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Abstract—1In this paper we formulate a two-player game-
theoretic problem on resilient graphs representing communi-
cation channels that are vulnerable to attacks in multiagent
consensus setting. An attacker is capable to disconnect part of
the edges of the graph by emitting jamming signals while, in
response, the defender recovers some of them by increasing
the transmission power for the communication signals over
the corresponding edges. It is also possible for the attacker to
emit stronger jamming signals that cannot be overcome by the
defender. We consider repeated games where the utilities of
players in each game depend on attack/recovery performance
measured over multiple intervals. The utilities of both players
are mainly related to agents’ states and the cluster formation,
i.e., how the agents are divided. The players’ actions are
constrained by their energy for transmissions, with a less
strict constraint for the attacker compared to the defender.
Numerical examples of dynamic games played over time are
provided to demonstrate the cluster formation.

I. INTRODUCTION

Applications of large-scale networked systems have
rapidly grown in various areas of critical infrastructures
including power grid and transportation systems. Such
systems can be considered as multiagent systems where
a number of agents capable of making local decisions
interact over a network and exchange information [1].
While wireless communication plays an important role to
the functionality of the network, it is also prone to cyber
attacks initiated by adversaries on the networked systems
[2]. For instance, wireless communication among agents can
be easily interrupted by means of jamming attacks that do
not require prior knowledge of the network.

Noncooperative game theory is widely used for address-
ing security problems [3], [4] while jamming attacks on
consensus problems of multiagent systems have also been
studied. For example, the work [5] incorporates the jamming
attack models with energy constraints studied in [6]—[8] for
networked control problems. However, optimal strategies for
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such attacks and defenses in consensus problems have not
been well addressed.

In this paper, we model the interaction between an
attacker and a defender in a two-player game setting played
repeatedly over time in the context of multiagent consensus.
The attacker is motivated to disrupt the communication
among agents by attacking individual links while the de-
fender attempts to recover some or all of them whenever
possible. Their utilities are determined by how agents are
connected to others during the attacks and recoveries, as
well as how these actions affect the states of agents. Both
players are constrained in terms of their available energy
for the actions of attacks/recoveries.

We formulate the problem based on our recent work [9],
which uses graph connectivity to characterize the game and
players’ strategies (see also [10]). Specifically, we address
how clusters among agents may form in this security game
setting. Cluster formation in multiagent systems has been
studied in, e.g., [11], [12], where the weights in the agents’
state updates may take negative values, representing the pos-
sibly hostile relations among certain agents. In this paper,
we approach clustering from a different viewpoint based
on a game-theoretic formulation. Moreover, different from
[9], [10], (i) we introduce more options for the attacker’s
attack strengths and (ii) the game consists of multiple parts,
resulting in more complicated attack/defense strategies.

More specifically, with different attack strengths, it is now
possible for the attacker to attack the links with stronger
attack signals so that the defender is unable to recover those
links. In practice, this is possible when the attacker emits
stronger jamming signals to particular communication links
that results in much lower signal-to-interference-plus-noise
ratio (SINR) so that it is not possible for the defender to
recover the communication on those links with its limited
resources. Such models are employed in [13], [14].

On the other hand, we consider games consisting of
multiple parts, where the players need to consider their
future conditions when deciding their strategies at any point
in time. This has an impact on how the players use their
limited energy; it may be possible that the players reduce
their intensity of attack/recovery actions at some time to
conserve their energy and use it more efficiently later.

The paper is organized as follows. In Section II, we
introduce the framework for the resilient graph game. In
Section III, we discuss the effect of some of the parameters
on the equilibria and cluster formation. We provide a case
study to analyze the better strategies for players in one
game in Section IV. We then present simulations on the
dynamic graph games and the resulting cluster formation
in Section V. Finally, we conclude the paper in Section VI.
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All the proofs are omitted due to space limitations.

II. PROBLEM FORMULATION

In this section, we explain the two-player game formu-
lation between an attacker and a defender in the context
of network security. We also explain the characteristics of
the players, such as their energy constraints and how they
measure the cluster formation of the agents.

We consider a multiagent system consisting of n agents
with the communication topology described by the graph
G = (V,£), where the set V of vertices representing the
agents and the set £ C V x V of edges representing the
communication links between the agents. Every agent 7 is
able to communicate with its neighbors N;(t) C V via
the communication links. The underlying graph G, which
is undirected and connected, represents the communication
topology when there are no attacks.

Each agent has the scalar state z; whose dynamics are
given by

Bi(t)= Y (zj(t) —zi(t), =(0)=z0, t>0. (1)

JEN:(L)

Under the dynamics (1), all agents are expected to converge
towards the same state as time progresses as long as the
communication topology is connected.

In this paper, we consider the two-player game between
the attacker and the defender on how the agents commu-
nicate with each other in a networked system vulnerable
to jamming attacks. The attacker blocks the communication
by sending jamming signals, whereas the defender recovers
some of the attacked links by asking agents to send stronger
communication signals on those links. In particular, the
attacker has two types of jamming signals in terms of their
strength, strong and normal. We define the attack action by
the attacker (both with strong and normal signals) as the
removal of edges in graph G. In response to the attacks, the
recovery action by the defender is represented by restoring
some of the removed edges. The difference between the
two jamming signal types is that the edges attacked with
strong jamming signals cannot be recovered. The two types
of attacks can be made simultaneously on different edges.

A. Attack-Recovery Sequence

The players decide whether to attack/recover in the time
interval [t,,%;)., with & € N and T, > ¢, = Tx_1.
At t,, the system is represented by the original graph
G. Then, the players may start attacking and recovering
certain links sequentially, with the attacker acting before the
defender. The attack/recovery durations and the links for
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QA respectively; no lines in e15 and epy4 in the
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the attack/recovery are the action variables to be decided
by the players. In this game, the players can make their
actions at most once in [t,7x]. Once the attacker stops the
attacks (and therefore also ending all recovery attempts), the
kth interval ends at #x. The next interval then immediately
begins, that is, t,  ; = .

More specifically, the attacker attacks G by deleting
£} C & (normal jamming signals) and £ C & (strong
jamming signals) with £ N &L = 0 from time %, until ?g,
whereas the defender recovers EP C €2 from 7P until 7,
with ¢, < sz < ?E < k. Because of the presence of the
attacks, G is changed to G :== (V, €\ (€;* UEL)) beginning
from ¢,. Similarly, because of the recovery action by the
defender, G#* is changed to G2 := (V, (E\ (ELUEL)UEP)
from IE until 75. The graph GP changes back to Gi
from 75 to T4, if the defender ends its recovery before
the attacker ends its attack. Otherwise, the defender can
only recover until 75, i.e., 7o = 7. The graph becomes
G again when the attacker stops jamming, as the new
(k+1)th interval begins. For attacking/recovering links, both
players spend energy in proportion to the attack/recovery
duration. In this formulation, we consider a constant waiting
time (representing the time needed for the defender to
recognize the attack) v > 0 between ¢, and 7, unless
the attacker ends attacking earlier, which is specified by
7P = min(7y, #; +77). The attack and recovery durations
denoted respectively by &3 and 47, are given as

5}:‘ = ?? — 1, 5,]3 = ?kD _IE- (2)

The end time % of the kth interval is specified by
L[ @
' t, +7°, otherwise. )
This indicates that the attacker ends the game at the end of
a nonzero attack interval. Otherwise, the attacker does not
attack, in which case the game ends at ¢, + ~P.

In this game, players attempt to choose the best strategies
in terms of edges attacked/recovered and attack/recovery
durations ((&q,€x,6x) and (EP,6;)) to maximize their
own utility functions of the game defined over multiple
intervals. Specifically, in this paper we consider the simplest
case, which is the game defined over two intervals [t;,x]
and [tz ;,tx+1] as explained in Section II-D below.

Fig. 1 illustrates the sequences of the attack and recovery
actions described so far. In this figure, the attacker attacks
e12 and e3q in [ty,%1], but the defender recovers one of
them. The attacker attacks different edges with different
attack strength in [t,, %], and the defender can only recover
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e13, which is attacked normally. The attacker ends attacking
before the defender ends recovering in the second interval

in this example, and therefore the interval ends at 75 = 75"

B. Energy Constraints

In this formulation, the players cannot keep sending
signals to all edges for infinite duration due to the energy
constraints [6], [9], where players have some initial energy
and are able to recharge their energy over time. Here,
the attacker has two types of jamming signals. The strong
attacks on 5,? take s > 1, s € R, times more energy per
edge per unit time compared to the normal attacks on Ek
our numerical examples and analysis, we consider the case
where s = 2, i.e., attacking an edge strongly takes twice
the energy The attacker’s energy usage is constrained as

ZﬁA (slEml+IE

< KM+ pAtv )

for any ¢t € [tg,t,,,), with k* > 0, pA > 0, and
BAIE|> p* > 0. The parameters x*, p*, and 5 denote
the attacker’s initial energy, its recharge rate, and its unit
cost of attacking one edge per time, respectively.

Since from (4) it is possible that p* > B4, ie., the
attacker recharges its energy faster than it consumes, the
attacker can attack up to a certain number of edges for
infinite time. We denote that number of edges as m” :=
|p? /B2, where the attacker can attack edges £/ and &
satisfying s|EX|+|EA|< m” for infinite duration. Other-
wise, we obtain the maximum attack duration Ay where
the left-hand side of (4) is equal to the right-hand side as

A Kt +6f‘<slé‘ﬁ\+|5ﬁ|>zk
FUTOBA(SIERHIER]) -
St ﬂA(ﬂéﬁMeﬁ >6A

— m=2 —t,. 5
BAGSIEAIER) —ph e O

D)o + B (SIERHIES Nt — L)

This energy consumption model for the attacker is illus-
trated in Fig. 2, where the black dashed line with slope p*
represents the right-hand side of (4) and the black solid line
with slope B4 (s|E{|+|Ef|) represents the actual energy
consumed by the attacker, shown in the left-hand side in
(4). The attacker runs out of energy when the solid line
touches the dashed line. It is then possible for the attacker
to never run out of energy if the dashed line is steeper than
the solid line, i.e., the attacker attacks only a few edges
so that BA(s|ER|+|Ef]) < p™. However, the attacker may
want to maximize the damage on the system by attacking
more/stronger edges in some attack intervals. In the game
structure explained later, we consider the scenarios where
the attacker always attacks more edges and hence runs out
of energy every two attack intervals, as also illustrated in
Fig. 2 where the energy consumed by the attacker reaches
the limit at the end of every &5 with even k.

Similar to (4), the defender’s constraint is given by

k—1
> BPIEIn + BPIERI(t — ) < &P+ 0Pt (6)

m=1
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?

Fig. 2. The attacker’s en-
ergy consumption model,
with k® = 0. The vertical
blue lines indicate the end
time of each attack inter-
val: dashed lines for the
end of the first parts and
solid lines for the second

o - > parts.
Time
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Fig. 3. Graphs and their cluster distributions: (a) ¢(Ga) = 0, (b) ¢(Gp) =
—12, (¢) ¢(Gc) = —24, and (d) ¢(Gp) = —22. Note that ¢(Gp) is larger
than ¢(Gc), even with more clusters.

for any ¢ € [r}),7}),4], with k° > 0 and P > pP > 0.
We also obtain AE similar to (5) above.

C. Agent Clustering and State Difference

By attacking, the attacker makes the graph disconnected
and in turn separates the agents into clusters. Specifically, in
a given graph G, the agents are grouped into ¢(G’) clusters,
with the clusters VY ,V2 s V~(g ) being a partition of V

with Ul:1 W =V and VI VY =0, 1 #m.

Here, we are interested in the case where the attacker is
also concerned about the number of agents in each cluster,
as an extension of [9]. Specifically, we follow the notion
of network effect/externality [15], where the utility of an
agent in a certain cluster depends on how many other
agents belong to that particular cluster. In the context of
this game, the attacker does not want too many agents to
be together in the same cluster in order to minimize the
spread of information. Hence, the distribution of agents
among clusters becomes important. For example, if there
are 12 agents, the attacker can choose to: 1) separate the
agents into 3 clusters with ten agents in cluster 1 and one
agent each in both clusters 2 and 3, or 2) separate into
two clusters with both clusters 1 and 2 consisting of six
agents each. The option 2) may be better than 1) for the
attacker despite having fewer clusters, because the agents
are distributed more evenly so that most of them are not
grouped together in the same cluster.

Motivated by the example above, here we define the
cluster distributions ¢(-) as

&(g")
Z V' [2-n?(< 0). ™

The value of ¢(G’) is 0 if G’ is connected, since there is only
one cluster. A larger value (closer to 0) of ¢(G’) implies that
there are fewer clusters in graph G’, with each cluster having
more agents. The cluster distributions of some graphs are
shown in Fig. 3. Here, it is interesting that ¢(G¢) is smaller
than ¢(Gp), even though Gp has more clusters. Thus, for an
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attacker who tries to reduce the number of agents grouped
together in one cluster, G¢ is preferable to Gp.

In this setting the players also consider the effects of
their actions on the agent states when attacking/recovering,
similar to the formulation in [16]. For example, the attacker
may want to separate agents having state values with more
difference in different clusters. We specify the agents’ state
difference z; of the kth interval as

(0 100, (68, 68) = o (Ex) Lea(fr),  (8)

with L. being the Laplacian matrix of the complete graph
with n agents. Note that the value of z; does not increase
over time [1].

D. Two-interval Game Structure

The players’ utility functions of the [th game over
[to;_1,t21] take account of the cluster distribution ¢(-) and
the difference zy(-,-) of agents’ states, and are defined by

21

U= ) azdy — b(e(G)(0f — 01) + e(GR)3R),
k=2l—1 (9)
UP .= —UA, (10

where a, b > 0. These utility functions represent the number
of clusters over attack duration for two consecutive attack
intervals, since the attacker’s energy runs out after the two
attack intervals as explained above. The players change their
strategies once during the two intervals, i.e., once in a game.
These strategies are determined at the beginning of each
game, as explained later. From now on, we refer to these
two attack intervals as two parts of the /th game.

From the discussion on the energy constraint in Sec-
tion II-B, it is possible that the attacker never runs
out of energy if the attacked edges Ek and Ek satisfy
(s|EA+|EA]) < m™. Since there is no maximum attack
duration A‘,?, in this case we suppose that the choices for
attack duration are limited to 62 € {§/2,4} for simplicity,
with constant § > 2P > 0.

In this setting, we assume that in the (2] — 1)th attack
interval (the first part of the Ith game) the attacker attacks
edges &5, and 4 satisfying (s|E5_ | +|E5_ ) < mA,
with the choices of 05, € {§/2,8} specified above. In
the next (20)th interval (the second part of the game) we
suppose that the attacker chooses to attack 5 and 521
satisfying (s|E5|+|E5]) > m™?, ie., more/stronger edges
than in the first part, for finite Azz duration as in (5), i.e.,
5?1 = A2l Therefore, we have two intervals with different
characteristics in each [th game. For simplicity, in this game
the defender is only able to recover until either it runs out
of energy, or the recovery is interrupted by the stoppage of
the attack, i.e., 6P € {0, min{é6* — P, AP}, k € N.

The players determine their actions based on the sub-
game perfect equilibrium concept, as in [9]. In order to
find the equilibrium, the game is classified into some
subgames/decision-making points. The subgame perfect
equilibrium must be an equilibrium in every subgame. The
optimal strategy of each player is obtained by using a back-
ward induction approach, i.e., by finding the equilibrium
from smallest subgames. The subgame perfect equilibrium
solution concept is suitable for this problem setting, since
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players decide their strategies in a sequential manner.

The optimal edges and durations are specified as follows.
For the Ith game over the interval [t,,_,, %], the optimal
strategies of the players according to the subgame perfect
equilibrium principle are given by

(Ex*,0x") € arg max Uy, (11)
210721

ENx EN ,5 € ar max U2, 12
(&%, E ) g(%l’gzl’&A 2 (12)
gbx 6D* Year max UP, 13
(EX*1,65% 1) g RS (13)
(E31" 1 EQ" 1,057 ,) € arg max Ut (14

21—1'%21—1°""21—1

with U$* and UY being parts of U* and UP associated with
the (21)th interval, respectively. We assume that all parame-
ters and utility functions are known to all players, including
the energy parameters (k*, p™, 3% and &P, pP, P) of the
opposing player. This implies that a player is aware of the
optimal strategies of other player, e.g., the defender knows
which edges are optimally attacked by the attacker given
the defender’s best response

Note that to find (821 LEN 1 (5@ 1) one needs to ob-
tain (£3% 1 (11, €511+ 031 1): 01 (€51 17521 1:031-1))
beforehand. Likewise, to find (5571, 521i1) one
needs to obtain (E5*(ED 6D ), EN(ED 6D ),
S5+ (ED 1,60 1)). These optimization problems are
solved by the players at the start of the /th game, i.e., the
strategies for the second part ((2{)th interval) are decided
in the beginning of the (2/ — 1)th interval. The players are
not able to further change their strategies for the (20)th
interval after it has been determined before at the start of
the game. The agents’ dynamics and the players’ energy
condition will affect the players’ strategies in each game.

In this paper, we focus on the cluster formation over
different intervals. We are able to find the optimal strate-
gies of the players (11)-(14) by computing all possible
combinations of edges and action durations, since they are
both finite. It is also clear that the complexity of the game
depends on the graph structure: it takes much longer to
solve (11)-(14) in more complex graphs, since there are
more possible combinations of edges.

III. CLUSTERING AND CONSENSUS ANALYSIS

In this section, we examine the effect of the attacker’s
energy model on the cluster formation and multiagent
consensus.

We first discuss the defender’s optimal strategy on some
games with specific conditions.

Lemma 3.1: The defender always recovers in the (20)th
interval (1) # (), as long as 2 # 0.

From the result of (20)th interval above, we are now able
to state the result of (2/; — 1)th interval for some [.

Lemma 3.2: There exists an infinite sequence [ :=
{I1,15,...} of the game indexes where [;;1 > [; and [; € N
such that in the (I;)th game, the optimal strategy for the
defender in the (2/; — 1)th attack interval is to recover from
attacks with normal strength, i.e., 5 4 F () as long as

31 70

The following result provides a necessary condition for
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the agents to be separated into multiple clusters for infinitely
long durations without achieving consensus. The results
in Lemmas 3.1 and 3.2, which characterize the defender’s
optimal strategies in each interval of a game, enable us to
derive the following result.

Proposition 3.3: The necessary condition to prevent the
consensus from happening is m” > s\, with \ denoting
the edge connectivity of G.

However, the necessary condition in Proposition 3.3 is
not sufficient for preventing consensus, since even with m*
large enough, the attacker may decide to strongly attack
fewer edges instead. This is related to the attacker’s energy
usage, as we see in the next section.

IV. CASE STUDY ON ATTACKER’S ENERGY USAGE

In this section, we investigate how the attacker uses its
energy by comparing several attack strategies that character-
ize different energy consumption profiles. With the ability
to use strong jamming signals, the attacker is able to prevent
consensus by attacking some appropriate edges strongly at
all times, with the downside that it consumes more energy.
However, here we will show that under some conditions
related to the energy usage, the attacker chooses not to
attack edges strongly. While this attack strategy may be
optimal according to U” defined over interval [ty ,, %],
it will be unsuccessful in preventing consensus.

Here, we discuss a special case where there are three
agents (agents 1, 2, and 3) in a line/path graph 1-2-
3. Specifically, we investigate the effect of different zg
and different p* to the clustering process. Throughout this
section, we set 6 = % = P = a = b = 1, and
k™ = 4P = 0. We choose this setting for simplicity, but we
will see that the implications hold under other conditions.

A. Effect of Initial States x

Here we will investigate the effect of different initial
states 79 = [2,0,—2']T on the value of U” in the first
game (I = 1). We also set p® = 2.5, implying that m = 2.
In this setting, the attacker has at least two strategy choices
in I = 1: (1a) |EP}|= 1, |EM= 0, and (1b) [EP|= O,
|EM= 1, with 68 = |E)|= |E5'|= 1 in both cases. It is
clear that in Case (1b) the attacker attacks fewer edges in
the first part to save its energy that will be used in the
second part. We assume that the defender with kP = 1
and pP = 0.5 always recovers 5,?. Other strategies are not
discussed due to space limitation.

Case (1a): We notice that in this case |EP|= 0, since
|E{|= 0. With the parameters specified above, we have
UA =21 + 4+ 20A8 — (—4(AL — 6D) + ¢(GP)dP). The
value ¢(G*) = —4 is from the fact that regardless of the
attacked edges, there are always two clusters: one cluster
has one agent and the other has two agents.

From |Ef|, |E2|, and |EP| above, we obtain Aj = 1
and AD = 3. With 2o = [2/,0,—2']T, if one agent is
disconnected for £k = 1, the function z, becomes z; =
(e™202)2 4 [((3—e™2)a")2 4 ((34e72%)2")?] /4 from (1).

Now, since the defender recovers one edge for £ = 2
(since |£3'|= 1), the graph for k = 2 is the same as that
for k = 1: one agent gets disconnected from the other two.
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Finally, we substitute z; and 25 into U A and obtain
3(1+ e +6€e)(2)?

A _ ~ AV
UA = 5o +8~9.028(z')2 +8. (15)
Case (1b): Under the assumption that |EP|> 0, we first
obtain AP = 2, which implies that 6 = § and as a

result ¢(GP) = 0. Therefore, we have U* = 21 + 2o A5 —
(c(G) (AL — 68) + ¢(GP)6D). We then obtain AL = 3,
which is longer than in Case (1a) above since in this case
the attacker is using less energy for k = 1, and AD = 1,
which is shorter than in Case (1a) for the similar reason.

Since the graph remains connected for k£ = 1, from (1)
we obtain z; where all agents are connected in the path
graph as z; = 6(e~°xz’)2, with the agents’ states becoming
z(t) = [e7ta’, 0, —e~*2’]T. We substitute z; in U to get
3(3 + 13e*)(2")?

2¢8

We then compare (15) and (16) to obtain a condition on '
for selecting strategies. Specifically, the attacker’s strategy
|EX|= 1,|E1|= 0 is better than |E{|= 0, [EL = 1 if 2/ >
1.12. Otherwise, the strategy in Case (1b) is better.

This example shows that the initial state xy influences
the players’ strategies. In general, the attacker tends to save
its energy in the first part by attacking fewer edges, if
the agents’ states are sufficiently close. This implies that
consensus may still happen if the attacker does not attack
with strong jamming signals, despite with high enough m*.

Ut = + 16 ~ 2.650(x")? + 16.  (16)

B. Effect of Attacker’s Recharge Rate p™ (Smaller m™)

We next investigate U with varying p”. Here we set
2 < p™ < 3, and we also assume that kP and pP are large
enough so that 6,]3 = 5,? for any k. We again compare two
cases of strategy choices as above: (2a) |E9|= 1, |Ef|= 0,
and 2b) [EA|= 0, [EA|= 1, with 62 = |EA]= |€2/= 1 in
both cases. Here we assume that z¢ = [1,0, —1]T.

Case (2a): The utility function here is UA = z; + 4 +
205 — (—4(A5 = 07) +¢(F7)87). From |E{] and |Ef],

we obtain AQ = g_—;f, 21, and 2o, resulting in UA =
A
—4(L 72)
3(34+e™* A_g (3(3+e 3-0
(""2(’ )+4+§7p13((+()2 - )+4)

Case (2b): Since the graph remains connected for k = 1,
we obtain z; = 6e~2, with z(t,) = [e™!, 0, —e™!]. Since
the defender recovers and hence one agent is disconnected
from the other agents for the entire A%, we use the same
approach as in Cases (1a) and (1b) to obtain the Avalue of z5.

_qp=ly
We then obtain UA = 6e=2 + gi;j (3(3+e 262m ) 4 4).
From two U” above, the attacker’s strategy in Case (2a) is
better than the one in Case (2b) if p* < 2.812.

We note that from this example, the higher the attacker’s
recharge rate p? is, the more likely the attacker attacks
fewer edges in the first part. This has an interesting implica-
tion, where the consensus is more likely to happen for some
higher p*. This is because the attack duration 6; contributes
much to the value of U”, where 62 is multiplied by zy.

C. Effect of Attacker’s Recharge Rate p™ (Larger m™)

We now discuss a scenario with varying p® and higher
mA, compared to Cases (1b) and (2b) above. Specifically,
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Fig. 4. Graph used
for simulations in
Section V

we set 3 < p® < 4, implying s = 3. We also assume
that the defender has enough energy to recover all possible
Ef for (52; at any kth interval. The initial states are z¢ =
[1,0,—1]T. The compared strategies are: (3a) |Ef*|= 1,
€M)= 0, and 3b) |EP= 0, |EP= 1, with 08 = 1,
|E34|= 2, and |£4|= 0 in both cases.

With the same approach as in Cases (2a) and (2b)

above, we obtain for Case (3a) U® = 3(3%74) + 4 +

ZA,;AZ 3(3%74) + 6), and for Case (3b) UA = 6e 2 +

ph—1
4—ph
any value of p* with 3 < p < 4, the attacker’s strategy
in Case (3a) is always better. This shows that attacking
with stronger signals, which may prevent consensus, may
be better for the attacker if m” is large enough.

6e=2 + 6). By comparing these, we observe that for

V. NUMERICAL SIMULATION OF DYNAMIC GAMES:
EFFECT OF ATTACKER’S RECHARGE RATE p#

In our simulations, we use the graph shown in Fig. 4
with five vertices/agents with parameters 5% = 1.1, P =
0.6, K = 0, Kk =5, p? = 0.5, v° = 0.1, a = 0.1,
b=1,and g = [1.8,5.2,0.1,2.7,2.0]T. Figs. 5 and 6
show the states of the agents with p* = 5 and p® = 2.5,
respectively. Since A = 1 in this graph, note that p* in
both simulations satisfy the condition needed in order not
to achieve consensus in Proposition 3.3. The line colors in
Figs. 5 and 6 correspond to the colors of the agents in Fig. 4.
In Figs. 5 and 6 discussed in this section, the vertical blue
lines indicate the end time of each part (attack interval),
with the dashed lines indicating the end times of the first
parts, and the solid lines indicating the end times of the
second part of the games.

In the first simulation, we have m* = |p?/B8%] = 4,
whereas m” = 2 in the second simulation. This has an
impact on the consensus, where in the second simulation
consensus is achieved although the attacker has the capa-
bility to disconnect an agent with strong jamming signals.
On the other hand, in the first simulation, agents are divided
into different clusters and do not converge to the same state.

VI. CONCLUSION AND FUTURE WORKS

We have formulated a two-player game in a cybersecurity
problem of multiagent systems, where the players consider
the impact of their actions on future communication topol-
ogy and future agent states. The optimal strategies of the
players have been analyzed. We have also discussed the
impact of initial agent states 2(0) and the attacker’s recharge
rate p” on cluster formation among agents. Possible future
works include considering the more dynamic rolling horizon
approach, where players may change their strategies (that
have been determined beforehand) at several points in time,
in order to adapt to the changing condition of the systems.
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