
Defending an Asset with Partial Information and Selected
Observations: A Differential Game Framework

Yunhan Huang, Juntao Chen, and Quanyan Zhu

Abstract— This paper considers a linear-quadratic-Gaussian
asset defending differential game (DADG) where the attacker
and the defender do not know each other’s state information.
However, they both know the trajectory of a moving asset.
Both players can choose to observe the other player’s state
information by paying a cost. The defender and the attacker
have to craft both control strategies and observation strategies.
We obtain a closed-form feedback solution that characterizes
the Nash control strategies. We show that the trajectory of
the asset does not affect both players’ observation choices.
Moreover, we show that we can decouple the observation choices
of the defender and the attacker. One can obtain the Nash
observation strategies by solving two independent optimization
problems. A set of necessary conditions is developed to charac-
terize the optimal observation instances. Based on the necessary
conditions, we propose an effective algorithm to compute the
optimal observation instances numerically. We also present
a case study to demonstrate the effectiveness of the optimal
observation instances.

I. INTRODUCTION

With recent advances in Autonomous Vehicles (AV) tech-
nologies, AV application scenarios emerge in modern mil-
itary operations such as surveillance, persistent area denial
[1], pursuit-evasion [2], [3], and defending an asset (DA) [4],
[5]. DA scenarios describe a setting where attackers attempt
to intercept the asset and defenders strive to defend the asset.
DA scenarios pose challenging control design problems for
AVs because AVs deployed often confront intelligent rivals
with mobility and strategic decision-making. Differential
game theory offers the right set of theoretical underpinnings
to investigate DA scenarios and develop optimal strategies for
each player. Hence, several works have addressed different
DA problems formulated as differential games [4]–[9]. The
formulations often are referred to as Defending an Asset
Differential Games (DADG). Among the various DADG
models adopted, the linear-quadratic differential game for-
mulation is favored due to its analytical friendliness [4], [7].
A common assumption taken for granted in previous studies
of DADG is that state information is freely available at any
time to both the attacker and the defender. However, state in-
formation, especially information regarding one’s opponent,
is not accessible and usually is expensive to acquire. For
example, in naval warfare, the detection of aircraft carriers is
a challenging task considering the vastness of the ocean and
the search for adversary submarines due to their stealthiness.
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The detection of such military units comes with monetary
expenses, risks of exposing oneself, and loss of surveillance
aircraft.

In this work, we study DADG with partial information
where the attacker and the defender only have access to
their state information. The attacker does not know the
state information of the defender unless the attacker chooses
to observe the defender’s information by paying a cost.
Similarly, the defender does not know the attacker’s state
unless the defender chooses to observe it by paying a cost.
We assume that both the defender and the attacker know the
trajectory of the asset. The DADG is a dynamic game with a
pre-specified duration. Since the two players are constantly
moving, the earlier information may deteriorate over time,
and a new observation needs to be made. Thus, both players
must decide when to observe and how many times to observe
within the duration. At the same time, control strategies need
to be developed based on the observed information.

Several papers have investigated the joint design of obser-
vation strategies and control strategies with costly observa-
tions [10]–[16]. In the 70s, Cooper studied a discrete-time
optimal control problem where the controller decides at each
step whether to observe a noisy observation or not [10].
Olsder later extended this study into a two-player discrete-
time dynamic game setting where each player chooses when
to observe, and a solution is obtained for a two-stage dy-
namic game [12]. More recently, [11] looked into controlled
observation for continuous-time Markov decision processes,
where the authors have studied its applications in queueing
systems and inventory management. [16] studies a discrete-
time dynamic game with controlled yet noisy observations
where one player acts as a jammer that intercepts the
observation of the other player. In [14], [15], and [17], Maity
et al. extend the problem formulated in [12] to a linear
quadratic continuous-time setting, where each player has no
state information at all unless they choose to observe.

Our work is different from [14], [15], [17] in three aspects:
First, in these works, players choose whether to observe the
full state of the system. In our work, the defender or the
attacker knows a part of the whole state (their own state)
and chooses to observe the other part of the state (their
opponent’s state); Second, in these works, two observation
scenarios are considered. 1. Each player chooses to make
their own private observation. 2. Observation is available
to both players only when both players choose to observe
simultaneously. However, in our work, one player’s obser-
vation will expose oneself to his/her opponent. Third, we
fully characterize the Nash observation strategy and propose
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computational methods to compute these strategies.
In general, our work focuses on DADG, which has a

different cost structure and system dynamics from previous
works due to the nature of “defending an asset” game. In
our work, both the attacker and the defender know their
own information, which gives each player partial information
even when they choose not to observe. They obtain complete
information when they choose to observe. Both players
do not share their information, which causes asymmetry
of information. Third, we fully characterize the control
strategies and develop a practical algorithm that calculates
the observation instances numerically.

The contributions of this paper are summarized as follows.
First, we abandon the common yet unrealistic assumption
that information is freely available all the time in pre-
vious DADG works. A linear-quadratic-Gaussian DADG
framework with controlled partial information is proposed.
Second, we fully characterize the Nash control strategies
and develop a set of necessary conditions that characterize
the optimal observation strategy. We show the separation
principle, in which the observation choices only affect the
state estimate in the control strategies. Analytical results
show that the observation choices are independent of the
trajectory of the asset. We further show that the attacker’s
observation decision and the defender’s observation decision
are decoupled. Hence, either the attacker or the defender can
make observation choices without anticipating each other’s
choices. As a result, we can obtain the Nash observation
strategies by solving two independent optimization problems.
Third, we develop an effective algorithm that can numerically
compute the optimal observation instances. We demonstrate
the effectiveness of the optimal observation instances by
comparing them with the periodic observation instances.

The rest of the paper is organized as follows. In Sec.
II, we formulate the linear-quadratic-Gaussian DADG with
controlled information. Sec. III gives the theoretical results
regarding the Nash control strategies and the Nash obser-
vation strategies. In Sec. IV, we conduct a case study to
demonstrate the effectiveness of the optimal observation
instances.

A. Notation

For a vector G or a matrix " , G ′ and " ′ represents the
transpose of the vector G and the matrix " respectively. An
=×= identity matrix is denoted by I=. ‖ · ‖2 is the !-2 norm.
For a vector with proper dimension, the norm ‖·‖& is defined
as ‖G‖& = G ′&G. The set of all real numbers is denoted
by R, and N denotes the set of all natural numbers. The
trace operator is denoted by Tr(·). The Kronecker product is
represented by ⊗.

II. DEFENDING AN ASSET WITH CONTROLLED
INFORMATION

In this section, we formulate a DADG with controlled
observation. The dynamics of each player is described by

the following linear systems

3G0 = �0G0 (C)3C + �̃0D0 (C)3C + �03F0 (C), G0 (0) = G00

3G3 = �3G3 (C)3C + �̃3D3 (C)3C + �33F3 (C), G3 (0) = G30
(1)

where G0 ∈ R=, G3 ∈ R= are states of the attacker and
the defender; D0 ∈ *0, D3 ∈ *3 are controls inputs the
corresponding players; F0 and F3 are independent standard
Wiener processes. �0, �3 , �̃0, �̃3 , �0, and �3 are real ma-
trices with proper dimensions. The time index is denoted by
C and the consider a finite-time horizon [0, C 5 ]. Let GB (C)
be the location of the asset at time C and the trajectory of
the asset is given and known to both the attacker and the
defender. In this paper, we consider the cases of a stationary
asset and an asset with an arbitrary trajectory. We assume that
there is an auxiliary linear system that captures the trajectory
GB (·) of the asset ¤GB = �BGB , GB (0) = GB0. This assumption
is introduced for analysis purpose and is not necessary, as
we will show later. From a systematic point of view, we can
formulate an aggregate system as

3G(C) = �G(C)3C+�0D03C+�3D33C+�3F(C), with G(0) = G0,
(2)

where G = [G ′0 G ′3 G
′
B] ′, �0 = [�̃′0 0 0] ′, �3 = [0 �̃′

3
0] ′,

F = [F′0 F′3 0] ′,

� =


�0 0 0
0 �3 0
0 0 �B

 , and � =

�0 0 0
0 �3 0
0 0 0

 .
In this paper, we consider a situation where the defender

and the attacker can select a set of time instances to ob-
serve one’s opponent state. The information structure of the
attacker and the defender is summarized as follows: 1. Both
the defender and the attacker know the trajectory of the asset.
2. The defender and the attacker know their own state, but
they don’t know each other’s state. 3. Each player can choose
to observe the other player’s state by paying a cost.

Let T0 = {C1,0, C2,0, · · · , C#0 ,0} be the set of time in-
stances when the attacker choose to observe. Let T3 =

{C1,3 , C2,3 , · · · , C#3 ,3} be that of the defender. Here, #0 and
#3 are the number of observations made by the attacker and
the defender respectively within time horizon [0, C 5 ]. Let
H0 (C) and H3 (C) be the observations of the attacker and the
defender respectively. We can write the above description of
the information structure as

H0 (C) =

I= 0 0
0 0 0
0 0 I=

 G(C), for C ∉ T0

H3 (C) =

0 0 0
0 I= 0
0 0 I=

 G(C), for C ∉ T3 ,

H0 (C) = G(C) for C ∈ T0, H3 (C) = G(C), for C ∈ T3 .

Let I0 (C) be the information the attacker has at time C and
I3 (C) be that of the defender. Given T0,T3 , We have

I0 (C) = {G0, H0 (g), g ≤ C}, I3 (C) = {G0, H3 (g), g ≤ C}. (3)
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Each player considers stationary feedback strategies W0 and
W3 such that D0 (C) = W0 (I0 (C)) and D3 (C) = W3 (I3 (C)). We
consider the objective function of the following form

� (W0, W3; G0)

=E

[ ∫ C 5

0

(
D0 (C) ′D0 (C) − D3 (C) ′D3 (C) + l�0‖G0 (C) − GB (C)‖22

− l�3 ‖G3 (C) − G0 (C)‖
2
2

)
3C + l0‖G0 (C 5 ) − GB (C 5 )‖22

− l3 ‖G3 (C 5 ) − G0 (C 5 )‖22 +$#0 −$#3
���� G(0) = G0

]
,

(4)
where l�0, l�

3
, l0, and l3 are the weighting coefficients

that captures the trade-off between the attacker-to-defender
distance and the attacker-to-asset distance. Here, the opti-
mization variables are D0 (D1) and T0 (T1). The effect of T0
and T1 are not explicitly written in 4. Indeed, the choices of
T0 and T3 affect I0 and I3 and hence influence the controls
D0 and D3 through W0 and W3 . The superscript � indicates
that the weight is for the intermediate cost rather than the
terminal cost. In some DADG papers, F�0 and F�

3
are set to

be zero and hence attention is paid to the terminal state alone
[5]. The scalar $ ≥ 0 is the cost of making observations.
The attacker tries to minimize its distance to the asset while
trying to avoid being intercepted by the defender. Hence,
the attacker aims to minimize the objective function and the
defender, however, aims to maximize it. Even though we
consider the state of all players lying in the same space R=,
the results in this paper can be easily extended to a general
setting. It is tacitly assumed that the system characteristics
are know to both players.

This formulation gives us a differential game with asym-
metric yet controlled information. The problem formulation
brings up a series of questions: When does the defender
need to observe the attacker’s state? For the defender, is it
worth paying a cost to observe the attacker’s state while the
defender knows that the attacker is tracking the asset and
the location of the asset is known to the defender? Are the
optimal observation instances dependent on the trajectory of
the asset? In the next section, we develop our main results
that address these questions.

III. THEORETICAL RESULTS

In this section, we develop our main theoretical results of
this paper. A close look at (4) gives the following form

� (W0, W3; G0)

=E

[ ∫ C 5

0

(
D0 (C) ′D0 (C) − D3 (C) ′D3 (C) + ‖G(C)‖2&

)
3C

+ ‖G(C 5 )‖2& 5
+$#0 −$#3

���� G(0) = G0

]
,

(5)

where & = &̃(l�0, l�3), & 5 = &̃(l0, l3) with

&̃(l�0, l�3) =

(l�0 − l�3)I= l�

3
I= −l�0I=

l�
3
I= −l�

3
I= 0

−l�0I= 0 l�0I=

 .

A. The Nash Control Strategies
Applying Itô’s lemma and a completion of squares on (5)

yields the following lemma.

Lemma 1. The cost functional � in (5) with state dynamics
(2) has the following form

� =E

[ ∫ C 5

0
‖D0 (C) + �′0 (C)G(C)‖22 − ‖D3 − �

′
3 (C)G(C)‖

2
23C

+ ‖G0‖2 (0) +
∫ C 5

0
Tr ( (C)�� ′) 3C +$#0 −$#3

]
,

(6)
where ( (C), C ∈ [0, C 5 ]) is symmetric and satisfies the
Riccatic equation
¤ (C) = − (C)� − �′ (C) −& −  (C)

(
�3�

′
3 − �0�

′
0

)
 (C)

with  (C 5 ) = & 5

(7)
The proof follows standard arguments of the “completion

of squares” procedures. Readers are referred to [18, Theorem
1], [14, Theorem 3.1], or [19, Lemma 1] for specifics. The
existence of bounded solutions for (7) depends on &, & 5 ,
and �3�

′
3
− �0�′0, which we shall discuss later. Note that

the attacker aims to find an observation-dependent strategy
W0 to minimize (6) while the defender desires to maximizes
(6). From (6), we know that the choice of strategies only
affect the terms within the first integral. Therefore, given T0
and T3 , the Nash control strategies will be of the form

D∗0 (C) = −�′0 (C)Ĝ1 (C), D∗3 (C) = �
′
3 (C)Ĝ2 (C), (8)

for some Ĝ1 and Ĝ2. The choices Ĝ1 and Ĝ2 are made by the
attacker and the defender respectively such that D∗0 (C) is I0 (C)
measurable and D∗

3
(C) is I3 (C) measurable. To decompose the

Nash control strategies, we split the 3=× 3= matrix in (8) as

 (C) =
[
 11 (C)  12 (C)
 12 (C) ′  22 (C)

]
,

where  11 is an 2=×2= matrix function of time C. Similarly,
& and & 5 are partitioned into &8 9 and & 5 ,8 9 for 8, 9 ∈ {1, 2}.
To decompose the Nash control strategy, we derive the
following decomposed Riccati equations
¤ 11 = − 11 �̂−�̂′ 11 −&11 −  11

(
�̂3 �̂

′
3 − �̂0 �̂

′
0

)
 11,

with  11(C 5 ) = & 5 ,11,
(9)

¤ 12 = − 12�B−�̂′ 12 −&12 −  12
(
�̂3 �̂

′
3 − �̂0 �̂

′
0

)
 11,

with  12 (C 5 ) = & 5 ,12,

where

�̂ =

[
�0 0
0 �3

]
, �̂0 =

[
�̃0
0

]
, �̂3 =

[
0
�̃3

]
. (10)

Theorem 1. Suppose that T0 and T3 are known and the
trajectory (GB (g), g ∈ [0, C 5 ]) is given. The DA game defined
by (2) and (6) admits a Nash control strategy

D∗0 = −�̂′0 11

[
G0
Ĝ1,3

]
− �̂′0B, (11)

D∗3 = �̂3 11

[
Ĝ2,0
G3

]
+ �̂′3B, (12)
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where ( 11, C ∈ [0, C 5 ]) is the solution of the Riccati equation
(9), �̂, �̂0, and �̂3 are defined in (10), and (B(C), C ∈ [0, C 5 ])
is generated by

¤B =
[
−�̂′ −  11

(
�̂3 �̂

′
3 − �̂0 �̂

′
0

) ]
B −&12GB , (13)

with B(C 5 ) = & 5 ,12GB (C 5 ). Moreover, the estimate Ĝ1,3 of
defender’s state evolves as

¤̂G1,3 = �3 Ĝ1,3 + �̃3 �̂′3
(
 11

[
G0
Ĝ1,3

]
+ B

)
(14)

with Ĝ1,3 (0) = G30 and Ĝ1,3 (C) = G3 (C) for every C ∈ T0, and

¤̂G2,0 = �0 ¤̂G2,0 − �̃0 �̂′0
(
 11

[
Ĝ2,0
G3

]
+ B

)
, (15)

with Ĝ2,0 (0) = G00 and Ĝ2,0 (C) = G0 (C) for all C ∈ T3 .

Proof. In the proof, we drop the time index C in some places
for convenience. From [15, Proof of Theorem 2], we know
that consider the game defined by (5) and (2), (8) constitutes
a Nash control strategy if

E [G(C) − Ĝ1 (C) |I0 (C)] = 0, E [G(C) − Ĝ2 (C) |I0 (C)] = 0, and
E [G(C) − Ĝ2 (C) |I3 (C)] = 0, E [G(C) − Ĝ1 (C) |I3 (C)] = 0.

(16)
With this result, if we let Ĝ1 = [Ĝ ′1,0 Ĝ

′
1,3 Ĝ

′
1,B]
′ and Ĝ2 =

[Ĝ ′2,0 Ĝ
′
2,3 Ĝ

′
2,B]
′, we have Ĝ1,0 = G0, Ĝ1,3 = E [G3 |I0], Ĝ1,B =

GB and Ĝ2,0 = E[G0 |I3] Ĝ2,3 = G3 , Ĝ2,B = GB .
Using (9), the Nash control strategy of the attacker can

be decomposed as D∗0 = −�̂′0 11 [G0 ′ Ĝ ′1,3]
′ − �̂′0 12GB ,

where the attacker’s control is driven by his/her state, his/her
estimate of the defender’s state, as well as the trajectory
of the asset. To eliminate the dependence of the control
on �B (which is introduced for auxiliary purpose), we let
B(C) =  12 (C)GB (C). Note that

¤B =
[
−�̂′ −  11

(
�̂3 �̂

′
3 − �̂0 �̂

′
0

) ]
B −&12GB ,

with B(C 5 ) = & 5 ,12GB (C 5 ). Hence, the control depends on
the trajectory of the asset irrespective of �B . Under the Nash
control strategy, the dynamics of the attacker is

¤G0 = �0G0 (C) − �̃0 �̂′0 11

[
G ′0
Ĝ1,3

]
− �̃0 �̂′0B + �03F0 (C),

with G0 (0) = G00. From (16), and using the fact
E[F0 (C) |I0 (C)] = 0, we have

¤̂G2,0 = �0 ¤̂G2,0 − �̃0 �̂′0
(
 11

[
Ĝ2,0

E[Ĝ1,3 |I3]

]
+ B

)
= �0 ¤̂G2,0 − �̃0 �̂′0

(
 11

[
Ĝ2,0
G3

]
+ B

)
with Ĝ2,0 (0) = G00 and Ĝ2,0 (C) = G0 (C) for every C ∈ T3 .
Hence, we fully characterizes the Nash control strategy of
the defender (12). Similarly, we can obtain the attacker’s
estimate of the defender’s state, which is given by (15). �

Remark 1. The attacker’s estimate of the defender’s state
Ĝ1,3 evolves according to (14). The estimate Ĝ1,3 does not
require the attacker to know the control of the defender.
Every time the attacker choose to observe, he/she receives

the actual state of the defender, i.e., Ĝ1,3 (C) = G3 (C),∀C ∈ T0.
The solution of the Riccati equation (9) may admits a finite
escape time since the conditions that &11 is positive semi-
definite and �̂3 �̂

′
3
− �̂0 �̂′0 is positive-definite do not hold.

We can use a more lenient condition given by [20, Corollary
5.13] to check the existence of a bounded solution of (9).
Due to the space constraints, we do not restate the corollary
here. Instead, we provide a closed-form bounded solution of
the Riccati equation for our case study in Sec. IV.

B. The Nash Observation Choices

In Theorem 1, we characterize the Nash control strategies
of both players when the observation instances are given. To
understand how both players would select their observation
instances, we need to obtain the cost functional under the
Nash control strategies for any given T0 and T1 . From
the decomposition of the Riccati equation in (9), we know
�′0 G = �̂′0 11 [G ′0 G ′3]

′ + �̂′0B. We further decompose  11
into

 11 =

[
 D;11  DA11
 DA11

′  1A11

]
,

where  D;11 ,  DA11 , and  1A11 are = × = matrices. Then, the first
term in (6) can be written as

D∗0 (C) + �′0 (C)G(C)

2

2 =





�̂′0 11

[
0

G3 − Ĝ1,3

]



2

2
= ‖�̃′0 DA11 (G3 − Ĝ1,3)‖22.

Similarly, we obtain

D∗3 (C) − �′3 (C)G(C)

2
2 = ‖�̃

′
3 

DA
11
′(G0 − Ĝ2,0)‖22.

From (1) and (14), we know that

E[(G3 (C) − Ĝ1,3 (C)) (G3 (C) − Ĝ1,3 (C)) ′]

=

∫ C

C̃

4�3 (B−C̃)�3�
′
34
�3 (B−C̃)′3B,

(17)

where C̃ the latest observation before C, which is dependent
on C and T0 and is defined as C̃ = max{g | g ∈ T0, g ≤ C}.
The discussion above leads to the following corollary.

Corollary 1. For given T0 and T1 , let T0 =

{C1,0 .C2,0, · · · , C#0 ,0} and T3 = {C1,3 , C2,3 , · · · , C#3 ,3}.
Under the Nash control strategies obtained in Theorem 1,
the cost functional (6) becomes

� (W∗0, W∗3 , G0) =
#0∑
8=0

∫ C8+1,0

C8,0

Tr
[
Σ1,3 (C − C8,0)i0 (C)

]
3C

−
#3∑
8=0

∫ C8+1,3

C8,3

Tr
[
Σ2,0 (C − C8,3)i3 (C)

]
3C

+
∫ C 5

0
Tr ( (C)�� ′) 3C + ‖G0‖2 (0) +$#0 −$#3 ,

(18)

where
∑

1,3 (C) =
∫ C
0 4

�3 g�3�
′
3
4�3 g3g, Σ2,0 =∫ C

0 4
�0g�0�

′
04
�0g3g, C0,0 = C0,3 = 0, and C#0+1,0 =

C#3+1,3 = C 5 . Moreover, i0 (C) =  DA11 (C)
′�̃0 �̃′0 

DA
11 (C) and

i3 (C) =  DA11 (C)�̃3 �̃3
′ DA11 (C)

′.
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Corollary 1 presents the cost functional under the Nash
control strategies. Among the six terms in (18), only the first
and the last two terms are associated with T0 and T3 . Note
that the objective of the attacker is to find a set of observation
instances T0 that minimizes �, while the defender aims to
maximize �. Hence, to decide their observation instances,
the attacker and the defender only have to consider the first
two terms and the last two terms. Moreover, the effect of
the two players’ observation can be decoupled, by which we
mean �̃ (T0,T1) = �̃0 (T0) − �̃1 (T1), where

�̃0 (T0) =
#0∑
8=0

∫ C8+1,0

C8,0

Tr
[
Σ1,3 (C − C8,0)i0 (C)

]
3C +$#0 ,

�̃3 (T3) =
#3∑
8=0

∫ C8+1,3

C8,3

Tr
[
Σ2,0 (C − C8,3)i3 (C)

]
3C +$#3 .

(19)

Remark 2. Corollary 1 shows that the optimal choices
of observation instances do not depend on the trajectory
of the asset, by which we mean no matter how the asset
moves, the defender and the attacker’s choices of observation
instances will not be affected. This is due to the fact that
both players know the trajectory of the asset. The relative
position between the asset and the attacker can be estimated
unbiasedly by the defender. The cost is captured by the
variance of the estimate error which is independent of the
asset’s trajectory.

Remark 3. Since �̃ (T0,T3) can be decomposed into
�̃0 (T0) − �̃3 (T3), the Nash observation strategies that
solve minT0 maxT3 �̃ (T0,T3) can be obtained by solving
minT0 �̃0 (T0) and minT1 �̃3 (T3). That means the defender
and the attacker can make independent observation choices
by solving two independent optimization problems. The in-
dependence comes from the fact that the defender and the
attacker have independent dynamics in (1).

Remark 4. To provide insights on the cost functional, we
take the attacker as an example. In the first term of �̃0 (T0),
we know

Tr
[
Σ1,3 (C − C̃)i0 (C)

]
=E[(G3 (C) − Ĝ1,3 (C)) ′ DA11

′
�̃0 �̃

′
0 

DA
11 (G(C) − Ĝ1,3 (C))],

(20)

where Σ1,3 (C − C̃) is the variance of the estimation error
G3−Ĝ1,3 at time and C̃ is the latest observation instance before
time C. The term in (20) captures the the instantaneous cost
at time C induced by the mismatch between the actual state
of the defender and the attacker’s estimate. The observation
choices are control-aware by which we mean the estimation
error is scaled by the matrix  DA11

′�̃0 �̃′0 
DA
11 and he matrix

assign more weight to the estimation error corresponding to
the states that are more informative to control needs. From
(17), we know that the estimation error accumulates until the
attacker makes an observation. As a result, the observation
clears the estimation error. However, each observation made
is subject to a cost $. Hence, the attacker has to make
observation decision strategically over time. Overall, the ob-
servation decision has to consider the trade-off between the
estimation error and the number of observations. Moreover,
the observation instances need to be well designed by both
players to minimize the corresponding integral terms in (19).

Since solving the Nash observation game is equivalent to
solving two independent optimization problems, we focus
on solving the attacker’s optimization problem. One can
obtain the result for the defender similarly. The solution of
minT0 �̃0 (T0) involves two components: the optimal number
of observations #∗0 and a set of optimal observation instances
T ∗0 = {C∗1,0, C

∗
2,0, · · · , C

∗
# ∗0 ,0
} (with a slight abuse of notation

here). Define

5 ∗0 (#0) B min
C1. · · · ,C#0

50 (C1, C2, · · · , C#0
)

B.C. C0 = 0, C#0
= C 5 ,

C8 ≤ C8+1, 8 = 0, 1, · · · , #0 + 1,

(21)

with 50 B
∑#0

8=0

∫ C8+1
C8

Tr
[
Σ1,3 (C − C8)i0 (C)

]
3C. From [21,

Proposition 8.5.12], we know that if Σ1 ≥ Σ2, Tr[Σ1"] ≥
Tr[Σ1"] for a positive semi-definite matrix " . Note that
i0 (C) is positive semi-definite and Σ1,3 (C) > Σ1,3 (C ′) for
C > C ′. Hence, 5 ∗0 (#0) is a decreasing function of #0, which
aligns our intuition that the more observations received, the
better the control would be. After solving (21), it remains to
find the optimal number of observations #∗0 that minimizes
50 (#0) + $#0. In the following theorem, we show that
there always exists a minimizer for the optimization problem
in (21), which can be characterized by a set of necessary
conditions.

Theorem 2. There always exists a solution, denoted by #∗0
and C∗1, C

∗
2, · · · , C

∗
# ∗0

, that solves minT0 �̃0 (T0). Furthermore,
the optimal number of observations #∗0 is bounded, i.e.,

#∗0 <
1
$

∫ C 5

0
Tr

[
Σ1,3 (C)i0 (C)

]
3C. (22)

And the optimal observation instances C∗1, C
∗
2, · · · C

∗
# ∗0

need to
satisfy ∫ C∗

8

C∗
8−1

Tr
[
4�3 (C∗8 −C)�3�

′
34
�3 (C∗8 −C) ′i0 (C∗8 )

]
3C

=

∫ C∗
8+1

C∗
8

Tr
[
4�3 (C−C∗8 )�3�

′
34
�3 (C−C∗8 ) ′i0 (C)

]
3C,

(23)

for 8 = 1, 2, · · · , #∗0.

The proof is presented in Appendix A. From Theorem
2, we know that the optimal number of observations #∗0 is
bounded and inversely proportional to the observation cost
$. From (23), one can say that the optimal observation
instances are spread out over the horizon [0, C 5 ]. Given a
limited number of observations, it is unwise to allocate two
observation instances in a short period of time. The effect of
control is applied via i0 (C). For some period when i0 (C) is
large, e.g., i0 (C) ≥ i(C ′), for C ∈ [g1, g2] and C ′ ∉ [g1, g2].
Then in this period, the attacker tend to observes more
frequently. For example, if the goal of the attacker is to hit
the asset at time C 5 , the attacker may need to observe more
frequently at the end of the game.

As is shown in Appendix A, the differential of 50 can be
calculated analytically. The second-order differential can also
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be calculated analytically. Hence, we can leverage either first-
order methods or second-order methods [22] to numerically
compute C∗1, C

∗
2, · · · , C

∗
#0

. Also, (23) indicates that once C∗1 is
provided, C∗2, · · · , C

∗
#0

can be computed easily. Based on this
feature, we propose a binary search algorithm that solves
problem (21). In Algorithm 1, we aim to find a C★1 such that
|C★1 − C

∗
1 | < n/2. Line 1 initializes all the parameters in (21).

Line 2 sets the initial low bound C;>F and upper bound CD?
of C∗1 to be 0 and C 5 respectively. The initial guess of C1 is
(0+ C 5 )/2. Line 5 computes the left-hand side of (23), which
we rewrite as

;0 (C8−1, C8) =
∫ C8

C8−1

Tr
[
4�3 (C8−C)�3�

′
34
�3 (C8−C) ′i0 (C8)

]
3C.

(24)
Line 6 computes the right-hand side integral in (23) from C8
to C 5 , which we write as

A0 (C8 , C 5 ) =
∫ C 5

C8

Tr
[
4�3 (C−C8)�3�

′
34
�3 (C−C8) ′i0 (C)

]
3C.

(25)
Line 7-11 says for any C8 , 8 = 1, 2, · · · , #0 that is computed
based on our guess C1, if A0 (C8 , C 5 ) < ;0 (C8−1, C8), then our
guess C1 is larger than C∗1. Hence, we set the upper bound CD?
as C1 and reset out guess C1 as C1 = (C;>F + C1)/2. Then we
break the for loop and start with our new guess C1. Line 12
computes the next observation instance using (23). Line 13-
21 says that when the for loop gets to 8 = #0, we compute
C#0+1. If C#0+1 < C 5 , our guess C1 must be smaller than
C∗1. Hence, we set C;>F = C1, let our new guess to be C1 =
(CD? + C1)/2, and breaks the for loop. If C#0+1 = C 5 (it is
impossible that C#0+1 > C 5 due to our operations in Line
5-11), then C1 = C∗1. Hence, we set C;>F = CD? = C1 to leave
the while loop. Since the while ends when |CD? − C;>F | < n ,
we can ensure |C★1 − C

∗
1 | < n/2, where C∗1 is the optimal first

observation instance and C★1 is the first observation instance
found using Algorithm 1. The number of iterations needed
for the while loop is less than min{= | C 5 /2= ≤ n}. For
example, only 20 iterations are needed to achieve n = 10−5

when C 5 = 10. Once C★1 is obtained, the rest observation
instances can be computed easily using (23). Note that with
5 ∗0 (#0) being computed for some small #0, a bound similar
to yet tighter than (22) can be developed. For example, when
5 ∗0 (#0) is computed for #0 = 1, 2, 3, if #∗0 > 3, we have
5 ∗0 (3) + 3$ > $#∗0, i.e., #∗0 − 3 ≤ 5 ∗0 (3)/$. Hence, we only
need to compute 5 ∗0 (#0) for a very limited number of #0.

In the next section, we provide case studies to demon-
strate the computation and the effectiveness of observation
instances and offer more insights.

IV. CASE STUDIES

We consider a “simple motion” dynamics of two players
on a 2-D plane. This dynamic model has been widely adopted
by existing works [3]–[5], [7]. The dynamics (1) becomes

3G0 = 10 · I2D0 (C)3C + �03F0 (C), G0 (0) = G00,

3G3 = 13 · I2D3 (C)3C + �33F3 (C), G3 (0) = G30,
(26)

where G0 ∈ R2 and G3 ∈ R2, 10 and 13 are scalars that
describe the maneuverability of the attacker and the defender

Algorithm 1 Optimal Observation Instances Algorithm
Based on Binary Search

1: Initialize �3 ,�3 , #0,i0 (·), C 5 , and tolerate, n > 0
2: Set C;>F = 0, C0 = 0, CD? = C 5 , and C1 = (CD? + C;>F )/2
3: while |CD? − C;>F | > n do
4: for 8 = 1, · · · , #0 do
5: Compute val = ;0 (C8−1, C8) defined in (24)
6: Compute val′ = A0 (C8 , C 5 ) defined in (25)
7: if val′ < val then
8: CD? = C1
9: C1 = (C;>F + C1)/2

10: break
11: end if
12: Compute C8+1 using (23)
13: if 8 = #0 then
14: if C8+1 < C 5 then
15: C;>F = C1
16: C1 = (CD? + C1)/2
17: break
18: else
19: C;>F = CD? = C1
20: end if
21: end if
22: end for
23: end while
24: return C★1 = (C;>F + CD?)/2

respectively. Suppose the attacker and the defender only care
the terminal state, i.e., l�

3
= l�0 = 0, and hence & = 0.

Proposition 1. For system (26) with l�
3
= l�0 = 0, the

Riccati equation admits a bounded closed-form solution

 11 (C) = : (C)
[
^1 (C) −1
−1 ^2 (C)

]
⊗ I2, (27)

where

^1 (C) = −12
3 (C − C 5 )l0 + 1 − l0/l1 ,

^2 (C) = 12
0 (C − C 5 )l0 + 1,

: (C) =
l0l3[

l01
2
0 (C − C 5 ) + 1

] [
−l0l312

3
(C − C 5 ) + l3 − l0

]
− l3

.

The optimal observation instances C∗1, C
∗
2, · · · , C

∗
#0

need to
satisfy

:2 (C∗8 ) (C∗8 − C∗8−1) =
∫ C∗

8+1

C∗
8

:2 (C)3C. (28)

Proof. Under this setting, the riccati equation (10) becomes

¤ 11 = − 11
(
�̂3 �̂

′
3 − �̂0 �̂

′
0

)
 11, with  11 = & 5 ,11.

Note that & 5 ,11 is invertible. Indeed, we have

&−1
5 ,11 =

[
1
l0

1
l0

1
l0

1
l0
− 1
l3

]
⊗ I2.
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Fig. 1: :2 (C) is defined in (27) and represented by blue
line. The optimal observation instances C∗

8
, 8 = 1, · · · , 5 are

represented by red impulses with height adjusted to :2 (C∗
8
).

The area of the khaki box being equal to that of the lavender
area illustrates the necessary conditions (28).

Let Γ =  −1
11 for some [C 5 − ΔC, C 5 ]. Since  11 

−1
11 = I4,

3

3C
 11 (C) −1

11 (C) = ¤ 11 
−1
11 +  11 ¤ −1

11 = 0,

which gives ¤ −1
11 = − 

−1
11
¤ 11 

−1
11 . Hence,

¤Γ = − −1
11
¤ 11 

−1
11 = �̂0 �̂

′
0 − �̂3 �̂′3 =

[
12
0 0

0 −12
3

]
⊗ I2.

Since Γ(C 5 ) = &−1
5 ,11, we obtain

Γ(C) =
[
12
0 (C − C 5 ) + 1

l0

1
l0

1
l0

−12
3
(C − C 5 ) + 1

l0
− 1
l3

]
⊗ I2.

Since  11 = Γ
−1, we have (27).

Then, we have i0 (C) =  DA11
′�̃0 �̃0 DA11 = :2 (C)12

0I2 and
similarly, i1 (C) = :2 (C)12

3
I2. Note that �0 = �3 = 0, which

gives Σ1,3 (C) = C�3� ′3 and Σ2,0 = C�0�
′
0. Hence,

5 ∗0 (#0) = Tr[12
0�3�

′
3] · min

C1 , · · · ,C#0

#0∑
8=0

∫ C8+1

C8

:2 (C) (C − C8)3C.

Furthermore, (23) becomes∫ C∗
8

C∗
8−1

Tr
[
�3�

′
3:

2 (C∗8 )12
0

]
3C =

∫ C∗
8+1

C∗
8

Tr
[
�3�

′
3:

2 (C)12
0

]
3C,

⇒ :2 (C∗8 ) (C∗8 − C∗8−1) =
∫ C∗

8+1

C∗
8

:2 (C)3C.

�

Other parameters are set to be l3 = 3, �3 = �0 = 2I,
10 = 13 = 0.5. We use Algorithm 1 to compute the optimal
observation instances for the attacker. In fig. 1, we first plot
the Riccati equation component :2 (C) over [0, C 5 ]. The value
of :2 (C) captures the importance level of an observation at
time C for the attacker. For example, :2 (C) attains its highest
value around 5.3. In an optimal solution, observations occur
more frequently around time 5.3. In fact, an observation at
the beginning is not as valuable as an observation near the
terminal time, as we can see from the curve of :2 (·). This is
because l�

3
= l�

3
= 0 and the attacker only cares about the

relative positions between him/her and his/her opponents as
well as the asset. We next present the optimal observation
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Fig. 2: The optimal number of observations for the attacker
under different observation costs (left). The costs 50 under
two choices of observation instances: the periodic instances
(marked red) and the optimal instances (marked blue) com-
puted using Algorithm 1 (right).
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Fig. 3: When #0 = 5, the optimal observation instances
under different l0.

instances when the number of observations the attacker can
take is limited to #0 = 5. The first observation occurs late at
C = 2.8682 and the fourth and the fifth observation instances
are the closest. The distribution of the observation instances
illustrates how :2 (·) affect the attacker’s observation choices.
The khaki box represents the left-hand side of (28) and the
lavender area represents the right-hand side of (28). The
necessary conditions (28) requires the areas of the two areas
to be equal. This equality holds for each such neighboring
areas.

In Fig. 2, the left figure shows that the optimal number of
observations is inversely proportional to the observation cost.
That means the defender can limit the performance of the
attacker by increasing the attacker’s observation cost. The
increase of observation cost can be done, for example, by
leveling up the defender’s stealthiness. We compare two sets
of observation instances in the right plot of Fig. 2. One is
the optimal observation instances C★1 , C

★
2 , · · · , C

★
#0

calculated
using Algorithm 1 and one is the periodic observation in-
stances chosen as C8 = 8 ·C 5 /(#0+1). The optimal observation
instances induce less cost than the periodic observation
instances given the same number of observations #0. More
precisely, by adopting the optimal observation instances, the
attacker can reduce at least 30% of the cost generated by
adopting the periodic observation instances. Similar results
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can also be obtained for the defender.
In Fig. 3, we present the optimal time instances under

different l0. Note that l0 is the weight assigned to the
terminal distance between the attacker and the defender, as
one can see in (4). Even though the location of the asset is
fully known to the attacker and the observations are made to
observe the defender’s location, the weight assigned to the
distance between the attacker and the asset still affect the
choice of the optimal observation instances. As l0 increases,
the attacker tends to observe late and observation instances
get closer to each other. This is due to the fact that l0
increases the terminal cost while the transient cost is zero
because l�0 = l

�
3
= 0.

V. CONCLUSIONS

In this paper, we look into a DADG with partial informa-
tion and selected observations. Due to the LQG formulation,
both players’ observation choices are independent of the
asset’s trajectory. We decouple the Nash observation game
into two separate optimization problems. We exploit a set
of necessary conditions to develop an effective algorithm
to compute the optimal observation instances. Case studies
show that the optimal observation instances outperform the
periodic observation strategy by at least 30%. Future works
can focus on studying noisy observation settings and inves-
tigating statistical results regarding success and capturability
rates.
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APPENDIX

A. Proof of Theorem 2
Proof. First, note that 50 (C1, C2, · · · , C#0

) is differentiable
over C1, C2, · · · , C#0

. Indeed, using Leibniz integral rule, we
obtain

m

mC8
50 (C1, · · · , C#0

)

=
m

mC8

[ ∫ C8

C8−1
Tr[Σ1,3 (C − C8−1)i0 (C)]3C

−
∫ C8+1

C8

Tr[Σ1,3 (C − C8)i0 (C)]3C
]

=

∫ C8

C8−1
Tr

[
4�3 (C8−C)�3�

′
3
4�3 (C8−C) ′i0 (C8)

]
3C

−
∫ C8+1

C8

Tr
[
4�3 (C−C8)�3�

′
3
4�3 (C−C8) ′i0 (C)

]
3C.

Hence, 50 is continuous over C1, C2, · · · , C#0
. Besides, the

constraint set in (21) is closed and bounded (hence com-
pact). Then by Weierstrass extreme value theorem, there
exists at least one minimizer C∗1, C

∗
2, · · · , C

∗
#0

for problem
(21) for any given #0. To obtain the first-order optimality
condition, we let m

mC8
50 (C1, C2, · · · , C#0

) = 0, which yields
(23). Further, notice that �̃0 (T ∗0 ) ≤ �̃0 (∅) = 5 ∗0 (0) =∫ C 5
0 Tr[Σ1,3 (C)i0 (C)], and �̃0 (T ∗0 ) > $#∗0 . Hence, we have
$#∗0 <

∫ C 5
0 Tr[Σ1,3 (C)i0 (C)], which gives (22). Since #∗0 ∈

N is bounded and 5 ∗ (#0) for any #0, there always exist #∗0
and C∗1, · · · , C

∗
#0

that solve minT0 �̃0 (T0). �
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