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Abstract— In this paper we formulate a two-player game-
theoretic problem on resilient graphs in a multiagent consensus
setting. An attacker is capable to disable some of the edges of
the network with the objective to divide the agents into clusters
by emitting jamming signals while, in response, the defender
recovers some of the edges by increasing the transmission
power for the communication signals. We consider repeated
games between the attacker and the defender where the
optimal strategies for the two players are derived in a rolling
horizon fashion based on the agents’ states and number of
agents in each cluster. The players’ actions at each discrete-
time steps are constrained by their energy for transmissions
of signals, with a less strict constraint for the attacker.
Simulation results are provided to demonstrate the effects of
players’ actions on the cluster formation and to illustrate the
performance comparison with a non-rolling horizon approach.

I. INTRODUCTION

Applications of large-scale networked systems have

rapidly grown in various areas of critical infrastructures

including power grids and transportation systems. Such

systems can be considered as multiagent systems where

a number of agents capable of making local decisions

interact over a network and exchange information [1]. While

wireless communication plays an important role for the

functionality of the network, it is also prone to cyber attacks

initiated by malicious adversaries [2].

Jamming attacks on consensus problems of multiagent

systems have been studied in [3]. Noncooperative games

between the attacker and another player protecting the

network are widely used to analyze security problems,

including jamming attacks [4] and injection attacks [5].

In this paper, we consider a security problem in a two-

player game setting between an attacker, who is motivated

to disrupt the communication among agents by attacking

communication links, and a defender, who attempts to

recover some of the attacked links. This game is played

repeatedly over time in the context of multiagent consensus.

Their utilities are determined by how agents are divided into

clusters as well as how the players’ actions affect the states

of the agents at each time.
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We formulate the problem based on [6], [7], which use

graph connectivity to characterize the game and players’

strategies. Specifically, we address how clusters among

agents may form in this security game setting. Cluster

formation in multiagent systems has been studied in, e.g.,

[8], where the weights in the agents’ state updates may take

negative values, representing the possibly hostile relations

among certain agents. In this paper, we approach cluster-

ing from a different viewpoint based on a game-theoretic

formulation. This approach can be related to the concept

of network effect/externality [9], where the utility of an

agent in a certain cluster depends on how many other agents

belong to that particular cluster. Such concepts have been

used to analyze grouping of agents on, e.g., social networks

and computer networks, as discussed in [10], [11].

Moreover, in comparison to our recent work [6], the

contribution of this paper is threefold: (i) we introduce more

options for the attacker’s jamming signals strengths; (ii) the

game consists of multiple attack-recovery actions, resulting

in more complicated strategies; and (iii) we consider a

rolling horizon approach for the players, so that their

strategies may be modified as they obtain new knowledge

of the system each time. Rolling horizon approaches in

noncooperative security games have been discussed in [12].

More specifically, it is now possible for the attacker to

disable the links with stronger intensity of attack signals so

that the defender is unable to recover those links as in [13].

On the other hand, we consider games consisting of multiple

parts, where the players need to consider their future utilities

and energy constraints when deciding their strategies at any

point in time. The players recalculate and may change their

strategies as time goes on, according to the rolling horizon

approach. A related formulation without rolling horizon is

discussed in [14], where the players are not able to change

their strategies once they are decided.

The paper is organized as follows. In Section II, we

introduce the framework for the rolling horizon game,

cluster formation among agents, and energy consumption

models of the players. In Section III, we analyze some con-

ditions of consensus among agents, and establish relations

to parameters of the system and the players. We continue by

discussing the cluster formation of agents when consensus

is not achieved in Section IV. We then provide numerical

examples on consensus and cluster formation in Section V

and conclude the paper in Section VI.

The notations used in this paper are fairly standard. We

denote |·| as the cardinality of a set. The floor function and

ceiling function are denoted by ⌊·⌋ and ⌈·⌉, respectively.

The set of nonnegative integers {0, 1, 2, . . .} is denoted by
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N 0 . T h e pr o ofs of all l e m m as i n S e cti o ns III a n d I V ar e
o mitt e d d u e t o s p a c e li mit ati o ns.

II. P R O B L E M F O R M U L A T I O N

We e x pl or e a m ulti a g e nt s yst e m of n a g e nts c o m m u ni-
c ati n g t o e a c h ot h er i n dis cr et e ti m e. T h e n et w or k t o p ol o g y
is d es cri b e d b y a n u n dir e ct e d a n d c o n n e ct e d gr a p h G =
(V , E ). It c o nsists of t h e s et V of v erti c es r e pr es e nti n g t h e
a g e nts a n d t h e s et E ⊆ V × V of e d g es r e pr es e nti n g t h e
c o m m u ni c ati o n li n ks. E a c h a g e nt i h as t h e s c al ar st at e x i

f oll o wi n g t h e c o ns e ns us u p d at e r ul e at ti m e k ∈ N 0

x i [k + 1] = x i [k ] + u i [k ], ( 1)

u i [k ] =
j ∈ N i [k ]

a i j (x j [k ] − x i [k ]), ( 2)

as i n [ 1 5], w h er e x [ 0] = x 0 , a i j > 0 , i, j ∈ V , ar e s u c h
t h at

n
j = 1 , j = i a i j < 1 , a n d N i [k ] d e n ot es t h e s et of a g e nts

t h at c a n c o m m u ni c at e wit h a g e nt i at ti m e k . T his s et m a y
c h a n g e d u e t o t h e att a c ks.

A t w o- pl a y er g a m e b et w e e n t h e att a c k er a n d t h e d ef e n d er
is c o nsi d er e d i n t er ms of t h e c o m m u ni c ati o n a m o n g t h e
a g e nts. T h e att a c k er is c a p a bl e t o bl o c k t h e c o m m u ni c ati o n
b y j a m mi n g s o m e t ar g et e d e d g es a n d t h er ef or e d el a y ( or
c o m pl et el y pr e v e nt) t h e c o ns e ns us a m o n g a g e nts. T h es e
j a m mi n g att a c ks ar e r e pr es e nt e d b y t h e r e m o v al of e d g es
i n G . I n r es p o ns e t o t h e a cti o ns of t h e att a c k er, t h e d ef e n d er
tri es t o r e c o v er t h e i nt er- a g e nt c o m m u ni c ati o ns b y r e b uil d-
i n g s o m e of t h e att a c k e d e d g es. Fr o m t his o n e s e q u e n c e
of att a c ks a n d r e c o v eri es, w e m a y s a y t h at t h e gr a p hs
c h ar a ct eri zi n g t h e n et w or k e d s yst e m ar e r esili e nt if t h e
gr o u p of a g e nts is a bl e t o r e c o v er fr o m t h e d a m a g es c a us e d
b y t h e att a c k er.

I n t his p a p er, w e c o nsi d er t h at t h e att a c k er h as t w o t y p es
of j a m mi n g si g n als i n t er ms of t h eir str e n gt h, str o n g a n d
n or m al . T h e d ef e n d er is a bl e t o r e c o v er o nl y t h e e d g es t h at
ar e att a c k e d wit h n or m al str e n gt h. Pr a cti c all y, t h e d ef e n d er
m a y b e a bl e t o diff er e nti at e b et w e e n n or m al a n d str o n g
att a c ks b y m e as uri n g t h e si g n al-t o-i nt erf er e n c e r ati o o n
s o m e e d g es; t h e str o n g att a c k will r es ult i n a n e v e n l o w er
si g n al-t o-i nt erf er e n c e r ati o, w hi c h m a y m a k e t h e r e c o v er y
n ot p ossi bl e.

A. Att a c k-r e c o v er y s e q u e n c e

I n o ur s etti n g, t h e pl a y ers m a k e t h eir att a c k/r e c o v er y
a cti o ns at e v er y dis cr et e ti m e k ∈ N 0 . At t h e b e gi n ni n g of
e a c h ti m e k , t h e c o m m u ni c ati o n t o p ol o g y of t h e s yst e m is
r e pr es e nt e d b y G . T h e n, t h e pl a y ers d e ci d e t o att a c k/r e c o v er
c ert ai n e d g es i n t h e t w o st a g es, wit h t h e att a c k er a cti n g firs t
a n d t h e n t h e d ef e n d er.

We ass u m e t h at at ti m e k t h e att a c k er att a c ks G b y

d el eti n g E A
k ⊆ E wit h n or m al j a m mi n g si g n als a n d E

A

k ⊆ E

wit h str o n g j a m mi n g si g n als wit h E A
k ∩ E

A

k = ∅ , w h er e as t h e
d ef e n d er r e c o v ers E D

k ⊆ E A
k . D u e t o t h e att a c ks a n d t h e n t h e

r e c o v eri es, t h e n et w or k c h a n g es fr o m G t o G A
k : = (V , E \

(E A
k ∪ E

A

k )) a n d f urt h er t o G D
k : = (V , (E \ (E A

k ∪ E
A

k )) ∪ E D
k )

at t h e k t h ti m e. T h e a g e nts t h e n c o m m u ni c at e t o t h eir
n ei g h b ors b as e d o n t his r es ulti n g gr a p h G D

k .

. . .

. . .

. . .

. . .
k

0 1 2

G D
0 G D

1 G D
2

0t h g a m e

1st g a m e

2 n d g a m e

h ori z o n l e n gt h h

Fi g. 1. Ill ustr ati o n of t h e g a m es pl a y e d o v er dis cr et e ti m e k wit h
r olli n g h ori z o n a p pr o a c h f or t h e pl a y ers.

0 1 2 3
k
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Fi g. 2. E n er g y
c o nstr ai nt of t h e
att a c k er c o nsi d er e d i n
t h e f or m ul ati o n. T h e
d as h e d li n e r e pr es e nts
t h e all o w a bl e e n er g y t o
s p e n d. T h e s oli d li n e
r e pr es e nti n g t h e a ct u al
e n er g y c o ns u m e d b y
t h e pl a y er s h o ul d b e
b el o w t h e d as h e d li n e.

I n t his g a m e, t h e pl a y ers att e m pt t o c h o os e t h e b est

str at e gi es i n t er ms of e d g es att a c k e d/r e c o v er e d (E
A

k , E A
k )

a n d E D
k t o m a xi mi z e t h eir o w n utilit y f u n cti o ns. H er e t h e

lt h g a m e is d e fi n e d o v er t h e h ori z o n of h st e ps fr o m ti m e l
t o l + h − 1 . T h e pl a y ers m a k e d e cisi o ns i n a r olli n g h ori z o n
f as hi o n as e x pl ai n e d m or e i n S e cti o n II- D; t h e o pti m al
str at e gi es o bt ai n e d at t h e p ast ti m e l f or t h e f ut ur e ti m e
m a y c h a n g e w h e n t h e pl a y ers r e c al c ul at e t h eir str at e gi es
at a f ut ur e ti m e. Fi g. 1 ill ustr at es t h e dis c uss e d s e q u e n c e
o v er ti m e; i n t h e fi g ur e, t h e fill e d bl a c k cir cl es i n di c at e t h e
i m pl e m e nt e d str at e gi es a n d t h e e m pt y cir cl es i n di c at e t h e
str at e gi es of t h e g a m e t h at ar e n ot i m pl e m e nt e d.

B. E n er g y c o nstr ai nts

T h e a cti o ns of t h e att a c k er a n d t h e d ef e n d er ar e aff e ct e d
b y t h e c o nstr ai nts o n t h e e n er g y r es o ur c es, w hi c h i n cr e as e
li n e arl y i n ti m e; h o w e v er, t h e e n er g y c o ns u m e d b y t h e
pl a y ers is pr o p orti o n al t o t h e n u m b er of att a c k e d/r e c o v er e d
e d g es as w ell. N ot e t h at t h e att a c k er h as t w o t y p es of

j a m mi n g si g n als. H er e, t h e str o n g att a c ks o n E
A

k t a k e s > 1 ,
s ∈ R , ti m es m or e e n er g y p er e d g e p er u nit ti m e c o m p ar e d
t o t h e n or m al att a c ks o n E A

k , w hi c h t a k e β A c ost p er e d g e.
T h e t ot al e n er g y us e d b y t h e att a c k er is c o nstr ai n e d as

k

m = 0

β A (s |E
A

m |+ | E A
m |) ≤ κ A + ρ A k ( 3)

f or a n y ti m e k , w h er e κ A ≥ ρ A > 0 , β A > 0 . T h e
c o n diti o n κ A ≥ ρ A all o ws t h e att a c k er t o h a v e e n o u g h
e n er g y t o att a c k at ti m e 0 wit h c o nsist e nt r e c h ar g e r at e.
T his i n e q u alit y i m pli es t h at t h e t ot al e n er g y s p e nt b y t h e
att a c k er c a n n ot e x c e e d t h e a v ail a bl e e n er g y c h ar a ct eri z e d
b y t h e i niti al e n er g y κ A a n d t h e s u p pli e d e n er g y ρ A k b y
ti m e k .

Fi g. 2 s h o ws t h e e n er g y c o nstr ai nt of t h e att a c k er, w h er e
t h e d as h e d li n e wit h sl o p e ρ A r e pr es e nts t h e t ot al s u p pli e d
e n er g y a n d t h e s oli d li n e i n di c at es t h e t ot al e n er g y s p e nt. A
criti c al c as e is w h e n β A < ρ A si n c e it is p ossi bl e f or t h e

4 8 3 0

A ut h ori z e d li c e n s e d u s e li mit e d t o: C ar n e gi e M ell o n Li br ari e s. D o w nl o a d e d o n J a n u ar y 1 0, 2 0 2 3 at 1 6: 5 0: 4 0 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  



attacker to attack some edges for infinite time, as long as

s|E
A

k |+|EA
k |≤ mA is satisfied with mA := ρA

βA .

The energy constraint of the defender is similar to (3) and

is given by
∑k

m=0 β
D|ED

m|≤ κD+ρDk with κD ≥ ρD > 0,

βD > 0. Note that the defender can recover only the edges

in EA
k under normal jamming attacks.

C. Agent clustering and state difference

By attacking, the attacker tries to make the graph dis-

connected to separate the agents into several groups. We

introduce a few notions related to grouping/clustering of

agents. In a given subgraph G′ = (V, E ′) of G, the agents are

to be grouped into c(G′) number of groups, with the groups

V ′
1,V

′
2, . . . ,V

′
c(G′) being a partition of V with ∪

c(G′)
l=1 V ′

l = V
and V ′

l ∩ V ′
m = ∅ with l 6= m. There is no edge connecting

different groups, i.e., eij /∈ E ′ for i ∈ V ′
l , j ∈ V ′

m. We also

call each subset of agents taking the same state at infinite

time as a cluster, i.e., limk→∞ xi′ [k] = limk→∞ xj′ [k].
Here, we are interested in the case where the attacker is

also concerned about the number of agents in each group, as

an extension of [6], [7]. Specifically, we follow the notion of

network effect/externality [9], where the utility of an agent in

a certain cluster depends on how many other agents belong

to that particular cluster. In the context of this game, the

attacker wants to isolate agents so that fewer agents are in

each group, while the defender wants as many agents as

possible in the same group. We then represent the level of

clustering in the graph G′ by the function c(·) called cluster

distribution, which is given by c(G′) :=
∑c(G′)

l=1 |V ′
l |
2−|V|2.

In our problem setting, the players also consider the

effects of their actions on the agent states when attack-

ing/recovering, similar to the formulation in [16]. For exam-

ple, the attacker may want to separate agents having state

values with more difference in different groups. We specify

the agents’ state difference zk of time k as

zk(E
A

k , E
A
k , ED

k ) := xT[k + 1]Lcx[k + 1], (4)

with Lc being the Laplacian matrix of a complete graph with

n agents. The attacked and recovered edges (E
A

k , E
A
k , ED

k )
will affect x[k + 1], and in turn influence the value of zk.

Note that the value of zk does not increase over time [1]

because of the protocol given in (1) and (2).

D. Multiple-attack rolling horizon game structure

The utility functions of both attacker and defender of the

lth game, l ∈ N0, starting at time k = l take account of

the cluster distribution c(·) and the difference zk of agents’

states over h ≥ 1 horizon length from time l to l + h− 1.

With weights a, b ≥ 0, the utilities are defined by

UA :=
l+h−1
∑

k=l

(azk − bc(GD
k )), (5)

UD := −UA. (6)

We are interested in finding the subgame perfect equi-

librium of this game. To find the equilibrium, the game is

divided into some subgames/decision-making points. The

subgame perfect equilibrium must be an equilibrium in

every subgame. The optimal strategy of each player is

obtained by using a backward induction approach, i.e., by

finding the equilibrium from the smallest subgames.

Due to the nature of the rolling horizon approach,

the strategies obtained from the lth game, i.e., attacked

and recovered edges, are not applied, except those for

time l. Specifically, in the lth game for time l to l +
h − 1, the strategies of both players are denoted by

((E
A

l,0, E
A
l,0, E

D
l,0), . . . , (E

A

l,h−1, E
A
l,h−1, E

D
l,h−1)), where only

(E
A

l,0, E
A
l,0, E

D
l,0) is applied. Therefore, for the lth game

at time l, the strategy applied can be written as

(E
A

l , E
A
l , ED

l ) = (E
A

l,0, E
A
l,0, E

D
l,0). The same notations apply

for the functions zk.

We look at how the optimal edges can be found by an

example with h = 2. In this case, for the lth game over

time l and l + 1, the optimal strategies of the players are

given by

ED∗
l,1 (E

A

l,1, E
A
l,1) ∈ argmax

ED

l,1

UD
1 , (7)

(E
A∗
l,1 (E

D
l,0), E

A∗
l,1 (E

D
l,0)) ∈ arg max

(E
A

l,1,E
A

l,1
)

UA
1 , (8)

ED∗
l,0 (E

A

l,0, E
A
l,0) ∈ argmax

ED

l,0

UD, (9)

(E
A∗
l,0 , E

A∗
l,0 ) ∈ arg max

(E
A

l,0,E
A

l,0
)

UA, (10)

with UA
1 and UD

1 being parts of UA and UD associated with

the strategies of time (l + 1) of the lth game, respectively.

Note that to find (E
A∗
l,0 , E

A∗
l,0 ), one needs to obtain

ED∗
l,0 (E

A

l,0, E
A
l,0) beforehand. Likewise, to find ED∗

l,0 , one needs

to obtain (E
A∗
l,1 (E

D
l,0), E

A∗
l,1 (E

D
l,0)). For h > 2, the optimiza-

tion problems are similar to those in (7)–(10), solved in 2h
steps from the (h − 1)th step of the lth game. They are

solved by the players at every time k = l.
In this paper, we focus on cluster formation over time k

rather than characterizing the equilibrium at each individual

game. We will find the optimal strategies of the players by

computing all possible combinations, since the choices of

edges are finite.

Our previous works [6], [7], [14] considered related

games in continuous time, where the timings for launching

attack/defense actions are also part of the decision variables.

This aspect complicated the formulation, making it difficult

to study games over a time horizon. In the current paper, we

simplify the timing issue and instead introduced the rolling

horizon feature. This enables the players to consider the

cluster forming in a longer time range, which is especially

useful when consensus among agents is considered.

III. CONSENSUS ANALYSIS

In this section, we examine the effect of the game

structure and players’ energy constraints on consensus.

We first discuss the defender’s optimal strategy on some

games with specific conditions. Lemma 3.1 provides the

defender’s optimal edges for the last step of the lth game.

Lemma 3.1: In the (h − 1)th step of the lth
game, the set of edges ED∗

l,h−1 satisfies |ED∗
l,h−1|=

4831
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min(⌊
κD+ρD(l+h−1)−βD(

∑l−1

m=0
|ED

m|+
∑h−2

m=0
|ED

l,m|)

βD ⌋,

|EA∗
l,h−1|).
Lemma 3.2 states that if the defender has enough energy,

it recovers all possible edges at the 0th step of the game.

Lemma 3.2: If the defender’s energy satisfies

⌊κD + ρDl −
∑l−1

m=0 β
D|ED

m|

βD

⌋

≥ h|E| (11)

at time l, then ED∗
l = EA∗

l .

The next lemma states that the condition (11) in

Lemma 3.2 always occurs in some interval of discrete time.

Lemma 3.3: There is at least one occurrence of either

ED
l 6= ∅ or EA

l = ∅ in every ⌈h|E|βD

ρD ⌉ time steps.

The following two results provide necessary conditions

for the agents to be separated into different states for

infinitely long duration without achieving consensus. We

consider a more general condition in Theorem 3.4, whereas

in Theorem 3.5 we consider a more specific situation for

the utility functions that leads to a tighter condition.

Theorem 3.4: A necessary condition for consensus not to

happen is λ ≤ mA, with λ being the connectivity of G.

Proof: We note that, without any recovery from the

defender (ED
k = ∅), the attacker must attack at least λ

number of edges with normal signals at any time k in

order to make GD
k disconnected. If the attacker attacks λ

edges with normal jamming signals at all time, the energy

constraint (3) becomes (βAλ − ρA)k ≤ κA. From this

inequality, it is clear that the attacker needs to have high

enough recharge rate ρA to attack λ edges at all time.

Specifically, the condition m̄A ≥ λ has to be satisfied.

We now limit the utilities in (5) and (6) to the case of

b = 0 in the weights. This means that the players do not

take account of the clustering in the graph, but only the

status in consensus.

Theorem 3.5: Suppose that b = 0. A necessary condition

for consensus not to happen is λ ≤ mA/s.

Proof: We prove by contrapositive; namely, we prove

that consensus always happens if mA < sλ.

We first suppose that the attacker attempts to attack λ
edges strongly at all time to disconnect the graph GD

k . From

(3), the energy constraint of the attacker at time k becomes

(βAsλ − ρA)k ≤ κA. This inequality is not satisfied for

higher k if mA < sλ, since the left-hand side becomes

positive and κA is finite. Therefore, the attacker cannot

attack λ edges strongly at all time if mA < sλ, and is

forced to disconnect the graph by attacking with normal

jamming signals instead.

By Lemma 3.3, there exists an interval where the de-

fender always recovers if there are edges attacked normally,

i.e., ED
l′ 6= ∅ are optimal given that EA

l′ 6= ∅. From the

definitions in (6), given that b = 0, we can see that the

defender obtains a higher utility if the agents are closer,

which means that given a nonzero number of edges to

recover (at time jl′ described above), the defender recovers

the edges connecting further agents. Specifically, for interval

[jl′, (j + i)l′], there is a time step where UD(ED
k = E1) ≥

UD(E2), with edges E1 connecting agents with further states

than agents connected by E2. This implies that when recov-

ering, the defender always chooses the further disconnected

agents, and since by communicating with the consensus

protocol as in (1) the agents’ states are getting closer, the

defender will choose different edges to recover if the states

of agents connected by recovered edges ED
k become close

enough. Consequently, if mA < sλ, then there exists i ∈ N

where the union of graphs, i.e., the graph having the union

of the edges of each graph, (V ,
⋃

((E \ (E
A

k ∪ EA
k )) ∪ ED

k ))
over the time interval [jl′, (j + i)l′] becomes a connected

graph, where l′ = ⌈h|E|βD

ρD ⌉ as in Lemma 3.3 above. These

intervals [jl′, (j + i)l′] occur infinitely many times, since

the defender’s energy bound keeps increasing over time.

It is shown in [17] that with protocol (1), the agents

achieve consensus in the time-varying graph as long as

the union of the graphs over bounded time intervals is a

connected graph. This implies that consensus is achieved if

(V ,
⋃

((E \ (E
A

k ∪ EA
k )) ∪ ED

k )) is connected over [l′i, l
′
i+j ].

Thus, if mA < sλ then consensus is achieved.

The result in Theorem 3.5 only holds for b = 0, since

with b > 0 the defender may choose to recover the

edges connecting agents that already have similar states

to maximize c(GD
k ) (instead of those connecting farther

agents). The effect of the values of a and b on consensus

is illustrated in Section V.

The next result provides a condition for consensus to

be prevented. It shows that an attacker who is capable to

continuously make strong attacks on the edges, can prevent

consensus.

Theorem 3.6: A sufficient condition for consensus not to

happen is |E|≤ mA/s.

Proof: With mA ≥ s|E|, the attacker can attack all

edges of the graph G with strong jamming signals at any

time k (including time 0, since κA ≥ ρA by assumption).

Note that at the (h−1)th step of the lth game, the attacker al-

ways attacks as many edges as possible to maximize UA, if

there is no recovery by the defender. Since zl,h−1(E
A

l,h−1 =

E ′, EA
l,h−1, ∅) > zl,h−1(E

A

l,h−1, E
A
l,h−1, ∅) and c(V , (E \(E ′∪

EA
l,h−1)) ∪ ∅) ≥ c(V , (E \ (E

A

l,h−1 ∪ EA
l,h−1) ∪ ∅)) for any

|E
A

l,h−1|< |E ′|, the function UA
h−1 always has a higher value

if more edges are attacked. Thus, the attacker will attack

all edges strongly E
A∗
l,h−1 = E , which also prevents the

defender from recovering any edges. It then follows that the

function UA
h−1 does not vary for different choices of edges

in the previous attack ((E
A

l,0, E
A
l,0), . . . , (E

A

l,h−2, E
A
l,h−2)).

This implies that the attacker does not need to attack fewer

edges at the previous steps to save energy, since it already

has enough energy to attack all possible edges E at the next

steps. Thus, E
A∗
l = E at the 0th step of the lth game.

This implies that if mA ≥ s|E|, the attacker will attack

E strongly at all time, separating every agent. As a result,

consensus is not reached.

IV. CLUSTERING ANALYSIS

In this section, we derive some results on the number of

formed clusters of agents at infinite time. These results are
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related to those in Section III, since agents are separated

into different clusters when consensus is not reached.

The first result is a corollary of Theorem 3.6.

Corollary 4.1: There are n clusters formed with each

cluster consisting of one agent, if mA ≥ s|E|.
The next results discuss relations between the attacker’s

cost and energy recharge rate with the maximum number of

clusters that it may create through jamming. In these results

we assume that b = 0.

Lemma 4.2: With b = 0, the attacker cannot divide the

agents into more than ⌊mA/s⌋+ 1 number of clusters.

We then extend this result to the case where all the agents

are connected with each other.

Lemma 4.3: With b = 0, in a complete graph G, the

attacker cannot divide the agents into more than m clusters,

with m satisfying
∑m−1

i=1 (n−i) ≤ ⌊mA/s⌋ <
∑m

i=1(n−i).

V. SIMULATION RESULTS

A. Consensus and Clustering across Weights a and b

Here we show how the consensus varies across different

weights a and b of the utility functions.

We consider the four agents line/path graph 1–2–3–4
with initial states x0 = [1, 0.75, 0.75,−1]T. The parameters

are βA = βD = 1, h = s = 2, κA = ρA = 2.6,

ρD = 0.3, and κD = 0.8, which satisfy the necessary

condition in Theorem 3.4. Figs. 3 and 5 show the agent

states with small a and large a, respectively. Figs. 4 and 6

illustrate the status of the edges in GD
k over time k. There, no

circle in the corresponding edges implies that the edges are

strongly attacked; likewise, red circles: normally attacked,

black circles: not attacked, and filled circles: recovered.

With the small a, the attacker more often divides the

agents into more groups, indicated by fewer black circles

in Fig. 4. As a result, the attacker fails to prevent consen-

sus (Fig. 3), despite the condition in Theorem 3.4 being

satisfied. On the other hand, with the large a, the attacker

is more focused to make the agents’ state difference larger

while separating agents into fewer groups compared to the

case with small a, as shown in Figs. 5 and 6 with more

black circles and no consensus among the agents.

We next present a comparison in the optimal state dif-

ference zk(E
A∗
k , EA∗

k , ED∗
k ) and cluster distribution c(GD

k )
across different a and b. These are shown in Fig. 7, with

weight b = 1−a. We observe that with larger a, the attacker

successfully prevents the consensus among agents (shown

with larger values of zk) up to time k = 20. On the other

hand, with smaller a, i.e., larger b, the attacker obtains

higher c(GD
k ) over time at the cost of low zk, implying that

the attacker fails to group the agents into different states.

B. Comparison with Non-Rolling Horizon Approach

We continue by comparing the proposed approach using

the rolling horizon-based strategies with a simpler one

(without rolling horizon) using the same horizon length

h. Specifically, we consider that the attacker does not

behave strategically, and attacks random edges with uniform

distribution instead. We then observe the response of the

defender under this non-optimal attack. Without the rolling

horizon approach, the defender does not recalculate their
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Fig. 3. Agent states with a = 0.1 and b = 0.9
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Fig. 4. Attacked and recovered edges with a = 0.1 and b = 0.9
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Fig. 5. Agent states with a = 0.9 and b = 0.1
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Fig. 6. Attacked and recovered edges with a = 0.9 and b = 0.1

strategies every time, and applies the strategy that has been

determined before.

Note that with the sequential nature of the actions, the

optimal strategy of the defender depends on the attacker’s

strategy. Therefore, if the attacker changes its strategy, the

defender may not be able to apply its own strategy in

response to that. For example, suppose that the players’

optimal strategies are (e12, e34) for the attacker, and e12
for the defender. When the attacker deviates by attacking

e23, then the defender’s strategy is not applicable anymore.

Fig. 8 illustrates the decision making process of the players

at every k with random edges in the first step for the case

of h = 2; the defender then has to formulate its optimal
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Fig. 8. Decision making process of the players with non-optimal attack
as explained in Section V-B

recovery from this random attack, assuming that the second

attack will be optimal.

The result with the rolling horizon approach is shown

in Fig. 9. We can see here that with non-optimal random

attack, the defender is able to adapt and make zk smaller

and thus the agents achieve consensus in all realizations of

the random attack. On the other hand, Fig. 10 shows zk of

the non-rolling horizon approach. Here we observe that zk
is relatively large compared to that in Fig. 9, implying that

consensus is achieved at a slower pace in this setting. This

indicates that in the non-optimal attack situation, the rolling

horizon approach can be more effective, since the defender

can adapt better to uncertainty.

VI. CONCLUSION

We have formulated a two-player game in a cluster

formation of resilient multiagent systems played over time.

The players consider the impact of their actions on fu-

ture communication topology and agent states, and adjust

their strategies according to a rolling horizon approach.

Necessary conditions and sufficient conditions for forming

clusters among agents have been derived. We have discussed

the effect of the weights of the utility functions and different

initial conditions on cluster formation, and compared the

behaviors of the players in rolling horizon and non-rolling

horizon settings.
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