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Abstract—In this paper we formulate a two-player game-
theoretic problem on resilient graphs in a multiagent consensus
setting. An attacker is capable to disable some of the edges of
the network with the objective to divide the agents into clusters
by emitting jamming signals while, in response, the defender
recovers some of the edges by increasing the transmission
power for the communication signals. We consider repeated
games between the attacker and the defender where the
optimal strategies for the two players are derived in a rolling
horizon fashion based on the agents’ states and number of
agents in each cluster. The players’ actions at each discrete-
time steps are constrained by their energy for transmissions
of signals, with a less strict constraint for the attacker.
Simulation results are provided to demonstrate the effects of
players’ actions on the cluster formation and to illustrate the
performance comparison with a non-rolling horizon approach.

I. INTRODUCTION

Applications of large-scale networked systems have
rapidly grown in various areas of critical infrastructures
including power grids and transportation systems. Such
systems can be considered as multiagent systems where
a number of agents capable of making local decisions
interact over a network and exchange information [1]. While
wireless communication plays an important role for the
functionality of the network, it is also prone to cyber attacks
initiated by malicious adversaries [2].

Jamming attacks on consensus problems of multiagent
systems have been studied in [3]. Noncooperative games
between the attacker and another player protecting the
network are widely used to analyze security problems,
including jamming attacks [4] and injection attacks [5].

In this paper, we consider a security problem in a two-
player game setting between an attacker, who is motivated
to disrupt the communication among agents by attacking
communication links, and a defender, who attempts to
recover some of the attacked links. This game is played
repeatedly over time in the context of multiagent consensus.
Their utilities are determined by how agents are divided into
clusters as well as how the players’ actions affect the states
of the agents at each time.
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We formulate the problem based on [6], [7], which use
graph connectivity to characterize the game and players’
strategies. Specifically, we address how clusters among
agents may form in this security game setting. Cluster
formation in multiagent systems has been studied in, e.g.,
[8], where the weights in the agents’ state updates may take
negative values, representing the possibly hostile relations
among certain agents. In this paper, we approach cluster-
ing from a different viewpoint based on a game-theoretic
formulation. This approach can be related to the concept
of network effect/externality [9], where the utility of an
agent in a certain cluster depends on how many other agents
belong to that particular cluster. Such concepts have been
used to analyze grouping of agents on, e.g., social networks
and computer networks, as discussed in [10], [11].

Moreover, in comparison to our recent work [6], the
contribution of this paper is threefold: (i) we introduce more
options for the attacker’s jamming signals strengths; (ii) the
game consists of multiple attack-recovery actions, resulting
in more complicated strategies; and (iii) we consider a
rolling horizon approach for the players, so that their
strategies may be modified as they obtain new knowledge
of the system each time. Rolling horizon approaches in
noncooperative security games have been discussed in [12].

More specifically, it is now possible for the attacker to
disable the links with stronger intensity of attack signals so
that the defender is unable to recover those links as in [13].
On the other hand, we consider games consisting of multiple
parts, where the players need to consider their future utilities
and energy constraints when deciding their strategies at any
point in time. The players recalculate and may change their
strategies as time goes on, according to the rolling horizon
approach. A related formulation without rolling horizon is
discussed in [14], where the players are not able to change
their strategies once they are decided.

The paper is organized as follows. In Section II, we
introduce the framework for the rolling horizon game,
cluster formation among agents, and energy consumption
models of the players. In Section III, we analyze some con-
ditions of consensus among agents, and establish relations
to parameters of the system and the players. We continue by
discussing the cluster formation of agents when consensus
is not achieved in Section IV. We then provide numerical
examples on consensus and cluster formation in Section V
and conclude the paper in Section VI.

The notations used in this paper are fairly standard. We
denote |-| as the cardinality of a set. The floor function and
ceiling function are denoted by |-] and [-], respectively.
The set of nonnegative integers {0,1,2,...} is denoted by
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Ng. The proofs of all lemmas in Sections III and IV are
omitted due to space limitations.

II. PROBLEM FORMULATION

We explore a multiagent system of n agents communi-
cating to each other in discrete time. The network topology
is described by an undirected and connected graph G =
(V,£). It consists of the set V of vertices representing the
agents and the set £ C V x V of edges representing the
communication links. Each agent 7 has the scalar state x;
following the consensus update rule at time k € Ny

zi[k + 1] = ;K] + w; K], (1)
u;[k] = Z aij(z;[k] — z:[k]), (2)
FEN;[K]

as in [15], where z[0] = zo, a;; > 0, 4,5 € V, are such
that E;-l:l,,j;ei a;; < 1, and N;[k| denotes the set of agents
that can communicate with agent 7 at time k. This set may
change due to the attacks.

A two-player game between the attacker and the defender
is considered in terms of the communication among the
agents. The attacker is capable to block the communication
by jamming some targeted edges and therefore delay (or
completely prevent) the consensus among agents. These
jamming attacks are represented by the removal of edges
in G. In response to the actions of the attacker, the defender
tries to recover the inter-agent communications by rebuild-
ing some of the attacked edges. From this one sequence
of attacks and recoveries, we may say that the graphs
characterizing the networked system are resilient if the
group of agents is able to recover from the damages caused
by the attacker.

In this paper, we consider that the attacker has two types
of jamming signals in terms of their strength, strong and
normal. The defender is able to recover only the edges that
are attacked with normal strength. Practically, the defender
may be able to differentiate between normal and strong
attacks by measuring the signal-to-interference ratio on
some edges; the strong attack will result in an even lower
signal-to-interference ratio, which may make the recovery
not possible.

A. Attack-recovery sequence

In our setting, the players make their attack/recovery
actions at every discrete time k € Np. At the beginning of
each time £, the communication topology of the system is
represented by G. Then, the players decide to attack/recover
certain edges in the two stages, with the attacker acting first
and then the defender.

We assume that at time k the attacker attacks G by
deleting £} C &€ with normal jamming signals and ka cé
with strong jamming signals with &2 ﬂ?}: = (), whereas the
defender recovers £ C £2. Due to the attacks and then the
recoveries, the network changes from G to Gy := (V,€\
(EAUEY)) and further to GP = (V, (£\ (EA UZ,))UED)
at the kth time. The agents then communicate to their
neighbors based on this resulting graph GP.
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In this game, the players attempt to choose the best
strategies in terms of edges attacked/recovered (?}:,E,?)
and EP to maximize their own utility functions. Here the
lth game is defined over the horizon of h steps from time [
to [+h—1. The players make decisions in a rolling horizon
fashion as explained more in Section II-D; the optimal
strategies obtained at the past time [ for the future time
may change when the players recalculate their strategies
at a future time. Fig. 1 illustrates the discussed sequence
over time; in the figure, the filled black circles indicate the
implemented strategies and the empty circles indicate the
strategies of the game that are not implemented.

B. Energy constraints

The actions of the attacker and the defender are affected
by the constraints on the energy resources, which increase
linearly in time; however, the energy consumed by the
players is proportional to the number of attacked/recovered
edges as well. Note that the attacker has two types of

jamming signals. Here, the strong attacks on f? take s > 1,
s € R, times more energy per edge per unit time compared
to the normal attacks on &7, which take 8% cost per edge.
The total energy used by the attacker is constrained as

k
3 BA(SIEmlHIEAD < KA + K 3)
m=0

for any time k, where k* > p* > 0, 4 > 0. The

condition k* > p* allows the attacker to have enough

energy to attack at time O with consistent recharge rate.

This inequality implies that the total energy spent by the

attacker cannot exceed the available energy characterized

by the initial energy x* and the supplied energy p*k by

time k.

Fig. 2 shows the energy constraint of the attacker, where
the dashed line with slope p* represents the total supplied
energy and the solid line indicates the total energy spent. A
critical case is when 8% < p* since it is possible for the
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attacker to attack some edges for mﬁmte time, as long as
5|5k |+|EL|< mA is satisfied with ™ := o

The energy constramt of the defender is similar to (3) and
is given by Y2F _ BP|ED|< kP + pPk with P > pP > 0,
BP > 0. Note that the defender can recover only the edges
in £ under normal jamming attacks.

C. Agent clustering and state difference

By attacking, the attacker tries to make the graph dis-
connected to separate the agents into several groups. We
introduce a few notions related to grouping/clustering of
agents. In a given subgraph G’ = (V, £’) of G, the agents are
to be grouped into ¢(G’) number of groups, with the groups
V1, V3, ..., Vi g being a partition of V with Uc(g Vi =y
and V/ NV, = 0 with [ # m. There is no edge connecting
different groups, i.e., e;; ¢ &' fori € V/,j € V,,. We also
call each subset of agents taking the same state at infinite
time as a cluster, i.e., limy_, o0 x4 [k] = limp_, o0 2 [K].

Here, we are interested in the case where the attacker is
also concerned about the number of agents in each group, as
an extension of [6], [7]. Specifically, we follow the notion of
network effect/externality [9], where the utility of an agent in
a certain cluster depends on how many other agents belong
to that particular cluster. In the context of this game, the
attacker wants to isolate agents so that fewer agents are in
each group, while the defender wants as many agents as
possible in the same group. We then represent the level of
clustering in the graph G by the function c(: ) called cluster

distribution, which is given by ¢(g’) :== ") gl)|Vl I2—|V)2.

In our problem setting, the players also consider the
effects of their actions on the agent states when attack-
ing/recovering, similar to the formulation in [16]. For exam-
ple, the attacker may want to separate agents having state
values with more difference in different groups. We specify
the agents’ state difference z; of time k as

2 (En €M, EDY = & [k + 1) Lok + 1], 4)

with L. being the Laplacian matrix of a complete §raph with
n agents. The attacked and recovered edges (€., &, EP)
will affect z[k + 1], and in turn influence the value of zj.
Note that the value of z; does not increase over time [1]
because of the protocol given in (1) and (2).

D. Multiple-attack rolling horizon game structure

The utility functions of both attacker and defender of the
Ith game, | € Ny, starting at time k& = [ take account of
the cluster distribution ¢(-) and the difference zj, of agents’
states over h > 1 horizon length from time [ to [ + h — 1.
With weights a,b > 0, the utilities are defined by

l+h—1
Uh =) (az = be(GY)), )
k=l
UP = —UA. (6)

We are interested in finding the subgame perfect equi-
librium of this game. To find the equilibrium, the game is
divided into some subgames/decision-making points. The
subgame perfect equilibrium must be an equilibrium in
every subgame. The optimal strategy of each player is
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obtained by using a backward induction approach, i.e., by
finding the equilibrium from the smallest subgames.

Due to the nature of the rolling horizon approach,
the strategies obtained from the I/th game, i.e., attacked
and recovered edges, are not applied, except those for
time [. Specifically, in the Ith game for time [ to [ +
h — 1, the strategies of both players are denoted by

((51035107510) (5z,h—1751,h71751,h71))’ where only

(& l’o,é’l_o,é'l D) s applied Therefore, for the Ith game
at time [, the strategy applied can be written as
—A

(&.E88P) = (&, O,Sﬁo,é’%) The same notations apply
for the functions zy.

We look at how the optimal edges can be found by an
example with i = 2. In this case, for the [th game over
time [ and ! + 1, the optimal strategies of the players are
given by

5 (5“75“)€argmaxU1 , @)

l 1

—Ax «
(€11 (511,30)75[?1 (511,30)) € arg max U1 ) 3®)

(gl 1 l 1)

5 (850,6}0) EargmaXUD )
lO

SA
(5175,8f0*)€arg max U,

(10)
(&0 .ERy)

with U and UP being parts of U* and UP associated with
the strategies of time (I 4 1) of the [th game, respectively.

Note that to find (Eﬁg ,5
8 (8 1,0+ €1, 0) beforehand. L1kew1se to find El o, one needs

o obtain (Sl 1 (SZDO) EN (D). For h > 2, the optimiza-
tion problems are similar to those in (7)—(10), solved in 2h
steps from the (h — 1)th step of the /th game. They are
solved by the players at every time k& = [.

In this paper, we focus on cluster formation over time &
rather than characterizing the equilibrium at each individual
game. We will find the optimal strategies of the players by
computing all possible combinations, since the choices of
edges are finite.

Our previous works [6], [7], [14] considered related
games in continuous time, where the timings for launching
attack/defense actions are also part of the decision variables.
This aspect complicated the formulation, making it difficult
to study games over a time horizon. In the current paper, we
simplify the timing issue and instead introduced the rolling
horizon feature. This enables the players to consider the
cluster forming in a longer time range, which is especially
useful when consensus among agents is considered.

*), one needs to obtain

III. CONSENSUS ANALYSIS

In this section, we examine the effect of the game
structure and players’ energy constraints on consensus.

We first discuss the defender’s optimal strategy on some
games with specific conditions. Lemma 3.1 provides the
defender’s optimal edges for the last step of the /th game.

Lemma 3.1: In the (h — 1)th step of the Ith
game, the set of edges &, satisfies |EP |=

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 10,2023 at 16:50:40 UTC from IEEE Xplore. Restrictions apply.



D D D -1 D h—2 D
: + l+h—1)— = gm + m=! 2 m
mln([” p( )—B (Zg,,o‘ I+ 3ol DJ

8.

themma 3.2 states that if the defender has enough energy,
it recovers all possible edges at the Oth step of the game.

Lemma 3.2: If the defender’s energy satisfies

VD + PPl =320 BPIER]
3D
at time [, then £P* = A~

The next lemma states that the condition (11) in
Lemma 3.2 always occurs in some interval of discrete time.

Lemma 3.3: There is at least ope occurrence of either
EP # 0 or & =0 in every [%} time steps.

The following two results provide necessary conditions
for the agents to be separated into different states for
infinitely long duration without achieving consensus. We
consider a more general condition in Theorem 3.4, whereas
in Theorem 3.5 we consider a more specific situation for
the utility functions that leads to a tighter condition.

Theorem 3.4: A necessary condition for consensus not to
happen is A\ < 72", with A being the connectivity of G.

Proof: 'We note that, without any recovery from the
defender (£ = 0), the attacker must attack at least A
number of edges with normal signals at any time k in
order to make GP disconnected. If the attacker attacks A
edges with normal jamming signals at all time, the energy
constraint (3) becomes (32X — pA)k < k™. From this
inequality, it is clear that the attacker needs to have high
enough recharge rate p® to attack )\ edges at all time.
Specifically, the condition 7n* > X has to be satisfied. ®

We now limit the utilities in (5) and (6) to the case of
b = 0 in the weights. This means that the players do not
take account of the clustering in the graph, but only the
status in consensus.

Theorem 3.5: Suppose that b = 0. A necessary condition
for consensus not to happen is A\ < m* /s.

Proof: 'We prove by contrapositive; namely, we prove
that consensus always happens if * < s\.

We first suppose that the attacker attempts to attack A
edges strongly at all time to disconnect the graph g,?. From
(3), the energy constraint of the attacker at time k& becomes
(BAsA — p™)k < k™. This inequality is not satisfied for
higher k if * < s, since the left-hand side becomes
positive and x* is finite. Therefore, the attacker cannot
attack \ edges strongly at all time if m* < s\, and is
forced to disconnect the graph by attacking with normal
jamming signals instead.

By Lemma 3.3, there exists an interval where the de-
fender always recovers if there are edges attacked normally,
ie, EP # 0 are optimal given that £ # (). From the
definitions in (6), given that b = 0, we can see that the
defender obtains a higher utility if the agents are closer,
which means that given a nonzero number of edges to
recover (at time jI’ described above), the defender recovers
the edges connecting further agents. Specifically, for interval
[5I', (j + @)l'], there is a time step where UP (ED = &;) >
UP(&,), with edges £; connecting agents with further states

)

|znlelan

than agents connected by &. This implies that when recov-
ering, the defender always chooses the further disconnected
agents, and since by communicating with the consensus
protocol as in (1) the agents’ states are getting closer, the
defender will choose different edges to recover if the states
of agents connected by recovered edges 5,? become close
enough. Consequently, if 77 < s\, then there exists i € N
where the union of graphs, i.e., the graph having the union
of the edges of each graph, (V,[J((€\ (?ﬁ UEM))UEP))
over the time interval [jI’, (j + ¢)l'] becomes a connected
graph, where I’ = [w] as in Lemma 3.3 above. These
intervals [jI’, (j + ¢)I'] occur infinitely many times, since
the defender’s energy bound keeps increasing over time.

It is shown in [17] that with protocol (1), the agents
achieve consensus in the time-varying graph as long as
the union of the graphs over bounded time intervals is a
connected graph. This implies that consensus is achieved if

W, U(E\ (2‘: UER)) UEP)) is connected over [0 i

Thus, if m* < s\ then consensus is achieved. |

The result in Theorem 3.5 only holds for b = 0, since
with b > 0 the defender may choose to recover the
edges connecting agents that already have similar states
to maximize c¢(GP) (instead of those connecting farther
agents). The effect of the values of a and b on consensus
is illustrated in Section V.

The next result provides a condition for consensus to
be prevented. It shows that an attacker who is capable to
continuously make strong attacks on the edges, can prevent
consensus.

Theorem 3.6: A sufficient condition for consensus not to
happen is |E|< ™ /s.

Proof: With * > s|&|, the attacker can attack all
edges of the graph G with strong jamming signals at any
time k (including time 0, since K > p® by assumption).
Note that at the (h—1)th step of the /th game, the attacker al-
ways attacks as many edges as possible to maximize U?, if

there is no recovery by the defender. Since 2,1 (Eﬁ,hl =
€1, 0) > 2un1 (€D 1, &l _1,0) and e(V, (€\ (€'
Efy-1))U0) 2 e(V,(E\ Eppy UES_1) UD)) for any
\?ﬁh_1|< |£'|, the function U* | always has a higher value
if more edges are attacked. Thus, the attacker will attack
all edges strongly gﬁ‘;fl = &, which also prevents the
defender from recovering any edges. It then follows that the
function U/ | does not vary for different choices of edges
in the previous attack ((Efo, 5;}0), cee (th—zv 5;%72)).
This implies that the attacker does not need to attack fewer
edges at the previous steps to save energy, since it already
has enough energy to attack all possible edges £ at the next
steps. Thus, ?f* = & at the Oth step of the /th game.

This implies that if * > s|€|, the attacker will attack
& strongly at all time, separating every agent. As a result,
consensus is not reached. |

IV. CLUSTERING ANALYSIS

In this section, we derive some results on the number of
formed clusters of agents at infinite time. These results are
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related to those in Section III, since agents are separated
into different clusters when consensus is not reached.

The first result is a corollary of Theorem 3.6.

Corollary 4.1: There are n clusters formed with each
cluster consisting of one agent, if " > s|&|.

The next results discuss relations between the attacker’s
cost and energy recharge rate with the maximum number of
clusters that it may create through jamming. In these results
we assume that b = 0.

Lemma 4.2: With b = 0, the attacker cannot divide the
agents into more than |72 /s| 4+ 1 number of clusters.

We then extend this result to the case where all the agents
are connected with each other.

Lemma 4.3: With b = 0, in a complete graph G, the
attacker cannot divide the agents into more than m clusters,
with m satistying 37" ' (n—i) < |m™/s| < S, (n—i).

V. SIMULATION RESULTS

A. Consensus and Clustering across Weights a and b

Here we show how the consensus varies across different
weights a and b of the utility functions.

We consider the four agents line/path graph 1-2-3-4
with initial states zg = [1,0.75,0.75, —1]T. The parameters
are fA = P =1, h = s = 2, K = p* = 2.6,
pP = 0.3, and kP = 0.8, which satisfy the necessary
condition in Theorem 3.4. Figs. 3 and 5 show the agent
states with small a and large a, respectively. Figs. 4 and 6
illustrate the status of the edges in g,? over time k. There, no
circle in the corresponding edges implies that the edges are
strongly attacked; likewise, red circles: normally attacked,
black circles: not attacked, and filled circles: recovered.

With the small a, the attacker more often divides the
agents into more groups, indicated by fewer black circles
in Fig. 4. As a result, the attacker fails to prevent consen-
sus (Fig. 3), despite the condition in Theorem 3.4 being
satisfied. On the other hand, with the large a, the attacker
is more focused to make the agents’ state difference larger
while separating agents into fewer groups compared to the
case with small a, as shown in Figs. 5 and 6 with more
black circles and no consensus among the agents.

We next present a comparison in the optimal state dif-
ference zk(fﬁ*,fﬁ*,gl?*) and cluster distribution ¢(GP)
across different @ and b. These are shown in Fig. 7, with
weight b = 1—a. We observe that with larger a, the attacker
successfully prevents the consensus among agents (shown
with larger values of z;) up to time k£ = 20. On the other
hand, with smaller a, i.e., larger b, the attacker obtains
higher ¢(GP) over time at the cost of low 2y, implying that
the attacker fails to group the agents into different states.

B. Comparison with Non-Rolling Horizon Approach

We continue by comparing the proposed approach using
the rolling horizon-based strategies with a simpler one
(without rolling horizon) using the same horizon length
h. Specifically, we consider that the attacker does not
behave strategically, and attacks random edges with uniform
distribution instead. We then observe the response of the
defender under this non-optimal attack. Without the rolling
horizon approach, the defender does not recalculate their

1 L— agent 1

agent 2 agent 3 agent 4

State

0 5 10 15 20 25 30
Time
Fig. 3. Agent states with ¢ = 0.1 and b = 0.9

Active Edges
T

€3-4000000000000000000000000000000-

00000000000000000000000000000+

Edge
(o]
N

e1-2000000000000000000000000000000-

0 5 10 15 20 25 30
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Fig. 4. Attacked and recovered edges with @ = 0.1 and b = 0.9

1 ‘ = agent 1 agent 2 agent 3 agent 4
05 7
2
S or 1
%)
0.5 7
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0 5 10 15 20 25 30
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Fig. 5. Agent states with a = 0.9 and b = 0.1
Active Edges
e 3- oo o o OO o o OO o 1
()
u%J”eZ 00000000000000000000000000000

e12000000000000000000000000000000

0 5 10 15 20 25 30
Time

Fig. 6. Attacked and recovered edges with ¢ = 0.9 and b = 0.1

strategies every time, and applies the strategy that has been
determined before.

Note that with the sequential nature of the actions, the
optimal strategy of the defender depends on the attacker’s
strategy. Therefore, if the attacker changes its strategy, the
defender may not be able to apply its own strategy in
response to that. For example, suppose that the players’
optimal strategies are (ejs,e34) for the attacker, and eqo
for the defender. When the attacker deviates by attacking
e23, then the defender’s strategy is not applicable anymore.
Fig. 8 illustrates the decision making process of the players
at every k with random edges in the first step for the case
of h = 2; the defender then has to formulate its optimal
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Fig. 8. Decision making process of the players with non-optimal attack
as explained in Section V-B

recovery from this random attack, assuming that the second
attack will be optimal.

The result with the rolling horizon approach is shown
in Fig. 9. We can see here that with non-optimal random
attack, the defender is able to adapt and make z; smaller
and thus the agents achieve consensus in all realizations of
the random attack. On the other hand, Fig. 10 shows z;, of
the non-rolling horizon approach. Here we observe that zj,
is relatively large compared to that in Fig. 9, implying that
consensus is achieved at a slower pace in this setting. This
indicates that in the non-optimal attack situation, the rolling
horizon approach can be more effective, since the defender
can adapt better to uncertainty.

VI. CONCLUSION

We have formulated a two-player game in a cluster
formation of resilient multiagent systems played over time.
The players consider the impact of their actions on fu-
ture communication topology and agent states, and adjust
their strategies according to a rolling horizon approach.
Necessary conditions and sufficient conditions for forming
clusters among agents have been derived. We have discussed
the effect of the weights of the utility functions and different
initial conditions on cluster formation, and compared the
behaviors of the players in rolling horizon and non-rolling
horizon settings.
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