137/
S0363012903437976.
[57] J. Hofbauer, S. Sorin, and Y. Viossat, “Time average replicator and 
best-reply dynamics,” Math. Oper. Res., vol. 34, no. 2, pp. 263–269, 2009, doi: 
10.1287/moor.1080.0359.
[58] P. Mertikopoulos and W. H. Sandholm, “Riemannian game dynamics,” 
J. Econ. Theory, vol. 177, pp. 315–364, Sep. 2018, doi: 10.1016/j.jet.2018.06.002.
[59] M. Benaïm, J. Hofbauer, and S. Sorin, “Stochastic approximations and 
differential inclusions, Part II: Applications,” Math. OR, vol. 31, no. 4, pp. 
673–695, Nov. 2006, doi: 10.1287/moor.1060.0213.
[60] A. Geramifard, T. J. Walsh, S. Tellex, G. Chowdhary, N. Roy, and J. P. 
How, “A tutorial on linear function approximators for dynamic program-
ming and reinforcement learning,” Found. Trends Mach. Learn., vol. 6, no. 4, 
pp. 375–451, 2013, doi: 10.1561/2200000042.
[61] T. Li and Q. Zhu, “On convergence rate of adaptive multiscale value 
function approximation for reinforcement learning,” in Proc. IEEE 29th Int. 
Workshop on Mach. Learn. Signal Process. (MLSP), 2019, pp. 1–6, doi: 10.1109/
MLSP.2019.8918816.
[62] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015, doi: 10.1038/nature14236.
[63] J. C. Spall, “A one-measurement form of simultaneous perturbation 
stochastic approximation,” Automatica, vol. 33, no. 1, pp. 109–112, 1997, doi: 
10.1016/S0005-1098(96)00149-5.
[64] M. Bravo, D. S. Leslie, and P. Mertikopoulos, “Bandit learning in con-
cave N-person games,” in Proc. Adv. Neural Inf. Process. Syst., pp. 5666–5676, 
2018. 
[65] L. Xiao, “Dual averaging methods for regularized stochastic learning 
and online optimization,” J. Mach. Learn. Res., vol. 11, pp. 2543–2596, Dec. 
2010.
[66] P. Mertikopoulos, C. Papadimitriou, and G. Piliouras, “Cycles in ad-
versarial regularized learning,” in Proc. Annu. ACM-SIAM Symp. Discrete 
Algorithms, 2018, pp. 2703–2717.
[67] E. Mazumdar, L. J. Ratliff, and S. S. Sastry, “On gradient-based learn-
ing in continuous games,” SIAM J. Math. Data Sci., vol. 2, no. 1, pp. 103–131, 
2020, doi: 10.1137/18M1231298.
[68] J. Hofbauer and S. Sorin, “Best response dynamics for continuous zero-
sum games,” Discrete Continuous Dyn. Syst. – B, vol. 6, no. 1, pp. 215–224, 
2006, doi: 10.3934/dcdsb.2006.6.215.
[69] J. Hofbauer and W. H. Sandholm, “On the global convergence of sto-
chastic fictitious play,” Econometrica, vol. 70, no. 6, pp. 2265–2294, 2002, doi: 
10.1111/1468-0262.00376.

[70] S. Perkins and D. S. Leslie, “Asynchronous stochastic approximation 
with differential inclusions,” Stochastic Syst., vol. 2, no. 2, pp. 409–446, 2012, 
doi: 10.1287/11-SSY056.
[71] A. Heliou, J. Cohen, and P. Mertikopoulos, “Learning with bandit feed-
back in potential games,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 
6369–6378, vol. 30.
[72] B. Gao and L. Pavel, “On passivity, reinforcement learning, and higher 
order learning in multiagent finite games,” IEEE Trans. Autom. Control, vol. 
66, no. 1, pp. 121–136, 2019, doi: 10.1109/TAC.2020.2978037.
[73] E. N. Barron, R. Goebel, and R. R. Jensen, “Best response dynamics for 
continuous games,” Proc. Amer. Math. Soc., vol. 138, no. 3, pp. 1069–1069, 
2010, doi: 10.1090/S0002-9939-09-10170-3.
[74] B. Swenson, R. Murray, and S. Kar, “On best-response dynamics in po-
tential games,” SIAM J. Control Optim., vol. 56, no. 4, pp. 2734–2767, 2018, doi: 
10.1137/17M1139461.
[75] B. Swenson, R. Murray, and S. Kar, “Regular potential games,” Games 
Econ. Behav., vol. 124, pp. 432–453, Nov. 2020, doi: 10.1016/j.geb.2020.09.005.
[76] M. Benaïm, J. Hofbauer, and S. Sorin, “Perturbations of set-valued dy-
namical systems, with applications to game theory,” Dyn. Games Appl., vol. 
2, no. 2, pp. 195–205, 2012, doi: 10.1007/s13235-012-0040-0.
[77] J. C. Harsanyi, “Games with randomly disturbed payoffs: A new ratio-
nale for mixed-strategy equilibrium points,” Int. J. Game Theory, vol. 2, no. 
1, pp. 1–23, 1973, doi: 10.1007/BF01737554.
[78] J. Hofbauer and E. Hopkins, “Learning in perturbed asymmetric 
games,” Games Econ. Behav., vol. 52, no. 1, pp. 133–152, 2005, doi: 10.1016/j.
geb.2004.06.006.
[79] H. P. Young, “The evolution of conventions,” Econometrica, vol. 61, no. 1, 
pp. 57–84, 1993, doi: 10.2307/2951778.
[80] H. P. Young, “Learning by trial and error,” Games Econ. Behav., vol. 65, 
no. 2, pp. 626–643, 2009, doi: 10.1016/j.geb.2008.02.011.
[81] J. Gaveau, C. J. Le Martret, and M. Assaad, “Performance analysis of 
trial and error algorithms,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 6, 
pp. 1343–1356, 2020, doi: 10.1109/TPDS.2020.2964256.
[82] J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma, “Payoff-based 
dynamics for multiplayer weakly acyclic games,” SIAM J. Control Optim., 
vol. 48, no. 1, pp. 373–396, 2009, doi: 10.1137/070680199.
[83] B. S. Pradelski and H. P. Young, “Learning efficient Nash equilibria in 
distributed systems,” Games Econ. Behav., vol. 75, no. 2, pp. 882–897, 2012, 
doi: 10.1016/j.geb.2012.02.017.
[84] J. R. Marden, “Selecting efficient correlated equilibria through dis-
tributed learning,” Games Econ. Behav., vol. 106, pp. 114–133, Nov. 2017, doi: 
10.1016/j.geb.2017.09.007.
[85] J. R. Marden, H. P. Young, and L. Y. Pao, “Achieving Pareto optimality 
through distributed learning,” SIAM J. Control Optim., vol. 52, no. 5, pp. 
2753–2770, 2014, doi: 10.1137/110850694.
[86] Z. Hu, M. Zhu, P. Chen, and P. Liu, “On convergence rates of game theo-
retic reinforcement learning algorithms,” Automatica, vol. 104, pp. 90–101, 
Jun. 2019, doi: 10.1016/j.automatica.2019.02.032.
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mand response management in the smart grid in a large population re-
gime,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 189–199, 2015, doi: 10.1109/
TSG.2015.2431324.
[126] J. Chen, C. Touati, and Q. Zhu, “A dynamic game approach to strategic 
design of secure and resilient infrastructure network,” IEEE Trans. Inf. Fo-
rensics Security, vol. 15, pp. 462–474, Jun. 2019, doi: 10.1109/TIFS.2019.2924130.
[127] L. Huang, J. Chen, and Q. Zhu, “A large-scale Markov game approach 
to dynamic protection of interdependent infrastructure networks,” in Proc. 
Int. Conf. Decis. Game Theory Security, 2017, pp. 357–376, doi: 10.1007/978-3-
319-68711-7_19.
[128] J. Chen and Q. Zhu, “Interdependent network formation games with 
an application to critical infrastructures,” in Proc. Amer. Control Conf. (ACC), 
2016, pp. 2870–2875, doi: 10.1109/ACC.2016.7525354.
[129] J. Chen, C. Touati, and Q. Zhu, “Heterogeneous multi-layer adversari-
al network design for the IoT-enabled infrastructures,” in Proc. IEEE Global 
Commun. Conf. (GLOBECOM 2017), 2017, pp. 1–6.
[130] Z. Xu and Q. Zhu, “A game-theoretic approach to secure control of 
communication-based train control systems under jamming attacks,” in 
Proc. 1st Int. Workshop on Safe Control Connected Auton. Veh., 2017, pp. 27–34, 
doi: 10.1145/3055378.3055381.
[131] Q. Zhu, W. Saad, Z. Han, H. V. Poor, and T. Başar, “Eavesdropping 
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