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[14]-[16]. making problems in multiagent networks calls for novel
Due to the proliferation of advanced technologies and models and approaches that capture the following charac-

services in modern network applications, solving decision-  teristics of emerging network systems and the design of
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nodes) aim to pursue their own goals with indepen-
dent decision-making capabilities
» the need for distributed or decentralized operation of

the system, when the underlying network is of a com-

plex topological structure and is too large to be man-

aged in a centralized approach

» the need for creating network intelligence that is

responsive to changes in the network and the envi-

ronment as the system often operates in a dynamic or

an adversarial environment.
Game theory provides a natural set of tools and frame-
works for addressing these challenges and bridging net-
works to decision making. It entails the development of
mathematical models that qualitatively and quantitively
depict how the interactions of self-interested agents with
different information and rationalities can attain a global
objective or lead to emerging behaviors at a system level.
Moreover, game-theoretic models capture the impact of
the underlying network topology on the process of dis-
tributed decision making, where agents plan their moves
independently according to their goals and local infor-
mation available to them, such as their observations of
their neighbors.

In addition to game-theoretic models over networks,
learning theory is indispensable when designing decentral-
ized management mechanisms for network systems to
equip networks with distributed intelligence. Through the
combination of game-theoretic models and associated
learning schemes, such network intelligence allows hetero-
geneous agents to interact strategically with each other and
learn to respond to uncertainties, anomalies, and disrup-
tions, leading to desired collective behavior patterns over

Summary
M odern network systems with heterogeneous entities call for
distributed and intelligent operations that are responsive
to uncertainties, anomalies, and disruptions within a dynamic
or an adversarial environment. The combination of game-theoret-
ic models and learning-based approaches equips the system
with decentralized intelligence, allowing heterogeneous agents
to strategically interact with each other and learn to adjust their
behaviors accordingly. This article presents an overview of
the confluence of networks, games, and learning, providing
a game-theoretic framework for multiagent decision making
over networks. Its focus is on widely applied game-theoretic
models and equilibrium concepts as well as associated learn-
ing schemes in games. According to their distinct natures in
exploration, learning schemes are categorized into two main
classes: exploitative reinforcement learning and exploratory
reinforcement learning. A comparison of the resulting dynam-
ics of learning algorithms from the two classes is presented,
highlighting the connections and differences in their explora-
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the network or an optimal system-level performance. The
key feature of such network intelligence is that even though
each agent’s decision-making process is influenced by the
others’ decisions, the agents reach an equilibrium state (that
is, a Nash equilibrium as we elucidate later, in an online and
decentralized manner). To equip networks with distributed
intelligence, networked agents should adapt themselves to
the dynamic environment with limited and local observa-
tions over a large network that may be unknown to them.
Computationally, decentralized learning scales efficiently
to large and complex networks and requires no global infor-
mation regarding the entire network (which is more practi-
cal compared with centralized control laws).

This article discusses the confluence of networks,
games, and learning, which establishes a theoretical under-
pinning for understanding multiagent decision making
over networks. We aim to provide a systematic treatment of
game-theoretic learning methods and their applications in
network problems, which meet the three requirements
specified in “Summary.” As shown in Figure 1, emerging
network applications call for novel approaches. Thanks to
their decentralized nature, game-theoretic models and
associated learning methods provide an elegant approach
for tackling network problems arising from various fields.
Specifically, the objectives are threefold:

1) to provide a high-level introduction to game-theo-
retic models that apply to multiagent decision-mak-
ing problems

2) to present the key analytical tool based on stochastic
approximation and Lyapunov theory for studying
learning processes in games and pinpoint exten-
sively studied learning dynamics

tion processes as well as equilibrium-convergence properties.
To demonstrate the broad applicability of this game-theoretic
framework, this article discusses, in detail, some representa-
tive research on next-generation wireless networks, smart
grids, and distributed machine learning (ML), while pointing the
reader to other emerging networks applications. In addition to
existing research on game-theoretic learning over networks,
this article also highlights several new angles and research on
learning in games that are, in part, driven by and closely related
to recent advances in ML and artificial intelligence, including
the study of equilibrium convergence in generic multiplayer
games, acceleration techniques for speeding up learning pro-
cesses, and extending learning algorithms to more compli-
cated dynamic games. The overall objective is to provide the
reader with a clear picture of the strengths and challenges of
adopting game-theoretic learning methods within the context
of network systems, and further identify fruitful future research
directions in both theoretical and applied studies.
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3) to introduce various multiagent systems and net-
work applications that can be addressed through
game-theoretic learning.

This work provides a clear picture of the strengths and
challenges of adopting novel game-theoretic learning
methods within the context of network systems. In this
article, complete-information games are the basis of the
subject, for which a brief introduction to both static and
dynamics games is provided. More comprehensive treat-
ments on this topic as well as other game models such as
incomplete information games can be found in [17] and
[19]. As most of the network topologies can be character-
ized by the structure of the utility function of the game [1],
[20], we do not articulate the influence of network topolo-
gies on the game itself. Instead, we focus on its influence on
the learning process in games (where players” information
feedback depends on the network structures) and present
representative network applications to showcase this influ-
ence. Refer to [1] and [20] for further information on games
over various networks.

The discussions are structured as follows. The “Non-
cooperative Game Theory” section introduces noncoop-
erative games and associated solution concepts, including
the Nash equilibrium and its variants, which capture the
strategic interactions of self-interested players. The
“Learning in Games” section moves to the main focus of
this article: learning dynamics in games that converge
to the Nash equilibrium. Within the stochastic approxi-
mation framework, a unified description of various
dynamics is provided, and the analytical properties can
be studied using ordinary differential equation (ODE)
methods. The “Game-Theoretic Learning Over Net-
works” section discusses applications of these learning
algorithms in networks, leading to distributed and
learning-based controls for network systems. Finally, the
“Conclusion” section closes the article. For the reader’s
convenience, notations that are frequently used are sum-
marized in Table 1.

NONCOOPERATIVE GAME THEORY

Game theory constitutes a mathematical framework with
two main branches: noncooperative and cooperative game
theory. Noncooperative game theory focuses on the strate-
gic decision-making process of independent entities or
players that aim to optimize their distinct objective func-
tions without any external enforcement of cooperative
behaviors. The term noncooperative does not necessarily
mean that players are not engaged in cooperative behav-
iors. Induced cooperative or coordinated behaviors do arise
in noncooperative circumstances within the context of the
Nash equilibrium, a solution concept of noncooperative
games. However, such coordination is self-enforcing and
arises from decentralized decision-making processes of
self-interested players. This will be further discussed in the
“Game-Theoretic Learning Over Networks” section where

Learning Network

@

Game Theory

FIGURE 1 The confluence of networks, games, and learning. The
combination of game-theoretic modeling and learning theories leads
to resilient and agile network controls for various networked systems.

(TABLE 1 The table of notations. )
- v
Symbol Meaning
N The set of players
ijeN Subscript index denoting players
N(i) The set of neighbors of player i
Ai The set of actions available to player i
A(A) The set of Borel probability measures
(The probability simplex in R for finite
action set A))
seS8 State variable
ui: IjenAj— R Player i’s utility function
aic A Action of player i
a-i € jenjziAj Joint actions of players other than i
ac ey A Joint actions of all players
7wi e A(A) Strategy of player i

7 € WjenjziA(A))

u;(7—) or u; e R4

Joint strategy of players other then i
Player i’s utility vector in finite games

Di(a) The individual payoff gradient of player i

D(a) The concatenation of {Di(a)}ien

I¥ The feedback of player i at time k

UfeR The payoff feedback received by player
i attime k

af e RIA! Estimated utility vector at time k

Uk e R Estimator of u;(z%) at time k

BR; Best response mapping for player i

QR¢ Regularized best response or quantal

response

N\ J
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Information in games refers to the structure regarding the knowledge players
acquire about the game and its history when they decide their moves.

game-theoretic methods for distributed machine learning
(ML) are introduced.

As briefly discussed, noncooperative game theory natu-
rally characterizes the decision-making process of heteroge-
neous entities acting independently over networks, which is
the main focus of this article. The following introduces vari-
ous game models and related solution concepts, including the
Nash equilibrium and its variants. Generally speaking, a
game involves the following elements: decision makers’ (play-
ers’) choices available to each player (actions), knowledge that
a player acquires for making decisions (information), and
each player’s preference ordering among its actions (utilities
or cost). The following is a short list of these concepts, which
will be further discussed and explained in this section:

» Players are participants in a game, where they com-
pete for their own good. A player can be an individ-
ual or encapsulation of a set of individuals.

» Actions of a player, in the terminology of control theory,
are the implementations of the player’s control.

» Information in games refers to the structure regarding
the knowledge players acquire about the game and
its history when they decide their moves. The infor-
mation structure can vary considerably. For some
games, the information is static and does not change
during the play. For other games, new information
will be revealed after players” moves as the “state” of
the game (a concept to be elucidated later) is deter-
mined by players’ actions during the play. In the
latter case, the information is dynamic. Both types of
games are addressed in this article.

» A strategy is a mapping that associates a player’s move

with the information available to him or her at the time
when he or she decides which move to choose.
A utility or payoff is often a real-valued function cap-
turing a player’s ordering preference among possible
outcomes of the game. Using the terminology in con-
trol theory, this can also be viewed as a cost function
for the player’s controls.

This list refers to elements of games in relatively impre-
cise common language terms, and more formal definitions
are presented in the next section. To facilitate this discus-
sion, noncooperative games are categorized into two main
classes: static and dynamic games, based on the nature of
the information structure.

)

v

Static Games
Static games are one shot, where players make decisions
simultaneously based on prior information on the games,
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such as sets of players” actions and their payoffs. In such
games, each player’s knowledge about the game is static
and does not evolve during the play. A static noncoopera-
tive game is mathematically defined as follows.

Definition 1 (Static Games)
A static game is defined by a triple G := (N, (A)ien, () icn),
where
» N=1{1,2,..., N} is a finite set of players.
» A; with some specified topology denotes the set of
actions available to the player i € N.
» u;i:Iljen Aj— R defines player i’s utility, and u:(a;, a-;)
gives the payoff of player i when taking action 4, given
other players’ actions a_;:= (a)) jen, j#i-

In static games, each player develops its strategy (a prob-
ability distribution over his or her action set) with the objec-
tive of maximizing the expected value of its own utility. If
players have finite action sets, then such a static game is
called a finite one. In this case, a strategy is a finite-dimensional
vector in the probability simplex over the action set, that is,
e A(A):={zeR* | z@)=0,Vae A, Zoean(a)=1).
If 7; is a unit vector e, a € A; with the ath entry being one
and zero for others, then it is a pure strategy (selecting
action a with probability one); otherwise, it is a mixed strat-
egy (choosing actions randomly under the selected proba-
bility distribution). Similarly, for infinite action sets, the
strategy is defined as a Borel probability measure over the
action set, with a Dirac measurement being the pure strat-
egy. By a possible abuse of notation, denote the set of Borel
probability measurements over A; by A(.A;). Unless speci-
fied otherwise, the static games considered in this article
are all assumed to be finite, where the player set and the
action sets are all finite.

As a special case of games with infinite actions, the mixed
extension of finite games is introduced in the sequel. Con-
sider a two-player finite game G := (N, (Ai)ien, (1i)ic 5), where
N ={1,2}, and the action sets are finite | A:| < oo, i € N.
Given the mixed strategies of players, 7z; € A(A), the
expected utility of player 7 is Es-z1,0-z[1i(a1, a2)]. With a
slight abuse of notation, denote this expected utility by
ui(m1, 72) = Eayomyar-m[ui(a1, a2)]. Then, studying the play-
ers’ strategic interactions is equivalent to considering the fol-
lowing infinite game G™ = (N, (A(A))ien, (U)icn), where
u; denotes the expected utility. In G*, an action is a vector
from the corresponding probability simplex, a convex and
compact set with a continuum of elements. Similar to the
notations used in the definition, for the mixed extension
G=, the joint action of players other than i is denoted by
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7i-i:=(mj)jen,jzi. Furthermore, let u;(7-) € R4 be the util-
ity vector of player i, given other players’ strategy profiles
7-i, whose ath entry is defined as w;(z-)(a):=ui(es, 7-i).
Due to the definition of expectation, ui(7;, 7-;) can be
expressed as an inner product (7, wi(7-)), which will be
used frequently later when discussing learning algorithms
in finite games. This mixed extension provides a geometric
characterization to the Nash equilibria of finite games, based
on variational inequalities, as discussed in the “Solution
Concepts” section. Meanwhile, this inner product expres-
sion connects learning theory in finite games with online
linear optimization [21], where the generic player’s decision
variable is 7; and the loss function specified by (., ui(z-)) is
linear in 7;.

Even though widely applied in modeling behaviors of
self-interested players, the static game model is far from
sufficient to cover multiagent decision-making problems
arising in different fields. For instance, when playing poker
games, new information will be revealed during game play
(such as cards played at each round) based on which play-
ers can adjust their moves. There are many games where
players” information about the game changes over time,
which cannot be suitably described by static games. There-
fore, dynamic game models are needed to capture informa-
tion changes.

Dynamic Games

To explicitly represent the dynamic nature of the decision-
making process, system theory terminology and the state
of the game should describe its evolution over a period of
time (which could be finite or infinite). Roughly speaking,
the current state specifies the current situation of the
dynamic game, including the set of players who are about
to take actions, actions available to them, and their utilities
at this time. The fundamental difference between static
and dynamic games is that, for the latter, the game changes
over time as players implement their sequences of actions
during the play. Hence, players” knowledge regarding the
game also evolves as players can fully or partially observe
the current state.

In the following, a subclass of Markov games is intro-
duced as an example of dynamic games, which is a very
popular game model for studies on multiagent sequential
decision making under uncertainties (such as multiagent
reinforcement learning [22]).

Definition 2 (Markov Games)
An N-person discrete-time infinite horizon discounted
Markov game consists of
» aplayerset N={1,2,...,N}
» a discrete time set N, :={1,2,...}, with actions by
players taken at each k € N
» a set A; with some specified topology (defined for
each i € N), corresponding to the set of actions or
controls available to player i

» a set S with some specified topology, denoting the
state space of the game, where sfeS, ke Ny repre-
sent the state of the game at time k;

» a transition kernel T: S X Iien Ai — A(S), according
to which the next state is sampled; skt T(s", ak),
where a*=(a}, ..., ak) is the N-tuple of actions at
time k€N, and s'e S is sampled from an initial
distribution

» an instantaneous payoff: u;: S XII; A; - R, defined
for each ie N and k € N, determining the payoff
u;(s*, a¥) received by player i at time k;

» a discounting factor y. Given {s', ..., s% ...;a,...,a" ...},
the discounted cumulative payoff for player i is
T ytui(sh, ay.

This definition characterizes only one special case of
dynamic games. Based on this definition, many other game
models can be derived. For example, state transitions can
be independent of players” actions as well as the current
state, yielding a special case of stochastic games (which
will be further discussed in another article in this special
issue of IEEE Control Systems [23]). We can also consider
continuous-time dynamic games where the transition is
described by a differential equation, leading to a differen-
tial game model. For extensive coverage of dynamic game
models, refer to [17].

With full observation of states, consider the stationary
strategy 7:: S — A(Ai), by which players plan their moves
based only on the current state s € S. In this case, the state
variable s characterizes players’ knowledge of the game as
the actions, utilities, and next possible states are all deter-
mined by the current state. For dynamic games under par-
tial observation and/or non-Markovian transition, refer to
[17] as these topics are beyond the scope of this article.

Solution Concepts
The solution or outcome of any given game is more or less
a matter of understanding game rules and relationships
between players. However, besides these concrete matters,
there exist general principles that dictate players” behav-
iors and apply to all games. These principles revolve
around the notion of rationality, based on which we intro-
duce the solution concept of Nash equilibrium and some of
its variants. Mathematically, a solution to an N-person
game is a collection of all players’ strategies, which has
attractive properties expressed in terms of payoffs received
by the players. In addition, players can admit different
strategies depending on how the game is defined and, in
particular, the information that players acquire. The fol-
lowing discussion on solution concepts begins with static
games, where the information structure is relatively simple.
Compared with single-agent optimization problems, the
analysis of games is more involved as each player’s utility is
determined not only by its own decision but also by others’
moves. Hence, when a player takes an action, it must con-
sider possible moves of the other players (which leads to the

AUGUST 2022 « IEEE CONTROL SYSTEMS 39

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:38:45 UTC from IEEE Xplore. Restrictions apply.



notion of best response). To introduce “best response,” for
clarity, but without any loss of conceptual generality, we
focus on games with two players. For player 1, given the
other player’s strategy 7, the optimal choice is

71 € BR1(72) := argmax{(z, u1(72))}, @)

which is referred to as a best response of player 1 to player
2's strategy m2. BRi(') is the best response set of player 1.
Similarly, given player 1’s strategy 71, a best response of
player 2 is 77, € BRa(71):=argmaxzeay{ {7, uz(z1)) }. Hence,
a point-to-set mapping BR: A(A1) X A(Az)— 2444 can
be defined as the concatenation of BR; and BR,. Given a
joint strategy profile 7 = (71, 72),

BR(ﬂ) ::{(7[’1, ﬂ,2)|ﬂ11 EBR](ﬂz), ﬂ’zEBRz(ﬂl)}. (2)

If a fixed point of this best-response mapping 7" = (71, 73)
can be found [that is, 7" € BR(x")], then when both players
adopt the corresponding strategy in this profile, they could
do no better by unilaterally deviating from the current
strategy. In other words, this fixed point corresponds to an
equilibrium outcome of the game, which further leads to
the definition of Nash equilibrium.

Definition 3 (Nash Equilibrium)

For a static game (N, (A)icn, ()icn), the Nash equilib-
rium is a strategy profile #" = (i, #%;) with the property
thatforall ie N,

wimi, w%) = ui(mi, %), ®)

where 7; is an arbitrary strategy of player i, and 7%=
(7j)jen,j+i denotes the joint strategy profile of the other

FIGURE 2 The variational characterization of a Nash equilibrium a*
in concave games. TC(a") and PC(a") denote the tangent and the
polar cone, respectively, of ITicy.Ai—a". According to the varia-
tional inequality (5), a" is a Nash equilibrium if and only if the
payoff gradient D(a") lies in the polar cone.
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players. If the inequality holds strictly for all 7; # 77, then it
is referred to as a strict Nash equilibrium.

Note that the preceding definition naturally carries over
to games with infinite action sets; refer to [17, Ch. 4] for
more details. Furthermore, for infinite games, if some topo-
logical structures are imposed on the action sets and regu-
larity conditions on the utility functions, then a geometric
interpretation of the Nash equilibrium is derived from the
inequality in (3). Toward that end, consider a (static) game
with compact and convex action sets (A;)icy and smooth,
concave utilities:

ui(a;, a-)is concave ina; foralla_ € [| A, i€ N.
JEN,j#i

In such a game, the number of actions available to each
player is a continuum, and the utility function is continu-
ous; these games are referred to as continuous-kernel or con-
tinuous games. In this case, a pure-strategy Nash equilibrium
a’ =(ai, a%) € llicn Ai is defined by the inequality

ui(ai, a%) = ui(ai, a>y), forallaie Aiandallie N.  (4)

Further assuming that u:(a;, a-;) is continuously differen-
tiable in a; € A; for all a-;, by the first-order condition, the
Nash equilibrium in (4) can be characterized by
(Di(a"),ai—a;)<0, forallaie Ai,i€N,

where D;(a):= V,ui(ai, a—) denotes the individual payoff
gradient of player i, and V,ui(a;, a-i) represents differentia-
tion with respect to the variable a;. Rewriting the aforemen-
tioned inequality in a more compact form yields the following
variational characterization of the Nash equilibrium

(D(@),a—a’)<0, forallac[] A, 5)

ieN

where D (a) is the concatenation of {D;(a)},_, thatis, D(a)=
(D1(a), ..., Dn(a)). Geometrically, (5) states that for concave
games, a’ is a Nash equilibrium if and only if D (a") lies within
the polar cone of the set [Tiey Ai —a :={a—a'|la€liexy A},
as shown in Figure 2.

In addition to concave games, such a variational inequal-
ity characterization has been studied in much broader con-
texts, such as in monotone games [24], which bridges the
gap between the theory of monotone operators and Nash
equilibrium seeking. For a detailed discussion, the reader
is referred to another article in this special issue of IEEE
Control Systems [25]. The variational inequality (5) is denoted
as the Stampacchia-type variational inequality (SVI) [26], and
a similar variational inequality of this kind can also be
derived in the context of the mixed extension. As a special
case of continuous games, the mixed extension of finite
games also satisfies regularity conditions: The action
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spaces are probability-simplex regions (which are compact
and convex), and the utility function is naturally smooth
and concave (due to its linearity with respect to any player’s
mixed strategy). Therefore, the mixed-strategy Nash equi-
librium can be characterized by a variational inequality as
well. Thanks to the inner product expression of the utility
in the mixed extension, the individual payoff gradient is
simply ui(7-;), and denote the concatenation of {u:}, by
(@) =[w(@1(H), w(@2(), .., ux(r-n(1)], which is also
referred to as the joint utility vector under the strategy pro-
file z. Similar to (5), a strategy profile 7" is the Nash equi-
librium of the underlying finite game if and only if the
following SVI holds

(u(z"), n—n")<0, forallze [] A(A).

ieN

(SVI)

As shown in the “Nash Equilibrium and Lyapunov Stabil-
ity” section, this variational characterization of Nash equi-
librium bridges the equilibrium concept of games and the
equilibrium concept of dynamical systems induced by
learning algorithms.

In the same spirit of (3), Nash equilibrium in dynamic
games can also be defined accordingly. For Markov
games, given players’ stationary strategy profile 7, the
cumulative expected utility of player i (starting from the
initial state s* =s) is

Vi(s)= Esk“wak%[z rhui(sh, a)s' =s|, ©
k=1

which is referred to as the state-value function in a Markov
decision process [27]. VT is the utility under the strategy
profile 7, and following (3), the Nash equilibrium is defined
for the Markov game, where the inequality holds for every
state. In other words, regardless of the previous play, as
long as players follow z~ from the current state s, they
achieve the best outcome for the rest of the game, and no
player has any incentive to deviate from the strategy dic-
tated by z". Hence, this kind of Nash equilibrium is referred
to as a subgame perfect Nash equilibrium, which is widely
used in the study of dynamic games [28], [29].

The Nash equilibrium serves as a building block for
noncooperative games. One of its major advantages is that
it characterizes the stable state of a noncooperative game,
in which no rational player has an incentive to move uni-
laterally. This stability idea will be further discussed in
the “Nash Equilibrium and Lyapunov Stability” section,
which relates the stability theory of differential equations
to the convergence of learning algorithms in Nash equi-
librium seeking.

LEARNING IN GAMES

Learning in games refers to a long-run nonequilibrium pro-
cess of learning, adaptation, and/or imitation that leads to
some equilibrium [30]. Unlike pure equilibrium analysis
based on the definition, learning in games accounts for

how players behave adaptively during repeated game play
under uncertainties and partial observations. Computa-
tionally, computing the Nash equilibrium based on equilib-
rium analysis is challenging due to the computational
complexity [31], which hardly accounts for the decision-
making process in practice (where players have limited
computation power and information). Hence, learning
models are needed to describe how less than fully rational
players behave to reach equilibrium. Equilibrium seeking
or computation motivates learning in games [29].

If the learning process is viewed as a dynamical system,
then the learning model can predict how each player
adjusts its behavior in response to other players over time
to search for strategies that will lead to higher payoffs.
From this perspective, a Nash equilibrium can also be
interpreted as the steady state of the learning process,
which serves as a prediction of the limiting behavior of the
dynamical system induced by the learning model. This
viewpoint has been widely adopted in the study of popula-
tion biology and evolutionary game theory, as shown more
clearly when discussing reinforcement learning and repli-
cator dynamics [32].

In this section, various learning dynamics are presented
in the context of infinitely repeated games for Nash equi-
librium seeking. Consider a number of players repeatedly
playing the game (N, (Aiicn, (1i)ien) infinitely many
times. At time k, players determine their moves based on
their observations up to time k — 1. They then receive feed-
back from the environment, which provides information
on past actions. In finite games, based on the information
available to it, player i constructs a mixed strategy
7t € A(AJ), from which it samples an action af and imple-
ments it. It will then receive a payoff feedback related to
u;(af, a%;), which evaluates the performance of af and helps
the player shape its strategy for future plays. In such a
repeated game, the amount of information that players
acquire in repeated plays directly determines how players
plan their moves at each round and further influences the
resulting learning dynamics. Besides theoretical impor-
tance, information feedback in the learning process (such
as players’ observations of their opponents” moves) is also
of vital importance in designing learning-based methods
for solving network problems. As shown more clearly in
“Game-Theoretic Learning Over Networks,” networked
agents observe only their surroundings in many network
applications, without any access to global information
regarding the whole network. Therefore, due to its signifi-
cance in learning processes, existing feedback structures
are first discussed in the following section.

Feedback Structures in Learning

The feedback structure for a player in a repeated game
includes its observations regarding the game and repeated
plays, which is a subset of every player’s histories of plays
and payoffs. To make the discussion more concrete, the

AUGUST 2022 « IEEE CONTROL SYSTEMS 41

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:38:45 UTC from IEEE Xplore. Restrictions apply.



following notation is introduced. Let I¥ be the feedback of
player i up to time k. Denote the payoff received by player i
at the kth round by uf:=ui(af, a%) and the sequence of pay-
offs received up to time k by u!*:={ul, ..., uf}.

The simplest feedback structure is called the perfect
global feedback, where

k __ 1k 1k
Ii—{{”] jeNf{”/ jeN}’

indicating completeness of feedback from both the tempo-
ral and spatial senses. Furthermore, consider the noisy
feedback of payoffs, u¥, defined as

Ul =ui(al, ak) + &,

where £ is a zero-mean martingale noise process with a
finite second moment, thatis, E[£f| 7] = 0, E[ (£5)?|F* ]
is less than a constant, and the expectation is taken with
respect to the o-field F* ' generated by the history of
play up to time k — 1. Simply put, the noisy feedback ur is
a conditionally unbiased estimator of uf with respect to
the history, which is a standing assumption when address-
ing the convergence of learning dynamics in games. For
noisy feedback in general, or equivalently, .ff‘ being a
generic random variable, the discussion will be imple-
mented in a different context. In that case, a system state
should be introduced, which accounts for the uncertainty
in the environment, and the learning problem becomes
Nash equilibrium seeking in stochastic games (see Defini-
tion 2). For more detailed discussions, the reader is
referred to another article in this special issue of IEEE
Control Systems [23].

Perfect global feedback is of limited use in practice when
designing learning algorithms as global information is dif-
ficult or even impossible to acquire for individuals in large-
scale network systems. For example, in distributed or
decentralized learning over heterogeneous networks, play-
ers may have no access to others’ utilities due to physical
limitations. Therefore, we are interested in the scenario
where players only have direct or indirect access to their
own utilities as well as their neighbors’, and hence players’
feedback can be dependent on the topological structure of
the underlying network that connects them.

Consider a repeated game over a graph G:=(N, &),
where N ={1,2,..., N} is the set of nodes representing the
players in the game who are connected via the edges in
&E={(i, j)]i, j are connected}. To simplify the exposition,
assume that the graph is undirected. Note that the direc-
tion of the edges does not affect the discussion as long as
the neighborhood is properly defined. For example, in a
directed graph, when in neighbors or out neighbors specify
to whom the player in question can pass information,
the following characterizations of feedback structures still
apply. For a more comprehensive treatment of games over
networks, refer to [20].
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Each player is allowed to exchange payoff feedback with
its neighbors through the edges and observe their actions
during the repeated play, whereas the information regard-
ing the rest is hidden from him or her. In this case, the feed-
back structure for player i is

Ii= {{”}:k}]’E{i}uN(i)’ {a}* /’E{i}UN(i)}’ N@)={jlG, He&}.

Note that the player’s feedback regarding payoffs and
actions may not be consistent. For example, in a multiagent
robotic system where only the sensors network is effective,
each agent can observe only its neighbors’ movements
through sensors. In this case, without any information of
others’ utilities, the information feedback of agent i reduces
to IF = {{u}:k}, {a}* je{i}uN(i)}. In summary, if the players can
receive feedback only from their neighbors, then players’
feedback structures are related to the underlying topology,
which is referred to as local feedback. In accordance with this,
an extreme case of local feedback is one where the player is
isolated in the network, and no information other than its
own payoff feedback and actions are available to it. This
extreme case is referred to as individual feedback, which is a
typical information feedback considered in fully decentral-
ized learning and will be further elaborated on when dis-
cussing specific learning dynamics later in this section.

In addition to refinements from the spatial side, con-
sider feedback with various temporal structures. If the
player has perfect recall of previous plays, the resulting
feedback is said to be perfect, and the feedback structures
introduced previously all fall within this class. Otherwise,
players have access to imperfect feedback, and two common
cases of imperfect information feedback are discussed in
the following: windowed and delayed feedback.

For simplicity, perfect feedback If = {u!”, ai*} is used as
a baseline to illustrate that different missing parts of I ¥ lead
to different kinds of imperfect feedback. If the head of ur*
and/or a* is not available to the player (that is, there exists
a window 0<m <k such that the player recalls only
u " g% then the corresponding feedback I )ik
{ul=m% g% %Y is called windowed feedback, with a window
size of m. Similarly, if the tail of ul* and/or aF* is not avail-
able (that is, the player recalls only ul € g™ then the
imperfect information feedback is I}/ = {u} ™™, ¢/ *""},
which is called m-step delayed feedback.

For learning in games, each player learns to select
actions by updating the strategy based on the available
feedback at each round. To describe this in mathematical
terms, let F¥ be the strategy learning policy of player i. The
learning policy produces a new strategy 78 for the next
play according to

mit = (1= A ai + AFE), )

where Af is the learning rate, indicating the player’s capabili-
ties of information retrieval. Different feedback structures
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lead to different learning dynamics in repeated games.
Under the global or local feedback structure, each player’s
feedback is influenced by its opponents” actions and/or pay-
offs, which makes the players’ learning processes coupled
(as shown in Figure 3).

In the case of fully decentralized learning under indi-
vidual information feedback, players learn to play the game
independently, and such a learning process is said to be
uncoupled. Uncoupled learning processes are of great sig-
nificance in both theoretical studies [33] and practical
applications. Theoretically, learning with such limited
information feedback is much more transferable in the
sense that learning algorithms under this feedback also
apply to online optimization problems, where the online
decision-making process is viewed as a repeated game
played between a player and the environment [21].

Considering its theoretical importance, we focus on
learning with individual feedback in the sequel, and the
reader is referred to [34] for a survey on learning methods
under other kinds of feedback. We first present reinforce-
ment learning for finite games, where the learning algo-
rithms are characterized into two main classes due to
their distinct nature in exploration. We then proceed to
gradient play for infinite games and elaborate on its con-
nection to reinforcement learning. The convergence
results of presented algorithms are discussed in the
“Convergence of Learning in Games” section based on
stochastic approximation [35], [36] and Lyapunov stabil-
ity theory.

Reinforcement Learning

Reinforcement learning has been studied in many disci-
plines and become a catch-all term for learning in sequen-
tial decision-making processes where the players” future
choices of actions are shaped by feedback. In general, rein-
forcement learning consists of two functions: the score
function (evaluating the performance of actions) and the
choice mapping (determining the next move). Note that in
ML literature [37], the score function and the choice map-
ping are also called the critic and the actor, respectively.
Different score functions and choice mappings lead to dif-
ferent reinforcement learning algorithms. We first provide
a generic description of the score function and choice map-
ping in reinforcement learning from a dynamic system
viewpoint, then give a characterization of various rein-
forcement learning algorithms based on different natures
in choice mappings. Finally, relations among introduced
reinforcement learning algorithms are discussed.

We first show how the score function can be constructed
using the information feedback recursively. As the player
has no direct access to its utility function in this case, it can
construct an estimator @} € Rl based on I} to evaluate
actions a € A;. Using this estimator, the player can com-
pare its actions and choose the one that can achieve higher
payoffs in the next round. In mathematical terms, the

estimator (score function) is given by the following dis-
crete-time dynamical system:

W = (1 - g ok + wf GEAt, o, U, ab), ®)

where Gf:A(A)XRMIXRx A - R is the learning
policy for utility learning, 7t isthe policy employed at time k,
and ,uf is the learning rate. Based on the score function, the
player can modify its strategy accordingly in the sense that
better actions shall be played more frequently in the future.
With a slight abuse of notations, the strategy update is

2t = (1= Al At + ALF (2l ol UL, ab), C)

where Ff:A(A) xR xR X A~ A(A) is the learning
policy for strategy learning, yielding a new policy for the
next play. Compared with (7), the preceding discrete-time
systems [(8) and (9)] explicitly show how feedback shapes
the player’s future play. According to (8), the player recur-
sively updates its estimate of the utility function based on
the feedback it receives after playing 7z and determines its
move in the next round following (9). Intuitively, (ﬂf‘, af ”)
can be viewed as the information extracted from It for
updating the player’s strategy.

In reinforcement learning, the choice mapping plays
an important role in achieving a balance between exploi-
tation and exploration. On one hand, the player would
like to choose the best action that is supposed to incur the
highest payoff based on the score function. However, this
pure exploitation often leads to myopic behaviors as the
score function may return a poor estimate of the utility
function at the beginning of the learning process. Hence,
to gather more information for a better estimator, the
player also needs some experimental moves for explora-
tion, where suboptimal actions are implemented. In sum-
mary, the tradeoff between exploitation and exploration is
of vital importance to the success of reinforcement learn-
ing, and it depends on construction of the choice mapping.
Different choice mappings result in different reinforce-
ment learning algorithms. Based on their distinct natures
in exploration, the algorithms can be categorized into two

FIGURE 3 A player’s strategy learning with the corresponding feed-
back. Under the global or local feedback structure, players’ learn-
ing processes are coupled as their feedback is influenced by their
opponents’ moves. In contrast, players learn to play the game
independently under individual feedback.
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In general, reinforcement learning consists of two functions:
the score function (evaluating the performance of actions) and
the choice mapping (determining the next move).

main classes: exploitative reinforcement learning and explor-
atory reinforcement learning.

Recall that in strategy learning (9), the next strategy pro-
duced by the corresponding choice mapping is

a2 = (1= AN 2+ AFFE (G, U, by,

where (1— 207z} is referred to as the cognitive inertia (or
simply, inertia), describing the player’s tendency to repeat
previous choices independent of the outcome. When deter-
mining its next move 75, the player considers both its pre-
vious strategy 7¥ and the increment update using the
strategy learning policy F¥. Therefore, players” exploration
at (k+1)-th round stems either from this inertia or the
strategy learning policy Ff. The former is called passive
exploration (as it relies on the player’s tendency to repeat
previous choices), while the latter is referred to as active
exploration (as the player deliberately tries actions based on
what was learned from previous plays).

As the new strategy is a convex combination of the inertia
term 7% and the learned incremental update F Kk el uf, ab),
there is no clear-cut boundary between passive and active
exploration. In fact, reinforcement learning is a continuum
of learning algorithms. The following illustrates such a
continuum by three prominent learning schemes. The first
is the best response dynamics (BR-d) (located on the left
endpoint), which is an example of exploitative reinforce-
ment learning. Solely relying on the inertia for passive
exploration, BR-d adopts a purely exploitative learning
policy: the best response mapping in (1). In contrast to the
exploitative one, dual-averaging dynamics (DA-d) is an
example of exploratory reinforcement learning, which only
leverages the learning policy for exploring suboptimal
actions without any cognitive inertia. In between, there lies
the smoothed BR-d (SBR-d), where both the inertia and
strategy learning policy are used to achieve a balance
between exploration and exploitation.

Exploitative Reinforcement Learning

For exploitative reinforcement learning, the strategy learn-
ing policy always outputs the best strategy based on the
score function, which can be viewed as a natural extension
of the best response idea in the context of a Nash equilib-
rium (1). In the repeated-play scenario, given the oppo-
nent’s strategy at the kth round 7%, from player i’s
standpoint, the best he or she can do is to choose the best
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response BRi(7%) = argmaxseaw (7, ui(z%))} (which is
purely exploitative). In this case, the strategy learning
scheme becomes
7 e 1 - AN 2+ AFBRi(25). (10)

In general, the best response mapping is a point-to-set map-
ping and, differential inclusion theory [36] is needed to ana-
lyze the associated learning dynamics, which makes the
convergence analysis more involved, as discussed in the
“Nash Equilibrium and Lyapunov Stability” section.

Under the noisy feedback I¥ = (U, aF", the score func-
tion of player i is the estimated utility @}, which is updated
according to the following moving average scheme [38]:

Lia=ahy
i (a)

@) = (- il @) +uf UL ae A, ()

where 1 is an indicator function. Note that in (11), the
importance sampling technique (which is common in
bandit algorithms [21]) is utilized to construct an unbiased
estimator of u; (7). To see this, define a vector Uf € R
whose a-th entry is Uk(a) =1u-iyUs /7f (@), and then,
E[Ufa) | 71 = ui(a, 7). Hence, (11) can be rewritten as

Akl
u;

=(1-ghat+ 08, (12)
and 4" (a) gives the averaged payoff incurred by a in the
first k rounds. This importance sampling technique can be
viewed as compensating for the fact that actions played
with a low probability do not receive frequent updates of
the corresponding estimates so that when they are played,
any estimation error U¥ — 4 (a¥) must have a greater influ-
ence on the estimated value than if frequent updates occur.
Refer to [21] and [30] for more details on importance sam-
pling and its use in learning processes.

With a slight abuse of the notation of best response map-
ping in (2), define the corresponding best response under
the noisy feedback as

BR;(af) := argmax{(z, a)}.

nEAAI)

(13)

The strategy learning scheme under the noisy feedback
[30] follows

7 e 1 - AN+ AFBR; (0. (14)
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The resulting dynamical system under the noisy feedback
is a coupled system as
wl = (1 - whal + ui U

a5 e (1 - ANzt + ASBRi(af). (BR-d)
Originally proposed as a computational method for Nash
equilibrium seeking [38], [39], the BR-d is built directly
upon the best response idea and has been widely applied
to evolutionary game problems [40]. One prominent exam-
ple of (BR-d) is fictitious play [41], where a player’s empiri-
cal play follows (BR-d); and more details are included in
“Fictitious Play.” As shown, (BR-d) adopts passive explora-
tion, and the best response mapping BRi(-) encourages
greedy actions that might be myopic. As a result, exploit-
ative reinforcement learning may fail to converge [30], [42].

Exploratory Reinforcement Learning

In contrast to the inertia-based passive exploration in
(BR-d), dual averaging (as introduced in this section) relies
only on the strategy learning policy F ¥ for exploring sub-
optimal actions to avoid myopic behaviors due to poor esti-
mates of the utility function. In dual averaging, given the
player’s utility vector u;, the strategy learning policy is a
regularized best response [43] defined as

OR¢(u) = argmax {7, wi)— eh(m))},

TEA(A

(15)

where k() is a penalty function or regularizer and ¢ is the
regularization parameter. According to [44], a proper regu-
larizer h(-) defined on the probability simplex should be
continuous over the simplex and smooth on the relative
interior of every face of the simplex. Moreover , i should be
a strongly convex function, and these assumptions ensure
that QR*()) always returns a unique maximizer. The QR®
mapping is referred to as a quantal response mapping [45],
which allows players to choose suboptimal actions with
positive probability. To see how this regularization contrib-
utes to active exploration, consider the entropy regularizer
h(x) = Zyxilogxi. In this case, QR* is

exp(lu'(a 7[—[))
> exp( uia', n- ,)),

a € A;

QR (ui)(a) = ae A, (16)

which is also known as the Boltzmann—Gibbs strategy map-
ping [46] or the soft-max function parameterized by € > 0. On
the one hand, the Boltzmann-Gibbs mapping produces a
strategy that assigns more weight to the actions leading to
higher payoffs, that is, the larger ui(a) = ui(a, 7-) is, the
larger QR®(u;)(a) becomes. On the other hand, it always
retains positive probabilities for every action when € > 0.
Note that QR® can induce different levels of exploration by
adjusting the parameter €. When ¢ tends to zero, the

strategy (16) simply returns the action that yields the high-
est payoff, implying that QR* reduces to the best response
mapping BRi(-) in (2). As € gets larger, 1/€ tends to zero,
and the strategy does not distinguish among actions, lead-
ing to equal weights for all actions.

Similar to the previous argument, with the noisy feed-
back, replace u; by the estimator @}, and the definition of
quantal response mapping is then modified accordingly as

xp(l”‘(a)>
> exp( 1, af (o ))

a € A;

ae A

QR (uf) (a) =

Due to the active exploration brought up by QR¢, consider
an inertia-free reinforcement learning scheme where the
choice map is simply the strategy learning policy QR*. The
corresponding strategy learning scheme is then

k+l _ QR ( k+l)

where the score function @ is updated according to the
following [47]:

~k+1

it =al+ Aok 17)

Fictitious Play

onsider the repeated play between two players, with
Ceach player knowing their own utility function. Further,
each player can observe actions of the other player and
choose an optimal action based on the empirical frequency
of these actions.

In fictitious play, from player 1’s viewpoint, player 2’s strategy
at time k can be estimated as 75(a) = Z¢_1 lps—a/k, @ € As,
which is the empirical frequency of actions player 2 has im-
plemented up to that point. 7% can be computed by a moving
average scheme:

1

b= (17 )78 + e,

Using this, player 1 chooses the best response:
ak"" = argmaxac.4,u1(a, 75) for the next play. The empiri-
cal frequency of player 1’s implemented actions is updated
according to

p ol —(1 —L) faeL_

k+1 K+16e

1
k+1
where e.t' € A(A+) is exactly given by BRi(z5), and the
equation is the same as the one in (10), with the learning
rate being A§ = 1/k + 1. Hence, in fictitious play, a player’s
empirical play follows best response dynamics. Further-
more, if the best response mapping BR is replaced with
the quantal response QR*¢, an important variant is obtained:
stochastic fictitious play [30].
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To recap, the learning algorithm operates in the following
fashion: At each time k, an unbiased estimator Uf is con-
structed as introduced in (11) using importance sampling,
and the score function is updated according to (17). Then, the
next strategy is produced by the mapping QR¢, acting on the
score function af*!, as shown in

@ = a4 0,
75 = QRE(af . (DA-d)
(DA-d) is also referred to as dual averaging, pioneered by
Nesterov [47], which was originally proposed as a variant
of gradient methods for solving convex programming
problems. We elucidate the term dual averaging later when
discussing the relationship between dual averaging and
gradient play, where it is demonstrated that (DA-d) can be
viewed as a gradient-based algorithm in finite games, with
af being the gradient. Finally, note that in (DA-d), the score

Replicator Dynamics
Recall that continuous-time learning dynamics under dual
averaging is
do(f)
at - u;(ﬂ—l (t)),

7i(t) = QRE(Gi(t)).

Now consider the entropy regularizer h(x) = Zxxilogx; and let
€ = 1 for simplicity. Differentiate the strategy i (t) with respect
to time variable in the continuous-time version of DA-d (DA-c),
arriving at

azmia(t) _ 1 [ dbia(t) Uy guald
=

dt (Z eu,,am>2 \ ot

% a0 l:l ia (t)
_ eu,,a(f) z gUia () Z2hat/)
: dt

= Tia (t)( R et el )

= 7ia(t) [ui(@, 7-i(t)) — ui(7i(t), 7-i(1))].

(S1) (RD)

From this equation, it is shown that for a certain action a,
if its outcome wi(a, 7-i(t)) is above the average ui(zi(t), 7-i(t)),
then it will be “reinforced” in the sense that the probability of
choosing a gets higher as time evolves. Equation (S1) is re-
ferred to as replicator dynamics (RD) and has been widely
used in evolutionary game theory to understand natural se-
lection and population biology. Consider a two-population sys-
tem and reinterpret the elements in the two-player game using
population biology language. For population 1, there are | A1 |
types, and each type is specified by an element, a € A;. Let
71.a(t) be the percentage of type a in population 1 at time ¢,
and assume that 71 (t) is differentiable with respect to time t as
the population (which is infinitely large) interacts with the other
population in a continuous-time manner.
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function is updated in a manner different than in (BR-d).
However, this is merely a matter of presentation. By select-
ing a proper ¢, the moving averaging scheme (12) is essen-
tially the same as the discounted accumulation (17) [47],
[48]. By adopting the discounted accumulation (17), a con-
nection can later be drawn between dual averaging and
gradient play.

Apparently, (DA-d) does not depict how 7i(t) evolves
in A(Aj), and it is not straightforward to tell how those
good actions bringing higher payoffs are “reinforced” in
the sense that probabilities of choosing them increases as
the learning process proceeds. “Replicator Dynamics”
presents that when choosing entropy regularization,
(DA-d) is equivalent to the replicator dynamics (one of the
well-known evolutionary dynamics [49]-[51]), which
explicitly displays a gradual adjustment of strategies
based on the quality of each action. Using an example of
population games, it is shown that this connection brings

Population 2 has similar notions. If individuals from the two
population meet randomly, then they engage in a competition
or a game with a payoff dependent on their types. For example,
if type a1 from population 1 competes with type a> from popu-
lation 2, then payoffs for the two types are given by u+ (a1, az)
and uz(as, az), respectively. For population j, if it is assumed
that the per capita rate of growth is given by the difference
between the payoff for type a and the average payoff in the
population (a rule studied in [49]), then the percentage of differ-
ent types within a population is precisely described by

1 dﬂr’,a (t)
Tia at

=ui(a, mi(t)) —ui(mi(t), (1)),

which is exactly the RD (S1). In addition, as shown in [44], dif-
ferent regularizers lead to different learning dynamics, which
display different asymptotic behavior accounts for the evolu-
tionary process under different circumstances.

With (S1) and other related evolutionary dynamics, biologists
can predict the evolutionary outcome of the multipopulation
system by examining the Nash equilibrium of the underlying
game, which brings strategic reasoning into population biol-
ogy and has a profound influence on evolutionary game theory
[50], [51]. Moreover, the Nash equilibrium in this population
game, characterized by the limiting behavior of the dynam-
ics under proper conditions [51], represents an evolutionarily
stable state of the population (which is an important refinement
of the Nash equilibrium). When this stable state is reached,
natural selection alone is sufficient to prevent the population
from being influenced by mutation [40], [50]. For more details
on this refinement and its application in biology, refer to [17],
[40], [50], and [51].
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learning in games to the broader context of evolutionary
game theory [40], [50].

As mentioned previously, reinforcement learning is a
continuum of learning algorithms, and (BR-d) and (DA-d)
are the two endpoints of the continuum. Naturally, rein-
forcement learning methods with a blend of both passive
and active exploration can be considered, where the explo-
ration stems from both the inertia term and the strategy
learning policy, as presented in the following.

Instead of choosing actions greedily, replace the best
response BRi(-) in (14) with QR*(), the quantal response
for active exploration. We then obtain the strategy learning
scheme [30]

75 =1 - A7+ AFQRe(@h).

Similar to (BR-d), if utility learning follows the moving
average scheme in (11), the resulting reinforcement learn-
ing has the following discrete-time learning dynamics

af' = (1 uhal + iU,

2 = (1 - AN zk+ AFQR (4. (SBR-d)
Considering its similarity to (BR-d), (SBR-d) is referred to as
(SBR-d) in [30] and [52]. Specifically, if the entropy regular-
izer is adopted, the resulting learning process is called
Boltzmann—Gibbs reinforcement learning [53] or entropic rein-
forcement learning, which has been extensively studied in
the context of Markov decision processes [54].

Relationships Among Reinforcement Learning Algorithms
Before concluding the discussion of reinforcement learning
in finite games, we examine relationships among the intro-
duced learning algorithms. Note that reinforcement learn-
ing corresponds to a continuum of learning algorithms,
where one algorithm can be converted into the other by
adjusting the learning rate Afin strategy learning (7) and/
or the exploration parameter €. The diagram of such a con-
version is presented in Figure 4. The discussion associated
with this diagram revolves around the learning rate A% and
the exploration parameter €. For simplicity, suppress the
subscript and superscript of the learning rate and denote
them by A.

We begin the discussion with the learning rate A.
Unlike (DA-d), the (BR-d) and (SBR-d) are actor-critic
learning [38], [55], [56] due to a positive learning rate 1 > 0.
Under the actor-critic framework such as (BR-d)-(SBR-d),
the player maintains two recursive schemes for updating
the estimated utility vector and strategy, respectively. The
recursive schemes lead to coupled dynamical systems of
@} and 7z}. In contrast, even though (DA-d) also consists of
both the updating schemes for estimated utility vector and
the strategy, as the learning rate is zero, there is only one
effective dynamical system: the one induced by the esti-
mation of utility vector (17). Another way to see the

difference between actor-critic learning (BR-d)-(SBR-d)
and (DA-d) is through the corresponding continuous-time
learning dynamics in the “Learning Dynamics and Sto-
chastic Approximation” section.

Even though (DA-d) is not an actor-critic learning, its
trajectory is closely related to that of (BR-d)-(SBR-d)’s. Intu-
itively speaking, (DA-d) only differs from the smoothed
best response in that (DA-d) does not acquire an inertia
term, as the learning rate is zero. Hence, 7¥ in (SBR-d) can
be seen as the moving average of QR (@f) in (DA-d). There-
fore, it is reasonable to expect that the time average of the
trajectory produced by (DA-d) is related to the one pro-
duced by the smoothed best response. This intuition is
verified in [44] and [57], where it is shown that the time-
averaged trajectory of (DA-d) follows (SBR-d) with a time-
dependent perturbation €(f).

Apart from the difference in the learning rates, learn-
ing algorithms also display distinct asymptotic behavior
due to the difference in the exploration parameter. The
exploration parameter € has less drastic consequence
under (DA-d) than under the actor-critic learning (BR-d)-
(SBR-d). As observed in [44], adding a positive € is equiva-
lent to rescaling the regularizer [that is, replacing h()
with €h()]. Aslong as € > 0, the regularization €h() is still
proper (15). This implies that even though the choice of €
affects the speed at which (DA-d) evolves, the qualitative
results remain the same. The reader is referred to [44] and
[58] for a detailed discussion. There is no exploration or
inertia for (DA-d) when €=0, and in this case, players
always choose their actions greedily according to the best
response mapping

7t = argmax{(z, af)}, (FTL)

rEAAD)
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FIGURE 4 The relationships of reinforcement learning algorithms.
For 0 <A <1 and € > 0, we obtain exploratory reinforcement
learning: smoothed best response dynamics (SBR-d), where
exploration arises from both the inertia and learning policy. If the
active exploration vanishes as € goes to zero, SBR-d reduces to
BR-d, an example of exploitative reinforcement learning. In con-
trast, dual-averaging dynamics is obtained if A tends to one.
Finally, if € goes to zero while A tends to one, players always
choose their actions greedily according to follow the leader.
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where @} is the score function of player i (based on its his-
tory of play up to round k) that can be updated following
(11) or (17). In the online learning literature [21], the afore-
mentioned greedy policy is known as follow the leader (FTL)
and can also be obtained by eliminating the inertia term in
(BR-d). Due to a lack of exploration, FTL is too aggressive
and can be exploited by the adversary, resulting in a posi-
tive, nondiminishing regret [21]. The regret is a measure-
ment of the performance gap between the cumulative
payoffs of current-policy FTL and that of the best policy
in hindsight.

The exploration parameter plays a more important role
in the actor-critic learning, which balances exploration
and exploitation [37]. (SBR-d), which is a perturbed ver-
sion of the best response, can only use the regularization
€h() for encouraging active exploration. Thanks to the
positive exploration parameter, (SBR-d) enjoys an e-no-
regret property (a weak form of external consistency stud-
ied in [57] and [59]), which is desired in an adversarial
environment [21]. In contrast, (BR-d), due to the myopic
nature of the best response mapping (2), does not possess
similar properties.

Gradient Play

Thus far, discussions have been limited to learning pro-
cesses in finite games, where the score function (8) and the
choice mapping (9) act on finite-dimensional vectors. For
continuous-kernel games, it is not straightforward to
extend reinforcement learning as a suitable score function
is required to evaluate a continuum of actions, and con-
structing such a score function can be very challenging.
Even though function approximators such as linear [60],
[61] or nonlinear [62] ones can be of some help, there is a

FIGURE 5 An illustration of the difference between gradient descent
(GD) (18) and lazy GD (LGD). acpy and afiep) denote the iterates
generated by (18) and LGD, respectively. The LGD first aggre-
gates the gradient steps and then projects the aggregation onto
the primal space to generate a new gradient step.
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mathematically more elegant way of leveraging the rein-
forcement idea based on gradients of utility functions. In
other words, instead of seeking the maximizers, we seek a
better response by searching along the gradient direction.
Such gradient-based learning algorithms, referred to as
gradient play, are popular in a variety of multiagent settings
due to their versatility, ease of implementation, and depen-
dence on local information.

For simplicity, we restrict the discussion to a pure-strat-
egy Nash equilibrium in continuous games [see (4) for the
definition and (5) for its variational characterization], to
avoid measure-theoretic issues when studying the mixed-
strategy case. Further assume that utilities are smooth
functions and perfect feedback is available to players,
implying that each player can compute the gradient of
the utility function given current iterates: Df = V,,ui(al, a%)).
Even though perfect feedback is assumed here, it is purely
for the simplicity of exposition. It is viable for players to
estimate the gradient based on the realized payoff under
noisy individual feedback by simultaneous perturbation
stochastic approximation [63], [64]. Based on this gradient,
players update their actions according to

k+1
i

al™! = projulaf + 4 Df],

= argmin{H af + ufDf —a ||§}, (GD)
aeAi

where proj4,() is the Euclidean projection operator, and

(GD) is the online gradient descent or projected gradient

descent [48]. One extensively studied variant of (GD)

[48], [65] is

Yi =Y+ ufDf,

k+1

a*! = proja(YF), (LGD)
where Y¥ isan auxiliary variable that aggregates the gradi-
ent steps. Such an algorithm is referred to as the lazy gradi-
ent descent (LGD) [47] because the algorithm aggregates the
gradient steps “lazily,” without transporting them to the
action space as (GD) does. The difference between the two
algorithms is illustrated in Figure 5. Note that based on the
gradient descent idea, (LGD) and (GD) share the same
asymptotic behavior [21], and the two coincide when A; is
an affine subspace of R".

Unlike a purely primal-based algorithm such as (GD),
where the trajectory of the algorithm evolves only in the
primal space (the action space), (LGD) is a primal-dual
scheme, and the interplay between primal variables
(actions af) and dual variables [gradients D;(a")] is of great
significance. The main idea of (LGD) is as follows. At the
kth round, each player computes the gradient D;(a*) based
on the knowledge of utility functions and observations of
the opponent’s move. Subsequently, players take a step
along this gradient in the dual space (where gradients live)
and “mirror” the output back to the primal space (the action
space) using the Euclidean projection.
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Gradient-based learning algorithms are further investi-
gated in another article in this special issue in the context of
generalized Nash equilibrium seeking [25]. The following
presents a generalization of (LGD): mirror descent (MD)
[47], [65]. Starting with some arbitrary initialization Y}, the
MD scheme can be described via the recursion,

Y =YE+ uiDi(a"h),
ai§+1 — QRe (Yi_(+l)/ (MD)
where QR is the quantal response mapping in the context
of the continuous game, defined as

QR(Y) = argmax{(Y, a) —eh(a)}.
aeAi

When choosing the Euclidean norm as the regularizer (that
is, h(x)=(1/2)||x[> and €=1), QR reduces to the projec-
tion operator projs,. Geometrically, the gradient search
step is performed in the dual space, and the primal update
is produced by the mapping QR®. As QR “mirrors” the
gradient update in the dual space back to the primal space,
it is also referred to as the mirror map in the online optimi-
zation literature [21].

Mirror Descent as Reinforcement Learning
in Continuous Games
MD and reinforcement learning (DA-d) share the same
choice map, and they are closely connected. It is demon-
strated in the following that as a gradient-based algorithm,
(MD) can also be cast as a reinforcement learning scheme
in continuous games, with Y# being the “score function.”
To evaluate a certain action a € A; at time k, consider
X5 1(a,a%) (the cumulative payoff had player i imple-
mented a in the past). The higher the sum, the better action
a is as playing a could have resulted in higher payoffs.
Hence, the player can choose the next action that is optimal
in hindsight:

(FTRL)

acAi =1

k
aft = argmax{ > ui(a, a%)— eh (a)},

where €h() is the regularization introduced in (15),
encouraging exploration in the learning process. Based
on the optimality in hindsight, this action selection is
known as follow the regularized leader (FTRL) [66]. More-
over, if u; is well behaved in the sense that it can be
approximated by the first-order Taylor expansion (that
is, wi(a, a%)~ui(ai,a%)+(Di(@"),a—a;i)), then FTRL is
equivalent to

aitt = argmax{zk: (Di(a"), a)—eh (’Z)}

aeAi =1

T
= argmax
acAi T

=QR‘(ZkI Di<af>),

7=1

3 Di(a"), a> —€h (a)}

1

which is exactly (MD), despite using an auxiliary variable
Y to aggregate these gradients weighted by the learning
rates uf‘. In other words, using the first-order expansion,
the sum of gradients living in the dual space serves a linear
functional for evaluating the quality of the actions. Hence,
the sum (or equivalently, Yf) can be treated as a “score
function,” based on which the mirror map outputs a better
action in hindsight, yielding a reinforcement procedure.

Reinforcement Learning as Mirror Descent

in Finite Games

In the aforementioned discussion, (MD) is interpreted as
“reinforcement learning” in continuous games. This sec-
tion further shows that the idea of MD can also be
employed in finite games, and the resulting learning
dynamics is in fact the exploratory reinforcement learning
scheme (DA-d).

In finite games, the utility function is not differentiable
with respect to the action, as action sets are finite. To lever-
age gradient play, consider the mixed extension of finite
games and the expected utility ui(zi, 7-i) = (i, wi(m-i)).
Then the gradient of the expected utility with respect to
player i’s strategy 7; is given by ui(z-;). Naturally, (MD)
can be applied to this mixed extension without difficulty.
Furthermore, if the gradient is not directly available (for
example, learning under noisy feedback), we rely on the
unbiased estimator of u;(z";), U}, which can be viewed as
an estimator of the payoff gradient D; in (MD). It can be
seen that (MD) for this induced continuous game reduces
to the exploratory reinforcement learning in (DA-d). Conse-
quently, the learning scheme (DA-d) is called dual averaging:
the dual variables, the gradients U¥, are aggregated first
within the dual space and are then “mirrored” back to the
primal space by the mirror mapping [47]. A schematic rep-
resentation of dual averaging is provided in Figure 6.

RIA/

| ; 3 Tt A(A)

FIGURE 6 A schematic representation of dual averaging. There are
no explicit dynamics in the primal space A(A)). Instead, the dual
variables U} are first aggregated within the dual space R'“" and
are then “mirrored” back to the primal space via the mirror map-
ping QR¢.
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Convergence of Learning in Games

This section examines the asymptotic behavior of learning
algorithms introduced in the previous section, with the
focus on convergence results of the introduced learning
algorithms. Due to the close connection between gradient
play in continuous games and reinforcement learning in
finite games, the scope is limited to reinforcement learning
algorithms in finite games. The reader is referred to [43],
[64], and [67]-[69] for the treatment in continuous games. In
this section, the discussion is primarily based on stochastic
approximation and Lyapunov stability theories [36], [70]. A
generic procedure of applying such analytical tools con-
sists of three steps: 1) develop mean-field continuous-time
dynamics using stochastic approximation theory; 2) study
continuous-time learning dynamics using ODE methods,
relating its Lyapunov stability to Nash equilibria of the
underlying game; 3) derive convergence results of discrete-
time algorithms using asymptotic convergence of corre-
sponding continuous-time dynamics. As the third step is a
direct corollary of the results of the first and second steps,
the first two steps are articulated in the sequel. Refer to
“Stochastic Approximation Theory” and references therein
for details on the relationship between discrete-time trajec-
tory and its continuous counterpart.

Learning Dynamics and Stochastic Approximation

With proper F *and G, learning algorithms allow the play-
ers to reach the Nash equilibrium of the game in the limit.
Hence, the problem reduces to analyzing limiting behavior
of discrete-time systems (BR-d)-(DA-d)-(SBR-d), that is,
whether its global attractor comprises equilibria. Direct
investigations into such learning dynamics are challenging
as stochasticity enters updating rules. For example, the
action at time k, af, is sampled from the strategy #¥ and the
payoff feedback Uf also incurs randomness.

The celebrated stochastic approximation theory allows for
shifting focus to the continuous counterpart of the discrete-
time dynamics: an ODE whose trajectory enjoys the same
asymptotic property. From a technical standpoint, continu-
ous-time dynamics often produce a more comprehensible
picture for analysis with fruitful tools. One of the most pow-
erful tools is Lyapunov stability theory. Such a continuous-
time framework also allows for connecting learning theory
with extensive literature on game dynamics in biology and
evolutionary theory [30], where the time interval between
two repetitions of the game is infinitesimally small.

Recall that reinforcement learning adopts two coupled,
discrete-time, dynamical systems: one for the score func-
tion (8) and the other for choice mapping (9)

Ak+l k A~k

=(1- ,U)u: +,U1G (mi, i, ui(l ﬂ;{)/
2 = (1= ANt + A (b A, U, aby.

In the following, the continuous-time dynamics asso-
ciated with (8) and (9) is obtained via stochastic
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approximation, which paves the way for the ODE-based
convergence analysis. We begin with a generic description
of learning dynamics under reinforcement learning, and
then specify the learning dynamics corresponding to
(BR-d)-(DA-d)-(SBR-d). For more details regarding sto-
chastic approximation, refer to “Stochastic Approxima-
tion Theory” and references therein.

For simplicity in exposition, assume that the learning
policies in (8) and (9) are time invariant (denoted by F; and
Gi, respectively). When the learning policies are time vari-
ant, stochastic approximation theory still applies (refer
to [53] for more details). Let the mean-field components
of (8) and (9) be denoted by fi(z}, af"") = E[Fi(x}, 4!,
ut,a)| 7" and gi(zf, @) = E[G: (2}, &}, Uf, ah)| F*71,
respectively. Then note the coupled differential equations

du, (t)

= gi(mi(t), wi(t)),
dm (t)

= fi(mi(h), wi(t)),

which are closely related to (8) and (9). Using stochastic
approximation theory (see “Stochastic Approximation
Theory”), the linear interpolations of sequences {zf}
and {0} are the perturbed solutions to the aforemen-
tioned differential equations, which are arbitrarily close
to the true solution as time approaches infinity. In other
words, the convergence results of (8) and (9) can be
obtained by studying limiting behavior of the associated
differential equations.

Following the same argument, the learning dynamics of
(BR-d) can be written as

du (t)

= u:(ﬂ—x (t)) - uz (t)
dﬂr(t)

€ BRi(ti(t)) — 7mi(t). (BR-¢)
If (BR-d) is adopted by every player, then continu-
ous-time dynamics of the strategy profile of all players
n(t) = [m(t), m2(),...,2an(H)] can be studied under the
joint best response [see (2)]. Denote the joint utility
vector by u(z(t)):=[ui(z-1(t)), ua(w-2(t)),...,un(@-n(t))],
and similarly, joint estimated utility vector by
u(t):=[t(f), G2(t),...,an()]. Then, for the strategy profile
7(t), continuous-time learning dynamics under the best
response algorithm is

PO —u@t)-ao, s)
971 ¢ pR (@) -7 (t). (19)

From its associated learning dynamics, (BR-d) [or equiva-
lently, its continuous-time mean-field dynamics (BR-c)] is
an actor-critic learning [37], where the approximation u(f)
given by (18) serves as the actor evaluating the performance
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Stochastic Approximation Theory

Following the multiple timescale stochastic approximation frame-
work developed in [35] and [S1], (8) and (9) can be written using

discrete-time stochastic approximation

af =l = AL () + M,

O =0 = g (i (2, af) + T), (S2)

where fi(zf,Gf"") and g;(zf,0f) are the mean-field compo-

nents of (8) and (9), respectively, and are defined as

fl( k+1)|3(_-k71]

a1y = B[R, 6, Uk,
: k+1)|5¢-k .

k
it
gi(af,uf) = E[Gi(af,af, U™,
With the mean-field part defined as the aforementioned equation,
Mk+1 F;(ﬂf{, k+1 Uk+1 k+1) (ﬂ'f(, ljl,k+1) and I‘f{*"l take a
similar form. Af, 4 are time-scaling factors dependent on the
learning rates Af, uf, which account for adjustment of the origi-
nal step sizes in asynchronous schemes [35], [70]. In synchro-
nous cases, time-scaling factors coincide with original step
sizes. Similar to the discussion in the main text [see (18) and
(19)], consider the dynamical system of the joint strategy profile
7* and utility vector a¥

”k+1 77‘[}( — ik(f(ﬂk Clk+1)+Mk+1)

aF 1 — 0% = 2% (g (%, G¥) + TF* ), (DSA)

where f and g are concatenations of {f}icx and {gi}ien, re-
spectively. A, 7* and M*,T'* take similar forms.

As discussed in the “Convergence of Learning in Games”
section, to obtain an approximately accurate score function, the
two coupled discrete-time systems in (DSA) should operate on
different timescales: the score function 0 should be updated
sufficiently many times until near convergence before updating
the strategy. This two-timescale iteration can be achieved by
adjusting the time-scaling factors: A¥ and &* are chosen so
that limx-A*/Z* = 0. To understand this timescale system, it
is instructive to consider a coupled, continuous-time dynamical
system, as suggested in [35]:

dfét(t) =f(z(t),Q(t)),
da() _ A

Gt = e 9m®,00), (S3)
where ¢ tends to zero. Hence, U(t) is fast transient while 7 (f)
is slow. The long-run behavior of the aforementioned coupled
system can then be analyzed as if the fast process is always
fully calibrated to the current value of the slow process. This
suggests investigating the ordinary differential equation

P20 — gz,

(54)

where 7 is held fixed as a constant parameter. Suppose (S4) has
a globally asymptotically stable equilibrium A (), where the map-
ping A(-) satisfies regularity conditions specified in [36] and [70].
Then, it is reasonable to expect U (t) given by (S4) to closely track

A (7). Inturn, this suggests that the investigation into the coupled
system (S3) is equivalent to the study of the single-timescale one

920 K (o), Az (1))

(S9)

which would capture the long-run behavior of 7 (f) in (S3) to a
good approximation [35].

Informally speaking, to study the convergence of (DSA), its
discrete-time trajectory can be related to that of (S3), which is
further equivalent to (z(t), A(z(t))) specified by (S5). There-
fore, Lyapunov stability theory can be applied to (S5) to derive
convergence results of the original discrete-time algorithm. We
begin with the linear interpolation process of the discrete-time
trajectory, which connects (DSA) and its continuous-time coun-
terpart (S3), (S5). Under some regularity conditions [36], for
{7} [the sequence generated by (DSA)], the continuous-time
process 7(t) : R+ — A(A) is constructed based on the linear
interpolation of {z}. Letting 7°= 0 and 7 = Z%_1°, define
k+1).

k+1 k

-7 k
=7, te[th, T
),L_k+1_ﬂk' [

at)y=n*+(t—7*
Similarly, define a continuous-time process @ (¢) corresponding to {G}.
As shown in [36] and [70], such a linearly interpolated process

(7 (t),u(t)) is closely related to flow of the differential equations
drn (t)

=f(z (1), 4 (1)),

d‘c’,f) = g(z (.30,

(S6)

Note that (S6) is defined for ease of presentation, and the actual dif-
ferential inclusion systems involve rearrangement of several terms
(refer to [70] for more details). Further, denote the flow of (S6) by

)

@ (7% u) = {(7z O, a() | (z
=uY%

with 7z (0) = z°, G (0

a(t (t),a(t)) is a solution to (S6),
)
The key to the stochastic approximation theory lies in the fact
that in the presence of a global attractor for (S6), the continu-
ous-time process (7 (t), u (t)) asymptotically tracks the flow with
arbitrary accuracy over windows of arbitrary length [36],
tILnJQSiL[f)p dist{(z (t+s),u(t+s)), @s (7 (t), U (t))} =
where dist{-,-} denotes a distance measure on A(A)x RA.
Refer to (7 (t),u(f)) as an asymptotic pseudotrajectory of the
dynamics (S6). In other words, to study the convergence of
(DSA), the convergence analysis of (S6) is used, which can
be addressed by Lyapunov stability theory, as depicted in [36]
and [70]. The key conclusion is that if there is a global attractor
A for (S5), then the interpolated process (7 (t), u(t)) [or simply,
(7%, a¥)] converges almost surely to (A, A(A)).
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To analyze the convergence of two-timescale dynamics,
one can study its equivalent single-timescale dynamics.

of the current strategy profile, while the strategy update
(19) is the critic that improves the strategy.

As observed in the literature [37], the performance of the
actor-critic learning relies on the quality of evaluation from
the actor. One approach to obtain a satisfying actor in
learning is to leverage the two-timescale idea [35], accord-
ing to which (18) should operate at a faster timescale than
(19). Intuitively speaking, to obtain a (t) that can approxi-
mately evaluate the current strategy profile 7z (t), the player
must wait until @ (#) nearly converges before it updates the
strategy using (19). To analyze the convergence of two-tim-
escale dynamics, one can study its equivalent single-times-
cale dynamics. As the actor (18) runs at a faster timescale,
the system (18) and (19) can be “decoupled” in the following
way: By fixing 7(t) =z, the faster timescale update (18)
converges to u(z), where 7 is viewed as a parameter, Then,
after the convergence of the fast dynamics to an equilib-
rium u(z), the slow dynamics (19) is set in motion, where
u(t) is replaced by its equilibrium point u(z(t)) and the
resulting learning dynamics is

dn (t)
dt

€ BR(z () — z(b). (20)

As illustrated in “Stochastic Approximation Theory,” the
coupled dynamics (18), (19), and the single-timescale (20)
share similar asymptotic behaviors. Hence, we can focus
on the much simplified one (20) for the derivation of the
convergence results. For more details about the two-times-
cale learning and the derivation of the equivalent dynam-
ics, refer to “Stochastic Approximation Theory” and
references therein.
Applying the same argument to (SBR-d) yields

df:iit(t) = ui(zm-i(f) —w(t),

d?;f t(f) = QR (&i(h) — (1),

(SBR-c)

and its equivalent dynamics regarding the joint strategy
profile is

10— Or (u(x (1) ~ 7).

1)

Unlike (BR-d) and (SBR-d), (DA-d) does not belong to the
class of actor-critic methods. To see this, note its continu-
ous-time dynamics
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dl(liif(t) = wi(7.(t)),

7i(t) = QR (w;(1)).

(DA-¢)

Similar to the previous argument, learning dynamics for
the strategy profile is

z(t) = QR (u(t), (DA)
where the dynamics regarding u(t) does not produce an
approximation of u(z(t)). Instead, it gives the cumulative
payoff: a(f) = /(; tu(ﬂ(r))dr +1(0). It is straightforward to
see that as there is only one differential equation in (DA),
the resulting autonomous dynamical system is related only
to (). Hence, there is no additional dynamics regarding
the strategy update, which makes (DA) fundamentally dif-
ferent from (BR-c) and (SBR-c).

Nash Equilibrium and Lyapunov Stability

As the various learning algorithms belong to different
classes, discussions regarding the convergence results of
the introduced learning dynamics are organized in the fol-
lowing way. We begin with (DA-d) [or equivalently, its con-
tinous-time dynamics (DA)], a type of gradient-based
dynamics, then proceed to (BR-c) and the (SBR-c).

Dual Averaging
Consider learning dynamics of the joint strategy profile
and the estimated utility vector under (DA)

WO — w@oy,

z(t) = QR (u(t)).

(DA)

This compact form implies that (DA) is an autonomous
system evolving in the dual space. Similar to the discussion
in the “Gradient Play” section, the terminology in [47] and
[48] is adopted, where the gradient u (7 (t)) is the dual vari-
able and the corresponding space is termed dual space. As
shown in [44], (DA) is a well-posed dynamical system in the
dual space in that it admits a unique global solution for
every initial @(0). Furthermore, it can be shown that the
dynamics of 7(t) on the game’s strategy space induced by
(DA) under steep regularizers is also well posed [44], [58].
However, well posedness of the induced dynamics under
generic regularizers remains unclear [44]. The reason lies
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in the fact that under steep regularizers such as the entropy
regularizer, the projected dynamics regarding 7 (t) evolves
within the interior of the simplex, and the resulting ODE is
also well posed in the primal space (which need not hold
for nonsteep regularizers). For more generic choices of QR
and related stability analysis, refer to [44].

Even though studying stability of the induced dynam-
ics in the primal space may not be viable due to the well-
posedness issue, the asymptotic behavior of 7(t) can be
characterized by investigating its dual u(#). Toward that
end, z(t) = QR(u(t)) is referred to as the induced orbit of
(DA) (or simply, orbit), and the following notions regarding
the stability and stationarity of 7 (t) are introduced (which
are adapted from [44]).

Definition 4
Denote by im (QR®) the image of QR*. For z(t) = QR (u(t)),
an orbit of (DA), a fixed 7° € [TicyA(A)) is
» stationary, if z(t) = 7" € im(QR°) for all t =0, when-
ever 7(0) =7~
» Lyapunov stable, if for every neighborhood U of 7,
there exists a neighborhood U’ of 7" such that
7(t) € U for all t = 0, whenever 7o € U" Nim (QR)
» attracting, if there exists a neighborhood U such that
n(t) — n" as t — oo, whenever 7o € UNim(QR°)
» globally attracting, if " is attracting, with the attract-
ing basin being the entire image im (QR°)
» asymptotically stable, if n~ is both attracting and
Lyapunov stable
» globally asymptotically stable, if n* is both globally
attracting and Lyapunov stable.

Similar to the Folk theorem of evolutionary game theory
[40], there is an equivalence between the stationary points
of (DA) and the Nash equilibria [40], [44]: any stationary
point is a Nash equilibrium, and conversely, every Nash
equilibrium that is within the image of the mirror map (15)
is a stationary point. In addition to the relationship between
the Nash equilibrium and the stationary point, another
important question is “Are Nash equilibria of the underlying
game (globally) asymptotically stable under (DA)?”

Answering this question requires revisiting a varia-
tional characterization of the Nash equilibrium, which
bridges the equilibrium concepts associated with two dif-
ferent mathematical models: games and dynamical sys-
tems. Recall that the Nash equilibrium is equivalent to the
solution of the variational inequality

(u(z"),n—n")<0, forallze [] A(A).

ieN

(SVI)

As the utility function ui(7;, 7-;) is linear in z;, the SVI is
equivalent to the Minty-type variational inequality

(u(n),z—7")<0, forallze [] A(A),
ieN

(MVI)

which implies that the Nash equilibrium 7" is the solution to
the (MVI) [26]. Then, to answer the question of interest, it
suffices to investigate whether the solution to the (MVI) is
attracting under (DA). As discussed in [67], the answer is
negative: not every Nash equilibrium of an N-player, gen-
eral-sum game is attracting. To ensure the convergence of
(DA), an additional condition must be imposed on the (MVI).

Definition 5 (Variational Stability) [44]

7" is said to be variationally stable if there exists a neigh-

borhood U of 7" such that
(u(n),n—n")<0, forallz e U, (VS)

where equality holds if and only if z” = 7. In particular, if

U=1ILienA(Aj), 7" is said to be globally variationally

stable.

The definition of variational stability (VS) can be extended
to sets [44]. Let a subset IT" C IT;c y A (A;) be closed and non-
empty. IT" is said to be variationally stable if there exists a
neighborhood U of II" such that

(u(n),n—n")<0, forallze U,z 1T, (22
where equality holds for a given z” €Il if and only if
rell.

“VS” is proposed in [44] as a relaxation of the monoto-
nicity condition of the pseudogradient mapping of the
game, such as u(7) in the mixed extension of finite games
or D(a) in continuous games. VS alludes to the seminal
notion of evolutionary stability introduced in [49], which is
in a spirit similar to the variational characterization of the
evolutionarily stable state studied in [40]. An equivalent
notion is developed in the work on gradient-based learning
[67], named locally asymptotically stable Nash equilibria
(LASNE). As its name suggests, Nash equilibria satisfying
the VS are asymptotically stable under gradient-based
dynamics. Likewise, the equilibria satisfying global VS are
globally asymptotically stable Nash equilibria (GASNE).
Refer to [67] and references therein for more details about
this characterization of Nash equilibria.

What is presented in this section provides a generic crite-
rion for examining the convergence of gradient-based
dynamics (DA). Based on the notion of VS, the following
discusses some concrete cases where the learning dynamics
converge, either locally or globally, to Nash equilibria. As
shown in [43], for any finite games, every strict Nash equi-
librium satisfies (VS) and hence is LASNE. Therefore, every
strict Nash equilibrium in finite games is locally attractive.
On the other hand, to ensure global convergence, the under-
lying Nash equilibrium must be GASNE or equivalently
satisfy the global VS. For finite games, the existence of a
potential implies monotonicity, which further implies the
existence of globally variationally stable Nash equilibria
[43]. Hence, for potential games [44], [71] and monotone
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games [43], [72], regardless of the initial points, the orbit of
(DA) always converges to the set of Nash equilibria. These
discussions are summarized in the following, where 1) and
2) are direct extensions of the folk theorem of evolutionary
dynamics [40], while 3)-5) are corollaries of variational
characterization of Nash equilibria in [44] and [67].

For every finite game, the Nash equilibrium can be char-
acterized using the language of Lyapunov stability [44],
[58]. For a fixed 7* € IliceyA(A)),

1) if z” is stationary, it is a Nash equilibrium.

2) if z* is Lyapunov stable, then 7" is a Nash equilib-

rium.

3) if #” is a Nash equilibrium and it falls within the

image of the mirror map, then it is stationary.

4) if n° is a strict Nash equilibrium, it is asymptoti-

cally stable.

5) if z” is a Nash equilibrium of a potential game or a

monotone game, it is globally asymptotically stable.

(BR-d)

The analysis of (BR-d) [or equivalently, (20)] is more involved
than that of (DA-d) [or equivalently, (DA)]. The theoretical
challenge is mainly due to the discontinuous, set-valued
nature of the best response mapping (2). As a differential
inclusion, (20) typically admits nonunique solutions
through every initial point [36]. Early works have established
the convergence results on (BR-d) for games with special
structures: (BR-d) converges to the Nash equilibrium in
zero-sum games [39], [68], [73] (where the Nash equilibrium
is essentially a saddle point), two-player strictly supermodu-
lar games [50], and finite potential games [36], [39]. However,
although most of these works still rely on the Lyapunov
argument [36], [39], [68], [73], they do not directly reveal any
generic relationship between Lyapunov stability and Nash
equilibrium in general multiplayer nonzero-sum games and
are mostly on an ad hoc basis.

Recent endeavors on the study of (BR-d) have helped
shed some light on the asymptotic behavior of (BR-d) by
relating the best response vector field BR(7) — 7 to the gra-
dient field u(z), which renders (BR-d) in some potential
games [74], [75] as an approximation of the gradient-based
dynamical system [74]. For the finite potential games con-
sidered in [74], additional regularity conditions are imposed
(which are closely related to the notion of VS introduced in
the previous section). Therefore, variational characteriza-
tion of the Nash equilibrium and VS becomes relevant
under (BR-d). Following this line of reasoning, it is shown
in [74] that in regular potential games, (BR-d) is well posed
for almost every initial condition and converges to the set
of Nash equilibria.

Smoothed Best Response

As shown from the explicit expression, (SBR-d) only differs
from (BR-d) in the operator QR*(), which serves as a per-
turbed best response [76]. The perturbation is determined
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by € [57]. Hence, if € tends to zero, it is straightforward to
see that (SBR-d) will enjoy the same asymptotic property as
(BR-d), which implies that identical results should also be
achievable for smoothed best response with vanishing
exploration. This intuition is verified in [52], [69], where
(SBR-d) [or equivalently, (21)] is shown to converge in zero-
sum, potential, and supermodular games.

On the other hand, with a constant ¢, it is not realistic to
expect (SBR-d), essentially a fixed-point iteration, to always
converge to the exact Nash equilibrium. Hence, a new equi-
librium concept is introduced in the literature, which is
termed the perturbed Nash equilibrium in [77] and [78] or
Nash distribution in [38] and [56]. The new equilibrium is
defined as the fixed point of the regularized best response map-
ping in (15). This article does not include detailed discus-
sions on this topic as the convergence analysis still rests on
the standard Lyapunov argument, and the epistemic justi-
fication of such equilibrium [30], [39] is beyond the scope of
this article. The reader is referred to [30], [56], [69], and [78]
for a rigorous treatment of this new equilibrium.

Beyond Stochastic Approximation
In addition to stochastic approximation and related ODE
methods, another class of widely applied learning algo-
rithms is built upon Markov chain (MC) theory [79], which
is termed learning by trial and error (LTE) [80]. Even though
the name of the proposed learning suggests its similarity to
reinforcement learning, the learning process is quite differ-
ent in the sense that there are no explicit score functions or
choice mappings in the proposed method. In LTE, there are
two basic rules: 1) players occasionally experiment with
alternative strategies and keep the new strategy if and only
if it leads to a strict increase in payoff and 2) if the player
experiences a payoff decrease due to a strategy change by
someone else, it starts a random search for a new strategy.
Eventually, it settles on a new strategy with a probability
that increases monotonically with its realized payoff. In
other words, the “error” part relies on the realized payoff,
and no advanced device (such as score functions like
Q-functions [110] or estimated utilities) is needed, while the
“trial” part is a random search procedure implemented
according to the two basic rules. A novel feature of the pro-
cess is that different search procedures are triggered by dif-
ferent psychological states or moods, where mood changes
are induced by the relationship between players’ realized
payoffs and their current payoff expectations. To be spe-
cific, there are four moods: content (C), hopeful (H), watchful
(W), and discontent (D), and different moods lead to differ-
ent random search procedures. Briefly, players will explore
new strategies with high probabilities when in W and D,
while keeping the current one with high probabilities if the
mood is C or H. The details can be found in [80], and a con-
cise summary is provided in [81].

This mood-based trial and error is different from rein-
forcement learning introduced in the previous section,
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where the exploration is not determined explicitly by the
score function and the choice mapping. Hence, LTE does
not fit the stochastic approximation framework introduced
in the previous section. Instead, the associated convergence
proof relies on perturbed MC theory [79], [82]. It is shown in
[80] that in a two-player finite game, if there exists at least a
pure Nash equilibrium, then LTE guarantees that pure
Nash equilibrium is played at least 1 — € of the time (where
€ is the probability of exploring new strategies). For an
N-player finite game, if the game is interdependent [80] and
there exists at least one pure Nash equilibrium, the same
theoretical guarantee for the two-player case also holds. It
is not surprising that LTE does not achieve convergence in
conventional ways (that is, almost sure convergence and
convergence in the mean as players will always explore
new strategies with positive probability at least €). The pro-
posed learning method and its variants have also been
applied to learning efficient equilibrium [83] (Pareto domi-
nant, maximizing social welfare), learning efficient corre-
lated equilibria [84], achieving Pareto optimality [85], and
other related works in engineering applications, such as
cognitive radio problems [34].

The idea of trial and error in LTE leads to many impor-
tant variants, such as sample experimentation dynamics
in [82] and optimal dynamical learning [81], [85], which
also rely on perturbed Markov processes for equilibrium
seeking. Even though the convergence results of these
algorithms all rest on MC theory [79], analysis of their
performance remains unclear due to computation com-
plexity of the inherent MC generated by these algorithms.
To circumvent the dimensionality issue regarding the
number of states in the original MC, an approximation-
based, dimension-reduction method is proposed in [81],
which allows numerical convergence analysis for LTE and
its variants based on Monte Carlo simulations. Also note
that a simplified trial-and-error algorithm is theoretically
analyzed in [86], where the optimal exploration rate is iden-
tified and the associated convergence rate is discussed. It is
not unrealistic to expect that a similar argument may apply
to LTE and its variants. However, technical challenges
regarding the dimensionality should not be downplayed.

Resurgence of Learning in Games

With ML algorithms being increasingly deployed in real-
world applications, there is a resurgence in research endeav-
ors on multiagent learning and learning in games [87]. In
addition to the line of research driven by evolutionary
dynamics dating back to 1950s [40], [50], the current wave of
learning theory development is mainly driven by a desire to
better understand and improve the performance of ML
algorithms in a competitive environment. In general, there
are two possible roles that game-theoretic methods can play
in ML study: 1) Game-theoretic methods are an add-on for
improving the performance of ML algorithms. 2) Certain
ML problems manifest the game features, which call for

game-theoretic tools. For supervised learning, the recent
interest in adversarial learning techniques serves as an
example of how game-theoretic models and learning meth-
ods can be used to robustify ML [88], [89], where potential
attacks or disturbances are viewed as strategic moves of an
opponent. On the other hand, there are problems in unsu-
pervised learning where game-theoretic models are no
longer tools for solving the problem but the problem itself.
Generative adversarial networks (GANSs) [90] are an approach
to generative modeling using deep learning methods, in-
volving automatically discovering and learning the pat-
terns of input data in such a way that newly generated
examples output by the generative model (generator) cannot
be distinguished from the input. In game-theoretic lan-
guage, the training process of a GAN is essentially a learn-
ing process in a zero-sum game between the generator and
the discriminator, where the generator tries to generate new
samples that plausibly could have been drawn from the
original data set, while the discriminator tries to select
those fake ones produced by the generator. We do not intend
to provide a comprehensive survey for these ML applica-
tions; instead, the reader is referred to [87] and [88].

Despite different contexts under which the learning
theory is studied, recent research efforts mainly revolve
around the following three aspects:

1) learning dynamics in general multiplayer repeated

games

2) learning dynamics in repeated games with accelera-

tion design

3) learning dynamics in dynamic games in a decentral-

ized manner.

The first research direction is a natural follow up to the
study of evolutionary dynamics [40], [50], which aims to
bring learning in games to a broad range of ML applica-
tions because in ML, the game structure is specified by the
underlying data and may not enjoy any desired properties.
Recall that convergence results and asymptotic behaviors
regarding the three dynamics, (BR-c)-(SBR-c)-(DA-c), are
discussed with the assumption that the underlying game
acquires special structures, such as potential games, super-
modular games, and zero-sum games. However, for games
with fewer assumptions on the utility function, there is still
a lack of understanding of the dynamics and the limiting
behavior of learning algorithms. One of the central ques-
tions of this direction is “What are the relationships between
Nash equilibria and stationary points as well as attracting sets
under the learning dynamics?” Recent attempts try to answer
this question from a variational perspective [91] and pro-
vide various characterizations of Nash equilibria with
desired properties under gradient-based dynamics [58],
[67], [92]. Furthermore, considering its applications in ML
problems, learning algorithms in stochastic settings are of
great significance in recent studies. Refer to [67] and [93] for
more details and [23] for an introduction to stochastic Nash
equilibrium seeking.
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The second research direction (which attracts attention
from the ML, optimization, and control communities) is
directly related to the design of ML algorithms. The goal is
to develop acceleration techniques that improve the perfor-
mance of learning algorithms. Based on the understanding
of first-order, gradient-based dynamic games such as (18)
(LGD), recent research efforts have focused on high-order
gradient methods (which can be dated back to Nesterov’s
momentum idea [48]), with researchers endeavoring to pro-
pose a general framework that generalizes the momentum
for generation of accelerated gradient-based algorithms
[91]. On account of the close relationships among Nash
equilibrium, variational problems, and dynamical systems
[26], one approach for developing acceleration is to general-
ize the concept momentum by formulating the equilibrium
seeking as a variational (optimization) problem [26], [94],
and then investigate acceleration methods within the opti-
mization context using, for example, variational analysis
[91], extragradient [94], and differential equations [95]. In
addition to these works, the reader is referred to [25] for a
review on the optimization-based approach. On the other
hand (as depicted in Figure 3), a learning process, in gen-
eral, is a feedback system, and it is not surprising that con-
trol theory can play a part in designing the acceleration. For
example, recent studies on reinforcement learning demon-
strate that passivity-based control theory can be leveraged
in designing high-order learning algorithms [96], [72],
where the learning rule is the control law to be designed. In
[97], the use of memory in best response maps is promoted
to accelerate convergence in Nash seeking and demon-
strates substantial improvements. In addition to the previ-
ously mentioned references, the reader is referred to [98] for
a review on control-theoretic approaches on distributed
Nash equilibrium seeking, and [99] for the use of extreme
seeking in the learning process.

The recent advance in the third research direction is, in
part, driven by multiagent reinforcement learning and its
applications such as multiagent robotic control [100]-[102].
Unlike the first two directions, where the learning dynam-
ics are primarily studied in the context of repeated games,
the third research direction focuses on games with dynamic
information (see the “Dynamic Games” section). In this
context, the appropriate learning objective, out of practical
consideration [22], is to obtain stationary strategies that are
subgame perfect [103] (see the “Dynamic Games” section
for the definition of subgame perfectness). Unlike the first
two, where the change to payoffs resulting from a certain
action completely stems from the opponents’ move, the
feedback each player receives in dynamic games not only
depends on other players’ moves but also the dynamic envi-
ronment. Moreover, when making decisions at each state,
players must trade off current stage payoffs for estimated
future payoffs while forming predictions on the opponent’s
strategies. A dynamic tradeoff makes the analysis of learn-
ing in stochastic games potentially challenging [104].
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The earlier works for such Markov perfect Nash equilib-
ria are largely based on dynamic programming [105], [106],
which requires global information feedback (a restrictive
assumption in practice). The recent efforts focus on various
approaches to lessen this requirement. Currently, there are
mainly three areas of research regarding learning in
dynamic games. The first approach is to extend learning
dynamics in repeated games to dynamic ones. Built upon
similar ideas in (BR-d), two-timescale dynamics for zero-
sum Markov games is considered in [104] and [107]. Mean-
while, gradient play is also investigated in linear-quadratic,
zero-sum games [67], [108], [109]. The key challenge in the
approach, particularly in the case of Markov games, is to
properly construct the score function (which balances cur-
rent stage and future payoffs). Refer to the mentioned refer-
ences for more details and [87] for an overview.

The second approach is to extend learning methods
in single-agent Markov decision processes to Markov
games. However, the direct extension of methods such as
Q-learning [110], policy gradient [37], and actor-critic [55]
often fail to deliver desired results due to the nonstation-
arity issue [111]. One natural way to overcome the nonsta-
tionarity issue is to allow players to exchange information
with neighbors [112], [113], enabling players to jointly
identify nonstationarity created by the dynamic environ-
ment. For more details regarding this approach, refer to
recent reviews [87], [111]. Finally, the third approach con-
siders a unilateral viewpoint of dynamic games. Unlike
the first two approaches where learning processes are
still investigated in a competitive environment, the third
one interprets learning in Markov games as an online
optimization problem [114], [115], where players make
decisions independently based on the received feedback.
This approach accounts for fully decentralized learning
where, from each player’s perspective, other players are
considered as a part of the environment. The key idea
of this approach is to leverage the regret-minimization
technique [21], which leads to many successes in solving
extensive-form games of incomplete information [116].
Despite recent advances regarding the first two approaches
[67], [87], [104], [107], [117] and positive results for the last
one [114], [115], [118], we still lack a unified framework
and thorough understanding regarding the learning pro-
cess in general Markov games. Decentralized learning in
dynamic games remains an open area for researchers
from diverse communities.

GAME-THEORETIC LEARNING OVER NETWORKS
Learning in games is not only intellectually interesting
but also practically useful. When combined with game-
theoretic modeling, such learning methods (thanks to
their decentralized and adaptive nature) provide a com-
prehensive tool kit for designing resilient, agile, and com-
putationally efficient controls or mechanisms for diverse
applications of networks.
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This section demonstrates that such a combination of
game-theoretic models and associated learning dynam-
ics, referred to as game-theoretic learning, has become indis-
pensable for modern network problems. On the one hand,
these networks often admit complex topological struc-
tures and heterogeneous nodes, resulting in large-scale
complex systems (making centralized controls or mecha-
nisms either impractical or costly). In contrast, game-the-
oretic models treat each node in the network as a rational
and self-interested player. The heterogeneous nature
is captured by players’ distinct utilities and action sets
as well as information available to them, leading to a
bottom-up approach for designing decentralized and
scalable mechanisms and controls. On the other hand,
modern networked systems (such as wireless communi-
cation networks and smart grids) operate in a dynamic
or adversarial environment, calling for learning-based
mechanisms that are responsive to changes in the envi-
ronment or malicious attacks from adversaries. As shown
in the previous section, game-theoretic learning provides
a self-adaptive procedure for each player in the system,
according to which players adjust their moves based on
feedback from the environment (resulting in desired col-
lective behaviors).

Thanks to its advantageous features over the central-
ized approach, game-theoretic learning has gained popu-
larity among researchers working on multiagent systems
and network applications. There have been numerous
encouraging successes in many fields, ranging from wire-
less and Internet of Things (IoT) communication networks
[119]-[123], smart grid and power networks [3], [4], [124],
[125], and infrastructure systems [126]-[129], to cybersecu-
rity applications [130]-[134]. In the following, some repre-
sentative works in these fields are presented. The section
focuses on the applications of learning methods in wireless
communications, smart grids, and distributed ML. Other
related applications will be briefly discussed at the end of
the section.

Next-Generation Wireless Networks

Next-generation wireless communication technologies
offer an accommodating and adaptive solution that meets
the requirements of a diverse range of use cases within a
common network infrastructure, providing the necessary
flexibility for service heterogeneity and compatibility [7].
Such architecture, as noted in [135], aims to meet the fol-
lowing demands:

» increased indoor and small cell/hot spot traffic
(which will comprise the majority of mobile traffic
volume), leading to complex network structures

» higher numbers of connected heterogeneous devices
(stemming from the IoT), which will support massive
machine-to-machine communications and applications

» improved energy consumption or efficient power
control for reducing carbon footprint.

From a system science perspective, these requirements
impose a large-scale, time-variant, and heterogeneous net-
work topology on modern wireless communication sys-
tems, as shown in Figure 7. Hence, it is impractical to
manage/secure the wireless communications network in a
centralized fashion. To address this challenge, game-theo-
retic learning provides a scalable, distributed solution
with adaptive attributes. In the following, the dynamic
secure routing mechanism is used to illustrate how game-
theoretic learning contributes to a resilient and agile com-
munication system.

Security of routing in a distributed cognitive radio (CR)
network is a prime issue, as the routing may be compro-
mised by unknown attacks, malicious behaviors, and unin-
tentional misconfigurations (which makes it inherently
fragile). Even with appropriate cryptographic techniques,
routing in CR networks is still vulnerable to attacks in the
physical layer, which can critically compromise perfor-
mance and reliability. Most of the existing work focuses on
resource-allocation perspectives, which fail to capture a
user’s lack of knowledge of the attacker due to the distrib-
uted mechanism. To address these issues, [120] provides a
learning-based secure scheme that allows the network to
defend against unknown attacks with a minimum level of
deterioration in performance.

Consider Gu = (Nuw, Ev), which is a topology graph for a
multihop CR network, where Ny = {11, ny, ..., nn} is a set of
secondary users, and & is a set of links connecting these
users. The system state s indicates whether nodes are occu-
pied by the primary users. The objective of the secondary
user is to find an optimal path to its destination. In multi-
hop routing, a secondary user n; starts with an exploration
of neighboring nodes that are not occupied and then
chooses a node among them, to which the user routes data.
The selected node initializes another exploration process
for discovering the next node, and the same process is
repeated until the destination is reached.

Let #:(0, L)) :={(n;, 1)), 1: € {0, 1, 2, ..., Li}} be the multihop
path from the node #; to its destination, where L; is the
total number of explorations until it reaches its destination.
Suppose there are [ jammers in the network, the set of these
jammers is given by J ={1,2,..., J}. Let R;, j €7, be the
set of nodes that are under the influence of jammer j.
Denote the joint action of the jammers by r = [rj] jes, where
i € Rj. A zero-sum game formulation is proposed in [120],
where secondary users aim to find an optimal routing path
by selecting #;(0, L), while the jammers aim to compro-
mise the data transmission by choosing r. The expected
utility function is

Li
Eelui(s, (0, L), )] =—E<| Y (Ingli) o) + /1181::5?_1))],

li=1

where qEijﬁj),U is the probability of successful transmissions

from node (n;,li—1) to node (n;l;), and Agﬁﬁ:;?,l) is the
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transmission delay between these two nodes. Here, the
expectation E;[-] is taken over all the possible system states.

Due to the lack of complete knowledge of adversaries
and payoff structures, Boltzmann—Gibbs reinforcement
learning (SBR-d) is utilized to find the optimal path because

FIGURE 8 An illustration of a random network topology for 500 sec-
ondary users with a source (S) and a destination (D), and routes
generated by an ad hoc on-demand distance vector (AODV) algo-
rithm and the proposed secure routing algorithm in a 2-km x 2-km
area. The primary user (PU) footprint denotes the set of nodes not
available to secondary users. Without an attacker, the AODV
establishes (a) the route path described by the solid line, while (b)
the route path (the blue dashed line) is generated by the
Boltzmann—Gibbs learning method. Even though the AODV path
is the shortest path between the source and the destination, it is
disrupted by the presence of malicious attacks. In contrast, the
learning method can develop (c) a new route path that circumvents
jammers, leading to a resilient routing mechanism.

Main Power Grid

Network of Microgrids

of its capability of estimating the expected utility. The
resulting secure routing algorithm can spatially circum-
vent jammers along the routing path and learn to defend
against malicious attackers as the state changes. As shown
in Figure 8, the routing path generated from the proposed
routing algorithm in [120] and [136] can avoid the nodes
that are compromised by the jammers. Thus, the routing
algorithm stemmed from the proposed game-theoretic for-
mulation provides more resilience, security, and agility
than the ad hoc on-demand distance vector (AODV) algo-
rithm as AODV fails to dynamically adjust the routing path
in the case of a malicious attack. Moreover, the proposed
routing algorithm can reduce the delay time incurred by
the attack due to its adaptive and dynamical feature (and
thus is more efficient than the AODV).

The Smart Grid

The gradual replacement of conventional energies with
renewable energies greatly helps with the reduction of green-
house gases and mitigation of climate change. Currently,
more microgrids are being integrated with the main power
grid, which are green systems that rely on renewable distrib-
uted resources such as wind turbines and fuel cells. As dis-
played in Figure 9, the integration of microgrids can enhance
the stability, resiliency, and reliability of the power system as
they can operate independently from the main power grid in
an autonomous manner. Such integration (together with
smart meters and appliances) leads to the smart grid, a
modern infrastructure for reliable delivery of electricity.

The future smart grid is envisioned as a large-scale cyber-
physical system comprising advanced power, communica-
tions, control, and computing technologies. To accommodate
these technologies employed by different parties in the grid
(and to ensure an efficient and robust operation of such het-
erogeneous and large-scale cyberphysical systems), game-
theoretic methods have been widely employed in smart grid

Composition of Microgrid

FIGURE 9 The integration of microgrids. A microgrid consists of a controller, consumers, generators, and energy storage. In the grid,
microgrids can either be connected to the main grid or other microgrids, and these networked microgrids can operate, communicate,
and interact autonomously to efficiently deliver power and electricity to their consumers.
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management problems. Microgrids are modeled as self-
interested players that can operate, communicate, and inter-
act autonomously to efficiently deliver power and electricity
to their consumers. Here, a microgrid management mecha-
nism developed in [124] is presented. Such a mechanism is
built on game-theoretic learning and enables autono-
mous management of renewable resources.

The system model considered in [124] includes genera-
tors, microgrids, and communications. As illustrated in
Figure 10, generators in the upper layer determine their
amount of power to be generated and the electricity price,
then send them to the bottom layer. A microgrid can gener-
ate renewable energies and make decisions by responding
to the strategies of the generators and other microgrids to
optimize their payoffs, which is specified in the following
game-theoretic model.

Let Na=1{r,1,2,..., N4} be the set of Ns+1 buses in a
power grid, where r denotes the slack bus. Assume that a
smart grid is composed of load and generator buses, and let
s, pf, and 6; be the power generation, power load, and
voltage angle, respectively, at the ith bus. Note that the
active power injection at the ith bus satisfies

pi=pi—pl, Vie N,

while the balance of the grid gives Zicnp? = Zicnp!. Let
N:={1,2,..,N} € Nu be the set of N buses that can generate
renewable energies, such as wind and solar power.

In the game considered in [124], the utility function of
the ith bus not only measures economic factors related to
power generation but also the efficiency of the microgrids.
Before giving the mathematical definition of the utility
function, we first introduce the following notations. Let c;
be the unit cost of generated power for the ith player, and ¢

EN Generators ﬂ i
(1
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5
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/ Tower
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FIGURE 10 The smart grid hierarchy model. The upper layer containing conventional gen-
erators forms a generator network, and the distributed renewable energy generators in the
bottom layer constitute the microgrid network. The information exchange (such as the elec-
tricity market price and amount of power generation) between two layers is through the

communication network layer in the middle.

60 IEEE CONTROL SYSTEMS » AUGUST 2022

Power Transmission Line

\‘l"\Communlcatlon Link
s

—wv—

the unit price of renewable energy for sale defined by the
power market. c;, c are quantities relevant to the profit
gained by the bus. For efficiency, denote by r; a weight-
ing parameter that is a measurement of the importance
of regulations of voltage angle at the ith bus. Further,
[silijens =—[bilijens,, Where bj is the imaginary part of the
element (i, j) in the admittance matrix of the power grid.
Moreover, each microgrid has a maximum generation,
which is denoted by pf. Finally, note that as a physical con-
straint, [s;] and [p:] satisfy (23) due to the power flow
equation [124]

>, sipit X sipj=6i—

JENNN J#EIEN

sipi, Vi€ N, (23)
where 6; is the voltage angle of the ith bus. Using the afore-
mentioned notations, the utility function of the ith bus is
defined as

uipf, p)=—cipf = c(pi = pf) - %r?( > swrn}

jeNa

0<pP< pf, ieN.

To seek the Nash equilibrium, three learning methods
are proposed, all of which are based on (BR-d). The first
two algorithms are the parallel-update algorithm (PUA)
and random-update algorithm (RUA) studied in [119]. PUA
is essentially (BR-d), with the learning rate A being zero
for all i, and all players updating their strategies in parallel.
As its name suggests, RUA incorporates randomness into
(BR-d), resulting in an e-greedy algorithm: players update
their strategies according to (10) with probability 1—¢,
with € € (0,1) and retain their previous strategies other-
wise. Players always update their strategies in every round
when € = 0: in this case, RUA reduces to PUA.

However, [as special cases of (10)]
PUA and RUA require global infor-
mation regarding the grid, includ-
ing the specific generated power of
generators as well as other players»
active power injections (which are
assumed to be private in practice).
Hence, implementing these algo-
rithms requires communication net-
works to broadcast information to
players, which is costly and not con-
fidential. In this case, incorporating
utility estimation is a possible remedy,
and (SBR-d) can be applied as in the
wireless setting introduced in the
previous section. Another simpler
approach, shown in [124], is to modify
(BR-d) using power flow equations
in the smart grid. Based on a phasor
measurement unit (PMU), the third
algorithm [termed a PMU-enabled

—AAA—

.
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distributed algorithm (PDA)] enables each player to compute
the aggregation of others” actions, with the player’s voltage
angle 0; being the only information needed. Therefore, by
considering the power flow equation (23), a player does not
need other players’ private information of active power
injection when using a PDA (as shown in Figure 11). Com-
pared with the other two, a PDA requires much less infor-
mation and is more self-dependent as players need only
their real-time voltage angles 6; and common knowledge
of the electricity price.

As indicated in [124], effectiveness and resiliency of the
algorithm have been validated via case studies based on
the IEEE 14-bus system: the game-theory-based distributed
algorithm not only converges to the unique Nash equilib-
rium but also provides strong resilience against fault
models (generator breakdown, microgrid turn off, and
open circuit of the transmission line) and attack models
(data-injection attacks, unavailability of PMU data, and
jamming attacks). Strong resilience enables the microgrids
to operate properly in unanticipated situations. Moreover,
the distributed algorithm enables autonomous manage-
ment of renewable resources and plug-and-play feature of
the smart grid. The proposed learning algorithm only
requires the players to have common knowledge without
revealing their private information, which increases secu-
rity and privacy and reduces communication overhead.

Distributed ML Over Networks

The rise of big data has led to new demands for large-scale
ML systems that promise adequate capacity to digest mas-
sive data sets and offer powerful predictive analytics. With

the unrestrainable growth of data, large-scale ML must
address new challenges regarding the scalability and effi-
ciency of learning algorithms with respect to computa-
tional and memory resources. Compared with classical ML
approaches that are designed to learn from a single inte-
grated data set, one of the promising research areas of
large-scale ML is distributed ML over networks (DMLONS),
which aims to develop efficient and scalable algorithms
with reasonable requirements of memory computation
resources by allocating the learning processes among sev-
eral networked computing units with distributed data sets.

The key feature of DMLON:S is that data sets are stored
and processed locally on these computing units, which
enables distributed and parallel computing schemes in large-
scale ML systems. Compared with centralized approaches,
distributed ML not only avoids maintaining and mining a
central data set but also preserves data privacy as these net-
worked units exchange knowledge about learned models
without the exchange of raw, private data.

Based on the idea of “local learning and global integra-
tion,” DMLONSs utilizes different learning processes to
train several models from distributed data sets, then pro-
duces an integration of learned models that increases the
possibility of achieving higher accuracy (especially on a
large-size domain). For example, in federated learning
[137], global integration is created by a third-party coordi-
nator other than computing units, which makes networked
computing units collaboratively train an ML model using
their data in security. On the other hand (as indicated in
[138]), such a global integration can also stem from the
collective patterns of local learning without external
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FIGURE 11 The framework used to implement the phasor-measurement-unit (PMU)-enabled distributed algorithm. A PMU measures the
voltage angle at the bus, and the controller generates a command regarding the amount of microgrid-renewable energy injected from

the local storage to the grid based on the received voltage angle.
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enforcement. The key behind this bottom-up integration is
that each computing unit is modeled as a self-interested
player that learns the learning model based on the local
data set as well as the feedback from its neighbors. It is
shown in [138] that by modeling DMLONSs as a noncooper-
ative game, game-theoretic learning methods lead to com-
munication-efficient, distributed ML where the global
outcome is characterized by the Nash equilibrium result-
ing from players’ self-adaptive behaviors.

Specifically, the networked system of computing units is
described by a graph with the set of nodes N :={1,2,..., N}
representing these units. Each node i€ Nu possesses
local data that cannot be transferred to other nodes. In
the game model considered in [138], instead of fixing the
network topology, nodes can determine connectivity of
the network based on their attributes when they perform
learning tasks (which results in a network-formation
game). In mathematical terms, the action of node i con-
sists of two components: the learning parameter 6; € R?
and network-formation parameter e; € R¥"'. The first
component 6; corresponds to weights or parameters of
the ML model that capture the local learning process at
node i. The corresponding empirical loss (given the local
data) is denoted by Li(6;). In addition to this learning
parameter 6;, the network-formation parameter e; plays
an important role in the global integration. The parameter
ei:=(e))jzijen €[0,1]1V"! denotes the concatenation of
weights on the directed edges from node i to other nodes,

where e,f can be interpreted as the attention node i pays to
the local learning at node j (which further influences com-
munication among nodes). During the distributed learn-
ing process, each node can choose to communicate with its
neighbors to exchange learning parameters if their objec-
tives are aligned. Otherwise, the corresponding edge
weight e{ is set to zero. For node 7, the communication cost
is Ci(6i, 6-;,ei). In the game considered in [138], each node
aims to maximize its utility function, defined as

ui(0i, 0, ei, e—i):=—Li(0:) — Ci(0i, 0, e)).

In this definition, the first term L;(6;) captures the local
learning process at node i, whereas the second term
Ci(6i, 6-i, ei) depicts interactions among nodes. The objec-
tive of each node is to improve the performance of learning
while reducing communication overhead.

A two-layer learning approach is proposed in [138] to
find the Nash equilibrium of the game, and a schematic
representation is provided in Figure 12. The outer layer cor-
responds to network-formation learning, where each node
decides its network-formation parameter e; with the learn-
ing parameter fixed, and the joint parameters of all nodes
e = (ei)ien, give rise to a new network topology (leading
to efficient communication). In network-formation learn-
ing, each node decides its optimal parameter e; using
gradient play (18). Computing the individual payoff gra-
dient V.ui(6;, 60—, e;, e-;) relies on the stabilized learning

Node 1 Node 1
Node 2 . Node 2
Distributed <\>. <\>.
Learning I 1‘
Layer
“\’0 .‘\’Q
Node 3 Node 3
Node 4 Node 4
Node 1 Node 1 Node 1
Node 2 ‘ Node 2 . Node 2
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FIGURE 12 A schematic representation of two-layer learning. The di

rected red lines represent communication between nodes. In the

network-formation layer, the nodes learn to eliminate/establish links with other nodes to achieve efficient communication. In the distrib-
uted ML layer, the nodes communicate their parameters with their neighbors and perform their own learning tasks.
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parameters 6;, 6-; given by the inner layer: the distributed
learning layer. In this inner learning, the network-forma-
tion parameter is fixed, and each node implements online
MD for seeking the Nash equilibrium with the local feed-
back under the current network topology (as the networked
nodes can exchange information with their neighbors).

Compared with existing works on distributed ML, the
game-theoretic method studied in [138] enables distributed
ML over strategic networks. On the one hand, the global
outcome characterized by the Nash equilibrium is self-
enforcing, resulting from the coordinated behaviors of
independent computing units. This bottom-up approach,
compared with the external enforcing one in federated
learning, scales efficiently when additional computing
units are introduced into the system. On the other hand,
strategic interactions over the network (described by the
network-formation decision of each node) create a network
intelligence that allows each computing unit to adaptively
adjust the underlying topology, resulting in a desired dis-
tributed learning pattern that minimizes communication
costs during the learning process.

Emerging Network Applications

The aforementioned examples demonstrate that game-the-
oretic learning provides a natural, scalable design frame-
work that creates network intelligence for autonomous
control, management, and coordination of large-scale
complex network systems with heterogeneous parties. The
following offers thoughts regarding various applications
of game-theoretic learning in a broader context, showing
that such a design framework is pervasive for diverse net-
work problems.

Interdependent infrastructure networks (including
wireless communication networks and smart grids) play a
significant role in modern society, where IoT devices are
massively deployed and interconnected. These devices are
connected with each other and to cellular/cloud networks,
creating multilayer networks (referred to as networks of net-
works [139]). The smart grid is one prominent example, where
wireless sensors collect the data of buses and power trans-
mission lines, forming a sensor network built on power net-
works for grid monitoring and decision-planning purposes
[140]. The networks-of-networks model has also been exten-
sively studied in other infrastructure networks. For instance,
in an intelligent transportation network, apart from vehicle-
to-vehicle (V2V) communications, vehicles can also commu-
nicate with roadside infrastructures or units (which belong
to one or several service providers) to exchange various
types of data related to different applications, such as GPS
navigation. In this case, the vehicles form one network while
the infrastructure nodes form another. The interconnections
between two networks lead to intelligent management and
operation of modern transportation networks.

Due to heterogeneous and multitier features of interde-
pendent networks, the required management mechanisms

or controls vary for different networks. For example, the
connectivity of sensor networks in smart grids or V2V com-
munication networks requires higher security levels than
infrastructure networks because cyberspace is more likely
to be targeted by adversaries [122]. Therefore, to manage
and secure interdependent infrastructure networks, game-
theoretic learning methods (especially heterogeneous
learning [46], [53]) can be used to design decentralized and
resilient mechanisms that are responsive to attacks and
adaptive to the dynamic environment (as different parties
in interdependent infrastructure networks may acquire
different information). For further information on this
topic, refer to [53], [139]. and references therein.

Similar to distributed optimization and ML based on
game-theoretic learning, the control of autonomous mobile
robots can also be cast as a Nash-equilibrium-seeking
problem over networks, where the equilibrium is viewed as
the desired coordination of all robots [101], [102]. For appli-
cations of this kind (where the nature of robot movements
determines the network topologies), dynamic games over
networks are considered, and corresponding learning algo-
rithms are employed. Based on their observations of the
surroundings, robots rely on game-theoretic learning (such
as reinforcement learning) to develop self-rule policies,
leading to a decentralized operation of multiagent robotic
systems. Moreover, when combined with powerful func-
tion approximators such as deep neural networks, rein-
forcement learning has proven to be effective for real-world,
multiagent robotic controls. This area of research, termed
deep multiagent reinforcement learning [87], [141], is growing
rapidly and attracting the attention of researchers from
ML, robotics, and control communities.

In addition to these prescriptive mechanisms in engi-
neering practices, game-theoretic learning also provides a
descriptive model for studying human decision making and
strategic interactions in epidemiology and social sciences,
where the Nash equilibrium represents a stable state of the
underlying noncooperative game. For example, a differential
game model is proposed in [142] to study viruses or diseases
spreading over the network, and authors develops a decen-
tralized mitigation mechanism for controlling the spread.
Such an approach is further explored in [143], where an opti-
mal quarantining strategy is proposed to suppress two
interdependent epidemics spreading over complex net-
works. Furthermore, such a strategy is shown to be robust
against random changes in network connections [143].

CONCLUSION

This article provided a comprehensive overview of game
theory basics and related learning theories, which serve as
building blocks for a systematic treatment of multiagent
decision making over networks. We elaborated on game-
theoretic learning methods for network applications drawn
from spanning emerging areas such as next-generation
wireless networks, smart grids, and networked ML. In each
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area, we identified the main technical challenges and dis-
cussed how game theory can be applied to address them
using a bottom-up approach.

From the surveyed works, it was demonstrated that non-
cooperative game theory is one of the cornerstones of
decentralized mechanisms for large-scale complex net-
works with heterogeneous entities, where each node is
modeled as an independent decision maker. The resulting
collective behaviors of these rational decision makers over
the network can be mathematically depicted by the solu-
tion concept: the Nash equilibrium. In addition to various
game models, learning in games is of great significance for
creating distributed network intelligence, which enables
each entity in the network to respond to unanticipated situ-
ations (such as malicious attacks from adversaries in cyber-
physical systems [140]). Under local or individual feedback,
the introduced learning dynamics leads to a decentralized
and self-adaptive procedure, yielding desired collective
behavior patterns without any external enforcement.

Beyond the existing successes of game-theoretic learning
(which mainly focus on learning in static repeated games), it
is also of interest to investigate dynamic game models and
associated learning dynamics to better understand the deci-
sion-making process in dynamic environments. The motiva-
tion for studying dynamic models and related learning
theory stems, on the one hand, from the pervasive presence
of time-varying network structures such as generation and
demand in the smart grid [124]. On the other hand, by defin-
ing auxiliary state variables, the problem of decision making
under uncertainties can be modeled as a dynamic game,
where the state of the game includes the hidden information
players do not have access to when making decisions. For
example, the state variable can capture uncertainty of the
environment (as discussed in the context of the dynamic
routing problem [120]) or global status of the entire system
(as shown in the example of distributed optimization [144]).
The dynamic game models not only simplify construction of
players’ utilities and actions (providing a clear picture of the
strategic interactions under uncertainties in the dynamic
environment) but also offer a scalable design framework for
prescribing players’ self-adaptive behaviors, which leads to
equilibrium states under various feedback structures.

This article presents a comprehensive overview of
game-theoretic learning and its potential for tackling chal-
lenges emerging from network applications. The combina-
tion of game-theoretic modeling and related learning
theories constitutes a powerful tool for designing future
data-driven network systems with distributed intelligent
entities, which serve as the bedrock and a key enabler for
resilient and agile control of large-scale artificial intelli-
gence systems in the near future.
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