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Abstract— In this paper we formulate a two-player game-
theoretic problem on resilient graphs representing communi-
cation channels that are vulnerable to attacks in multiagent
consensus setting. An attacker is capable to disconnect part of
the edges of the graph by emitting jamming signals while, in
response, the defender recovers some of them by increasing
the transmission power for the communication signals over
the corresponding edges. It is also possible for the attacker to
emit stronger jamming signals that cannot be overcome by the
defender. We consider repeated games where the utilities of
players in each game depend on attack/recovery performance
measured over multiple intervals. The utilities of both players
are mainly related to agents’ states and the cluster formation,
i.e., how the agents are divided. The players’ actions are
constrained by their energy for transmissions, with a less
strict constraint for the attacker compared to the defender.
Numerical examples of dynamic games played over time are
provided to demonstrate the cluster formation.

I. INTRODUCTION

Applications of large-scale networked systems have

rapidly grown in various areas of critical infrastructures

including power grid and transportation systems. Such

systems can be considered as multiagent systems where

a number of agents capable of making local decisions

interact over a network and exchange information [1].

While wireless communication plays an important role to

the functionality of the network, it is also prone to cyber

attacks initiated by adversaries on the networked systems

[2]. For instance, wireless communication among agents can

be easily interrupted by means of jamming attacks that do

not require prior knowledge of the network.

Noncooperative game theory is widely used for address-

ing security problems [3], [4] while jamming attacks on

consensus problems of multiagent systems have also been

studied. For example, the work [5] incorporates the jamming

attack models with energy constraints studied in [6]–[8] for

networked control problems. However, optimal strategies for
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such attacks and defenses in consensus problems have not

been well addressed.

In this paper, we model the interaction between an

attacker and a defender in a two-player game setting played

repeatedly over time in the context of multiagent consensus.

The attacker is motivated to disrupt the communication

among agents by attacking individual links while the de-

fender attempts to recover some or all of them whenever

possible. Their utilities are determined by how agents are

connected to others during the attacks and recoveries, as

well as how these actions affect the states of agents. Both

players are constrained in terms of their available energy

for the actions of attacks/recoveries.

We formulate the problem based on our recent work [9],

which uses graph connectivity to characterize the game and

players’ strategies (see also [10]). Specifically, we address

how clusters among agents may form in this security game

setting. Cluster formation in multiagent systems has been

studied in, e.g., [11], [12], where the weights in the agents’

state updates may take negative values, representing the pos-

sibly hostile relations among certain agents. In this paper,

we approach clustering from a different viewpoint based

on a game-theoretic formulation. Moreover, different from

[9], [10], (i) we introduce more options for the attacker’s

attack strengths and (ii) the game consists of multiple parts,

resulting in more complicated attack/defense strategies.

More specifically, with different attack strengths, it is now

possible for the attacker to attack the links with stronger

attack signals so that the defender is unable to recover those

links. In practice, this is possible when the attacker emits

stronger jamming signals to particular communication links

that results in much lower signal-to-interference-plus-noise

ratio (SINR) so that it is not possible for the defender to

recover the communication on those links with its limited

resources. Such models are employed in [13], [14].

On the other hand, we consider games consisting of

multiple parts, where the players need to consider their

future conditions when deciding their strategies at any point

in time. This has an impact on how the players use their

limited energy; it may be possible that the players reduce

their intensity of attack/recovery actions at some time to

conserve their energy and use it more efficiently later.

The paper is organized as follows. In Section II, we

introduce the framework for the resilient graph game. In

Section III, we discuss the effect of some of the parameters

on the equilibria and cluster formation. We provide a case

study to analyze the better strategies for players in one

game in Section IV. We then present simulations on the

dynamic graph games and the resulting cluster formation

in Section V. Finally, we conclude the paper in Section VI.
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Fi g. 1. Ill ustr ati o n of gr a p h tr a nsiti o ns, wit h
G c o nt ai ni n g f o ur e d g es e 1 2 , e1 3 , e2 4 , e3 4 .
A g a m e c o nsists of t w o att a c k p arts. T h e
bl u e d as h e d li n e i n di c at es t h e e n d of t h e
first p art, w hil e t h e bl u e s oli d li n e t h e e n d
of t h e s e c o n d p art ( a n d h e n c e t h e g a m e).
I n t h e gr a p hs, t h e s oli d a n d d as h e d li n es
i n di c at e e d g es c o n n e ct e d a n d dis c o n n e ct e d,
r es p e cti v el y; n o li n es i n e 1 2 a n d e 2 4 i n t h e
s e c o n d p art i n di c at e t h at t h os e e d g es ar e
att a c k e d str o n gl y.

All t h e pr o ofs ar e o mitt e d d u e t o s p a c e li mit ati o ns.

II. P R O B L E M F O R M U L A T I O N

I n t his s e cti o n, w e e x pl ai n t h e t w o- pl a y er g a m e f or m u-
l ati o n b et w e e n a n att a c k er a n d a d ef e n d er i n t h e c o nt e xt
of n et w or k s e c urit y. We als o e x pl ai n t h e c h ar a ct eristi cs of
t h e pl a y ers, s u c h as t h eir e n er g y c o nstr ai nts a n d h o w t h e y
m e as ur e t h e cl ust er f or m ati o n of t h e a g e nts.

We c o nsi d er a m ulti a g e nt s yst e m c o nsisti n g of n a g e nts
wit h t h e c o m m u ni c ati o n t o p ol o g y d es cri b e d b y t h e gr a p h
G = ( V , E ), w h er e t h e s et V of v erti c es r e pr es e nti n g t h e
a g e nts a n d t h e s et E ⊆ V × V of e d g es r e pr es e nti n g t h e
c o m m u ni c ati o n li n ks b et w e e n t h e a g e nts. E v er y a g e nt i is
a bl e t o c o m m u ni c at e wit h its n ei g h b ors N i (t) ⊆ V vi a
t h e c o m m u ni c ati o n li n ks. T h e u n d erl yi n g gr a p h G , w hi c h
is u n dir e ct e d a n d c o n n e ct e d, r e pr es e nts t h e c o m m u ni c ati o n
t o p ol o g y w h e n t h er e ar e n o att a c ks.

E a c h a g e nt h as t h e s c al ar st at e x i w h os e d y n a mi cs ar e
gi v e n b y

ẋ i (t) =
j ∈ N i ( t )

(x j (t) − x i (t)), x( 0) = x 0 , t ≥ 0 . ( 1)

U n d er t h e d y n a mi cs ( 1), all a g e nts ar e e x p e ct e d t o c o n v er g e
t o w ar ds t h e s a m e st at e as ti m e pr o gr ess es as l o n g as t h e
c o m m u ni c ati o n t o p ol o g y is c o n n e ct e d.

I n t his p a p er, w e c o nsi d er t h e t w o- pl a y er g a m e b et w e e n
t h e att a c k er a n d t h e d ef e n d er o n h o w t h e a g e nts c o m m u-
ni c at e wit h e a c h ot h er i n a n et w or k e d s yst e m v ul n er a bl e
t o j a m mi n g att a c ks. T h e att a c k er bl o c ks t h e c o m m u ni c ati o n
b y s e n di n g j a m mi n g si g n als, w h er e as t h e d ef e n d er r e c o v ers
s o m e of t h e att a c k e d li n ks b y as ki n g a g e nts t o s e n d str o n g er
c o m m u ni c ati o n si g n als o n t h os e li n ks. I n p arti c ul ar, t h e
att a c k er h as t w o t y p es of j a m mi n g si g n als i n t er ms of t h eir
str e n gt h, str o n g a n d n or m al . We d e fi n e t h e att a c k a cti o n b y
t h e att a c k er ( b ot h wit h str o n g a n d n or m al si g n als) as t h e
r e m o v al of e d g es i n gr a p h G . I n r es p o ns e t o t h e att a c ks, t h e
r e c o v er y a cti o n b y t h e d ef e n d er is r e pr es e nt e d b y r est ori n g
s o m e of t h e r e m o v e d e d g es. T h e diff er e n c e b et w e e n t h e
t w o j a m mi n g si g n al t y p es is t h at t h e e d g es att a c k e d wit h
str o n g j a m mi n g si g n als c a n n ot b e r e c o v er e d. T h e t w o t y p es
of att a c ks c a n b e m a d e si m ult a n e o usl y o n diff er e nt e d g es.

A. Att a c k- R e c o v er y S e q u e n c e

T h e pl a y ers d e ci d e w h et h er t o att a c k/r e c o v er i n t h e ti m e
i nt er v al [tk , tk ], wit h k ∈ N a n d tk > t k = tk − 1 .
At tk , t h e s yst e m is r e pr es e nt e d b y t h e ori gi n al gr a p h
G . T h e n, t h e pl a y ers m a y st art att a c ki n g a n d r e c o v eri n g
c ert ai n li n ks s e q u e nti all y, wit h t h e att a c k er a cti n g b ef or e t h e
d ef e n d er. T h e att a c k/r e c o v er y d ur ati o ns a n d t h e li n ks f or

t h e att a c k/r e c o v er y ar e t h e a cti o n v ari a bl es t o b e d e ci d e d
b y t h e pl a y ers. I n t his g a m e, t h e pl a y ers c a n m a k e t h eir
a cti o ns at m ost o n c e i n [tk , tk ]. O n c e t h e att a c k er st o ps t h e
att a c ks ( a n d t h er ef or e als o e n di n g all r e c o v er y att e m pts), t h e
k t h i nt er v al e n ds at tk . T h e n e xt i nt er v al t h e n i m m e di at el y
b e gi ns, t h at is, tk + 1 = tk .

M or e s p e ci fi c all y, t h e att a c k er att a c ks G b y d el eti n g
E A

k ⊆ E ( n or m al j a m mi n g si g n als) a n d Ē A
k ⊆ E (str o n g

j a m mi n g si g n als) wit h E A
k ∩ Ē A

k = ∅ fr o m ti m e tk u ntil τ A
k ,

w h er e as t h e d ef e n d er r e c o v ers E D
k ⊆ E A

k fr o m τ D
k u ntil τ D

k ,
wit h tk < τ D

k ≤ τ D
k ≤ tk . B e c a us e of t h e pr es e n c e of t h e

att a c ks, G is c h a n g e d t o G A
k : = (V , E \ ( Ē A

k ∪ E A
k )) b e gi n ni n g

fr o m tk . Si mil arl y, b e c a us e of t h e r e c o v er y a cti o n b y t h e
d ef e n d er, G A

k is c h a n g e d t o G D
k : = (V , (E \ ( Ē A

k ∪ E A
k ) ∪ E D

k )
fr o m τ D

k u ntil τ D
k . T h e gr a p h G D

k c h a n g es b a c k t o G A
k

fr o m τ D
k t o τ A

k , if t h e d ef e n d er e n ds its r e c o v er y b ef or e
t h e att a c k er e n ds its att a c k. Ot h er wis e, t h e d ef e n d er c a n
o nl y r e c o v er u ntil τ A

k , i. e., τ A
k = τ D

k . T h e gr a p h b e c o m es
G a g ai n w h e n t h e att a c k er st o ps j a m mi n g, as t h e n e w
(k + 1) t h i nt er v al b e gi ns. F or att a c ki n g/r e c o v eri n g li n ks, b ot h
pl a y ers s p e n d e n er g y i n pr o p orti o n t o t h e att a c k/r e c o v er y
d ur ati o n. I n t his f or m ul ati o n, w e c o nsi d er a c o nst a nt w aiti n g
ti m e (r e pr es e nti n g t h e ti m e n e e d e d f or t h e d ef e n d er t o
r e c o g ni z e t h e att a c k) γ D ≥ 0 b et w e e n tk a n d τ D

k , u nl ess
t h e att a c k er e n ds att a c ki n g e arli er, w hi c h is s p e ci fi e d b y
τ D

k = mi n( τ A
k , tk + γ D ). T h e att a c k a n d r e c o v er y d ur ati o ns

d e n ot e d r es p e cti v el y b y δ A
k a n d δ D

k , ar e gi v e n as

δ A
k : = τ A

k − tk , δDk : = τ D
k − τ D

k . ( 2)

T h e e n d ti m e tk of t h e k t h i nt er v al is s p e ci fi e d b y

tk : =
τ A

k , if (Ē A
k ∪ E A

k ) = ∅ ,

tk + γ D , ot h er wi s e .
( 3)

T his i n di c at es t h at t h e att a c k er e n ds t h e g a m e at t h e e n d of
a n o n z er o att a c k i nt er v al. Ot h er wis e, t h e att a c k er d o es n ot
att a c k, i n w hi c h c as e t h e g a m e e n ds at tk + γ D .

I n t his g a m e, pl a y ers att e m pt t o c h o os e t h e b est str at e gi es
i n t er ms of e d g es att a c k e d/r e c o v er e d a n d att a c k/r e c o v er y
d ur ati o ns (( Ē A

k , E A
k , δAk ) a n d (E D

k , δDk )) t o m a xi mi z e t h eir
o w n utilit y f u n cti o ns of t h e g a m e d e fi n e d o v er m ulti pl e
i nt er v als. S p e ci fi c all y, i n t his p a p er w e c o nsi d er t h e si m plest
c as e, w hi c h is t h e g a m e d e fi n e d o v er t w o i nt er v als [ tk ,tk ]
a n d [ tk + 1 ,tk + 1 ] as e x pl ai n e d i n S e cti o n II- D b el o w.

Fi g. 1 ill ustr at es t h e s e q u e n c es of t h e att a c k a n d r e c o v er y
a cti o ns d es cri b e d s o f ar. I n t his fi g ur e, t h e att a c k er att a c k s
e 1 2 a n d e 3 4 i n [t1 , t1 ], b ut t h e d ef e n d er r e c o v ers o n e of
t h e m. T h e att a c k er att a c ks diff er e nt e d g es wit h diff er e nt
att a c k str e n gt h i n [t2 , t2 ], a n d t h e d ef e n d er c a n o nl y r e c o v er

7 3 6
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e13, which is attacked normally. The attacker ends attacking

before the defender ends recovering in the second interval

in this example, and therefore the interval ends at τD2 = τA2 .

B. Energy Constraints

In this formulation, the players cannot keep sending

signals to all edges for infinite duration due to the energy

constraints [6], [9], where players have some initial energy

and are able to recharge their energy over time. Here,

the attacker has two types of jamming signals. The strong

attacks on ĒA
k take s > 1, s ∈ R, times more energy per

edge per unit time compared to the normal attacks on EA
k . In

our numerical examples and analysis, we consider the case

where s = 2, i.e., attacking an edge strongly takes twice

the energy. The attacker’s energy usage is constrained as

k−1
∑

m=1

βA(s|ĒA
m|+|EA

m|)δAm + βA(s|ĒA
k |+|EA

k |)(t− tk)

≤ κA + ρAt, (4)

for any t ∈ [tk, tk+1], with κA ≥ 0, βA > 0, and

βA|E|> ρA > 0. The parameters κA, ρA, and βA denote

the attacker’s initial energy, its recharge rate, and its unit

cost of attacking one edge per time, respectively.

Since from (4) it is possible that ρA > βA, i.e., the

attacker recharges its energy faster than it consumes, the

attacker can attack up to a certain number of edges for

infinite time. We denote that number of edges as m̄A :=
⌊ρA/βA⌋, where the attacker can attack edges ĒA

k and EA
k

satisfying s|ĒA
k |+|EA

k |≤ m̄A for infinite duration. Other-

wise, we obtain the maximum attack duration ∆A
k where

the left-hand side of (4) is equal to the right-hand side as

∆A
k :=

κA + βA(s|ĒA
k |+|EA

k |)tk
βA(s|ĒA

k |+|EA
k |)− ρA

−

∑k−1
m=1 β

A(s|ĒA
m|+|EA

m|)δAm
βA(s|ĒA

k |+|EA
k |)− ρA

− tk. (5)

This energy consumption model for the attacker is illus-

trated in Fig. 2, where the black dashed line with slope ρA

represents the right-hand side of (4) and the black solid line

with slope βA(s|ĒA
k |+|ĒA

k |) represents the actual energy

consumed by the attacker, shown in the left-hand side in

(4). The attacker runs out of energy when the solid line

touches the dashed line. It is then possible for the attacker

to never run out of energy if the dashed line is steeper than

the solid line, i.e., the attacker attacks only a few edges

so that βA(s|ĒA
k |+|EA

k |) ≤ ρA. However, the attacker may

want to maximize the damage on the system by attacking

more/stronger edges in some attack intervals. In the game

structure explained later, we consider the scenarios where

the attacker always attacks more edges and hence runs out

of energy every two attack intervals, as also illustrated in

Fig. 2 where the energy consumed by the attacker reaches

the limit at the end of every δAk with even k.

Similar to (4), the defender’s constraint is given by

k−1
∑

m=1

βD|ED
m|δDm + βD|ED

k |(t− τDk ) ≤ κD + ρDt, (6)

1st game
2nd game

κ
A

E
n
er

g
y

Time

Fig. 2. The attacker’s en-
ergy consumption model,
with κ

A = 0. The vertical
blue lines indicate the end
time of each attack inter-
val: dashed lines for the
end of the first parts and
solid lines for the second
parts.

1

2 3

4 5

6 7

1

2 3

4 5

6 7

1

2 3

4 5

6 7

1

2 3

4 5

6 7

(a) GA (b) GB (c) GC (d) GD

Fig. 3. Graphs and their cluster distributions: (a) c(GA) = 0, (b) c(GB) =
−12, (c) c(GC) = −24, and (d) c(GD) = −22. Note that c(GD) is larger
than c(GC), even with more clusters.

for any t ∈ [τDk , τ
D
k+1], with κD > 0 and βD > ρD > 0.

We also obtain ∆D
k similar to (5) above.

C. Agent Clustering and State Difference

By attacking, the attacker makes the graph disconnected

and in turn separates the agents into clusters. Specifically, in

a given graph G′, the agents are grouped into c̃(G′) clusters,

with the clusters VG′

1 ,VG′

2 , . . . ,VG′

c̃(G′) being a partition of V

with ∪
c̃(G′)
l=1 VG′

l = V and VG′

l ∩ VG′

m = ∅, l 6= m.

Here, we are interested in the case where the attacker is

also concerned about the number of agents in each cluster,

as an extension of [9]. Specifically, we follow the notion

of network effect/externality [15], where the utility of an

agent in a certain cluster depends on how many other

agents belong to that particular cluster. In the context of

this game, the attacker does not want too many agents to

be together in the same cluster in order to minimize the

spread of information. Hence, the distribution of agents

among clusters becomes important. For example, if there

are 12 agents, the attacker can choose to: 1) separate the

agents into 3 clusters with ten agents in cluster 1 and one

agent each in both clusters 2 and 3, or 2) separate into

two clusters with both clusters 1 and 2 consisting of six

agents each. The option 2) may be better than 1) for the

attacker despite having fewer clusters, because the agents

are distributed more evenly so that most of them are not

grouped together in the same cluster.

Motivated by the example above, here we define the

cluster distributions c(·) as

c(G′) :=

c̃(G′)
∑

l=1

|VG′

l |2−n2(≤ 0). (7)

The value of c(G′) is 0 if G′ is connected, since there is only

one cluster. A larger value (closer to 0) of c(G′) implies that

there are fewer clusters in graph G′, with each cluster having

more agents. The cluster distributions of some graphs are

shown in Fig. 3. Here, it is interesting that c(GC) is smaller

than c(GD), even though GD has more clusters. Thus, for an

737
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attacker who tries to reduce the number of agents grouped

together in one cluster, GC is preferable to GD.

In this setting the players also consider the effects of

their actions on the agent states when attacking/recovering,

similar to the formulation in [16]. For example, the attacker

may want to separate agents having state values with more

difference in different clusters. We specify the agents’ state

difference zk of the kth interval as

zk((Ē
A
k , EA

k , δAk ), (E
D
k , δDk )) := xT(tk)Lcx(tk), (8)

with Lc being the Laplacian matrix of the complete graph

with n agents. Note that the value of zk does not increase

over time [1].

D. Two-interval Game Structure

The players’ utility functions of the lth game over

[t2l−1, t2l] take account of the cluster distribution c(·) and

the difference zk(·, ·) of agents’ states, and are defined by

UA :=

2l
∑

k=2l−1

azkδ
A
k − b(c(GA

k )(δ
A
k − δDk ) + c(GD

k )δDk ),

(9)

UD := −UA, (10)

where a, b > 0. These utility functions represent the number

of clusters over attack duration for two consecutive attack

intervals, since the attacker’s energy runs out after the two

attack intervals as explained above. The players change their

strategies once during the two intervals, i.e., once in a game.

These strategies are determined at the beginning of each

game, as explained later. From now on, we refer to these

two attack intervals as two parts of the lth game.

From the discussion on the energy constraint in Sec-

tion II-B, it is possible that the attacker never runs

out of energy if the attacked edges ĒA
k and EA

k satisfy

(s|ĒA
k |+|EA

k |) ≤ m̄A. Since there is no maximum attack

duration ∆A
k , in this case we suppose that the choices for

attack duration are limited to δAk ∈ {δ/2, δ} for simplicity,

with constant δ > 2γD > 0.

In this setting, we assume that in the (2l − 1)th attack

interval (the first part of the lth game) the attacker attacks

edges ĒA
2l−1 and EA

2l−1 satisfying (s|ĒA
2l−1|+|EA

2l−1|) ≤ m̄A,

with the choices of δA2l−1 ∈ {δ/2, δ} specified above. In

the next (2l)th interval (the second part of the game), we

suppose that the attacker chooses to attack ĒA
2l and EA

2l
satisfying (s|ĒA

2l|+|EA
2l|) > m̄A, i.e., more/stronger edges

than in the first part, for finite ∆A
2l duration as in (5), i.e.,

δA2l = ∆A
2l. Therefore, we have two intervals with different

characteristics in each lth game. For simplicity, in this game

the defender is only able to recover until either it runs out

of energy, or the recovery is interrupted by the stoppage of

the attack, i.e., δDk ∈ {0,min{δAk − γD,∆D
k }}, k ∈ N.

The players determine their actions based on the sub-

game perfect equilibrium concept, as in [9]. In order to

find the equilibrium, the game is classified into some

subgames/decision-making points. The subgame perfect

equilibrium must be an equilibrium in every subgame. The

optimal strategy of each player is obtained by using a back-

ward induction approach, i.e., by finding the equilibrium

from smallest subgames. The subgame perfect equilibrium

solution concept is suitable for this problem setting, since

players decide their strategies in a sequential manner.

The optimal edges and durations are specified as follows.

For the lth game over the interval [t2l−1, t2l], the optimal

strategies of the players according to the subgame perfect

equilibrium principle are given by

(ED∗
2l , δD∗

2l ) ∈ arg max
(ED

2l,δ
D
2l)

UD
2 , (11)

(ĒA∗
2l , EA∗

2l , δA∗
2l ) ∈ arg max

(ĒA
2l,E

A
2l,δ

A
2l)

UA
2 , (12)

(ED∗
2l−1, δ

D∗
2l−1) ∈ arg max

(ED
2l−1,δ

D
2l−1)

UD, (13)

(ĒA∗
2l−1, E

A∗
2l−1, δ

A∗
2l−1) ∈ arg max

(ĒA
2l−1,E

A
2l−1,δ

A
2l−1)

UA, (14)

with UA
2 and UD

2 being parts of UA and UD associated with

the (2l)th interval, respectively. We assume that all parame-

ters and utility functions are known to all players, including

the energy parameters (κA, ρA, βA and κD, ρD, βD) of the

opposing player. This implies that a player is aware of the

optimal strategies of other player, e.g., the defender knows

which edges are optimally attacked by the attacker given

the defender’s best response.

Note that to find (ĒA∗
2l−1, E

A∗
2l−1, δ

A∗
2l−1), one needs to ob-

tain (ED∗
2l−1(Ē

A
2l−1, E

A
2l−1, δ

A
2l−1), δ

D∗
2l−1(Ē

A
2l−1, E

A
2l−1, δ

A
2l−1))

beforehand. Likewise, to find (ED∗
2l−1, δ

D∗
2l−1), one

needs to obtain (ĒA∗
2l (ED

2l−1, δ
D
2l−1), E

A∗
2l (ED

2l−1, δ
D
2l−1),

δA∗
2l (E

D
2l−1, δ

D
2l−1)). These optimization problems are

solved by the players at the start of the lth game, i.e., the

strategies for the second part ((2l)th interval) are decided

in the beginning of the (2l − 1)th interval. The players are

not able to further change their strategies for the (2l)th
interval after it has been determined before at the start of

the game. The agents’ dynamics and the players’ energy

condition will affect the players’ strategies in each game.

In this paper, we focus on the cluster formation over

different intervals. We are able to find the optimal strate-

gies of the players (11)–(14) by computing all possible

combinations of edges and action durations, since they are

both finite. It is also clear that the complexity of the game

depends on the graph structure: it takes much longer to

solve (11)–(14) in more complex graphs, since there are

more possible combinations of edges.

III. CLUSTERING AND CONSENSUS ANALYSIS

In this section, we examine the effect of the attacker’s

energy model on the cluster formation and multiagent

consensus.

We first discuss the defender’s optimal strategy on some

games with specific conditions.

Lemma 3.1: The defender always recovers in the (2l)th
interval (ED

2l 6= ∅), as long as EA
2l 6= ∅.

From the result of (2l)th interval above, we are now able

to state the result of (2li − 1)th interval for some l.
Lemma 3.2: There exists an infinite sequence l̄ :=

{l̄1, l̄2, . . .} of the game indexes where l̄i+1 > l̄i and l̄i ∈ N

such that in the (l̄i)th game, the optimal strategy for the

defender in the (2l̄i−1)th attack interval is to recover from

attacks with normal strength, i.e., ED
2l̄i−1

6= ∅ as long as

EA
2l̄i−1

6= ∅.

The following result provides a necessary condition for
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the agents to be separated into multiple clusters for infinitely

long durations without achieving consensus. The results

in Lemmas 3.1 and 3.2, which characterize the defender’s

optimal strategies in each interval of a game, enable us to

derive the following result.

Proposition 3.3: The necessary condition to prevent the

consensus from happening is m̄A ≥ sλ, with λ denoting

the edge connectivity of G.

However, the necessary condition in Proposition 3.3 is

not sufficient for preventing consensus, since even with m̄A

large enough, the attacker may decide to strongly attack

fewer edges instead. This is related to the attacker’s energy

usage, as we see in the next section.

IV. CASE STUDY ON ATTACKER’S ENERGY USAGE

In this section, we investigate how the attacker uses its

energy by comparing several attack strategies that character-

ize different energy consumption profiles. With the ability

to use strong jamming signals, the attacker is able to prevent

consensus by attacking some appropriate edges strongly at

all times, with the downside that it consumes more energy.

However, here we will show that under some conditions

related to the energy usage, the attacker chooses not to

attack edges strongly. While this attack strategy may be

optimal according to UA defined over interval [t2l−1, t2l],
it will be unsuccessful in preventing consensus.

Here, we discuss a special case where there are three

agents (agents 1, 2, and 3) in a line/path graph 1–2–

3. Specifically, we investigate the effect of different x0

and different ρA to the clustering process. Throughout this

section, we set δ = βA = βD = a = b = 1, and

κA = γD = 0. We choose this setting for simplicity, but we

will see that the implications hold under other conditions.

A. Effect of Initial States x0

Here we will investigate the effect of different initial

states x0 = [x′, 0,−x′]T on the value of UA in the first

game (l = 1). We also set ρA = 2.5, implying that m̄A = 2.

In this setting, the attacker has at least two strategy choices

in l = 1: (1a) |ĒA
1 |= 1, |EA

1 |= 0, and (1b) |ĒA
1 |= 0,

|EA
1 |= 1, with δA1 = |ĒA

2 |= |EA
2 |= 1 in both cases. It is

clear that in Case (1b) the attacker attacks fewer edges in

the first part to save its energy that will be used in the

second part. We assume that the defender with κD = 1
and ρD = 0.5 always recovers EA

k . Other strategies are not

discussed due to space limitation.

Case (1a): We notice that in this case |ED
1 |= 0, since

|EA
1 |= 0. With the parameters specified above, we have

UA = z1 + 4 + z2∆
A
2 − (−4(∆A

2 − δD2 ) + c(GD
2 )δ

D
k ). The

value c(GA
1 ) = −4 is from the fact that regardless of the

attacked edges, there are always two clusters: one cluster

has one agent and the other has two agents.

From |EA
k |, |ĒA

k |, and |ED
k | above, we obtain ∆A

2 = 1
and ∆D

2 = 3. With x0 = [x′, 0,−x′]T, if one agent is

disconnected for k = 1, the function zk becomes z1 =
(e−2δx′)2+[((3−e−2δ)x′)2+((3+e−2δ)x′)2]/4 from (1).

Now, since the defender recovers one edge for k = 2
(since |EA

2 |= 1), the graph for k = 2 is the same as that

for k = 1: one agent gets disconnected from the other two.

Finally, we substitute z1 and z2 into UA and obtain

UA =
3(1 + e4 + 6e8)(x′)2

2e8
+ 8 ≈ 9.028(x′)2 + 8. (15)

Case (1b): Under the assumption that |ED
1 |> 0, we first

obtain ∆D
1 = 2, which implies that δD1 = δ and as a

result c(GD
1 ) = 0. Therefore, we have UA = z1 + z2∆

A
2 −

(c(GA
2 )(∆

A
2 − δD2 ) + c(GD

2 )δ
D
2 ). We then obtain ∆A

2 = 3,

which is longer than in Case (1a) above since in this case

the attacker is using less energy for k = 1, and ∆D
2 = 1,

which is shorter than in Case (1a) for the similar reason.

Since the graph remains connected for k = 1, from (1)

we obtain zk where all agents are connected in the path

graph as z1 = 6(e−δx′)2, with the agents’ states becoming

x(t) = [e−tx′, 0, −e−tx′]T. We substitute zk in UA to get

UA =
3(3 + 13e4)(x′)2

2e6
+ 16 ≈ 2.650(x′)2 + 16. (16)

We then compare (15) and (16) to obtain a condition on x′

for selecting strategies. Specifically, the attacker’s strategy

|ĒA
1 |= 1, |EA

1 |= 0 is better than |ĒA
1 |= 0, |EA

1 |= 1 if x′ >
1.12. Otherwise, the strategy in Case (1b) is better.

This example shows that the initial state x0 influences

the players’ strategies. In general, the attacker tends to save

its energy in the first part by attacking fewer edges, if

the agents’ states are sufficiently close. This implies that

consensus may still happen if the attacker does not attack

with strong jamming signals, despite with high enough m̄A.

B. Effect of Attacker’s Recharge Rate ρA (Smaller m̄A)

We next investigate UA with varying ρA. Here we set

2 < ρA < 3, and we also assume that κD and ρD are large

enough so that δDk = δAk for any k. We again compare two

cases of strategy choices as above: (2a) |ĒA
1 |= 1, |EA

1 |= 0,

and (2b) |ĒA
1 |= 0, |EA

1 |= 1, with δA1 = |ĒA
2 |= |EA

2 |= 1 in

both cases. Here we assume that x0 = [1, 0,−1]T.

Case (2a): The utility function here is UA = z1 + 4 +
z2∆

A
2 − (−4(∆A

2 − δD2 ) + c(GD
2 )δ

D
2 ). From |EA

1 | and |ĒA
1 |,

we obtain ∆A
2 = ρA−2

3−ρA , z1, and z2, resulting in UA =

3(3+e−4)
2 + 4 + ρA−2

3−ρA

(

3(3+e
−4(

ρA−2

3−ρA
)
)

2 + 4
)

.

Case (2b): Since the graph remains connected for k = 1,

we obtain z1 = 6e−2, with x(t2) = [e−1, 0, −e−1]. Since

the defender recovers and hence one agent is disconnected

from the other agents for the entire ∆A
2 , we use the same

approach as in Cases (1a) and (1b) to obtain the value of z2.

We then obtain UA = 6e−2 + ρA−1
3−ρA

(

3(3+e
−4(

ρA−1

3−ρA
)
)

2e2 + 4
)

.

From two UA above, the attacker’s strategy in Case (2a) is

better than the one in Case (2b) if ρA < 2.812.

We note that from this example, the higher the attacker’s

recharge rate ρA is, the more likely the attacker attacks

fewer edges in the first part. This has an interesting implica-

tion, where the consensus is more likely to happen for some

higher ρA. This is because the attack duration δAk contributes

much to the value of UA, where δAk is multiplied by zk.

C. Effect of Attacker’s Recharge Rate ρA (Larger m̄A)

We now discuss a scenario with varying ρA and higher

m̄A, compared to Cases (1b) and (2b) above. Specifically,
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Fig. 4. Graph used
for simulations in
Section V

we set 3 < ρA < 4, implying m̄A = 3. We also assume

that the defender has enough energy to recover all possible

EA
k for δAk at any kth interval. The initial states are x0 =

[1, 0,−1]T. The compared strategies are: (3a) |ĒA
1 |= 1,

|EA
1 |= 0, and (3b) |ĒA

1 |= 0, |EA
1 |= 1, with δA1 = 1,

|ĒA
2 |= 2, and |EA

2 |= 0 in both cases.

With the same approach as in Cases (2a) and (2b)

above, we obtain for Case (3a) UA = 3(3+e−4)
2 + 4 +

ρA−2
4−ρA

(

3(3+e−4)
2 + 6

)

, and for Case (3b) UA = 6e−2 +

ρA−1
4−ρA

(

6e−2+6
)

. By comparing these, we observe that for

any value of ρA with 3 < ρA < 4, the attacker’s strategy

in Case (3a) is always better. This shows that attacking

with stronger signals, which may prevent consensus, may

be better for the attacker if m̄A is large enough.

V. NUMERICAL SIMULATION OF DYNAMIC GAMES:

EFFECT OF ATTACKER’S RECHARGE RATE ρA

In our simulations, we use the graph shown in Fig. 4

with five vertices/agents with parameters βA = 1.1, βD =
0.6, κA = 0, κD = 5, ρD = 0.5, γD = 0.1, a = 0.1,

b = 1, and x0 = [1.8, 5.2, 0.1, 2.7, 2.0]T. Figs. 5 and 6
show the states of the agents with ρA = 5 and ρA = 2.5,

respectively. Since λ = 1 in this graph, note that ρA in

both simulations satisfy the condition needed in order not

to achieve consensus in Proposition 3.3. The line colors in

Figs. 5 and 6 correspond to the colors of the agents in Fig. 4.

In Figs. 5 and 6 discussed in this section, the vertical blue

lines indicate the end time of each part (attack interval),

with the dashed lines indicating the end times of the first

parts, and the solid lines indicating the end times of the

second part of the games.

In the first simulation, we have m̄A = ⌊ρA/βA⌋ = 4,

whereas m̄A = 2 in the second simulation. This has an

impact on the consensus, where in the second simulation

consensus is achieved although the attacker has the capa-

bility to disconnect an agent with strong jamming signals.

On the other hand, in the first simulation, agents are divided

into different clusters and do not converge to the same state.

VI. CONCLUSION AND FUTURE WORKS

We have formulated a two-player game in a cybersecurity

problem of multiagent systems, where the players consider

the impact of their actions on future communication topol-

ogy and future agent states. The optimal strategies of the

players have been analyzed. We have also discussed the

impact of initial agent states x(0) and the attacker’s recharge

rate ρA on cluster formation among agents. Possible future

works include considering the more dynamic rolling horizon

approach, where players may change their strategies (that

have been determined beforehand) at several points in time,

in order to adapt to the changing condition of the systems.
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