
Self-Triggered Markov Decision Processes

Yunhan Huang1 and Quanyan Zhu1

Abstract— In this paper, we study Markov Decision Processes
(MDPs) with self-triggered strategies, where the idea of self-
triggered control is extended to more generic MDP models. This
extension broadens the application of self-triggering policies to
a broader range of systems. We study the co-design problems
of the control policy and the triggering policy to optimize two
pre-specified cost criteria. The first cost criterion is introduced
by incorporating a pre-specified update penalty into the tradi-
tional MDP cost criteria to reduce the use of communication
resources. A novel dynamic programming (DP) equation called
DP equation with optimized lookahead is proposed to solve
for the optimal self-triggering policy under this criteria. The
second self-triggering policy is to maximize the triggering time
while still guaranteeing a pre-specified level of sub-optimality.
Theoretical underpinnings are established for the computation
and implementation of both policies. Through a gridworld
numerical example, we illustrate the two policies’ effectiveness
in reducing resources consumption and demonstrate the trade-
offs between resource consumption and system performance.

I. INTRODUCTION

Recent development in information and communication
technologies have led to the implementation of large-scale
resource-constrained networked control systems. In these
systems, it is desirable to limit the sensor and control
communication and computation to instances when a system
needs attention [1]. As a result, the self-triggered control
paradigm has been proposed to reduce the utilization of
communication resources and actuation movements while
still maintaining desirable closed-loop behavior for these
systems [2]. The self-triggered control abandons the con-
ventional periodic time-triggered implementations. In self-
triggered control, the self-triggering policy consists of two
sub-policies: the control policy and a triggering mechanism
that pre-determines, at an update time, when the control
inputs have to be updated the next time. Due to its efficiency
in resource-saving, self-triggered control has been studied
extensively in the last decades [1]–[6].

The study of self-triggered has been confined to state-
space dynamical models, including either linear models [1],
[2], [4], [5] or nonlinear models [3], [6] in both(either)
continuous-time and(or) discrete-time settings. However, re-
cent developments in technologies such as wireless com-
munication, machine learning, and real-time analytics have
broadened the application of Internet of Things (IoTs) be-
yond control systems to a wide range of areas, includ-
ing logistics and supply chain [7]–[9], smart cities [10],
and wearables [11]. These systems are usually large-scale,
equipped with resource-constrained devices, and difficult to

1 Y. Huang and Q. Zhu are with the Department of Electrical and
Computer Engineering, New York University, 370 Jay St., Brooklyn, NY.
{yh.huang, qz494}@nyu.edu

be described by state-space dynamic models. Hence, there
is an urgent need to incorporate the idea of self-triggering
policies in control into a more general dynamic model:
Markov Decision Processes (MDP). This incorporation can
lead toward a computationally and communicationally more
efficient IoT-enabled system.

This paper studies a discrete-time self-triggered MDP
where the control1 policy and the triggering mechanism are
co-designed to achieve certain cost criteria. The differences
between this work and most existing papers in self-triggered
control are three-fold. The first is that we study self-triggered
policies for a more general dynamic model, i.e., an MDP
model, which allows the extension of the self-triggering
policy to a wider range of applications. Second, we address
the co-design problem of jointly designing the control policy
and the triggering policy. Existing self-triggering methods
design the control policy and the triggering policy in an
ordered manner, i.e., one designs the control policy first
and then design the triggering mechanism while ensuring
certain control performance [1], [4]. For example, in [4],
the authors pre-set the control gain to be the �∞ control
gain, based on which a triggering mechanism is designed
to assure a specified level of L2 stability. Since the con-
trol policy is given without considering the self-triggering
nature of the whole policy, it is hard to guarantee that the
given control policy is optimal for achieving the minimum
number of updates while maintaining certain cost criteria
[2]. Here, we address a co-design problem to alleviate the
concern regarding the optimality issue. Third, in existing
works [1], the analysis of control performance under the
self-triggered control paradigm is mostly qualitative, e.g.,
the analysis of whether one can achieve a certain type of
stability or not. The control performance is, in literature,
quantified as the decay rate for the Lyapunov function. Only
few self-triggering methods provide quantitative analysis for
control performance such as L2 gains [4], quadratic costs
[12]–[14]. More recently, T. Gommans et al. studied self-
triggered linear-quadratic-gaussian (LQG) control associated
with quadratic costs. Our work considers a generic class
of cost criteria and proposes self-triggered policies that
guarantee a certain optimality level. The contributions of this
paper are summarized as follows.

1) We study self-triggered MDP, which extends the idea
of self-triggered control into a more generic dynamical
model. The genericness of the MDP model enables the
application of self-triggering policies into a broader
range of systems.

2) We jointly design the control policy and the triggering

1In this paper, we use the notion “control” and “action” interchangeably.

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 4507

20
21

 6
0t

h 
IE

EE
 C

on
fe

re
nc

e 
on

 D
ec

is
io

n 
an

d 
C

on
tro

l (
C

D
C

) |
 9

78
-1

-6
65

4-
36

59
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
D

C
45

48
4.

20
21

.9
68

29
18

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 



mechanism that co-optimizes pre-specified cost crite-
ria.

3) We propose two frameworks that produce two co-
designed self-triggering policies. The first is introduced
by incorporating an update penalty into the traditional
MDP cost criteria to reduce the use of communi-
cation resources. The second is a greedy reduction
of resources used while still guaranteeing any pre-
given level of sub-optimality. We establish theoretical
underpinnings for the computation and implementation
of both policies.

4) Through a gridworld example in both non-windy and
windy settings, we show that the proposed policies
are efficient in reducing communication resources used
while still maintaining a high level of performance.

A. Nomenclature

In this paper, R and N represent the set of real numbers
and natural numbers, respectively. The expectation operator
is denoted by E. And ΔC ∈ N denotes the time steps between
two neighboring updates. The letter ; is the index for the
;th update and C; is the time instance when the ;th update
happens. The notation N[C; ,C;+1 ] means the intersection of the
two sets N and [C; , C;+1]. The set of non-negative real numbers
is denoted by R+. The notation A\B denotes the set {G | G ∈
A, G ∉ B}.

II. SELF-TRIGGERED MARKOV DECISION
PROCESSES

In this section, we provide the problem formulation for
the self-triggered action strategy. We consider a discrete-time
MDP defined by a tuple {X,A, %, 2}, where X is the state
space, A is the actions space, % is the time-homogeneous
transition probability, and 2 is the stage-wise cost function.
The state space X and action space A are both assumed to be
Borel subsets of Polish (Banach and separable) spaces. If an
action 0 ∈ A is selected at a state G ∈ X, then a cost 2(G, 0)
is incurred, where without loss of generality, we suppose
2 : X × A → R+. The function 2 is assumed to be bounded
and Borel measurable. The transition probability %(�|G, 0)
is a Borel function on X ×A for each Borel subset � of X,
and %(·|G, 0) is a probability measure on the Borel f-field
of X for each (G, 0) ∈ X × A.

In classic MDP, the decision process proceeds as follows:
at time C = 0, 1, · · · , the current state of the system, GC ,
is observed. A decision-maker decides which action, 0C , to
choose, the cost 2C = 2(GC , 0C ) is incurred, the system moves
to the next state following the rule GC+1 ∼ %(·|GC , 0), and the
process continues. The rule that the decision-maker follows
to choose an action is called policy. We consider stationary
Markov policy q in which all decisions depend only on the
current state. A stationary Markov policy q is defined by a
measurable mapping q : X ×A. In classic MDP, the goal is
to find an optimal stationary Markov policy that minimizes

Eq (G) = Eq
[ ∞∑
C=0

VC2(GC , 0C )
�����G0 = G

]
, (1)

where V is a discount factor strictly less than 1, and the
expectation is based on the probability distribution on the
set of all trajectory (X×A)∞, which is uniquely determined
by the policy q and the initial state G ( [15], pp. 140-141).
Define the optimal cost

+ (G) B inf
q∈Φ

Eq (G),

where Φ is the set of all stationary policies. A policy q is
called optimal if Eq (G) = + (G) for all G ∈ X.

A. Self-Triggered Decision Making

In classic MDP, decision making requires persistent trans-
mission of measured state and updates of actions at each
time instance C ∈ N. In this paper, we are interested in
constructing a policy that requires less sensing demand,
lower communication rate, and less actuator movements [16],
while still maintaining certain forms of optimality.

The self-triggering policy is based on holding the current
input value for a controlled duration. The self-triggered
policy carries the following structure{

C;+1 = C; + g(GC; ),
0C = c(GC; ) ∈ A, C ∈ N[C; .C;+1) ,

(2)

where ; is the index for the number of triggers, C0 B 0,
g : X → T ,T B {1, 2, · · · , )̄}, )̄ ∈ N, and c : X → A.
Here, the integer )̄ is an arbitrary upper bound on the waiting
time for next update. The self-triggering policy, denoted by
`, involves two sub-policies: the timing policy, g(G), that
determines the next time for updating, and the control policy,
c(G), that chooses a fixed action to deploy for the next g(G)
time instances. For convenience, we write ` = (g, c) and
` : X → T × A.

B. Performance Criteria

This paper introduces two different yet related problems
associated with two cost criteria; one is constructed by
incorporating a penalty $ ≥ 0 for updating the action into the
classic cost criteria defined in eq. (1). The idea of introducing
a penalty is originated from costly measurements that have
been investigated in the context of LQG optimal control [14],
[17] and games [18], [19]. The penalty $ ≥ 0 is a scalar,
which we refer to as the update penalty. For instance, if C;
and C;+1 are two neighboring updating time, during the time
interval [C; , C;+1], the total update penalty is VC;$ + VC;+1$.
Now, we formulate the first problem.

Problem 1. Find an optimal self-triggering policy ` that
minimizes the following cost criterion over an infinite horizon

5 ` (G) = E`
[ ∞∑
C=0

VC2(GC , 0C ) +
∞∑
;=1

VC;$

�����G0 = G

]
, (3)

where the first term is the accumulated costs in the classic
MDP, and the second term is the accumulated costs of
updating one’s action.

The second cost criteria is similar to that of [2]. That
is for a pre-specified sub-optimal performance, we aim to

4508

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 



reduce the number of times the input/output is updated, while
maintaining the pre-specified sub-optimal performance. Now,
we formulate the second problem as

Problem 2. Find a policy ` that maximizes the next trans-
mission time g(G) subject to the performance guarantee that

E` (G) ≤ U+ (G), for all G ∈ X, (4)

where U ≥ 1 is a scalar.

Remark 1. In Problem 1, we introduce an update penalty $
to capture the trade-off between the degree of optimality and
the usage of sensing/communication resources. The update
penalty can be interpreted as a soft constraint on the number
of updates. In Problem 2, U serves as a scaling factor
that can be selected arbitrarily to balance the consumption
of sensing/communication resources and the degradation
of performance. There is a hard constraint that requires
matainting a certain degree of sub-optimality. When U = 1,
no degradation of performance is allowed. Solving both
problems involves the co-design of the waiting time for next
update (through g) and the chosen action (through c).

III. THEORETICAL FRAMEWORKS

In this section, by establishing theoretical underpinnings,
we pave the way for finding the self-triggering policies that
solve the problems. For Problem 1, we formulate a dynamic
programming (DP) equation, which we call a DP equation
with optimized lookahead. With this equation, we can resort
to several effective methods such as value iterations and
policy iterations to characterize an optimal self-triggering
policy. For Problem 2, we propose a greedy self-triggering
policy that reduces the number of updates and maintains
a degree of optimality. We show that the proposed policy
is well-defined and there exist such a policy for any pre-
specified U.

A. Dynamic Programming Equation with Optimized Looka-
head

To solve Problem 1, the DP equation with optimized
lookahead is derived and presented in this sub-section. The
derivation idea is to form consolidated costs, states, and
actions between two update time instances, which generates
a new discrete-time MDP in the classic setting.

Let 2̄; represent the consolidated costs that correspond to
the time period between ;-th update and (; + 1)-th update,
i.e., the time period [C; , C;+1). From eq. (2) and eq. (3), we
can obtain

2̄; B 2̄(GC; , 0C; ,ΔC;) = E
[
ΔC;−1∑
C=0

VC2(GC;+C , 0C; )
�����GC; , 0C; ,ΔC;

]
,

where given a self-triggering policy ` = (c, g), the fixed
action 0C; is produced by c(GC; ) and the waiting time ΔC; is
generated by g(GC; ). An application of the Fubini’s theorem
(principle) and Markov property [20] yields

2̄(G, 0,ΔC) =
ΔC−1∑
C=0

VCE [2(GC , 0C ) |G0 = G, 0C = 0,∀C < ΔC] .

Furthermore, we define

%̄(�|G, 0,Δ)) B Prob (GΔC ∈ �|G0 = G, 0C = 0,∀C < ΔC) ,
(5)

as the skip-probability that the MDP is in Borel subset � of
X, after time ΔC, given that the initial condition is G0 = G
and that the action is fixed until ΔC. The skip-probability
%̄(�|G, 0,Δ)) is a Borel function on X × A × T for each
Borel subset � of X, which is determined by the one-step
transition probability %(·|G, 0) defined in Section II.

With the definition of the consolidated stage-wise function
2̄ and the tower property of conditional expectation, the
infinite-horizon cost functional in eq. (3) can be re-written
as

5 ` (G) = E
[ ∞∑
;=0

VC;
(
2̄(GC; , `(GC; )) + Vg (GC; )$)

)�����G0 = G

]
. (6)

Define the optimal cost for Problem 1 as

+BC (G) B inf
`∈ΦBC

5 ` (G), (7)

where ΦBC is the set of all self-triggered policies. In the
following theorem, we state the DP equation for +BC (·).

Theorem 1. The value function defined by eq. (7) satisfies
the following dynamic programming equation:

+BC (G) = inf
0∈A,ΔC ∈T

E

[
ΔC−1∑
C=0

VC2(GC , 0) + VΔC (+BC (GΔC ) +$)�����G0 = G, 0C = 0,∀C < ΔC
]
,

(8)
for all G ∈ X. If there exists a policy `∗ = (g∗, c∗) such that

+BC (G) = E
[
g∗ (G)−1∑

C=0
VC2(GC , c∗ (G)) + Vg

∗ (G) (+BC (Gg∗ (G) ) +$)
�����G0 = G, 0C = c

∗ (G),∀C < ΔC
]
,

for all G ∈ X, then `∗ is an optimal policy for Problem 1.

Proof. See Appendix A. �

Remark 2. The DP equation in eq. (8) includes the con-
solidated state costs,

∑ΔC−1
C=0 VC2(GC , 0), which is the accumu-

lated costs incurred from the current update time instance
to the next update time instance, the cost-to-go after ΔC-
steps of lookahead, VΔC+ (GΔG), and the penalty for a new
update VΔC$. Based on the current measurement G, the DP
equation has ΔC-steps of lookahead. The number of steps ΔC
is optimized in order to balance the trade-off between the
system performance and the update penalty. Thus, we refer
to eq. (8) as the DP equation with optimized lookahead. The
optimized number of lookahead steps is the optimal waiting
time for next triggering given the penalty $. When $ = 0,
the DP equations gives +BC (G) = + (G),∀G ∈ X, i.e., the value
function is the same as the one in classic MDPs.

4509

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 



Remark 3 (Computational Methods). One can resort to
methods such as the usual value iteration or the policy
iteration [21] to solve the DP equation. In the value iteration
approach, given the :-th estimate of the value function,
+BC ,: (·), the next estimate +BC ,:+1 can be computed using
eq. (8). Repeat this process until it converges to the fixed-
point of eq. (8). The convergence is guaranteed for any given
+BC ,0, when V < 1, in view of the Banach fixed-point theorem
(see Theorem 6.2.3. of [21]). And the convergence rate is
guaranteed to be ‖+BC ,: −+BC ‖ ≤ (V:/(1 − V))‖+BC ,0−+BC ,1‖.
The actual convergence speed should be faster than the above
rate depending on what the update penalty $ is.

With Theorem 1, we can compute the value function +BC (·)
and the optimal self-triggering policy `∗. The computation of
+BC (·) and `∗ is usually off-line, and then `∗ is deployed for
online implementation. In the next sub-section, we propose
a greedy policy that solves Problem 2, i.e., a policy that
reduces the number of updates while maintaining a certain
level of sub-optimality.

B. Performance Guaranteed Self-Triggering Policies

In this sub-section, we propose a greedy self-triggering
policy ` that achieves the inequality defined in eq. (4). To
present the policy, we begin with the following lemma.

Lemma 1. If a self-triggering policy ` = (c, g) achieves the
following inequality

E

[
g (G)−1∑
C=0

VC2(GC , c(G)) + UVg (G)+ (Gg (G) )
�����G0 = G

]
≤ U+ (G),

(9)
for all G ∈ X, then we have E` (G) ≤ U+ (G).

Proof. See Appendix B. �

Lemma 1 offers us a convenient way to find an policy
that achieves the performance level specified by U+ (G) for
all G ∈ X and for U ≥ 1. Since the agent aims to reduce
the amount of sensing/communication resources (the rate of
updating), he/she needs to find, for each G ∈ X, the maximum
ΔCG ∈ T such that there exists at least an action 0G ∈ A so
that eq. (9) is satisfied with g(G) and c(G) replaced by ΔCG
and 0G respectively. Then, Problem 2 becomes solving the
following problem for each G ∈ X

max
ΔCG ∈T ,0G ∈A

ΔCG

B.C. eq. (9),
(10)

where in eq. (9), we replace g(G) and c(G) with ΔCG and 0G
respectively.

Theorem 2. If there exists an optimal policy q∗ for the
classic MDP such that Eq

∗
= + (G), then for any fixed U ≥ 1,

there always exist a feasible set for (10), i.e., the problem
(10) is well-defined.

Proof. See Appendix C. �

Remark 4 (The Greedy Choice Property). Note that the self-
triggering policy for Problem 2 follows the greedy rule. At

time C; . the next update time C;+1 = C; + g(GC; ) is maximized
while ensuring eq. (9) without considering the effect of
this choice on the number of future updates after C;+1.
Different from the greedy policy, the self-triggering policy `∗

from Theorem 1 for solving Problem 1 follows the dynamic
programming rule, i.e., current choices are made taking
into account the influence of current choices on the future
possibilities.

So far in this section, we have developed Theorem 1 and
Theorem 2 to help find the self-triggering policies that can
solve Problem 1 and Problem 2. The theorems were devel-
oped without specifying the state space X, the action space
A, and the transition probabilities, except that we require
X to be Polish and 2(·, ·) to be bounded and non-negative
on X ×A. Hence, The results are applicable to a variety of
models such as LQG control [2], [5], [14], inventory control
[8], and queueing systems [9], [22]. The two theorems pave
the way for the computation and implementation of the self-
triggering policies for various Markov decision processes. In
the next section, we present a gridworld example to illus-
trate the computation and implementation of self-triggering
policies using Theorem 1 and Theorem 2.

IV. COMPUTATION AND IMPLEMENTATION: A
GRIDWORLD CASE STUDY

In this section, we consider a rectangular gridworld rep-
resentation of a simple MDP for illustration purposes. The
gridworld environment made up of 4 × 6 cells is shown in
Fig. 1, where grey areas are walls. An agent lives in this
gridworld aiming to navigate from the start cell to the target
cell. The states, representing the cell the agent lives in, are
X = {1, 2, · · · , 19, 20}. There are four actions possible at
each state, A = {north, south, east,west}. Walls block the
agent’s path. The actions that would take the agent off the
grid or into the walls in fact leave the state unchanged.
State G = 20 is an absorbing state such that once the agent
reaches the target cell, he/she enters the absorbing state with
probability one (w.p.1). The agent aims to reach the target
as fast as possible. Hence, we define

2(G, 0) =
{

10, if G ∈ X\{19, 20},
0, if G ∈ {19, 20}.

(11)

A. A Non-Windy Gridworld

We first consider a non-windy setting where each ac-
tion deterministically causes the agent to move one cell
in the respective direction. Let %3 denotes the transition
probabilities in a non-wind setting. For instance, we have
%3 (6|1, north) = 1. We consider the discount factor V = 0.95,
and the bound on the waiting time for the next update is
)̄ = 6. The update penalty $ is subject to change.

We set the initial value function estimate to be +BC ,0 (G) =
0,∀G ∈ X. We conduct value iteration using the DP equation

4510

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 



(15) (16) (17) (18) T (19)

(10) (11) (12) (13) (14)

(6) (7) (8) (9)

S (1) (2) (3) (4) (5)

Fig. 1: A gridworld example: Grey areas represent walls, S
stands for the start cell, T denotes the target cell, and the
integers in the brackets are the indices of states.

Fig. 2: A non-windy gridworld: The value + (G) (the upper
value) and the optimal action q∗ (G) (the lower pointers) in
the classic MDP for each G ∈ - .

with controlled lookahead in eq. (8):

+BC ,:+1 (G) = min
0∈A,ΔC ∈T

E

[
ΔC−1∑
C=0

VC2(GC , 0) + VΔC
(
+BC ,: (GΔC )

+$
) �����G0 = G, 0C = 0,∀C < ΔC

]
,

where every term in the expectation operator can be com-
puted using transition probabilities %3 . The iteration stops
when ‖+BC ,:+1 − +BC ,: ‖ ≤ 10−5, and the results show that
the tolerance can be achieved within 25 iterations for every
update penalties $ we study in this paper.

In Fig. 3, we present the optimal triggering time g(G)∗
and the optimal control policy c∗ (G) for each state when the
update penalties are $ = 0, 0.1, 40, 80. As we can see from
Fig. 3 (a), when $ = 0, since there is no update penalty, the
optimal triggering time is to update every time, i.e., g∗ (G) =
1,∀G ∈ X, and the optimal control policy is the same as its
counterpart in a classic setting, i.e., c∗ (G) = q∗ (G),∀G ∈ X.
The policy offers three paths from the start cell to the target
cell: 1 → 2 → 7 → 11 → · · · → 19, 1 → 6 → 7 → 11 →
· · · → 19, and 1 → 6 → 10 → 11 → · · · → 19. Each path

(a) The update penalty $ = 0. (b) The update penalty $ = 0.1.

(c) The update penalty $ = 40. (d) The update penalty $ = 80.

Fig. 3: A non-windy gridworld: The optimal triggering time
policy g∗ (G) (the upper value) and the optimal control policy
c∗ (G) (the lower pointers) for each G ∈ X under different
update penalties $. (For Problem 1)

takes 12 steps to complete, covers 13 cells, and there are 12
updates.

Suppose a remote controller controls the agent, and the
communication between them is expensive. Each communi-
cation/update induces an update penalty $. When $ = 0.1,
as is shown in 3 (b), an update is only triggered when
there is a need to update the action. For example, when
the agent is at state G = 1 at time 0, the optimal control
policy is heading north, and the optimal waiting time is 2
steps. That means at time C = 0, the agent communicates
with the controller and is commanded to go north and fix
this action for 2 time steps, after which a new update will
be sent. Since there is a straight path to the target cell, in
a non-windy setting, at states G = 8, 9, 14, the controller
chooses the maximum allowed waiting time )̄ = 6. There
are few points worth noticing when we compare Fig. 3 (a)
and (b): First, when the update penalty $ = 0.1, the optimal
policy, as is shown in Fig. 3, provides one shortest path to
the target cell: 1 → 6 → 10 → 11 → · · · → 19. The path
takes 12 time steps to complete, which is the same as when
$ = 0. However, the updates are only triggered when the
agent was at states G = 10, 16, 3, 5. Hence, the self-triggering
policy under $ = 0.1 requires only 4 updates to achieve the
same shortest path as the classic optimal policy. That means
the self-triggering policy saves (12 − 4)/12 = 66.47% of
the communication resources required in a classic policy.
Second, when the update penalty is $ = 0.1, at state G = 1,
going west is no longer an optimal choice since going west
requires more updates (5 in this case) to achieve the shortest
path. Third, in Fig. 3 (b), the optimal triggering time and the
corresponding optimal control at each state always take the
agent to the next turning points. For instance, at G = 10,

4511

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 



the optimal action is to go east and to fix this direction
for 3 steps. This optimal action and optimal waiting time
take the agent to state 13, where the agent has to turn south
to reach the target cell. There are two reasons to explain
this phenomenon: 1. the update penalty is relatively low,
compared with the stage cost defined in eq. (11), so that
achieving the shortest path within the minimum number
of steps is still a priority. 2. In a non-windy setting, the
actions deterministically move the agent toward the desired
direction, which means the controller can anticipate the
agent’s trajectory in future steps. Hence, no update is needed
between the two turning points.

The computed self-triggering policy under $ = 40 is
provided in Fig. 3 (c). The self-triggering policy gives a
longer path to reduce the overhead of updating: 1→ · · · →
15→ · · · → 18→ 3→ · · · → 19, which takes 17 time steps
(stay at state 15 for 4 time steps due to 6 time steps of going
north without update), covers 15 cells, and requires 4 updates
to complete. Even though the self-triggering policy requires
the same number of updates as the case when $ = 0.1, the
updates are triggered later than their counterparts in the case
of $ = 0.1. Hence, the updates produce less costs due to the
discount effect. As the update penalty increases to $ = 80
(see Fig. 3 (d)), the optimal time policy at most of the states
becomes to wait as long as possible for next update, i.e.,
g∗ (G) = )̄ , for G ∈ X\{3, 4}.

B. A Windy Gridworld

Next, we consider a windy gridworld where the wind takes
the agent north 10% of the chance and west 10% of the
chance. And 80% of the time, the agent’s movement follows
its action. In the windy gridworld, the effect of boundaries
and walls still applies. The transition probability in a windy
setting is defined by %F . For example, if the agent is at state
G = 11 and chooses to go east, we have %F (12|11, east) =
0.8, %F (10|11, east) = 0.1, and %F (16|11, east) = 0.1. We
run value iterations using the DP equation with controlled
lookahead given in eq. (8) under the transition probabilities
%F in the windy environment.

The optimal timing policy and optimal control policy are
presented in Fig. 4. One difference in a windy environment
is that the control chosen will not deterministically cause the
movement of the agent. That means if there is no update, the
controller needs to estimate the agent’s trajectory, and there
exists an estimation error. Hence, we hypothesize that the
agent needs to trigger the update more frequently than in a
non-windy environment to know his/her location and then
adjust his/her control.

Fig. 4 (a) presents the case when there is no update penalty,
i.e., $ = 0. The optimal timing policy is to observe/update
every step. The control at state G = 6 becomes going east to
avoid being taken to the northwest corner by the wind. At
states G = 15, 16, 17, going south is not an optimal control
anymore since if the agent goes south, there is a chance that
the wind would take the agent back to the north. When the
update penalty is small, i.e., $ = 0.1, the optimal policy is
listed in Fig. 4 (b). There are two points worth mentioning

(a) The update penalty $ = 0. (b) The update penalty $ = 0.1.

(c) The update penalty $ = 40. (d) The update penalty $ = 80.

Fig. 4: A windy gridworld: The optimal triggering time
policy g∗ (G) (the upper value) and the optimal control policy
c∗ (G) (the lower pointers) for each G ∈ X under different
update penalties $. (For Problem 1)

when we compare the windy setting and the non-windy
setting:

1) When $ = 0.1, the agent updates more frequently in
a windy setting. For example, at G = 5, the agent will
update the next step in a windy setting, while the agent
will update 6 steps later in a non-windy setting. One
of the reasons is that in a windy setting, the agent has
to update in the next step to make sure he/she goes
to state G = 9 instead of being blown by the wind to
state G = 4. This result backs up our hypothesis that
the agent in a windy world needs to trigger the update
more frequently than in a non-windy environment.

2) When $ = 40, Fig. 4 (c) shows some interesting
and unexpected results. The agent waits longer for the
next update in a windy setting than in a non-windy
setting shown in Fig. 3 (c). This result contradicts
our hypothesis that the agent tends to update more
frequently in a noisy environment. For example, if at
time C, the agent is at state 11, the next time the agent
will update is C+6, which is longer than its counterpart
in Fig. 3 (c). One explanation is that since the control
is to head east, and the wind pushes the agent north
or west, there is no need for the agent to update its
action. Eventually, the agent will be more likely to be
at state 18 or 13 after 6 steps of fixing his/her control
of going east.

When $ = 80, the optimal time policy at every step increases
to the maximum allowed waiting time )̄ = 6 to reduce the
update penalties.

4512

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 



C. Performance Guaranteed Policies

In the previous subsections, we solve Problem 1 in the
context of a gridworld and obtains the optimal self-triggering
policy `∗ = (g∗, c∗). Just to remind that we have q :
X → A, which is the policy in the classic setting, and
the self-triggering policy ` : X → T × A in self-triggered
MDPs. To differentiate the self-triggering policy we obtain
for Problem 1 and the policy for Problem 2, we name them
`∗1 = (g

∗
1 , c

∗
1) and `∗2 = (g

∗
2 , c

∗
2) respectively.

The self-triggering policy `∗1 is optimal with respect to a
specified update penalty $. However, it does not provide
an explicit performance guarantee under the original cost
criterion. Instead, the self-triggering policy `∗2 provides a
pre-specified level of performance guarantee.

As a result of the discussions in Section III-B, the steps to
compute a self-triggering policy `∗2 for Problem 2 is given
as follows:

1) Compute the value function {+ (G), G ∈ X} of the MDP
in the classic setting.

2) For each G ∈ X, select ΔCG = )̄ .
3) Compute

+̃ (G) = min
0∈A
E

[
ΔCG−1∑
C=0

VC 2(GC , 0) + UVΔCG+ (GΔCG )
�����G0 = G

]
,

0∗G = arg min
0∈A
E

[
ΔCG−1∑
C=0

VC 2(GC , 0) + UVΔCG+ (GΔCG )
�����G0 = G

]
.

(12)
4) If +̃ (G) > U+ (G), set ΔCG = ΔCG − 1, repeat step 3).

Otherwise, g∗2 (G) = ΔG , c∗2 (G) = 0
∗
G .

The optimization problem in eq. (12) admits a closed-form
solution for models such as LQG control [2] and inventory
control [8]. For the windy gridworld model, we compute
self-triggering policies following the steps for various levels
of sub-optimality. The results are presented in Fig. 5. As
we can see from Fig. 5 (a), the self-triggering policy `∗2 can
achieve a full level of optimality, i.e., E`

∗
2 (G) = + (G),∀G ∈ X,

while requiring less communication/sensing resources. When
the level of sub-optimality is U = 1.1, as one can see from
Fig. 5 (b), at most states, the optimal timing policy is to
wait for two or more than two steps for the next update.
That means the self-triggering policy `∗2 can save more than
50% communication/sensing resources while suffering only
10% of performance degradation. If one can tolerate a higher
level of degradation, one can set U to a higher value and
compute the corresponding self-triggering policy `∗2. The
cases when U = 1.4 and U = 2 are presented in Fig. 5 (c)
and (d). As one expects, the higher U is (more performance
degradation one can tolerate), the fewer updates needed (less
communication/resources consumed).

V. CONCLUSIONS

In this paper, two self-triggering policies are obtained
by proposing two frameworks that convey two different
philosophies. Problem 1 introduces a soft constraint, i.e., a
update penalty that penalizes frequent use of communication
resources and Problem 2 applies a hard constraint on the

(a) The pre-specified level of
sub-optimality penalty U = 1.

(b) The pre-specified level of
sub-optimality penalty U = 1.1.

(c) The pre-specified level of
sub-optimality penalty U = 1.4.

(d) The pre-specified level of
sub-optimality penalty U = 2.

Fig. 5: A windy gridworld: The optimal triggering time
policy g∗2 (G) (the upper value) and the optimal control policy
c∗2 (G) (the lower pointers) for each G ∈ X under various sub-
optimality requirements. (For Problem 2)

.

level of sub-optimality while maximizing the triggering time
to resources consumption. Both policies are shown to be
effective in reducing the use of communication resources
in the gridworld examples. Future endeavors can focus on
developing stability guarantees of self-triggered policy for
controlled Markov chain, and learning when to trigger, i.e.,
leveraging reinforcement learning techniques for unknown
MDP models [23].

APPENDIX

A. Proof of Theorem 1
Proof. We prove the theorem by constructing a consolidated
Markov decision process problem. A close look at eq. (6)
shows that this is a discounted cost discrete-time MDP with
discount factor V, Markov states and Markov actions given
respectively by

-; = (GC; , C̃;) ∈ X × {0, 1, 2, · · · },
�; = (0C; ,ΔC) ∈ A × T ,

where C̃; = C; − ;, the state cost equal to

� (-; , �;) = VC̃;
[
2̄(GC; , 0C; ,ΔC) + VΔC$

]
,

and the skip-transition probability defined in eq. (5). Hence,
the cost in eq. (6) becomes

5 ` (G) = E
[ ∞∑
;=0

V;� (-; .�;)
�����-; = (G, 0), `

]
.

The consolidated formulation can be treated as a regular
Markov decision problem. Note that the Cartesian product
of countable countably many polish spaces is still Polish.

4513

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 



Hence, X × {0, 1, 2, · · · } is Polish if X is polish. Thus, the
results (mainly the results available to Polish spaces) can
be derived from current Markov decision literature [21].
Applying Theorem 6.2.5 and Theorem 6.2.12 of [21], we
obtain claims in Theorem 1. �

B. Proof of Lemma 1

Proof. For a given !, let C!+1 be the time instance of the
(! + 1)-th update. The accumulated costs before (C!+1) can
be written as

E

[
C!+1−1∑
C=0

VC2(GC , 0C )
�����G0 = G

]
=E

[
!∑
;=0

VC; 2̄(GC; , 0C; , C;+1 − C;)
�����G0 = G

]
=E

[
!∑
;=0

VC;E

[
C=C;+1−1∑
C=C;

VC−C; 2(GC , 0C; )
�����GC;

]
G0 = G

]
,

(13)

where we use the tower property of conditional expectation
to derive the first equality and the second equality follows
immediately after some algebraic rearrangements. Suppose
at time instance C; , ; ∈ N, the process is at state GC; . Let
C;+1 = C; + g(GC; ) and 0C = c(GC; ) for C = C; , C; + 1, . . . , C;+1 − 1.
From eq. (9), we have

E

[
C;+1−1∑
C=C;

VC−C; 2(GC , 0C )
�����GC;

]
≤ U+ (GC; ) − E

[
UVC;+1−C;+ (GC;+1 )

��GC; ] .
(14)

Applying eq. (14) into eq. (13) for every ; ≤ ! yields

E

[
C!+1−1∑
C=0

VC 2(GC , 0C )
�����G0 = G

]
≤E

[
!∑
;=0

VC;U
(
+ (GC; ) − VC;+1−C;+ (GC;+1 )

) �����G0 = G

]
=UE

[
+ (GC0 ) − VC!+1+ (GC!+1 )

��G0 = G
]
≤ U+ (G),

where we use the fact that 2 : X × A → R+ produces a
non-negative + (·), i.e., + (G) ≥ 0,∀G ∈ X. Since ! can be
chosen arbitrarily, taking ! to infinity, we have C; →∞, and
by definition of E`, E` (G) ≤ U+ (G) for every G ∈ X. �

C. Proof of Theorem 2

Proof. To show that there is a feasible set for problem
(10), it is sufficient to show that for any G ∈ X, when
ΔCG = 1, there always exists an action 0G ∈ A such that
E [2(G, 0G) + UV+ (G1) |G0 = G, 00 = 0G] ≤ U+ (G). Let q∗ be
an optimal policy of the classic MDP. Then, by Bellman
equation, we have

min
0∈A
E [2(G, 0) + V+ (G1) |G0 = G, 00 = 0] = + (G),

where the minimum is attained at 0∗ = q∗ (G). That means
there exists 0G = q∗ (G) such that

UE [2(G, 0G) + V+ (G1) |G0 = G, 00 = 0G] = U+ (G).

Since 2(·, ·) is non-negative, we have

E [2(G, 0G) + UV+ (G1) |G0 = G, 00 = 0G] = U+ (G).

Then for every G ∈ X, there always exists a ΔCG ∈ T such
that we can find an action 0G ∈ X so that (9) is satisfied. �

REFERENCES

[1] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control,” in 2012 ieee 51st ieee
conference on decision and control (cdc). IEEE, 2012, pp. 3270–
3285.

[2] T. Gommans, D. Antunes, T. Donkers, P. Tabuada, and M. Heemels,
“Self-triggered linear quadratic control,” Automatica, vol. 50, no. 4,
pp. 1279–1287, 2014.

[3] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on automatic con-
trol, vol. 55, no. 9, pp. 2030–2042, 2010.

[4] X. Wang and M. D. Lemmon, “Self-triggered feedback control sys-
tems with finite-gain L2 stability,” IEEE Transactions on Automatic
Control, vol. 54, no. 3, pp. 452–467, 2009.

[5] S. Akashi, H. Ishii, and A. Cetinkaya, “Self-triggered control with
tradeoffs in communication and computation,” Automatica, vol. 94,
pp. 373–380, 2018.

[6] Y. Gao, P. Yu, D. V. Dimarogonas, K. H. Johansson, and L. Xie, “Ro-
bust self-triggered control for time-varying and uncertain constrained
systems via reachability analysis,” Automatica, vol. 107, pp. 574–581,
2019.

[7] S. Yuvaraj and M. Sangeetha, “Smart supply chain management using
internet of things(iot) and low power wireless communication sys-
tems,” in 2016 International Conference on Wireless Communications,
Signal Processing and Networking (WiSPNET), 2016, pp. 555–558.

[8] E. A. Feinberg, “Optimality conditions for inventory control,” in
Optimization Challenges in Complex, Networked and Risky Systems.
INFORMS, 2016, pp. 14–45.

[9] P. Wiȩcek, E. Altman, and A. Ghosh, “Mean-field game approach
to admission control of an <\<\∞ queue with shared service cost,”
Dynamic Games and Applications, vol. 6, no. 4, pp. 538–566, 2016.

[10] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of things for smart cities,” IEEE Internet of Things Journal,
vol. 1, no. 1, pp. 22–32, 2014.

[11] W. Lu, F. Fan, J. Chu, P. Jing, and S. Yuting, “Wearable computing
for internet of things: A discriminant approach for human activity
recognition,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2749–
2759, 2019.

[12] A. Molin and S. Hirche, “On the optimality of certainty equivalence
for event-triggered control systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 2, pp. 470–474, 2013.

[13] D. Maity and J. S. Baras, “Optimal event-triggered control of nonde-
terministic linear systems,” IEEE Transactions on Automatic Control,
vol. 65, no. 2, pp. 604–619, 2019.

[14] Y. Huang and Q. Zhu, “Infinite-horizon linear-quadratic-gaussian
control with costly measurements,” arXiv preprint arXiv:2012.14925,
2020.

[15] D. P. Bertsekas and S. Shreve, Stochastic optimal control: the discrete-
time case. Athena Scientific,Belmont,MA, 1996.

[16] M. Gallieri and J. M. Maciejowski, “lasso mpc: Smart regulation of
over-actuated systems,” in 2012 American Control Conference (ACC).
IEEE, 2012, pp. 1217–1222.

[17] C. Cooper and N. Hahi, “An optimal stochastic control problem with
observation cost,” IEEE Transactions on Automatic Control, vol. 16,
no. 2, pp. 185–189, 1971.

[18] Y. Huang and Q. Zhu, “Cross-layer coordinated attacks on cyber-
physical systems: A lqg game framework with controlled observa-
tions,” European Control Conference, 2021.

[19] ——, “A pursuit-evasion differential game with strategic information
acquisition,” arXiv preprint arXiv:2102.05469, 2021.

[20] R. Durrett, Probability: theory and examples. Cambridge university
press, 2019, vol. 49.

[21] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[22] Y. Huang, V. Kavitha, and Q. Zhu, “Continuous-time markov decision
processes with controlled observations,” in 2019 57th Annual Allerton
Conference on Communication, Control, and Computing (Allerton).
IEEE, 2019, pp. 32–39.

[23] A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer, “Towards
temporl: Learning when to act,” in Workshop on Inductive Biases,
Invariances and Generalization in Reinforcement Learning (BIG@
ICML’20), 2020.

4514

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:42:05 UTC from IEEE Xplore.  Restrictions apply. 


