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ABSTRACT: Most soil quality measurements have been limited to laboratory-based
methods that suffer from time delay, high cost, intensive labor requirement, discrete
data collection, and tedious sample pretreatment. Real-time continuous soil
monitoring (RTCSM) possesses a great potential to revolutionize field measure-
ments by providing first-hand information for continuously tracking variations of
heterogeneous soil parameters and diverse pollutants in a timely manner and thus
enable constant updates essential for system control and decision-making. Through a
systematic literature search and comprehensive analysis of state-of-the-art RTCSM
technologies, extensive discussion of their vital hurdles, and sharing of our future
perspectives, this critical review bridges the knowledge gap of spatiotemporal
uninterrupted soil monitoring and soil management execution. First, the barriers for
reliable RTCSM data acquisition are elucidated by examining typical soil monitoring
techniques (e.g., electrochemical and spectroscopic sensors). Next, the prevailing
challenges of the RTCSM sensor network, data transmission, data processing, and
personalized data management are comprehensively discussed. Furthermore, this review explores RTCSM data application for
updating diverse strategies including high-fidelity soil process models, control methodologies, digital soil mapping, soil degradation,
food security, and climate change mitigation. Finally, the significance of RTCSM implementation in agricultural and environmental
fields is underscored through illuminating future directions and perspectives in this systematic review.
KEYWORDS: real-time continuous soil monitoring, soil data acquisition, soil data application, agricultural and environmental practices

1. INTRODUCTION
Through complex interactions with air, water, nutrients, and
organisms, soil plays a vital role on the earth which includes
storing water and nutrients, sustaining food security,
contributing to biodiversity, supplying antibiotics used to
fight diseases, improving resilience to floods and droughts, and
protecting the planet from climate change.1 The United States
Environmental Protection Agency (U.S. EPA) has prioritized
the promotion of soil health with respect to nutrient cycling,
water infiltration, bioremediation, contamination removal, and
carbon sequestration.2 The Food and Agriculture Organization
(FAO) also underscores the significance of soil health to
maintain a diverse community of soil organisms, to control
plant disease, insect and weed pests, and ultimately to improve
crop production.3 Nevertheless, soil health has been
jeopardized globally by numerous pollution sources including
industrial chemicals, domestic and municipal wastes, agro-
chemicals, pharmaceuticals, pathogens, and petroleum-derived
products.4 These pollutants are released to the environment
either accidentally (e.g., oil spills and/or leaching from
landfills5) or intentionally (e.g., the use of fertilizers and
pesticides,6 irrigation with untreated wastewater,7 and land
application of biosolids8). In the past decade, emerging

contaminants (ECs) such as pharmaceuticals, endocrine
disruptors, hormones, and microplastics have drawn high
concern in terms of soil usage and food safety.9−12 Given the
significance of sustaining soil health and fertility and
minimizing soil contamination, continuous monitoring and
expeditious assessment of soil quality, soil nutrient/contami-
nant dynamics, and soil mechanics become essential.
Traditional soil measurement techniques are primarily

laboratory-based analysis such as ion chromatography (IC),
inductively coupled plasma-optical emission spectrometry/
mass spectrometry (ICP-OES/MS), gas chromatography−
mass spectrometry (GC-MS), and chemiluminescence.13,14

Although these methods have high accuracy and low detection
limit, the time and effort associated with the sampling, transfer,
pretreatment, and analysis processes are enormous. Further-
more, these methods are unable to obtain soil data in a real-
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time, continuous, and in situ mode, resulting in information
deficiency hindering decision-making for precaution, preven-
tion, and management. Despite the era of “Big Data” renders a
unique opportunity to improve the efficiency of soil surface
analysis,15 obtaining a large amount of soil data is still
dependent upon satellites,16 manned aircrafts, and unmanned
aerial vehicles (UAVs),17,18 which are unable to obtain
profiling data along soil depth or subdivide fields into small
areas or points and thus suffer from low-resolution data sets.19

Meanwhile, soil complexities including soil texture (e.g., sand,
silt, and clay) and soil properties (e.g., soil porosity, density,
pH, inorganic/organic matters, and water tension) interfere
with soil monitoring and impair monitoring accuracy, thus
posing challenges for soil data acquisition, data collection, data
processing, and data interpretation.20,21 Last two decades have
seen 4021 publications on the soil monitoring using sensors
(Figure 1), covering broad areas ranging from soil data/

information, soil environmental management, erosion control,
to soil organic management and constitutive manage-
ment.22−25 However, these studies barely considered the
chain and irreversible effects that transient soil pollution (e.g.,
heavy metals discharge, pesticides spray, excess fertilization,
and acid rain) can cause. Such neglect stems from the lack of
reliable, swift, and continuous assessment tools and devices, as
corroborated by 558 publications about real-time monitoring,
among which only 67 publications relate to the topic of
continuous soil measurement using real-time monitoring
devices (Figure 1). Such lack of knowledge creates an
outstanding gap between the perception of spatiotemporal
variation of soil quality and execution of soil management and
control and fails to provide continual information essential for
formulating up-to-date decisions.26,27

Hence, this review seeks to bridge this gap by considering
the importance of real-time continuous soil monitoring
(RTCSM) methodology, which is defined as uninterruptedly
monitoring soil physicochemical parameters (e.g., soil moisture
and nutrient), soil biochemical parameters (e.g., microbes and
enzymes) and soil contaminants (e.g., heavy metal and ECs)
and continuously obtaining the measured data in a real-time in
situ mode. A panoramic vision of RTCSM application is
demonstrated based on the close-loop interactions among
these parameters and contaminants in the soil environment

(Figure 2a). For example, soil organic carbon (SOC)
contributes to nutrient retention and turnover and affects
contaminant degradation and climatic conditions including
temperature, CO2, and soil aeration (oxygen level) (Figure
2a).28−30 Soil nitrogen can be converted to N2, N2O, and NH3
through denitrification and ammonification, playing a vital role
in soil fertility and climate change.31−34 The phosphorus cycle
via mineralization, adsorption, desorption, and dissolution in
the soil pool directly affects its transformation into forms that
plants can absorb.35−37 Recalcitrant ECs deposited to soil
particles can migrate through soil unsaturated zones to
groundwater, and have adverse effects on human health and
aquatic ecosystems.9,38,39 In contrast, some of soil physical
parameters (e.g., soil temperature, texture, porosity, and
density) are not necessary to be timely and continuously
captured and belong to the non-RTCSM category, since these
parameters normally stabilize in a reasonable range without
drastic fluctuation, and will not cause instantaneous or chain
effects to the soil environment (Figure 2a). To elucidate such
complex interactions and sustain soil development, it is vital to
identify soil information with high need of RTCSM, develop
reliable and durable RTCSM techniques, acquire various types
of continuous sensor data through wireless network, integrate
these RTCSM data with non-RTCSM data for data processing
and interpretation, and eventually execute efficient control
methodologies (Figure 2a).
This critical review focuses on advancing the understanding

of RTCSM at scientific level toward the panoramic and
profiling-based soil information analysis and bridging the gap
between time-delayed detection and real-time continuous self-
parameter tuning for uncertainty variates in agricultural and
environmental practices (Figure 2b). Specifically, we first
evaluate the challenges and bottlenecks of state-of-the-art
RTCSM sensing technologies to promote accurate real-time
continuous and personalized data acquisition. We then
compare existing approaches of RTCSM data collection and
data processing and elaborate the urgent need of reliable
wireless soil network (WSN) and machine learning (ML)
algorithms. Subsequently, we explore data application with soil
process modeling, system control, and soil digital mapping as
distinct examples. In addition, we illustrate RTCSM
technologies for diverse environmental and agricultural
applications to transfer real-time soil data from scientific
discoveries to real-world practices (Figure 2b). Finally, we lay
out strategic outlook for future directions of RTCSM and
highlight its potential in four key domains of environmental
and agricultural fields including soil sensors, soil data, soil
environment, and soil knowledge advancement.

2. CURRENT STATUS AND MAJOR CHALLENGES OF
RTCSM DATA ACQUISITION

Data acquisition is the first step for RTCSM, in which
electrochemistry and spectroscopy are two main techniques
applied to monitor and examine spatial and temporal variability
of a broad spectrum of soil constituents (e.g., minerals, soil
organic matters (SOM), gas, and water), soil contaminants
(e.g., nutrients and heavy metals), and soil properties (e.g., pH
and moisture). Both methods possess unique characteristics
including nondestructive measurement, rapid response, high
sensitivity and selectivity. Nevertheless, both techniques suffer
from severe bottlenecks toward RTCSM. Specifically, electro-
chemical sensors require frequent calibration due to the
interference coming from complicated soil chemical and

Figure 1. Number of publications in soil monitoring based on Web of
Science with the keywords “soil sensor”, “monitoring”, and “real-time
monitoring” and “continuous”. The inset shows the subtopic results
from 2000 to 2020 with the keywords specified (details of the
literature search are described in Text S1).
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biological contents (e.g., microbes, protons, and inorganic/
organic compounds) and varying soil environment, while the
design of spectroscopic sensors neglects the interferences
caused by the external soil environmental factors (e.g., soil
texture, bulk density, and soil moisture) and the reflectance of
electromagnetic energy, which diminish the amplitude of
scanning reflectance from soil surface. In this section, we
methodically discuss state-of-the-art soil sensing technologies
and their specific barriers as the RTCSM devices from the
perspective of internal sensor technical principles and external
soil environment influences.
2.1. Major Challenge of Electrochemical Technique

as RTCSM Sensors. 2.1.1. Potentiometric Sensors. Potentio-
metric sensors can selectively detect the target ions and
convert the ion activity into an electrical potential based on the
Nernstian equation.40−42

=

+

E
RT

z F
a

EMF (electrical potential) (standard potential)
2.303

log (primary ion activity)

0

1
1

As a point-based soil sensing technique, potentiometric sensors
are not affected by external physical factors (e.g., soil porosity
and soil texture) and have gained high attention for real-time
and continuous soil monitoring (Table 1). Nevertheless,
potentiometric sensors still encounter several key barriers as
the RTCSM devices (Figure 3). First, potentiometric sensors
must contact water solution as the medium for the target
analyte (ion), which results in the inability to monitor ions
absorbed by soils.42 Some potentiometric sensors (e.g., poly(3-
octylthiophene) and molybdenum disulfide (POT-MoS2) soil
sensor and SiO2/Si diaphragm sensor) suffer from severe
reading decline (>50%) when the volumetric soil water
content (%) drops below 15%.43,44 Second, pH and temper-
ature can deviate the Nernst slopes of potentiometric sensors,
and thus impair the sensor sensitivity (mV/dec). For example,

Figure 2. (a) Comprehensive scope of RTCSM in the soil environment. (b) Scientific value of RTCSM to bridge the current knowledge gap.
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copper-based potentiometric sensors exhibited a variation of
22 and 34% at pH values of 5 and 4.65, respectively.45 The
measurement error for 50 mg N/L using NH4

+ ion selective
electrodes (ISE) was 16.20% at the temperatures of 4 and 36
°C when the NH4

+ content was calculated based on the
calibration curve obtained at 20 °C.46 Third, the fouling on the
sensor surface caused by the attachment of inorganic/organic
compounds and microbes in soil eventually diminishes the
sensor durability, since the attachment forms an ion resistive
layer on the sensor surface, inhibits the ion transport process,
and deteriorates soil sensor’s response and accuracy.47,48

Fourth, current soil potentiometric sensors have been
developed mainly for soil nutrient monitoring, such as
poly(3-octylthiophene) potentiometric sensor for nitrate,44

cobalt potentiometric sensor for phosphate,49 and Nafion-
modified potentiometric sensor for potassium,50 but are scarce
for monitoring ECs (e.g., per- and polyfluoroalkyl substances
(PFAS)) and SOM (Table S1). The possible reason is that the
detection limit (normally, 1 g/kg) of potentiometric sensors
cannot meet the ultralow concentration requirement (<50 mg/
kg) of ECs in soil, since lipophilic components (e.g.,
ionophores in ISEs) continuously leach from the sensor
polymer matrix over time and lower the sensors’ accuracy and
sensitivity.40,51 Until now, the only method reported for SOM
monitoring is to convert the carbon compounds in soil to CO2
and then the resulting CO2 concentration is measured using

potentiometry,52 meaning that SOM cannot be real-time
continuously monitored using the potentiometric method, and
the conversion process inevitably causes large concentration
deviations (>30%) for the measured results. Given these
barriers, potentiometric sensors are still in the early develop-
ment stage and have not become a mature in-field monitoring
device (Table S1).

2.1.2. Voltammetric and Conductometric Sensors. The
mechanism of voltammetry is to analyze the soil chemical
reaction on the electrode by recording the current over the
potential applied, while the mechanism of conductometry is to
measure the electric response (e.g., impedance) by applying a
small amplitude AC (alternating current) in a wide range of
frequencies.53,54 Despite both techniques have been used to
measure soil extraction solutions (e.g., 21.039 μA/ppm for
Nafion-modified voltammetric sensor50 and 52 μS/pH for
polyaniline conductometric sensor55), they suffer from poor
repeatability caused by the unpredictable redox reactions of the
voltammetric sensor components and the interferences from
soil chemical properties (e.g., soil salinity and SOC). For
example, graphene foam−titanium voltammetric sensors are
incapable of continuous measurement and require frequent
replacement of the sensor components in the probe.56 The
double layer capacity of conductometric sensors and the
electrode polarization disturb the sensing reaction, resulting in
their ineffectiveness in distinguishing between signals and noise

Table 1. Major Characteristics of Current Soil Sensing Techniques

detection method
detection
technique type of analyte

specific
analyte calibration/materialsa

spectral
wavelength/

detection range
main challenges as

RTCSM ref

electrochemical
techniques

potentiometry

general soil
parameter

pH
moisture

polyaniline 0−100% soil pH, soil temperature,
soil particle fouling

96,97

macronutrient N; P; K molybdenum; thread-based;
cobalt-based

1−1500 ppm 44,98,99

heavy metal Pb2+; Cu2+ biofilm-populated 10−100 ppm 100,101

voltammetry

general soil
parameter

pH screen-printed electrode 3.5−9 soil moisture, soil particle
fouling

102

macronutrient N; K Nafion-modified; silver particle−
polymethacrylic acid-based

1−1250 ppm 50,103

heavy metal Pb2+, Cd2+ Fe3O4/multiwalled carbon
nanotube/laser scribed graphene
composites

100−2000 ppm 104,105

conductometry

general soil
parameter

pH;
moisture

polyaniline/SU-8 2−10, 0−100% soil particle fouling 54,106

macronutrient N; K GO-PEDOT-NFs; zeolite-
modified

0.44−442 ppm 55,107

heavy metal Hg2+ planar thin-film interdigitated
electrodes

2−250 ppm 108

spectroscopic
techniques

IR

general soil
parameter

moisture;
SOM, pH

LR; PLS, SVM 350−2500 nm soil texture; soil surface
roughness, soil water
content

109−111

macronutrient N; P; K LR; PLS, ANN 1100−2498 nm 112,113
ECs PCBs;

PAHs
LR, PLS; RF 305−2500 nm 114,115

heavy metal As, Cu, Pb,
Cr, Zn,
Cd

ANN, RF; PLS 350−2500 nm 116,117

Raman

general soil
parameter

SOM PLS 180−3200 cm−1 soil water content (%),
soil texture

118

macronutrient N; P; K LR; PLS, SVM 400−1800 cm−1 119,120
ECs PCBs;

PAHs
LR; PLS, SVM 400−1800 cm−1 121,122

LIF

general soil
parameter

moisture;
SOM, pH

LR; PLS 500−850 nm soil density, soil hydraulic
conductivity

91,123

macronutrient N; P; K LR, PLS; Lasso; GPR 335 nm 124,125
ECs PAHs LR; PLS 266 nm 126

aLR, linear regression; PLS, partial lease squares; ANN, artificial neural network; RF, random forest; Lasso, least absolute shrinkage and selection
operator regression; GPR, Gaussian process regression; SVM, support vector machine.

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.2c03562
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c03562/suppl_file/es2c03562_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c03562/suppl_file/es2c03562_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c03562?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(>2%).54 Some novel materials (e.g., novel Nylon-6,6-modified
graphite HB pencil electrode,57 gadolinium niobate nano-
particles,58 and zeolite59) have been developed to enhance the
repeatability (RSD < 5%) of voltammetric and conductometric
sensors. However, biofouling and unpredictable fluctuations in
pH, temperature, and pressure undermine the interpretation of
sensor signals collected in the soil field (Table 1).54 For
example, as the dynamic parameter in soil environment,
temperature is related to the enthalpy change of the
voltametric voltage sweeping process, which can cause the
deviation of voltammetric signals in field tests. Furthermore, in
situ voltammetric and conductometric sensors exposed to soil
particles suffer from biofouling as a result of the adhesion of
organic/inorganic compounds and/or soil particles, and thus
vitiates the sensitivity and response and shortens the lifespan to
a few hours or couple days.60,61 As yet these challenges have
not been solved to make these types of sensors as an efficient
and reliable in-field RTCSM device, and voltammetric and
conductometric sensors possess high accuracy (R2 > 0.9) only
in lab environment (Table S1).
2.1.3. Biosensors. Electrochemical biosensors contain bio-

logical recognition elements (e.g., microorganisms and
enzymes) that specifically reacts with the target of interest,
and then converts such changes into electrical signals (e.g.,
current, voltage, and resistance).62 Biosensors can achieve low
detection limits (<0.05 mg/L) for contaminants (e.g.,
trichloroethylene) due to the selective binding of the targets
(Table 1).63 Various electrochemical biosensors (e.g.,
immunosensors and DNA sensors) have been developed to
monitor toxins (e.g., cyanobacteria and photosynthetic micro-

algae) and organic pollutants (e.g., per- and polyfluoroalkyl
substances (PFAS) and polycyclic aromatic hydrocarbons
(PAHs)) in aquatic environments.64−66 Nevertheless, applica-
tion of electrochemical biosensors in the soil environment is
utterly challenging due to its poor sensitivity (<10 mV/dec)
ascribed to the unstable biorecognition elements on the surface
of biosensors.67,68 For example, soil enzyme and microbial
biomass can attach to the surface of biosensors, thus causing
inconsistent binding for the target analyte, and ultimately result
in unstable biorecognition (Figure 3).69 One potential
application of electrochemical biosensors in the soil environ-
ment is to detect agrochemicals, such as pesticides, herbicides
and fertilizers. Specifically, biosensors have been used for the
determination of organophosphate and carbamate pesticides
based on the inhibition of cholinesterase activity.70 However,
the analyte needs certain incubation period (e.g., minutes to
hours) to inhibit the activity of the immobilized enzyme,
resulting in steadily declining signals over time (e.g., hours).71

Although the detection of carbamate pesticides demonstrated a
good stability by the enzymatic reactions of acetylcholinester-
ase (AChE),72 the weak signals (SNR (signal-to-noise) < 3)
inhibited the capability of such biosensors to determine low
analyte concentrations (<0.05 mg/L) in soil. Thereby,
additional effort should be made to develop highly sensitive
devices with high SNR ratios (>5) to enhance the accuracy of
agrochemical detections.

2.2. Major Challenges of Spectroscopic Techniques
as RTCSM Sensors. Spectroscopy is another promising
technique for the continuous soil monitoring due to their
fast, environmental-friendly, nondestructive, and repeatable

Figure 3. Classification of soil sensors for real-time continuous soil monitoring (RTCSM) and major challenges of state-of-the-art sensing
technologies for RTCSM.
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properties.73−76 Infrared (IR) spectroscopic technique has
been used as the real-time continuous and spatiotemporal
measurement tool for soil quality/health monitoring.77−79

Given the impact of different vibrational energies from the
spectra, the IR spectroscopy is sensitive to varying soil
parameters (e.g., pH, soil moisture, SOM) and environmental
conditions (Figure 3).80,81 Although acquiring the spectro-
scopic data (wavelengths) is a feasible and rapid procedure,
many external soil environmental factors (e.g., soil texture, soil
surface roughness, and atmosphere condition) have been
found to interfere with soil surface measurements in the
scanning area (Table 1).82,83 Specifically, large particles reflect
less energy because of larger void spaces between particles and
cause additional scattering and absorption of light.84 The
energy reflected from the soil surface declines with soil
roughness, due to the light diffusion on rough soil surface.85

The fluctuation of the local atmosphere (e.g., water vapor and
CO2) can cause the deviation of the actual sample spectrum
within the time lapse of scanning.86 Soil moisture can also
interfere soil parameter measurements, and the effect of soil
moisture on SOC measurements has been investigated.87,88 To
overcome this challenge, a normalized index based on soil-
moisture has been developed, which is a new criterion for
quick assessment of surface soil moisture from reflectance data
in the solar spectral range (250−2500 nm).89

In terms of other spectroscopic techniques (e.g., Raman and
laser-induced fluorescence (LIF)), their application for
RTCSM remains limited, as well.90−93 For example, the LIF
fluorescence intensity is affected by numerous factors such as
photophysical properties of analytes, soil density, and soil
hydraulic conductivity (Figure 3).91 Soil particles may impede
the adsorption of the analyte onto the Raman sensor substrate,
which requires surface functionalization of the substrate.94

Once the calibration curve matrix (intensity−concentration) is
obtained for each soil type, these spectroscopic techniques can
be applied over a wide range of soil types using multivariate
statistical models (e.g., partial least-squares regression (PLSR),
principal component regression (PCR), artificial neural
network (ANN), Text S2).95 In addition to the modification
of these data analysis algorithms/models in current lab studies,
future work could focus on the development of precisely
normalized Raman and LIF calibration functions and methods
for in-field soil samples with different physical compositions
and moisture contents (Table S1).

3. CURRENT STATE AND CHALLENGES OF RTCSM
DATA TRANSMISSION, DATA PROCESSING, AND
DATA MANAGEMENT

Data, defined as a systematic record corresponding to a specific
quantity, plays the most important role to bridge the facilities
in a soil sensor network and provides high-fidelity snapshot
illustrating soil conditions. Properly collected and managed
data are necessary for modern soil networks. Spatiotemporally,
due to site-specific unevenly distributed physical patterns and
chemical dynamic fluctuations, especially in the areas with
human interventions, drastic variation poses an urgent need for
continuous monitoring and accurate depiction of the soil
quality. The data of all the sensors being discussed in section 2
can be collected and stored digitally as exact values
(quantitative) or indicators (qualitative) and then prepro-
cessed to ensure compatible formats with proper labels for
categorization. Specifically, electrochemical sensors convert the
electrochemical responsive information to electric signals,

while spectroscopic sensors are both qualitative and
quantitative that record the frequency values and determine
the relationship between peak intensity and concentration.
Typically, a wireless sensor network (WSN) consists of

various simple nodes which operate with exhaustible
batteries.127 Manual replacement or recharging these batteries
is not an easy or desirable task. Hence, energy utilization by
various hardware subsystems of individual nodes directly
affects the scope and usefulness of the entire network. The
characteristics of WSNs bring immense challenges, such as the
ultra large number of sensor nodes, dense deployment,
changing topology structure, and the limited resources
including power, computation, storage, and communication
capability.128 All these require the applications and protocols
running on WSN to be not only energy-efficient, scalable, and
robust, but also “adapt” to the changing environment or
context, and application scope or focus among others, and
demonstrate intelligent behaviors.129 In this section, we discuss
the current state and challenge of RTCSM from the
perspectives of sensor network, data transmission, data
processing, and personalized data management.

3.1. Computing at the Edge. For large-scale RTCSM
networks, wireless nodes are required to upload enormous
volumes of data to the cloud, which has been proved as the
bottleneck of the whole procedure,130 since it incurs a long
wait time and the execution depends on the Internet
connectivity, making the applications unfeasible once the
device is online. Another critical challenge in large-scale
outdoor WSN deployments is the energy consumption,
especially as more of outdoor sensor nodes are operated by
battery power.131 This myriad of information requires efficient
methods of classification and analysis, where deep learning
(DL) is a promising technique for large-scale data analytics.132

Traditional computing architecture relies on cloud computing
to provide the computational power.133 However, the cost of
data transportation sometimes can be unacceptable, especially
for latency-sensitive applications. To address these challenges,
a low-power and slimmer version of a machine learning (ML)
model can be applied for optimizing data compression and
transmission technique.134

In recent years, the emergence of edge computing in various
fields has presented great potential in reducing latency and
saving cost and power.135 It would be advantageous if more
complex analysis could be performed on these devices. The
emergence of DL methodologies capable of extracting features
of data and augmenting the data processing capabilities in real-
time continuous monitoring has enhanced the possibility of
performing more complex data analysis on-site without
transferring data. Unlike the cloud computing architecture,
edge computing enables data processing at the edge of the
network. On one hand, data computing is brought closer to the
data source, which greatly facilitates the development of delay-
sensitive applications.136 On the other hand, the network traffic
is largely reduced since the local processing avoids much data
transmission, which remarkably saves the cost.136 As a result,
AI-enabled edge devices are getting popular. Even with
minimal capability, this local processing can help a great deal
to reduce data transmission costs by sending only the data that
requires further processing.137 Adding intelligence to edge
devices makes them self-contained and allows them to make
intelligent decisions based on the data they collect. Slimmer
version ML algorithms (i.e., TfLite, TinyML) has been used in
edge devices for diverse applications such as smart irrigation of
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agricultural systems and detection of soil contaminations
(Figure 4a).138 Specifically, water surveillance (e.g., soil
moisture, drought, water depth) in RTCSM has widely
adopted ML algorithms (e.g., support vector machine, random
forest, artificial neural network) for estimation and prediction
of agricultural productions (Table 2).139 Some well-developed
ML algorithms have even been used to evaluate SOC,
benefiting the soil mapping.140 Moreover, due to the powerful
prediction ability, ML was also applied to the prediction and

decision-making about soil erosion and pollution control
(Table 2).141 Running live data points into a ML algorithm
deployed on edge devices has immense potential, but it is still
in its infancy. Because RTCSM in a large area requires the
deployment of numerous sensor nodes and synchronization of
ML and hardware, edge computing is critical to expand soil
data transmission and analysis with low cost and high efficiency
(Figure 4a).

Figure 4. Significance of RTCSM for (a) edge machine learning, (b) data transmission and (c) data security, (d) soil process modeling, real-time
control strategy, and digital soil mapping, and (e) their respective correlation. Modified with permission from ref 209 (copyright 2019 Elsevier
B.V.) and ref 210 (copyright 2019 Elsevier B.V.).

Table 2. Comparisons of Data Processing Algorithms for Different Types of Soil Data

soil data
targeted methodsa input output best performance ref

soil moisture
estimation

SVM, ANN spaceborne remote sensing data estimated soil moisture RMSE = 0.02 155
SVM, ANN air temperature, relative humidity, average solar radiation,

soil temperature
RMSE = 4.05 166
MAE = 0.0365

DBN, MLP evapotranspiration, leaf area index, meteorological
information, land surface temperature

RMSE = 0.0315 167

drought
prediction

SVR, grought
Index

area index, intensity index, ridge position index, western
ridge point index, northern boundary position index

standardized precipitation
evapotranspiration index

RMSE = 0.344 168

DT, RF automatic synoptic observation system data, drought
indicator, remote sensing data

drought accuracy accuracy rate = 0.65 169

water depth LSTM irrigation volume, rainfall volume, evaporation volume,
temperature

water table depth RMSE = (0.07, 0.184) 170

soil organic
carbon

MARS, ANN,
SVM, PLSR,
RF

spectral measurements, total carbon, total nitrogen, pH soil organic carbon RMSE = 0.62 171

soil mapping
workflow

k-NN, SVM, RF soil texture, horizon, depth, mottle depth, soil moisture,
landform

soil mapping covariates accuracy rate = 0.66 172

soil erosion and
remediation

DT geological formation, soil type, annual precipitation,
elevation, inclination, vegetation

soil erosion prediction fitted probability = (50.3, 100) 173

RF topographic wetness index, stream power index, transport
capacity index, slope, curvature, relief elevation, land use

erosion process class percent correct = (39.22, 67.98) 174

soil
contaminants

MPL, ANN,
M5P, LR

moisture, organic carbon, total carbon, total nitrogen, total
phosphorus, available phosphorus, loss on ignition

PAH bioavailability RMSE = 0.974 175

RF, ERF, SVM,
MLP

high-resolution aerial imaging of arsenic-contaminated
agricultural field

soil risk level accurate rate = (0.76−0.87) 176

aDT, decision tree; k-NN, k-nearest neighbor; PLSR, partial least-square regression; DBN, deep brief network; MLP, multilayer perception; SVM,
support vector machine; ANN, artificial neural network; RF, random forest; ERF, extreme random forest; LSTM, long−short-term memory; M5P,
M5model tree; LR, linear regression.
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3.2. Data Transmission and Processing. 3.2.1. Wireless
Sensor Network (WSN) Types and Challenges. Real-time
continuous soil data collection is fundamental to converting
invisible soil conditions into specific numerical values for
further analysis and visualization. Spatially distributed smart
sensor nodes in a WSN can achieve reliable data transmission
within the network, as well as autonomous dissemination of
data preprocessing and calibration according to auxiliary
parameters in the environment (Figure 4b).142 To combat
the energy consumption and augment the data collection/
storage efficiency, Zigbee-based WSN equipped with general
packet radio service (GPRS) and web service technology
powered by solar battery have been developed to monitor the
temperature and humidity in the soil environment, which
achieved pure solar-powered sensor nodes with a resolution of
0.1 °C and a response time of less than 3s.143 Recently, a
sophisticated hardware-constrained WSN with high flexibility
for data personalization has pushed the WSN development
into a new stage, which focuses on the networking techniques
and information processing tools for dynamic environments
and energy-efficient networks. This new WSN pattern shifts
the emphasis from “data” itself to “human” attached to data,
which decentralizes traditional big data (Petabytes) into
personalized nodes (Gigabytes) that is easy to customize
with low power consumption and protect data privacy.144

Under the new WSN architecture, selection of communication
protocols should be entirely incorporated with land coverage
and soil condition so as to optimize data collection. In
addition, in-field distributed WSN has been developed in small
urban farms to control of irrigation systems using Bluetooth
radio communication, through which soil moisture and relative
humidity data are transmitted to the on-site base station.145

Recently, large-scale WSNs have been implemented by using
high-density WiFi-based WSN capable of collecting and
storing data of soil, plants and atmosphere in a cloud server
with a 15 min measurement frequency and 30 min cloud
communication frequency.146 Other emerging technologies
relevant to RTCSM scenarios are low-power wide area
networks (LPWANs), specially designed for low-cost, low-
power and small data rate transferability among a large number
of wireless devices distributed over large areas. Two of the
subcategories of LPWANs are, LoRa that is proprietary to
Semtech Corporation and LoRaWAN that is open network
architecture maintained by LoRa Alliance.147,148 Many
countries including Netherlands, Belgium, France, Germany,
Italy, and Switzerland have started implementing LoRaWAN
for precision agriculture.149 LoRaWAN can achieve up to 9.3
miles with clear line-of-sight (suburban areas) and 1.2−3 miles
in urban areas. However, one key disadvantage of LoRaWAN
networks is a low data rate, which prevents to for wireless
multimedia sensor network to be used in real-time.150

A newest addition to the LPWANs is narrowband IoT
(NBIoT), also known as LTE Cat NB to connect multiple
wireless sensor devices using existing cellular networks. NBIoT
offers a low-power technology that transmits small amount of
data in an efficient, secure, and reliable manner. However,
NBIoT adoption in the USA is lagging (only T-Mobile offers
NBIoT connectivity), while its adoption in the Europe has
accelerated and paved the way for more edge devices like
sensors, trackers, and consumer electronics.151

3.2.2. Data Preprocessing for ML. As a three-phase
junction for solid, liquid, and gas, soil comprises the exterior
environment with dynamic substance distributions and

heterogeneous physiochemical properties. Statistically, signals
from the ambient generate much lower minimum mean square
error (MMSE) to ensure fidelity of data interpretation.152

Unlike conventional data processing algorithms using the
empirical coefficients (e.g., dispersion coefficient, degradation
constant, and Darcy velocity) and creating bias, ML algorithms
can be trained effectively with data acquired from multiple
sources (e.g., soil sensors, historical weather data, statistical
agricultural data, and literature) to improve single performance
by reconstructing the signals and further optimize soil
parameters under synergetic effect of both exterior and interior
soil environments.153 Commonly used ML algorithms such as
linear regression and logistic regression can enhance the
fidelity of the original data (e.g., crop growth status) by
integrating core optimization methods into the image-based
remote sensing data, but the performance of these algorithms
severely compromises when the dimension of data grows larger
in time and space domain.154,155 In a recent study, the
capability of seven ML models using soil mapping technique
was compared in terms of predicting soil quality, where
random forest (RF) exhibited the best result within 10
replicates of 5-fold cross-validation.156 By summarizing and
classifying more than 100 variants of ML algorithms with real-
time continuous soil data, an inclusive study demonstrated that
the utilization of ML models such as support vector machine
(SVM) and multivariate adaptive regression spline (MARS)
give way to methods like RF and deep neural network (DNN)
(Table 2).157 This result reveals the ongoing efforts to solve
two obstacles of ML methods, poor interpretability and rigid
physiochemical model structures. The popularity of RF
represents the direction of interpretable ML, which could
ensure the extraction of related soil information captured by
the calibrated ML models. DNN may shed light into the areas
where conventional ML algorithms poorly performed due to
fixed model structure.140 Developed under universal approx-
imation theory (UAT), DNN integrates all relevant soil
dynamics with periodicity from continuous soil data and
enables precise prediction. In addition, UAT also secures ML
to discriminate the data during the training and testing
processes, so that any soil parameters/contaminants under
whichever circumstances can be predicted by ML in an
undifferentiated way, which enables flexible personalized data
set in line with different environment/agricultural require-
ments.158,159

3.3. Sensor and Data Security of RTCSM. The networks
of RTCSM focus on sensing and transmitting the continuous
soil data to the back-end (e.g., local server or host) for further
processing and analysis. However, security is considered the
major challenge in the deployment of RTCSM networks due
to the publicity of wireless communication channels (Figure
4c).160 The network must be secured to avoid any intruder
attacking the transmission of continuous data. Wireless soil
sensor networks must fulfill the requirements for providing a
secure communication. For example, the general requirements
such as confidentiality, availability, integrity, freshness
authenticity, nonrepudiation, forward secrecy, and backward
secrecy must be supplied. Confidentiality is the fundamental
security service to keep the privacy of the transmitted data
from sensor nodes.161 Data confidentiality achieved through
encrypting certain sections of the data by sending node and
decrypt it at the receiving node. The application layer
determines the type of information to be encrypted.
Authenticity verifies the all the nodes, even a message comes
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from a true sender (Figure 4c). It is crucial for a receiving node
to conduct a proper authentication that the data are coming
from a verified node.162 Integrity should be provided, since an
attacker can modify/change the original message and may
change the message according to their needs and transmit the
new message to receiving node.163 Availability means that all
the soil sensor network services are available all the time even
in the case of ongoing attack such as Denial of Service (Figure
4c).164 Data freshness should be placed so that each message
transmitted to the nodes is new and fresh, which ensures that
the old data cannot be transmitted by any node.165

4. CURRENT STATE AND CHALLENGES OF RTCSM
DATA APPLICATION IN SOIL-RELATED FIELDS

After soil sensor data collection, processing and management,
RTCSM data can be applied to implement various soil-related
functions. In this section, we use soil process modeling, system
control, and digital soil mapping (DSM) as three distinct
examples of RTCSM data application. Major progress has been
made toward soil mass transport and fate modeling, including
watershed-scale models, single phase flow models and poly
scale scape models, which effectively explicate complex soil
dynamics.177,178 Detailed soil information from these models
can be organized, harmonized, and visualized by DSM.
Furthermore, current environmental and agricultural control
strategies highly rely on the data-based controller (e.g.,
proportional integral derivative (PID) controller and super-
visory control and data acquisition (SCADA) controller) to
provide optimal management strategies.179,180 However, owing
to the lack of continuous soil physical/chemical/biological
information, these models and control strategies remain
disjointed between soil abiotic and biotic processes.178

Thereby, various types of RTCSM are expected to provide
comprehensive, first-hand, continuous and high-resolution soil
data sets, decode the “black box” of heterogeneous soil
environment, and ensure self-parameter tuning for efficient
environmental and agricultural practices.
4.1. High-Fidelity Modeling of Soil Process Using

RTCSM. Modeling of fate and transport of soil contaminants is
vital for quantifying and predicting soil dynamics and
process.177,178,181,182 Currently, typical soil physical models
mainly use the Richards equation and convection−dispersion
equations to describe water and solute flow and transport
through soils.183 Modeling of soil biodegradation is often
driven by soil pore water composition, weathering, and
microbiological and chemical processes (e.g., oxidation of
pyrite in clay barriers).184 Through combining with the
analytical computation and numerical algorithms, these models
greatly enhance our understanding of the soil complexity from
the pore scale to the global scale. Nevertheless, the quantitative
description of soil abiotic/biotic processes and their correlation
with natural and human variables are still inadequate. For
example, the variations of soil microbiomes with soil carbon
and nitrogen pools remain unclear, and differences in microbial
responses with soil locations cannot be recognized nor
predicted in many soil-based models.185

Detailed information acquired using RTCSM could advance
soil process modeling by continuous characterization, which
will alleviate the time consumption and improve the accuracy
for the calibration, parametrization, and validation of soil
dynamic process models. For example, common soil moisture
redistribution models combine the Darcy equation with the
continuity equation including a sink term for soil water

extraction by roots,186 which require the soil volumetric water
content data set for high precision. Potentiometric sensing data
can continuously present soil information across the soil depth
to update the coefficients of the Darcy equation so as to adjust
the dynamic accuracy of these models (Figure 4d,e).44 In
addition, heterogeneous soil environment could be deciphered
by RTCSM data, which will enable analyzing microbial
processes.187 The CENTURY/DAYCENT models have been
extensively used for ecological and biogeochemical commun-
ities,188 but they cannot be incorporated into soil processes
due to the lack of profiling-based soil information and
governing equations. Such information deficiency can be
solved by deploying in situ electrochemical sensors along the
soil depth, through which vegetation canopy, soil water
budgets and physiological control of evapotranspiration can
be explicitly determined to improve water budget estimation
along groundwater rather than just limited to the top soil layer
(15 cm).189 The unique profiling ability of in situ RTCSM is
expected to provide more frequent and representative
groundwater data, accelerate the understanding of groundwater
characteristics, and renovate groundwater modeling (e.g., Gray
Markov model) that has solely relied on sparse groundwater
well observation (e.g., once per week or month) to obtain
historical data.190

4.2. Real-Time Control for Environmental and
Agricultural Soil Management. A variety of advanced
controllers (e.g., PID and SCADA) have been operated based
on feedback schemes in soil-related fields.191−193 For example,
irrigation controllers normalize the desired moisture level in
the agricultural soil by controlling the water flow of irrigation
pumps according to soil moisture sensor readings.194 In
addition, the beta-Poisson model has been developed to assess
the pathogen survival after the biosolid land application,
determine the risk of emerging pathogens, and formulate
effective solutions to mitigate the threat of pathogen
transmission in the soil.195 These control schemes highly rely
on the historical database (e.g., local weather data), which
suffer from tremendous difficulty when facing with unexpected
and sudden dynamic changes such as storm, gas tank spill,
and/or pesticide spray. For example, the energy saving can
reach up to 87% under normal condition by using a PID
controller for soil-air heat exchanger, but this performance
plummets to less than 20% under the transient shocks of soil
temperature and moisture in the field.196

RTCSM can provide continuous and high-resolution soil
data sets and enable real-time self-parameter tuning for
controllers (Figure 4d,e). For example, in a fuzzy rule-based
agricultural control system, conductometric-based RTCSM
data provide real-time conductivity and pH values to compare
with the preset values,54,106 and thus equipping the control
systems with predictive parameters (e.g., pressure gauge and
pressure regulator), self-controlling ability, rapid stabilization
time (within 3 min), and a high degree of precision (within
±0.15 mS/cm).197 In terms of environmental controllers, the
newest SWAT (Soil and Water Assessment Tool) model is
interfaced into the process of soil runoff and sediment yield by
supplementing real-time continuous biological information
(e.g., total pathogens and total enzymes) so as to effectively
control soil erosion and prevent the formation or advance of
gullies.198

4.3. Evidence-Based Digital Soil Mapping for Soil
Environment. DSM is an effective implement to organize,
harmonize, and visualize the detailed soil information, and

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.2c03562
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

I

pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c03562?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


defines soil differences over an area of interest based on a set of
soil-environmental relationships. DSM has been applied to
diminish the uncertainty of soil biodiversity and quantify the
relationships between soil properties and ecosystems.199,200

One of the most well-documented frameworks for DSM is the
scorpan-SSPFe framework201 that is established based on a
spatial soil prediction function employing “scorpan” factors
(stands for soil, climate, organisms, relief, parent material, age
and n for space) with autocorrelated error (SSPFe).199

However, with sparse and interrupted data sets and uncertain
accuracy of legacy data,202,203 the major knowledge gap of
DSM comes from the uncertainty of the covariates’ evaluation
and the sparsity of data sets.204 For instance, Kenya’s DSM
excludes the usage on small farm operations that lack
continuous soil data and covariates.205

RTCSM is expected to generate and deliver long-term
continuous and in situ soil data on each customized location,
which will enable the correction of inconsistent and inaccurate
covariates in small farm operation areas (Figure 4d,e).
Introducing robust RTCSM data sets of soil properties to
the current DSM projects like GlobalSoilMap allows the
inclusion of additional soil properties and consequently
expands the usage of DSM.206,207 Moreover, prediction models
ranging from geostatistical methods, geographically weighted
regressions, tree models, neural networks to 3D DSM could
also be improved by using RTCSM data (e.g., soil nutrient data
from potentiometric sensors and toxin data from biosen-
sors).208 These improved models possess the capability to
optimize the sample numbers and sampling locations and
enhance the uncertainty prediction. For example, high-
accuracy Ecuador DSM successfully generated spatial
indicators of land degradation (e.g., salinity and erosion)
through linking 13,696 soil profiles and reduced land
degradation from 40 to 25% at the national scale.208 Thereby,
RTCSM is capable of facilitating the evidence-based soil
environmental management for end-users by incorporating soil
mapping, soil function analysis, and social covariates with
continuous soil information.

5. CRITICAL NEEDS AND PROSPECTS OF RTCSM FOR
KEY ENVIRONMENTAL AND AGRICULTURAL
PRACTICES

After elaborating each component involved in RTCSM
including data acquisition, data transmission, data processing,
data management, and data application, we will explicate the
profound role of RTCSM in environmental and agricultural
domains by highlighting several key practices. Traditional ex
situ soil measurement approaches (e.g., ion chromatography,
gas chromatography−mass spectrometry) suffer from an
inherent time lag and inefficient information between soil
status change and subsequent intervention.211,212 Conversely,
RTCSM can embark a revolution for soil monitoring in various
soil-related practices, improve data transparency across
academic, industrial, and agricultural communities, and thus
create an inclusive database to foster swift and competent
decision-making.
5.1. Assessment and Remediation of Contaminated

Sites. Assessment and remediation of contaminated sites are
conducted following a tiered approach involving preliminary
desktop study, comprehensive site investigation, evaluation,
and implementation.213 According to the EPA’s data quality
objectives process, contaminant site assessment is currently
performed through sample collection and analysis of the

constituents of concern by certified laboratories following
quality assurance and quality control protocols.214 However,
for soil destruction caused by human activities (e.g.,
deforestation, intensive cultivation, and construction
work),215 execution of remediation solution might be delayed
if contaminated sites are not assessed in a timely manner.
RTCSM possess a reliable ability for real-time assessment of
diverse soil contaminants by capturing the transient variations
promptly and accurately, through which the impacts caused by
soil destruction can be attenuated. For example, the amount of
SOM in the soil surface layer drops through water erosion,216

which would cause flooding and lower the soil capability of
sustaining crops. LIF-based SOM sensors can provide adequate
SOM data within several minutes to build the updated SOM
dynamic profiles,91 so that quantitative soil microbes can be
instantly introduced into the soil to prevent the loss of SOM.
Likewise, IR-based devices present continuous data for
managing the dosage of rhamnolipid to degrade more than
85% petroleum spill.217,218 Through the application of
RTCSM, contaminant site assessment can be considerably
accelerated, and thus advance the effectiveness of remediation
strategies.

5.2. Agricultural Activities and Food Security.
Intensification of agricultural practice and overuse of synthetic
fertilizers and pesticides are the main reasons causing soil
health deterioration.219,220 Closing the yield gaps has been
intended as the appropriate solutions to sustain food
security.221 The major challenge here lies in the lack of a
thorough understanding of the impacts of agricultural activities
on soil health and food security. RTCSM can address this
challenge through low-cost long-term continuous data
acquisition. For example, continuous monitoring (27 days)
of soil nutrients (e.g., nitrogen and phosphorus) using low-cost
(<$10 each piece) miniature poly(3-octylthiophene) potentio-
metric sensors provides a panoramic view of nutrient dynamics
under diverse agricultural activities and presents a spatiotem-
poral data set applicable for fertilization visualization and
control.44 Biofunctionalized nanoparticle-integrated sensing
data have been found to prevent staple calorie crops from
being infected by providing high-resolution information for
emerging fungi and oomycete pathogen control strategies.222

Mm-sized discs etching soil moisture sensors (MSMS: <$2
each piece) mounted on a hollow rod were deployed along soil
depth (1 m) to continuously profile soil moisture over 18
months.210 With the ability of collecting these continuous data
sets over months or even years, the control models (e.g.,
SWAT (soil−water model223), STICS (soil−plant model224))
can be updated for agricultural practices including irrigation,
fertilization, planting, soil health managements, and pathogen
control to sustain food security.

5.3. Climate Change Mitigation. Concerns over global
warming and carbon emissions have sparked intensive interests
in developing novel technologies of carbon sequestration to
reduce its serial effects including polar ice melting, sea level
rising, and extreme weather.225,226 Current carbon sequestra-
tion approaches can be divided into two categories: direct
carbon capture (a process of removing CO2 from flue gases
and storing it for extended periods to prevent emission) and
indirect carbon capture (natural processes of up-taking CO2 by
living organisms).225 Additionally, soil microbiomes play a key
role in climate feedback, including production and/or
consumption of greenhouse gases (GHG: CO2, CH4, N2O,
and water vapor),185 since soil microorganisms can mineralize
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SOC and contribute to GHG emissions. Nevertheless, whether
soil is a source or sink of GHG under different climate
scenarios remains unpredictable due to incapability of accurate
and continuous monitoring of variation of soil carbon and
nitrogen pools as well as soil microbial responses.227 RTCSM
using in situ IR spectroscopic sensors could render continuous,
accurate, inexpensive and nondestructive measurements of
SOC stocks. For example, through IR spectroscopy, a high-
quality 3D data set of CO2 at the soil depth of 0−5 cm is
obtained to estimate the amount of carbon released to the air
near the soil surface.228 According to these comprehensive
data, appropriate carbon sequestration control strategies (e.g.,
bioenergy carbon capture and storage (CCS),229 carbon
pyrolysis to biochar230) can be determined and updated to
attain a high carbon fixing rate. Although CCS holds a great
promise to store CO2 before it is released into the atmosphere,
limited knowledge is available regarding geohydrological
processes of CO2 migration and CO2 fate in surface water
and groundwater.231 RTCSM could combat this knowledge
gap and bolster the evaluation of CCS location and/or storage
rate by real-time continuous tracking CO2 spread in the
subsurface environment. Based on these continuous data, an
appropriate amount of biochar could be applied into soil under
anaerobic condition to sequester 5.5−9.5 GtC/year (Giga-
tonnes of carbon per year) for long time period (e.g., years),
resulting in the soil property improvement, biomass waste
management, and climate change mitigation.226

5.4. Workforce Development and Citizen Science.
Adoption and utilization of soil sensing technologies by general
end-users with minimal training incurs high requirements for
usability of soil sensors and accessibility of soil data.232 Factors
such as end-users’ education background, age, field size,
location, and specialization significantly affect the degree of
precision agriculture adoption and have therefore to be
considered when designing a deployment strategy and training
program.19,233 Widespread usage of complex methods (e.g.,
radars and radiometers onboard satellites) that involves costly
and bulky equipment cannot be realistically consummated at
the citizen scientist level, since it requires the involvement of
experts such as agricultural consultants and field officers to
conduct data collection, data analyses, and data interpreta-
tion.234 RTCSM using low-cost and easy-to-deploy electro-
chemical sensors possesses the ability to provide vast amounts
of data to end-users ranging from farmers to contaminated field
operators through energy-efficient soil sensor networks and
straightforward data access, ensuring the transparency of the
monitoring process.235 This spawns a great opportunity to
improve equitable systems across the academic, industrial,
agricultural communities, and policy makers. For example, a
network of soil moisture has been developed on 19 sites in
Switzerland, in which nearly a thousand low-cost in situ
sensors were deployed to collect continuous data recorded
using a Campbell Scientific CR1000 wireless data logger over a
13 month period with temperature ranging from −15 to 50
°C.236 This process allows data sharing in a trade-off between
farmers and national databases that keeps farmers informed
with soil health at relevant scales and puts them in control of
monitoring their own soils, supporting the movement toward
farmer-led and data-driven decision-making.237,238 Therefore,
citizen science action is critical to become a part of future
decisions in order to improve end-users’ access to independent
environmental advisory services, and thus providing practical

advice to improve soil health, crop productivity and
contaminant mitigation.

6. FUTURE PERSPECTIVE OF RTCSM TECHNOLOGY
RTCSM system possesses immense potential of bringing a
new-round revolution for environmental protection and
agricultural management. Sensor−data−environment−en-
ergy−human nexus becomes indispensable toward establishing
a sophisticated and efficient RTCSM framework. In this
section, we recommend four intertwined domains for future
RTCSM studies.

6.1. Soil Sensor/Sensor Network. The foundation for
future RTCSM studies is to enhance the performance of soil
sensors and sensor networks. In terms of sensors, sensor
lifespan and long-term accuracy should be improved through
developing innovative sensor materials. Novel antifouling
protection materials, such as polyvinylidene fluoride239 and
zwitterionic copolymer240 have been printed (e.g., electro-
spray241) onto the sensor surface to eliminate the interference
of external soil environment, strengthen electron transfer
between soil and sensor matrix, and ultimately enhance the
sensor accuracy, stability, and durability. In terms of sensor
networks, sensor array consisting of multiple pieces of low-cost
miniature sensors connected with Internet of Things (IoT) can
be deployed to collect and exchange multiple types of sensor
data, boost sensor-to-sensor communication, and make
optimal decisions but with less human interaction.242 For
example, smart water management platform (SWAMP) is an
IoT-based irrigation project designed to automatically manage
water reserves, distribution, and consumption, and avoid over-
irrigation/under-irrigation, which has improved energy-effi-
cient water management by 30%.243

6.2. Sensor Data Processing/Control. The complexity of
soil processes should be modulated, incorporated, and
integrated for next generation of soil data processing
algorithms in order to elevate the data correction capability
for RTCSM. Moreover, ex situ non-RTCSM data (e.g., soil
density and soil porosity) can provide a precise calibration
benchmark for validation of RTCSM, and thus elevating the
dimension of data. Recent ML-based mobile application using
Appery.io. has incorporated input parameters (e.g., location,
soil type, and soil pH) that farmers need for growing crops,
and thereby allowing them to access the relevant farmland
information and enabling timely guidance and service.244

6.3. Critical Zone/Soil Environment as a Whole.
Omnidirectional deployment of RTCSM (e.g., in situ sensor
arrays targeting SOM and ECs) and modulation of non-
RTCSM (e.g., ex situ measurement using consolidometer and
density gauge set) possess an unprecedented monitoring
capability for diverse soil-related elements closely linked
between organisms, air, water, and subsurface ecosystems.
Activities (e.g., excess fertilization and pesticide overuse)
resulting in breaking these links can be detected in a real-time
continuous manner to minimize deterioration of soil environ-
ment. For example, SOC is associated with nutrient retention
and turnover, soil contaminant degradation, and climatic
change.28 Once in situ IR spectroscopic sensing data reveal the
abnormal concentration of SOC, control strategies (e.g.,
bioenergy carbon capture, carbon pyrolysis) can be promptly
executed to adjust the SOC content on the given site and
sustain the critical parameters (e.g., nutrient, CO2, and O2) in a
reasonable range.245
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6.4. Soil Knowledge Advancement. Rapid development
of RTCSM offers exceptional opportunities for end-users (e.g.,
middle/high school students, householders, and underrepre-
sented farmers) to advance their soil knowledge ranging from
land use and energy-saving irrigation to ecosystem service and
soil management. In opposition, the feedback of these end-
users will advance the future design and deployment of
RTCSM systems. For example, individualized data (e.g., soil
moisture and nutrient) attained by RTCSM coupled with local
weather information (e.g., temperature and precipitation) can
be used as the inputs for farmers to promptly implement
effective actions and receive real-time feedback on the impact
of their actions.246,247 Eventually, end-users’ personalized
requirements will be integrated into the hardware and software
design of RTCSM systems with distinct features of easy-to-
install, customized dashboards, graphic visualization, and
automatic issue diagnosis that can further advance data
accessibility and transparency and promote soil knowledge
among broad communities.
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Dam, J.; van der Zee, S. E. A. T. M.; Vogel, H. J.; Vrugt, J. A.;
Wöhling, T.; Young, I. M. Modeling Soil Processes: Review, Key
Challenges, and New Perspectives. Vadose Zone J. 2016, 15 (5),
vzj2015.09.0131.
(179) Azar, A. T.; Ammar, H. H.; de Brito Silva, G.; Razali, M. S. A.
B. Optimal Proportional Integral Derivative (PID) Controller Design
for Smart Irrigation Mobile Robot with Soil Moisture Sensor. In The
International Conference on Advanced Machine Learning Technologies
and Applications (AMLTA2019); Hassanien, A. E., Azar, A. T., Gaber,
T., Bhatnagar, R., Tolba, M., Eds.; Advances in Intelligent Systems
and Computing; Springer International Publishing: Cham, Switzer-
land, 2020; pp 349−359.
(180) Ajay, M.; Rakesh, M.; Roshan, M. H.; Revathy, G. PLC Based
Smart Farming System with Scada. IEEE Xplore 2020, 1−2.
(181) Kirkels, F. M. S. A.; Cammeraat, L. H.; Kuhn, N. J. The Fate
of Soil Organic Carbon upon Erosion, Transport and Deposition in
Agricultural Landscapes � A Review of Different Concepts.
Geomorphology 2014, 226, 94−105.
(182) Heinen, M.; Assinck, F.; Groenendijk, P.; Schoumans, O. Soil
Dynamic Models. Biorefinery of Inorganics; John Wiley & Sons, Ltd.,
2020; pp 405−435.
(183) Daly, K. R.; Roose, T. Homogenization of Two Fluid Flow in
Porous Media. Proc. R. Soc. Math. Phys. Eng. Sci. 2015, 471 (2176),
20140564.
(184) Chavez Rodriguez, L.; Ingalls, B.; Schwarz, E.; Streck, T.;
Uksa, M.; Pagel, H. Gene-Centric Model Approaches for Accurate
Prediction of Pesticide Biodegradation in Soils. Environ. Sci. Technol.
2020, 54 (21), 13638−13650.
(185) Jansson, J. K.; Hofmockel, K. S. Soil Microbiomes and
Climate Change. Nat. Rev. Microbiol. 2020, 18 (1), 35−46.
(186) Karimi, B.; Karimi, N.; Shiri, J.; Sanikhani, H. Modeling
Moisture Redistribution of Drip Irrigation Systems by Soil and
System Parameters: Regression-Based Approaches. Stoch. Environ. Res.
Risk Assess. 2022, 36 (1), 157−172.
(187) Mahmoudi, E.; Fakhri, H.; Hajian, A.; Afkhami, A.; Bagheri,
H. High-Performance Electrochemical Enzyme Sensor for Organo-
phosphate Pesticide Detection Using Modified Metal-Organic
Framework Sensing Platforms. Bioelectrochemistry 2019, 130, 107348.
(188) Berardi, D.; Brzostek, E.; Blanc-Betes, E.; Davison, B.;
DeLucia, E. H.; Hartman, M. D.; Kent, J.; Parton, W. J.; Saha, D.;
Hudiburg, T. W. 21st-Century Biogeochemical Modeling: Challenges
for Century-Based Models and Where Do We Go from Here? GCB
Bioenergy 2020, 12 (10), 774−788.
(189) Ren, D.; Leslie, L. M.; Karoly, D. J. Sensitivity of an Ecological
Model to Soil Moisture Simulations from Two Different Hydrological
Models. Meteorol. Atmospheric Phys. 2008, 100 (1), 87−99.
(190) Su, Z.; Wu, J.; He, X.; Elumalai, V. Temporal Changes of
Groundwater Quality within the Groundwater Depression Cone and
Prediction of Confined Groundwater Salinity Using Grey Markov
Model in Yinchuan Area of Northwest China. Expo. Health 2020, 12
(3), 447−468.
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P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT)
to Model Ecosystem Services: A Systematic Review. J. Hydrol. 2016,
535, 625−636.
(224) Katerji, N.; Mastrorilli, M.; Cherni, H. E. Effects of Corn
Deficit Irrigation and Soil Properties on Water Use Efficiency. A 25-
Year Analysis of a Mediterranean Environment Using the STICS
Model. Eur. J. Agron. 2010, 32 (2), 177−185.
(225) Schlesinger, W. H.; Amundson, R. Managing for Soil Carbon
Sequestration: Let’s Get Realistic. Glob. Change Biol. 2019, 25 (2),
386−389.
(226) Farrelly, D. J.; Everard, C. D.; Fagan, C. C.; McDonnell, K. P.
Carbon Sequestration and the Role of Biological Carbon Mitigation:
A Review. Renew. Sustain. Energy Rev. 2013, 21, 712−727.
(227) Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.;
Erasmi, S. Greenhouse Gas Emissions from Soils�A Review.
Geochemistry 2016, 76 (3), 327−352.
(228) Barthes̀, B. G.; Kouakoua, E.; Clairotte, M.; Lallemand, J.;
Chapuis-Lardy, L.; Rabenarivo, M.; Roussel, S. Performance
Comparison between a Miniaturized and a Conventional near
Infrared Reflectance (NIR) Spectrometer for Characterizing Soil
Carbon and Nitrogen. Geoderma 2019, 338, 422−429.
(229) Kemper, J. Biomass and Carbon Dioxide Capture and Storage:
A Review. Int. J. Greenh. Gas Control 2015, 40, 401−430.
(230) Tenenbaum, D. J. Biochar: Carbon Mitigation from the
Ground Up. Environ. Health Perspect. 2009, 117 (2), A70−A73.
(231) Osman, A. I.; Hefny, M.; Abdel Maksoud, M. I. A.; Elgarahy,
A. M.; Rooney, D. W. Recent Advances in Carbon Capture Storage
and Utilisation Technologies: A Review. Environ. Chem. Lett. 2021, 19
(2), 797−849.
(232) Mol, G.; Keesstra, S. Soil Science in a Changing World. Curr.
Opin. Environ. Sustain. 2012, 4, 473−477.

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.2c03562
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

R

https://doi.org/10.5120/13788-1882
https://doi.org/10.5120/13788-1882
https://doi.org/10.2166/wst.2002.0338
https://doi.org/10.2166/wst.2002.0338
https://doi.org/10.2166/wst.2002.0338
https://doi.org/10.1016/j.enconman.2013.09.033
https://doi.org/10.1016/j.enconman.2013.09.033
https://doi.org/10.1109/CAC.2018.8623710
https://doi.org/10.1109/CAC.2018.8623710
https://doi.org/10.1109/CAC.2018.8623710
https://doi.org/10.1007/s10705-012-9488-y
https://doi.org/10.1007/s10705-012-9488-y
https://doi.org/10.1007/s10705-012-9488-y
https://doi.org/10.1016/j.geoderma.2015.07.017
https://doi.org/10.1016/j.geoderma.2015.07.017
https://doi.org/10.3390/soilsystems3020039
https://doi.org/10.3390/soilsystems3020039
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1016/j.geodrs.2017.03.002
https://doi.org/10.1016/j.geodrs.2017.03.002
https://doi.org/10.1016/j.geoderma.2018.09.006
https://doi.org/10.1016/j.geoderma.2018.09.006
https://doi.org/10.1016/j.geodrs.2020.e00265
https://doi.org/10.1016/j.geodrs.2020.e00265
https://doi.org/10.1016/j.geodrs.2021.e00366
https://doi.org/10.1016/j.geodrs.2021.e00366
https://doi.org/10.1016/j.geoderma.2021.115567
https://doi.org/10.1016/j.geoderma.2021.115567
https://doi.org/10.1016/j.geoderma.2021.115567
https://doi.org/10.1016/j.geodrs.2020.e00265
https://doi.org/10.1016/j.geodrs.2020.e00265
https://doi.org/10.1016/S2095-3119(17)61762-3
https://doi.org/10.1016/S2095-3119(17)61762-3
https://doi.org/10.1016/j.geodrs.2019.e00215
https://doi.org/10.1016/j.geodrs.2019.e00215
https://doi.org/10.1016/j.snb.2019.126857
https://doi.org/10.1016/j.snb.2019.126857
https://doi.org/10.1016/j.snb.2019.126857
https://doi.org/10.1007/s11119-018-9579-0
https://doi.org/10.1007/s11119-018-9579-0
https://doi.org/10.1016/j.geoderma.2014.11.024
https://doi.org/10.1016/j.geoderma.2014.11.024
https://doi.org/10.1016/j.geoderma.2014.11.024
https://www.epa.gov/quality/guidance-systematic-planning-using-data-quality-objectives-process-epa-qag-4
https://www.epa.gov/quality/guidance-systematic-planning-using-data-quality-objectives-process-epa-qag-4
https://www.epa.gov/quality/guidance-systematic-planning-using-data-quality-objectives-process-epa-qag-4
https://doi.org/10.1016/j.scitotenv.2021.147794
https://doi.org/10.1016/j.scitotenv.2021.147794
https://doi.org/10.1016/j.scitotenv.2021.147794
https://doi.org/10.1016/j.catena.2013.06.013
https://doi.org/10.1016/j.catena.2013.06.013
https://doi.org/10.1016/j.catena.2013.06.013
https://doi.org/10.1016/j.catena.2013.06.013
https://doi.org/10.1016/j.scitotenv.2021.145441
https://doi.org/10.1016/j.scitotenv.2021.145441
https://doi.org/10.1016/j.scitotenv.2021.145441
https://doi.org/10.1016/j.scitotenv.2021.145441
https://doi.org/10.3390/app7050533
https://doi.org/10.3390/app7050533
https://doi.org/10.3390/app7050533
https://doi.org/10.3390/land10020111
https://doi.org/10.3390/land10020111
https://doi.org/10.3390/land10020111
https://doi.org/10.1016/j.gfs.2014.08.004
https://doi.org/10.1016/j.gfs.2014.08.004
https://doi.org/10.1021/ac802158y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac802158y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jhydrol.2016.01.034
https://doi.org/10.1016/j.jhydrol.2016.01.034
https://doi.org/10.1016/j.eja.2009.11.001
https://doi.org/10.1016/j.eja.2009.11.001
https://doi.org/10.1016/j.eja.2009.11.001
https://doi.org/10.1016/j.eja.2009.11.001
https://doi.org/10.1111/gcb.14478
https://doi.org/10.1111/gcb.14478
https://doi.org/10.1016/j.rser.2012.12.038
https://doi.org/10.1016/j.rser.2012.12.038
https://doi.org/10.1016/j.chemer.2016.04.002
https://doi.org/10.1016/j.geoderma.2018.12.031
https://doi.org/10.1016/j.geoderma.2018.12.031
https://doi.org/10.1016/j.geoderma.2018.12.031
https://doi.org/10.1016/j.geoderma.2018.12.031
https://doi.org/10.1016/j.ijggc.2015.06.012
https://doi.org/10.1016/j.ijggc.2015.06.012
https://doi.org/10.1289/ehp.117-a70
https://doi.org/10.1289/ehp.117-a70
https://doi.org/10.1007/s10311-020-01133-3
https://doi.org/10.1007/s10311-020-01133-3
https://doi.org/10.1016/j.cosust.2012.10.013
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c03562?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(233) Barrera-Bassols, N.; Zinck, J. A. Ethnopedology: A Worldwide
View on the Soil Knowledge of Local People. Geoderma 2003, 111
(3), 171−195.
(234) Ebitu, L.; Avery, H.; Mourad, K. A.; Enyetu, J. Citizen Science
for Sustainable Agriculture − A Systematic Literature Review. Land
Use Policy 2021, 103, 105326.
(235) Zhou, W.; Xu, Z.; Ross, D.; Dignan, J.; Fan, Y.; Huang, Y.;
Wang, G.; Bagtzoglou, A. C.; Lei, Y.; Li, B. Towards Water-Saving
Irrigation Methodology: Field Test of Soil Moisture Profiling Using
Flat Thin Mm-Sized Soil Moisture Sensors (MSMSs). Sens. Actuators
B Chem. 2019, 298 (June), 126857.
(236) Mittelbach, H.; Casini, F.; Lehner, I.; Teuling, A. J.;
Seneviratne, S. I. Soil Moisture Monitoring for Climate Research:
Evaluation of a Low-Cost Sensor in the Framework of the Swiss Soil
Moisture Experiment (SwissSMEX) Campaign. J. Geophys. Res.
Atmospheres 2011, DOI: 10.1029/2010JD014907.
(237) Appenfeller, L. R.; Lloyd, S.; Szendrei, Z. Citizen Science
Improves Our Understanding of the Impact of Soil Management on
Wild Pollinator Abundance in Agroecosystems. PLoS One 2020, 15
(3), e0230007.
(238) Dickinson, J. L.; Zuckerberg, B.; Bonter, D. N. Citizen Science
as an Ecological Research Tool: Challenges and Benefits. Annu. Rev.
Ecol. Evol. Syst. 2010, 41 (1), 149−172.
(239) Zhang, J.; Xu, Z.; Shan, M.; Zhou, B.; Li, Y.; Li, B.; Niu, J.;
Qian, X. Synergetic Effects of Oxidized Carbon Nanotubes and
Graphene Oxide on Fouling Control and Anti-Fouling Mechanism of
Polyvinylidene Fluoride Ultrafiltration Membranes. J. Membr. Sci.
2013, 448, 81−92.
(240) Qian, X.; Ravindran, T.; Lounder, S. J.; Asatekin, A.;
McCutcheon, J. R. Printing Zwitterionic Self-Assembled Thin Film
Composite Membranes: Tuning Thickness Leads to Remarkable
Permeability for Nanofiltration. J. Membr. Sci. 2021, 635, 119428.
(241) Fan, Y.; Qian, X.; Wang, X.; Funk, T.; Herman, B.;
McCutcheon, J. R.; Li, B. Enhancing Long-Term Accuracy and
Durability of Wastewater Monitoring Using Electrosprayed Ultra-
Thin Solid-State Ion Selective Membrane Sensors. J. Membr. Sci.
2022, 643, 119997.
(242) Sanjeevi, P.; Prasanna, S.; Siva Kumar, B.; Gunasekaran, G.;
Alagiri, I.; Vijay Anand, R. Precision Agriculture and Farming Using
Internet of Things Based on Wireless Sensor Network. Trans. Emerg.
Telecommun. Technol. 2020, 31 (12), e3978.
(243) Ullah, R.; Abbas, A. W.; Ullah, M.; Khan, R. U.; Khan, I. U.;
Aslam, N.; Aljameel, S. S. EEWMP: An IoT-Based Energy-Efficient
Water Management Platform for Smart Irrigation. Sci. Program. 2021,
2021, e5536884.
(244) Adebiyi, M. O.; Ogundokun, R. O.; Abokhai, A. A. Machine
Learning−Based Predictive Farmland Optimization and Crop
Monitoring System. Scientifica 2020, 2020, e9428281.
(245) Hong, Y.; Chen, S.; Zhang, Y.; Chen, Y.; Yu, L.; Liu, Y.; Liu,
Y.; Cheng, H.; Liu, Y. Rapid Identification of Soil Organic Matter
Level via Visible and Near-Infrared Spectroscopy: Effects of Two-
Dimensional Correlation Coefficient and Extreme Learning Machine.
Sci. Total Environ. 2018, 644, 1232−1243.
(246) Gbangou, T.; Sarku, R.; Slobbe, E. V.; Ludwig, F.; Kranjac-
Berisavljevic, G.; Paparrizos, S. Coproducing Weather Forecast
Information with and for Smallholder Farmers in Ghana: Evaluation
and Design Principles. Atmosphere 2020, 11 (9), 902.
(247) Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in
Smart Farming − A Review. Agric. Syst. 2017, 153, 69−80.

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.2c03562
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

S

https://doi.org/10.1016/S0016-7061(02)00263-X
https://doi.org/10.1016/S0016-7061(02)00263-X
https://doi.org/10.1016/j.landusepol.2021.105326
https://doi.org/10.1016/j.landusepol.2021.105326
https://doi.org/10.1016/j.snb.2019.126857
https://doi.org/10.1016/j.snb.2019.126857
https://doi.org/10.1016/j.snb.2019.126857
https://doi.org/10.1029/2010JD014907
https://doi.org/10.1029/2010JD014907
https://doi.org/10.1029/2010JD014907
https://doi.org/10.1029/2010JD014907?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.pone.0230007
https://doi.org/10.1371/journal.pone.0230007
https://doi.org/10.1371/journal.pone.0230007
https://doi.org/10.1146/annurev-ecolsys-102209-144636
https://doi.org/10.1146/annurev-ecolsys-102209-144636
https://doi.org/10.1016/j.memsci.2013.07.064
https://doi.org/10.1016/j.memsci.2013.07.064
https://doi.org/10.1016/j.memsci.2013.07.064
https://doi.org/10.1016/j.memsci.2021.119428
https://doi.org/10.1016/j.memsci.2021.119428
https://doi.org/10.1016/j.memsci.2021.119428
https://doi.org/10.1016/j.memsci.2021.119997
https://doi.org/10.1016/j.memsci.2021.119997
https://doi.org/10.1016/j.memsci.2021.119997
https://doi.org/10.1002/ett.3978
https://doi.org/10.1002/ett.3978
https://doi.org/10.1155/2021/5536884
https://doi.org/10.1155/2021/5536884
https://doi.org/10.1155/2020/9428281
https://doi.org/10.1155/2020/9428281
https://doi.org/10.1155/2020/9428281
https://doi.org/10.1016/j.scitotenv.2018.06.319
https://doi.org/10.1016/j.scitotenv.2018.06.319
https://doi.org/10.1016/j.scitotenv.2018.06.319
https://doi.org/10.3390/atmos11090902
https://doi.org/10.3390/atmos11090902
https://doi.org/10.3390/atmos11090902
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1016/j.agsy.2017.01.023
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c03562?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

