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Abstract— This work establishes a game-theoretic framework
to study cross-layer coordinated attacks on cyber-physical
systems (CPSs). The attacker can interfere with the physical
process and launch jamming attacks on the communication
channels simultaneously. At the same time, the defender can
dodge the jamming by dispensing with observations. The
generic framework captures a wide variety of classic attack
models on CPSs. Leveraging dynamic programming techniques,
we fully characterize the Subgame Perfect Equilibrium (SPE)
control strategies. We also derive the SPE observation and
jamming strategies and provide efficient computational methods
to compute them. The results demonstrate that the physical and
cyber attacks are coordinated and depend on each other.

On the one hand, the control strategies are linear in the
state estimate, and the estimate error caused by jamming
attacks will induce performance degradation. On the other
hand, the interactions between the attacker and the defender
in the physical layer significantly impact the observation and
jamming strategies. Numerical examples illustrate the inter-
actions between the defender and the attacker through their
observation and jamming strategies.

I. INTRODUCTION

Recent progress in information and communications tech-
nologies (ICT) such as the Internet of Things (IoT) and 5G
high-speed cellular networks have enhanced the connectiv-
ity among physical systems and cyber systems. However,
the increasing connectivity also brings with these systems
heightened concern about trustworthiness. There is an urgent
need for understanding security, privacy, safety, reliability,
resilience, and corresponding assurance for CPSs. Due to
the multi-layer and multi-stage nature of CPSs, a cross-layer
cross-stage framework is a sine qua non to understand the
trustworthiness of CPSs. Most existing works on the security
of CPSs often focus independently on either the physical
system or the cyber system. One common assumption is that
adversaries can only launch one particular type of attack at
a time. For example, in [1]-[4], the authors have considered
DoS attacks that jam either the observation or the control
signals to deteriorate the performance of the underlying
system. [5] focuses only on data injection attacks on the
sensors of a control system. Studies in [6] pivot purely
on the replay attacks on the operator-to-actuator channel.
However, in CPSs, adversaries can leverage both cyber and
physical vulnerabilities to launch coordinated attacks [7].
For example, an advanced adversary can simultaneously
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compromise critical sensors and control units to damage
targeted CPS assets.

In this work, we build a dynamic game-theoretic frame-
work that can incorporate various attack models. The attacker
conducts both physical interferences (e.g., through either
direct physical intervention or cyber hacking/data injection)
and jamming attacks on the observation channel. The attacker
has to intelligently coordinate her/his attacks across both the
physical and the cyber layers over a finite period to maximize
the system degradation with minimum effort. The defender,
e.g., the controller/operator, implements her/his control and
has to, at each time, decide whether to observe or not. Each
observation query is associated with an observation cost.
The cost can capture the limited network resources, such
as power, communication, and bandwidth [8]. For example,
radar measurement requires megawatts of power for sensing
in military applications. Thus, the defender may choose not
to observe for two purposes: One is to save limited resources;
the other is to dodge the jamming. The physical process is
a linear dynamical system with additive white noise. The
observation is partial and noisy, whose availability depends
on the defender’s observation decisions and the jamming
policies of the attacker.

Dynamic games have long been used to capture the cross-
layer multi-stage nature of CPSs and the competing nature
between the system operator and the adversary [9]. At the
cyber layer of the CPSs, the dynamic games are used to
model the cyber kill chains of APTs that include reconnais-
sance, lateral movement, and command and control. These
games are often built over graphical models such as computer
networks [10], [11] and attack graphs [12]. At the physical
layer, the dynamic games are used to describe the interactions
between operational technologies (OT) and an adversary. The
game-theoretic description of the threat model at the OT
level guides the design of security monitoring and control
strategies that aim to reduce the risks on the controlled
processes and assets [13], as well as the development of
resilient control mechanisms that mitigate the impact of
successful attacks [14].

Our work’s main contribution is the development of a
cross-layer over-stage game-theoretic framework that under-
pins the study of CPS under coordinated simultaneous cross-
layer attacks. The generic framework captures various attack
models. Its connections with existing attack models will be
discussed in Remark 1.

We study the SPE strategies of this dynamic game and
fully characterize the SPE strategies via two dynamic pro-
gramming equations. The theoretical results show that the
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control strategies are linear in the state estimate. The control
gain can be computed offline, independent of the obser-
vation and the jamming strategies. The effect of jamming
attacks causes the estimation error and leads to significant
system degradation. The capability of physical attacks also
affects the jamming and observation decisions. The SPE
strategies show that the defender does not observe when
the observation cost surpasses system degradation caused
by estimation error. When the attacker can deploy physical
attacks with low costs, there is no incentive for the defender
to observe even when the observation cost is zero. Otherwise,
the attacker can leverage the observation to launch more
accurate physical attacks. Besides, we show that the defender
makes an observation even when the defender anticipates the
jamming to incur a higher cost to the attacker. More results
regarding the jamming and the observation decisions will be
discussed in Section III-B and Section IV.

II. PROBLEM FORMULATION

We consider a linear dynamical system given by

Xns1 = Axp + B + B'u® +Cw,, 0<n<N-1, (1)

where x,, € R? is the g-dimensional state vector at time n;
and uﬁ ,ud, wy, are vectors of dimensions less than or equal
to g. Here, u¢ is the control of the defender while u¢ is that
of the attacker. The system noise at time # is denoted by w,,.
Moreover, A, B4, B?, and C are matrices with appropriate
dimensions. The types of physical attacks can be captured
by the adversarial control matrix B¢ as we will explain
in Remark 1. Here, we consider time-invariant system for
notational simplicity, but all results in Section III can be
extended to the time-varying case without much endeavor.
The associated observation system is

Yn =Dx, + Ev,, )

he(istsi51) - s
where v and D, E are vectors and matrices with appropriate
dimensions. Here, i € {0,1} (resp. i¢ € {0,1}) is the
observation (resp. jamming) decision made by the defender
(resp. the attacker). We call y, the information vector at
time n. Whether or not the vector ¥, is observed by the
defender and the attacker is decided by the observation
decision i¢ and the jamming decision i¢ according to the
rule 2 : {0,1} x {0,1} — {0,1}. We suppose, whenever
the attacker chooses to jam the observation, the defender
will receive no information. The attacker receives the same
observation information as the defender does. In this case,

he(id,i%) = he(i4,i%) = i¢ - (1-i%). Hence, y¢ = y¢ and so

yd = n?@id,i%) - 5,, and y¢

n>ln
we use y, instead in later discussions.

We introduce the notation X,, = {xq, - - ,x,} to denote the
history of state trajectory up to time n. Similarly, we define
ud, us, 12, 18, Wy, V,,, Y2, and Y2 for ud, u?, i¢, i¢, wy,
Vs yﬁ, and y4, respectively. The sequences Wy _; and Vi _;
are independent stochastic processes with a joint Gaussian
probability distribution described by E[w,] = E[v,] = 0,
Elw,wp] = Z56(n — n’), and E[v,vy] = Z,06(n — n’),
where 6(-) is the Kronecker delta. The initial condition x,
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independent from the system noise and the observation noise,
is Gaussian distributed with mean Xy and variance X.
Information: The control sequences UI‘\II_l (resp. Uy _))
and the observation/jamming sequence Il’f,_l (resp. If,_,) are
to be generated by the defender (resp. attacker). At time n,
the observation i¢ is made based on the information available

n

to the defender, which is denoted by
Fn= {I;f—]’]s—l’ Ul

n-1°

Ua

n-1°

Yﬁ—l}’ (3)

with Fy = @. So is the jamming decision i%. The controls of
both defender and attacker are made based on the information
available at time n after the observation, which is denoted
by

n>1,

14,12

n’>-n-

Fn = {Fns Yu}. “4)

We assume that the state evolution equations, observation
equations, noise statistics, cost functions of the controllers,
and information structures of the controllers are part of
common knowledge among the players. The game is hence
a complete information game.

Objectives/Targets: The cost functional of the defender
and the attacker, involving quadratic costs in state and their
controls, as well as the observation and cost, can be written
as

N-1
Fé(n?, 7% =E Z cn(xn, uﬁ, us, ig, i) +XyONXN |,

n=0
(5)
where

d a .d :ay _ arpa,,a
Uy Uy, b, 1,) = Ryu

’ d’ pd, d
X, QnXp + Uy, Ryu, —u, Ru;,

+id094 - 909,

cn(Xn,

is the instantaneous cost at stage n, and we have
Fé(n¢, n%) = —F%(n¢,n%). Here, the matrices R?, R% are
positive definite, the matrix Qﬁ is positive semidefinite, and
the scalars OZ, O¢ are nonnegative forn =1,2,--- ,N = 1.
Here, O¢ represents the observation cost for the defender
while O¢ denotes the jamming cost. For any matrix M, M’
indicates the transpose of M.

Strategies: n? = (u“, v?) is the strategies of the defender,
where u¢ denotes the observation strategy and v¢ denotes
the control strategy. The strategy of the attacker, including
the jamming strategy u“ and the control strategy v“, are
denoted by 7% = (u?, v%). Given 74, at stage n, the control
and the observation decisions of the defender are generated
as i = ud(F,) and ud = v4(F,).

The defender aims to stabilize the system with minimum
control effort and at the same time observe/sample economi-
cally. The attacker possesses an opposing objective, which is
to undermine the defender’s effort by cross-layer coordinated
attacks on both the physical layer and the communication
layer. Here, we consider a zero-sum game where the defender
and the attacker are strictly competitive. Our results in
Section III can be easily extended to a general sum setting.

Remark 1. The framework can also capture various attack
models. For example, R;i going to infinity means zero phys-
ical attacks. Hence, the framework specializes to optimal
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jamming attacks studied in [3], [4]; Letting B¢ = B9, we
can model false data injection attacks in the operator-to-
actuator channel [15]; With h(ig,iz) =1—- (1 —ig)(1 —iy,),
the framework describes pursuit-evasion type of security
problems with controlled information [16], where detecting
your opponent’s location will expose your own location.

III. THEORETICAL RESULTS

The non-hierarchical decision making between the two
players makes Nash equilibrium a natural solution concept
for this game. In a Nash equilibrium, none of the players can
get better off by unilateral deviation from the equilibrium.

In finite-horizon dynamic games, the characterization and
the computation of the equilibrium are usually obtained
by conducting backward induction, which gives rise to the
concept of Subgame Perfect Nash Equilibrium (SPNE). The
SPNE is a refinement of Nash equilibrium used in dynamic
games with perfect information. In a perfect information
game, each player is perfectly informed of the history of
what has happened so far, up to the point where it is
her turn to move. This game is apparently a game with
perfect information. The expected cost-to-go of the defender
conditioned on the information set from the beginning of
time k is

N-1
FUF) =B | D enlrn, uf, uf it i) + x3 O xn ﬁl ;
n=k
(6)
for k =0,1,---,N — 1. The expected cost-to-go functional

of the attacker is hence f(¥%) = —f,f(?_k). For each stage
k, the defender and the attacker, their cost-to-go functional
fkdd an;l s togdether with the strategies for future .stages
(7Tk,7Tk+1,--~ ,7TN_1) and (ﬂz,ﬂzﬂ,--- ,ﬂZ_l) constitute a
subgame embedded in the original game in the original game.
The original game is a subgame of itself when k = 0.

Definition 1. An equilibrium is an SPNE if and only if it is
a Nash equilibrium in every subgame of the original game.

An SPNE is a Nash equilibrium for the entire game since
the entire game of also a subgame when k = 0. In this
paper, we focus on studying the SPNE of the game. The
complete characterization and the computation of the SPNE
are conducted via two steps. The first is to characterize the
SPNE control strategies from backward induction for all
possible observation decision sequences. The second is to
find the SPNE observation strategies based on the values
under the SPNE control strategies computed in the first step.

A. Control Strategies

Suppose that we are given a sequence of observation
decisions 1163171 and a sequence of jamming decisions I3, _,.
Under control strategies v¢ and v¢, the expected cost-to-
go starting from time k conditioning on the information
available after the observation is

N-1
Vf(vd, vY) =E Z Cn(xn, uﬁ,uﬁ,iz,iﬁ) +xXNONXN
n=k

@)

Define the SPNE cost-to-go value as Vf*(?_'k) =
min,a V4 (v4,v4*), where v¢ = argmax V{(v4",v%). The
complete solution of this problem requires the knowledge
of 1) the SPNE control strategies at any stage 2) the SPNE
expected cost of proceeding from any state at any time to
the end. The main results for the SPNE control strategies are
summarized in the following theorem.

Theorem 1. For any given observation sequence If\l,_l
and jamming sequence I3, ,, starting from any stage k =
0,1,---,N — 1, the SPNE cost-to-go value to the end is

N-1

VI =B [ Lex|Fe] + D TrZ,C Ly
n=k
N-1 . ®)
Py (TrP”(‘f':n)(,pn +idod - z':;oz),
n=k

where

Ln=0n+A (Ln+1 ~ L1 [BY B4 M,!

d/
[ga, Ln+1) A, )

forn=1,2--- N —1with Ly = Qpn. The matrix

R? + B L, B¢

M, =
" B“'L,.1 B¢

B L,..1 B¢ ]

10
B%’L,. B* - R¢ (10)

is invertible provided that R? > B%L,, B* for k =
0,1,---,N-1.

At each stage n, the SPNE control strategies of the
defender and the attacker take the form of the linear state
feedback control laws

d*

[ZZ*} = _Mrjl

n

B4’

o (1

] Ln+1A)en,

where the estimator X, = E [xnlﬁ] is given by a Kalman-
type linear filter [17] operating on the observation data Y,
decided by I¢ and 1¢. The covariance of the estimation error
associated with the filter P, (F,) = E[(x; — %) (xn — X0)’]
can be propagated as

AP, (Fp-1)A” + CE,C, if h(ig.if}) = 0,
Pp(Fn) = {(Id=GpD) (APp_1(Fp-1)A" + CE;C’) X
(Id-GuD) + GoEX,E'G),,  if h(id,i%) =1,
12)
where G, can be recognized as one of the usual Kalman
filter gains with

Gn = (AP,_1(Fa1)A’ + CZ,C’) D%
[D (AP,_1(Fa1)A’ + CZ,C’) D' + ES,E'] ™.
Here, the observation effect coefficients ¢, in Equation (8)
is given as

B4’

¢n=A'Lyu [BY BY| M} [B“’

} LpnA. (13)

Proof. The proof is conducted by backward induction. When
k = N, there are no control strategies involved at this stage.

Hence, we have V;f,*(i}\/) = V;\ll(i__N) =E [XEVQNXNW?N] )
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which agrees with Equation (8). We demonstrate that Equa-
tions (8) to (13) hold when £k = N — 1. By definition, we
have

d * . d .d .
Vo1 = min max E[CN_I(XN_I’uN—l’u;lV—l’lN—l’l;lV—l)
Uy 1 “N-1
+x;\,LNxN|7_vN_1].

(14)
Substituting Xy = Axy-_; + Bdu%_1 + B“uf‘v_1 +Cwpn_1,
carrying out the expectation, minimizing over u¢ _,» and
maximizing over u%,_, yield the SPNE control for this stage

* ’ _ ’ ~ *
ud "= —(RE_, +BY Ly BT BY Ly (Axno1 + BYug ),

u_ " =—(BYLyB* - RY_ )T BYLy (Axn-1 + BYuf, 7).

15)

Solving the two linear equations yields Equation (11) for the
case of n = N — 1. Substituting the SPNE control back into
Equation (14) gives

*
ve :E[x;\,_l (On_1+A'LyA)xy_1
. -1 [BY .
-y ALy [BY B My, [B“’] LyAfn_1

w409 -ij‘v_lof‘v_1|¢N,1] +TrS,C'LyC,

16)
where we have used the fact that E [W;\,_IC'LN Cwn_1l| =
TrX,C’Ly-1C. The expectation in Equation (16) must still
be specified for the quadratic term involving %,_;. For
any random vector x and any appropriately dimensioned
matrix M, we have the relation E[x’'Mx] = X’Mx +
E[(x=X%)'M(x —X)], where ¥ = E [x]. Applying this re-
lation to the quadratic term involving %,-; Equation (16)
yields

Vd

* a
Nl = E[x;\]_lLN—lxN—l +(xn_1 —%n_1)' ALy [Bd Ba]

-1
X My_

B4’ . - .
1 [Bal LyA(xN-1 _xN—l)‘TN—]] +i9_,04
—i%_ 0% | +TrE,C'LyC.

Using the definition of Py _; (?_'N_l) gives

V]Céfl* = E[X;V_lLN—]xN7]|7_:N71] +i%710;{,71

- l.?\/—lola\/—l +TrE,C’'LyC+TrPy_ (7_:1\/_1)()01\]_1,
which agrees with Equation (8), and ¢n-; satisfies Equa-
tion (13). The propagation of P,(¥,) in Equation (12)
follows the results of [18]. Thus, we have shown that
Equations (8) to (13) hold for k = N — 1. Suppose that the
claims Equations (8) to (13) hold for an arbitrary k+1 < N.
By definition of V,f and the tower property of conditional
expectation [19], we have

de(yd’ Va) = ]E [Ck ()Ck, ui, u27 l‘kis lz) + V[ii.;.] (?_:k+1)|?_:k:| .
An application of dynamic programming techniques yields

N-1
VEFo= Y [T (Pa(Tgn +20C Ly O) +if0d - id0g ]

n=k+1

. d .d - ’ T
+m}1nm%xE i (Xp g, U 15, 00) + X3y Liq1 Xk Tk]

Mk uk

The remaining proof, which deals the minimax term, is iden-
tical to the proof for the case when k = N—1. Now it remains

to show that M,, is invertible when R¢ > B*'L,.1 B, which
is provided in Remark 2. O

The assumptions that R¢ > B*’L,,;B“ is not stringent in
the setting of adversarial attacks since the cost of injecting
malicious controls into the plant is usually expensive, much
higher than the normal controls implemented by the defender.
To guarantee the existence of a SPNE control strategy, one
also needs Rﬁf + Bd/L,”le > (. For more details about the
existence a SPNE control strategy, one can refer to Section
2 of [20].

Remark 2. It is required to calculate the matrix inverse M.
The Schur complement of the bottom-right-corner block in
the M,, matrix is the real, symmetric matrix

S5(Lns1) = RE + B Ly B + BY L1 B
(RY = B’ Lyt B*) ' B’ L1 BY,
which is positive definite since RS > B*'L,,+1B%, and hence

invertible. Therefore, the matrix M,' can be factored as
follows:

M, = QrQ’ (17
with
o - |14 BYLyB [RS — B LB
0 Id ’ as)
T = [Sj_gl (Ln+1) 0 1]
0 - [R4 = BYL,B*] |’

This allows the defender and the attacker to compute their
SPNE control laws using explicit formulae,

* - _ ’
u =viy () = =S5 (Lns1) B x

{ 1d+Ly,1 B[RS - B“'LnHB“]_lB“’}LnHA)?n
uy” =vg(Fn) = [Ry = B Lni B ™' BY'x

(Id ~Lp41BSE (L,,+1)Bd’{ 1d+L,, BYx
[RY - BY Ly BY] ™ B“’})Lnﬂmen.

Remark 3. If xq is Gaussian distributed with mean Xy and
variance Xg, whose realization is unknown to both players
but the statistics are known to both, then the following initial
conditions hold in Equation (12):
Po(Fo) =

%0, if h(id,i¢) =0,

Yo —%oD’'[D'ZoD + E'S,E]"'D'%y, ifh(ig,ig) =1.
Given 1]”\1]_1 and I3, _,, the total expected cost for the
defender with the SPNE control strategies is Véj *. The
cost includes the quadratic term E [x(’)Loxoi?_?)], the accu-
mulated cost induced by system noise ZQ’ZBI TrX,C'L,41C,
the accumulated cost induced by the estimation error
SN Tt Py (F) ¢n, which relies heavily on the observation
and the jamming decisions, as well as the accumulated costs

of observing 2,1:]:61 i¢0¢ and that of jamming ZnN=61 in0;.
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Being aware of each other’s strategies as shown by
Equation (15), the attacker and the defender deploy their
SPNE control strategies according to linear control laws
based on their estimate of the state. The jamming of the
defender’s observation can undermine the control perfor-
mance, but at the same time, it also impairs the attacking
performance at the physical layer since the attacker also
suffers from less information, let alone the jamming cost Oy;.
Whether the defender should observe or not also depends on
multiple factors including the cost of observation O¢, the
control performance degradation caused by the estimation
error Tr P, (%) @n, and the implicit cost of offering more
information to the attacker. We will shed more ligth on the
observation and the jamming strategies in Section III-B.

B. The Observation and the Jamming Strategies

In Section III-A, we have demonstrated that for any given
observation sequences, the expected cost-to-go of the game
under the SPNE control strategies after the observation and
the jamming decision have been taken at time k is de*. In
this section, we derive the the procedures for finding the
SPNE observation and jamming strategies by leveraging the
results we have developed in Section III-A.

Note that instead of the inner cost-to-go Vf(i’k), the cost-
to-go before the observation and the jamming decisions are
made at stage k is f,f (Fx) defined in Equation (6). The
strategies to be made are the observation strategy u, the
jamming strategy u¢, and the control strategies v¢ and v¢
for all n > k. By the definition of V,f’ (F%) in Equation (7), the
definition of f¢ in Equation (6) and the fact that % C %%,
we have flf(ﬁ) =E [Vf(ﬁ)|ﬁ] . The defender aims to
find both the observation strategy and the control strategy
that minimize f,f(ﬁ) at every stage k given ¥ while
the attacker aims to do the opposite. Since the control
at time stage n > k dose not alter the information %%,
with a slight abuse of notation, we can write fkd*(ﬁ) =
min .« Max a fkd(ﬁ) = min,« maxy« B [V]fl*|7-'k] .

Using Equation (12), Equation (8) can be written

N-1

VI =B [xpLixe|Fi] + ) TrEC Lyt
=k
N-1 !
+ ) T [Z (Puct (Fac)) = h(id, i)
n=k

for k > 1, where

Z(P) = APA’ + C,C’,
H(P) = Z(P)D'[D(Z(P))D’ + ES,E’]"'DZ(P).
We define F,f(?'k) =E [Vg*lﬁ]. Using the tower property
yields
F{(F1) = K (Fa) + I (u 1, T,

where
N-1
K{(F2) = E [x; Lixe|Fa] + | TrZ,C Lo,
n=k
N-1 _
T u F) = ) T [Z (Pacy (Fac)) = h(id i9)x
n=k

H(Py-1 (Fu-1)) Jn + 13,05 ~i5iO5:.

Therefore, to find the SPNE observation strategies, one can
only focus on J]f (u?, u®, F1), which we write as J]‘:(ﬁ) for
convenience in later discussion. Let us define the quantity
J&"(Fi) = min . maxya J¢(F7).

If the SPNE observation and the jamming strategies have
been given for every possible F.1, then the rule for selecting
the Nash equilibrium at stage k,

JZ*(?'k) = nllclln max Tr [Z (Pr-1(Fi-1)) - h(i? i)x

k k

H(Pr_y (Fi)) J o +i0¢ = 208 + I (Faa).
for k=1,2,--- ,N -1 and we have Jl‘f,* = 0 by definition.

Proposition 1. Suppose that there is a sequence of SPNE
observation and jamming strategies {(ug*,uz*),n =k +
L N- 1}. Then J,il* can be expressed as a function
Py (Fx). There exists no Nash equilibrium at stage k if

0% <TrH(Pi_1)gk + ¢, (Z(Pro1))
— I (Z(Pra) = H(Pr),

04 <TrH(Pr_1)gr + 72, (Z(Pi-1))
— I (Z(Prer) = H(Pr-y)),

19)

where Pi_ := Pi_1(Fr-1) for simplicity.

Due to space limitation, the detailed proof is provided in
an unabridged version of the paper [21]. We assume in the
proof that when the margin is zero, there is no incentive
for both players to act. The defender and the attacker have
to decide at each stage whether to observe and to attack
respectively yet simultaneously. When the conditions in
Equation (19) hold, there is an incentive to observe if the
attacker does not jam but there always an incentive for the
attacker to jam if the defender observes. Hence, there exists
no Nash equilibrium in pure strategy. Now, suppose that the
defender announces its observation decision first, then the
attacker chooses whether to jam. That is to say at stage n
the observation and the jamming strategies can be written as
(T and (7). where 7 = 5., 7 = T UTE.

Theorem 2. Under the information structure F,¢ and F,°,
for any stage k > 1, there always exists a pair of Subgame
Perfect Equilibrium (SPE) strategies that depend only on
Py_1. The equilibrium at stage k is (iz*,iz*) =(L1)if

Of <0¢ < TrH(Peo)gr + ¢, (Z(Pir))

* (20)
—J 1 (Z(Pre1) = H(Pr-));
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The equilibrium is (if*,i“*) =(1,0) if

0 <TrH(Pi-1)ex + I, (Z(Pr-1))

d (21
—J& (Z(Por) = H(Pio1)) < 0%

)
and (i, d* ¢") = (0,0) otherwise. Hence, Jf* also depends
solely on Pk—l-

Proof. Tt is easy to see the hypothesis holds at stage N — 1.
Suppose that the hypothesis is true for stage k+ 1. Following
the same argument in the proof of Proposition 1, we can ar-
rive at the same matrix described by Table I except that now
the defender announces its observation decision first, then the
defender reacts. In this circumstance, we have a Stackelberg
game and a Stackelberg equilibrium. When the defender
chooses not to observe, the best response of the attacker is
not to jam since jamming generates no benefit but additional
cost of jamming. This scenario gives (if, i (0,0)
and cost-to-go J¢ = TrZ(Px_1)ex+J¢, " (Z(Pk-1)). When
the defender chooses to observe, the best response of the
attacker is to jam if O¢ < Tr H(P_1)¢r+J¢ | (Z(Pr-1)) -

Jd "(Z(Pro) — H(Pi-1)), which gives cost-to-go J¢ =
Tr Z(Pr-)er + O - 0“+J;j+1 (Z(Px-1)). The best re-

sponse becomes not jamming if Of > TrH(Pir-1)pr +
Jg+1*(Z(Pk_1)) JZH*(Z(Pk_l)—H(Pk 1)), which produces
cost-to-go Tr[Z(Pj_1)— H(Pk_l)]><g0k+0d+J,f+1 (Z(Py-1)-
H(Py-1)). The defender then makes appropriate observation
decision that generates the least cost-to-go by anticipating
the best response of the attacker. Following this logic, we

obtain that the equilibrium at stage k is (i¢ e * i @)=, 1)if
Of <0f < TrH(Pr1)g + T3, (Z(Py-))
— I (Z(Prer) = H(P-)s

The equilibrium is (1k 1) = (1,0) if

o} <TrH(Pk Dk + 1 (Z(Piy)
I (Z(Peor) = H(Pi-y)) < 0
and (zk ,1¢") = (0,0) otherwise.
TABLE I

THE PAYOFF MATRIX FOR THE ZERO-SUM GAME BETWEEN THE
DEFENDER AND THE ATTACKER AT STAGE k > 1.

Jd i
k 1 0
Tr Z(Pr-1) ¢k Tr[Z (Pk-1) _H(Pk—l)]x
|1 +0d - o¢ ok +OF
1
K +d " (Z(Pk D) | I (2P DS H (P
TrZ (P,
0 (_323)‘” T2 (Piet) g
< +J Z(Pj.—
I (Z(Pi) i (Z(Pi)

Hence, the strategies at stage k depend solely on Pj_;.
And Jf " is a function of Pj_1. Here, we assume that there
is no incentive to act when the margin between two actions
is zero. O

Even though in some circumstances, the defender will be
better off if she/he can receive the observation, she/he will
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not observe to avoid additional cost of observation since
she/he can anticipate the observation being jammed.

Corollary 1. Suppose that at each stage k, the attacker
announces her/his jamming decision first, then the defender
reacts; i.e., ¥, = Fr and ?'d Fr VI The equilibrium at
stage k is (lk ,177) = (0, O) if

0 > TrH(Pr_1)gr +J2, " (Z(Pi-1))
—J& (Z(Pro1) — H(Pr_1));

the equilibrium is (zk 177) =(0,1)

04+ 0% <TrH(Pi—1)or + I, (Z(Pr-1))
—J& (Z(Peor) = H(P-1));

and (lk*, iv") = (1,0) otherwise.

Here, the same notation J,‘j* has been used for games with
different information structures.

Note that Py = Z(Py_1) — H(Pk—;) if the observation is
made and not jammed. Since H(Pg-;) is always positive
semi-definite, at stage k, if the observation is missing, i.e.,
h(ig,iz) =0 and Py = Z(Pg-1), the covariance of estimate
error P will be larger than the covariance when there is
an observation received. Here, by saying the covariance of
estimate error Py is larger than the covariance of estimate
error P, we mean Py > P;. From Equations (13) and (17),
we know

¢k = A'Lit [BY B QTQ [ LA,

"
where T, as we can see in Equation (18), is a block diagonal
matrix with two blocks S3' (Li+1) and —(R%—B%’ L, B4)~".
Since the former block is positive definite and the later
is negative definite, ¢ is neither positive semi-definite
nor negative semi-definite. That means Tr Prp; could be
negative. The interpretation is that a larger estimate error
may not be always detrimental to the defender in the presence
of attacks since the observation can help the attacker inject
a better control into the physical plant. Thus, even when
the cost of observation Of, k=0,1,---,N —1 is zero, the
defender will not have incentives to observe at each stage.
However, when Rz — oo which means that there will be no
attacks on the physical plant due to high costs, ¢ becomes
positive semi-definite and in this circumstance, the defender
will favor a smaller covariance.

IV. NUMERICAL STUDY

It is instructive to present some numerical studies of
the results in Section III. Our focus will be given to the
observation and the jamming strategies. A scalar case will
suffice to illustrate the interesting nature of the observation
and the jamming sequences. Our results and computational
approaches can be effortlessly applied to higher dimensions.
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Suppose that

Xntl =axn+ug+u,‘i+wn,
Fn =X +vp,and y, = i4(1 = i%)F,,
Y =43 =13, =0,
0,=1,RI=1,0¢ =009 = 0"
On =8;,Ry-1 =10,and R} =r“,

0<n<N-1
0<n<N-2,

and N = 30. The unassigned parameters include the system
matrix a, the cost of physical attackers r¢, the observation
noise variance o, and the observation 0¢ and jamming cost
0%, which are subject to change in the experiment. The
computation follows a policy iteration-based algorithm [22].

B Observing

mm Jamming  The physical attacking cost coefficient r# = 0.9
1

Indicator

0123456 7 8 910111213141516171819 2021222324 2526272829
Stage n

The physical attacking cost coefficient @ =1.5

| fLET

012345678 91011121314151617 181920212223 242526272829
Stage n

The physical attacking cost coefficient r* = 8.0

Indicator

Indicator

101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Stage n

Fig. 1. The observation decisions i;‘f made by the defender and the jamming
decisions if; made by the attacker over 30 stages.

Figure 1 shows the observation decision sequences and
the jamming sequences for various costs of physical attacks.
Fixed values of ¢ = 0.9, 04 = 0, 0, = 15, and o = 1
are used. The cost of attacking the physical plant has a
strong impact on both the observation and the jamming
decisions. When the cost of physical attacks is low, the
defender does not observe at some stages even when there
is no cost of observation. This is because observations at
some stages will bring additional information that can be
leveraged by the attacker, who is powerful in the physical
side (i.e.,low cost of attacking), to compute her/his attacks on
the physical plant. As the cost of physical attacks increases
(e.g. r* = 1.5), undaunted by the additional information to
the attacker, the defender observes at each stage. As the
cost of physical further increases to r¢ = 8.0, the attacker
enjoys less benefit from additional observations since her/his
physical attacks are constrained by high costs. Hence, the
attacker tends to jam more to prevent the defender from
receiving observations.

Figure 2 shows the observation decision sequences and the
jamming sequences under different system parameters. Fixed
values of r, = 1.5, 04 =0, 0, = 15, and o = 1 are used.
Sequences are shown for a = 0.5, a highly stable system,
a = 0.9, a slightly stable system, and a = 1.1, an unstable
system. In all three cases, the defender chooses to observe
at every stage because physical attacks are limited by a high

cost. Additional information will benefit the defender more.
A highly stable system (i.e. a = 0.5) suffer a very low-
performance degradation from missing observations. Hence,
intimidated by the cost of jamming, the attacker has no
incentive to jam at all. A slightly stable system however can
be more easily affected by the attacker through jamming.
The attacker tends to jam economically. That is to jam near
the end to induce a considerable loss to the defender because
On = 8 is much higher than 9, =1 for n < N — 1. Under
an unstable system, the attacker simply jams every stage so
that the defender cannot stabilize the system due to missing
observation. The defender could have chosen not to observe
because the observation will be jammed anyway. But this is
a zero-sum game, so the defender can at least gain a little
from the attacker’s cost induced by jamming.

01234567 8 9101112131415161718192021 2223 242526272829

mmm Observing

m Jamming A highly stable system a=0.5
1

Indicator

A slightly stable system a=0.9

Indicator

56 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29
Stage n

An unstable systema=1.1

0123

Indicator

0123456 78 910111213141516171819 2021222324 252627 2829
Stage n

Fig. 2. The observation decisions i,‘f made by the defender and the jamming
decisions iy made by the attacker over 30 stages.

Figure 3 shows the number of observations and jamming
as a function of observation noise variance o. Fixed values
a=1.1, o4 =25, o, = 40, and r, = 20 are used. The
cost of physical attacks is set to be high which means the
attacker has limited capability at the physical side. When
the cost of jamming is also high o¢ = 6000, the game
resembles an optimal control problem with observations
that are costly and controlled. The curve regarding the
number of observations shows some unusual results. As
the observation noise variance o increases, the observation
will be considered to be less valuable intuitively since it
will contain less useful information about the state of the
system. Grounded on this argument, one would expect the
number of observations goes down monotonically to zero as
o goes to infinity. Economically, it means that we should
never pay for worthless information. However, the first blue
curve of Figure 3 indicates that when the observation noise
variance grows from a small to a moderately large value,
it is better to actually increase the number of observations.
This means when the information content of each individual
observation is degraded slightly, it is better to pay the cost of
making extra observations in order to make a better estimate.
When the cost of jamming is lower, say when 0% = 40,
the defender observes more frequently when the observation
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noise variance is low because the defender knows that the
attacker will be jamming (if the attacker does not jam, the
defender will receive high-quality information to stabilize the
system while the attacker can do little with the information).
Doing so will render the attacker suffer more cost of jamming
due to the fact that 0% > O¢%. As the observation noise
variance increases, the information becomes less useful. Only
at some stages, the attacker has incentives to observe but
most of these observations will be jammed since additional
information is favored less by the attacker than the defender
when the cost of physical attacks is high.

A high cost of jamming 0? = 6000

—e— Observing
—e— Jamming

N
ul

N
o

-
ul

fun
o

(%]

103 10° 107
observation noise variance []

Number of Observations/Jammings

o

101 10°

A low cost of jamming 0% =40

30 —e— Observing
—o— Jamming

20

10

Number of Observations/Jammings

10t 103 10° 107

observation noise variance [J

10°

Fig. 3. The number of observations and jamming attacks in 30 stages.

V. CONCLUSIONS

In this work, we have established a cross-layer multi-
stage framework to facilitate the study of CPSs under co-
ordinated cross-layer attacks. We have demonstrated that
the framework is generic and can be specified to several
classic attack models. The framework has been captured by
a zero-sum linear quadratic Gaussian game with controlled
observation. We have built solid theoretical underpinnings
for this framework which can be used to analyze a wide
variety of attacking settings. The theoretical results have
shown that control performance depends on the observation
and jamming strategies, which affects the quality of state
estimation. Hence, the observation and jamming decisions
can be carried out through dynamic equations that evolve
as the estimation error variance propagates. Beyond that,
the capability of altering the physical process will affect the
jamming and observation decisions.

Future works will focus on the study of mixed strategies of
observation and jamming, investigating the continuous-time
scenario, and infinite-horizon problems.
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