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Abstract—Microcontroller-based smart devices and sensing
systems have exploded in popularity in recent years, owing to the
growing adoption of Internet of Things (IoT) platforms. Due to
the widespread deployment of environmental sensing technology
and digitization, data creation has surged to never-before-seen
levels. However, it is computationally expensive to transport all
these data to the cloud systems for decision making specially
for battery operated sensor nodes. As a result, edge AI has
arisen as a viable alternative to traditional AI, capable of making
simple decisions without the assistance of any cloud system,
making it more energy efficient and reducing the requirement for
continuous data transfer. A single-board IoT platform capable of
performing slimmer version of machine learning with multiple
wireless protocols have become increasingly popular for this
purpose. In this paper we demonstrate an energy efficient IoT
platform (iBUG) that already has numerous built-in sensors. We
also present an algorithm utilizing TensorFlow lite to accurately
predict CO2 using only gas resistance.

Index Terms—Real-time, Machine Learning, Sensor, IoT,
TinyML, Edge Al

I. INTRODUCTION

The IoT platform has played a crucial role across a variety
of areas, particularly in environmental sensing due to massive
connectivity, by generating a tremendous amount of granular
data and new revenue streams [1]. This will become evermore
demanding for wireless communication with edge-cloud com-
puting since the edge computer is the close proximity of the
IoT devices, though short-long range communications (e.g.,
WiFi, Bluetooth, LoRa). Long Range Wide Area Networks
(LoRaWAN) have recently received significant traction as
a way to collect data via WSN. LoRa is an open-source
Long-Range wireless technology that allows low-power de-
vices to interact with Internet-connected applications across
long distances [2]. It is a common consensus that the next
generation wireless sensor network should be designed to
perform efficient and reliable computing with multiple wireless
protocols.

Recently, a significant amount of effort has gone into
improving embedded technologies for usage in resource-
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constrained contexts. For example, edge computing, in which
data is processed in part at the network edge rather than
wholly in the cloud, has been fueled by the development of
the IoT and rich cloud services. An edge computing capable
platform could improve the latency and battery life on mobile
devices, bandwidth costs, security, and privacy. Since cloud
computing has more computational capacity than the devices
at the network edge, moving all computing services to the
cloud server has been a cost-effective approach to process data
[3]. However, while data processing speeds have increased
significantly, network bandwidth that transports data to and
from the cloud server has not. As a result, the network
becomes a bottleneck for cloud computing, as edge devices
generate more data. Data processing at the network edge would
result in faster response times, more efficient processing,
reduce power consumption and less network load.

This paper presents iBUG, a low-powered edge node cou-
pled with a vast range of sensors and capable of embedded
machine learning and wireless data transfer though multiple
wireless protocols (WiFi, BLE, LoRa). We also developed a
slimmer version of the TensorFlow algorithm to accurately
predict CO5 content in ambient air using only gas resistance.
This article is organized as follows. In the following section,
we present the current state-of-the-art studies on Al enabled
sensing board and motivation behind the proposed research
work. Then the proposed hardware design, where we dis-
cussed the unique features and on-board sensors of the iBUG
platform. After this section, a developed algorithm using an
embedded machine learning algorithm was discussed, where
we also optimized data collection and processing methods.
Finally, results section and open research issue to conclude.

II. BACKGROUND AND MOTIVATION
A. Internet of Things (IoT)

The IoT is one of the most widely discussed topics in
scientific research nowadays. The core premise of IoT is to
collect data from the real world using billions of intelligent
devices and transfer it to internet repositories for further pro-
cessing to create novel services. Smart farming, autonomous
vehicles, pollution monitoring, industrial automation, smart
city, and other scenarios are only a few examples. The data
produced at the edge node of an IoT network transmitted using



TABLE I: Commercially available microcontrollers

SBC Architecture Price
Raspberry Pi Zero 2 W ARM, 32-bit | $15
Arduino Nano 33 BLE Sense | nRF52840 33.40
Apollo3 Blue ARM 16.50
Adafruit EdgeBadge ARM 35.95
Pine A64-LTS ARM, 64-bit | $32

PocketBeagle ARM, 32-bit | $35

Raspberry Pi 4 Model B ARM, 32-bit | From $45
Odroid-C4 ARM, 64-bit | $54
Rock Pi 4 Model C ARM, 64-bit | $59
Pine64 ROCKPro 64 ARM, 64-bit | $59/79

ARM, 32-bit | $4
ARM, 32-bit | $16
RISC, 8-bit $40

Raspberry Pi Pico
BBC Micro:Bit V2
Arduino Mega 2560

various wireless technologies like Bluetooth, Wi-Fi, 3G, 4G
etc. However, due to power and range limitations, different
technologies have been designed for IoT applications (e.g,
LoRA, Sigfox, NB-IoT, LTE-M). Among them, LoRa is the
most popular, and there are many commercially available
LoRa nodes in the market. For example, Park et al. [4]
used LoRa in their air quality monitoring system to monitor
particulate matter (PM). Thu et al. [1] developed a machine
learning-based air quality monitoring system using LoRa over
LTE-M because of a power-range trade-off. LoRa is also being
used in many other applications like agro-intelligence [2],
industrial automation [5], healthcare [6] etc.

B. Single Board Computers

Single-board computers (SBCs) currently on the market are
strong enough to handle typical operations and workloads. In
addition, single-board computers are incredibly compact. This
enables them to be incorporated in devices with limited area.
The computers are also highly energy-efficient, giving them an
advantage in terms of power conservation. In addition to these
benefits, single board computers are self-contained, making
them extremely dependable in various environments. Many of
these boards can be linked together to build small, low-cost
clusters that resemble giant data center clusters in appearance.
These clusters enable Edge/Fog Compute, in which computa-
tion is pushed out towards data sources, decreasing bandwidth
requirements, and decentralizing the design. Table I lists some
of the most popular low cost microcontrollers.

Advancement in digital sensor technology has made it
possible to measure multiple parameters using a single sensor.
However, to match the demands of an application situation,
many sensors are required. Temperature, pressure, humidity,
volatile organic compounds, salinity, and other characteristics,
many of which are ubiquitous, are some key parameters
in sensing. This brings the idea of a single node that can
be used in multiple sensing applications out of the box.
This has inspired us to develop iBUG, a single device with
multiple sensors to measure key parameters, a LoRa node for
reliable long-range data transmission, and a machine learning
capability to perform in-situ processing.

TABLE II: TinyML frameworks [10]

Framework Compatible Hardware Output Language
TensorFlow Lite ARM Cortex-M C++ 11
‘Weka-porter Not Fixed C, Java, JavaScript

ARM Cortex-A,
ELL Arduino, Micro:bit C C++
TinyMLgen ESP32, ARM Cortex-M C
uTensor mBed C++ 11
ARM Cortex-A,
ARM-NN ARM Ethos, ARM Mali c
STM 32Cube Al ARM Cortex-M C99
MicroMLGen ESP32, ESP8288 C
CMSIS-NN ARM Cortex-M C99
emlearn ESP8266, AVR ATMega | C
C, C#, R, Python
m2cgen Not Fixed Dart, PHP, Java,
JavaScript, Go
ARM Cortex-M4,
Arduino, Raspberry Pi,
AITES STM32, Windows(DLL), | C
ATMega32U4
NanoEdgeAlI Studio | ARM Cortex-M C

C. TinyML

Another aspect of IoT applications is data processing. The
traditional way is to carry all data to the cloud and then do
the processing with a high computing device. However, data
transmission consumes many resources, and the speed and
reliability of an IoT application depend on it. As a result, Al-
enabled edge devices are becoming popular. These devices can
execute a limited set of machine learning instructions. Even
with minimal capability, this local processing can help a great
deal to reduce data transmission costs by sending only the data
that requires further processing [7], [8]. Adding intelligence
to edge devices makes them self-contained and allows them
to make intelligent decisions based on the data they collect.
Researchers have used the ML in edge devices in several
applications like smart cities [1], traffic flow monitoring,
environmental monitoring [9], etc. Machine learning inference
on edge devices has a significant amount of potential, but it’s
still in its infancy. Various software platforms and libraries
have evolved to support machine learning on edge devices. For
example platforms and tools like TensorFlow Lite of Google,
ELL of Microsoft, Edge Impulse converts traditional machine
learning models into C/C++ code that can be executed on
microcontroller powered devices. A detailed list of currently
available frameworks are given in Table II.

TinyML is a machine learning paradigm for embedded edge
devices with low processing power and memory (fig:1). Ma-
chine learning systems should consume only a few milliwatts
of power. By merging smart power management modules,
TinyML frequently enables IoT-based embedded edge devices
to move to low-power systems. Hardware acceleration should
be used in this system. Furthermore, in order to save electricity,
the TinyML scenario’s machine learning program should be
as light as possible. TinyML systems should concentrate on
improving accuracy by optimizing numerous machine learning
models while dealing with minimal resources.
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Fig. 1: Edge Machine Learning Workflow [11]

D. Short and Long Range Communication

With the development of novel environmental sensing
methods, adaptive input applications (e.g., greenhouse gases,
nitrogen in the soil and water), and mapping techniques,
there is a higher demand for increased data rates as well
as short and long-range communications [12]. iBUG enables
ubiquitous protocols with short-range networks by offering
Bluetooth Low Energy (BLE) and WiFi connectivity and long-
range range network with LoRaWAN. WiFi is justified by its
popularity and easy to deploy; however, requires higher energy
consumption. Therefore, the BLE module is added for short
range communication between devices with lowest power con-
sumption. On the other hand, LoRaWAN has a small data rate,
but a large coverage and low power consumption. Therefore,
this protocol is appropriate for use when the solution needs
to transmit a small amounts of data at very long distances (~
3.7 miles).

III. IBUG HARDWARE DESIGN

The iBUG is a single-board microcomputer designed for
those who require a complete IoT edge computing solution.
To select the microprocessor for this board we considered the
factors — edge Al capabilities, LoRa support, price etc. We're
focusing on edge Al because we want iBUG to make real-time
decisions based on the data collected by its sensors. We choose
the LoRa module for long range communication. LoRaWAN is
a connectivity protocol well suited to sending small payloads
(such as sensor data) over great distances. Compared to rival
wireless data transmission systems, LoRaWAN enables a much
higher communication range with reduced bandwidths and
power consumption.

The RAK11300 microprocessor was utilized in the devel-
opment of iBUG. The RAK11300 WisDuo LPWAN module
is a LoRa-compatible module with a 133MHz processor and
a dual-core Raspberry RP2040 MCU. It can also perform
cutting-edge Al It is a low-cost CPU that supports edge Al
as well as LoRaWan. Along with wifi, we’ve added a BLE
5 module for short-range communication. A GPS module is
already installed on the board (Figure-2(a)). GPS module can
be used to locate the iBUG for remote environmental sensing.
A micro USB cable can be used to power the board, or a
lithium-ion battery can be utilized as a power source. There is

also the possibility of connecting a solar panel to the battery to
charge it. A SD card slot, four I2C and GPIO connectors, and a
backup battery are all found on the back of the iBUG (Figure-
2(b)). The SD card slot can be utilized for both local storage
and backup in the event that the data transfer fails. iBUG uses
12C ports to connect to various peripherals as needed.

The iBUG is a simple to program board. It may be con-
figured to access and gather data from numerous sensors
connected to it using the Arduino IDE. Using various plat-
forms such as TensorFlow Lite or Edge Impulse, collected
data can be utilized to train machine learning models, which
can subsequently be deployed on the board to make inferences
or predictions.

IV. PROPOSED METHOD

The motivation for this work comes from an ongoing
research aimed at resource constrained machine learning prob-
lems [3]. In an effort to establish a large dataset for this
research, the data collection is performed continuously for
several hours a day, over a long period. In the following
sections, a case study has been introduced to highlight an
application of the functionalities provided by iBUG. Indoor
Air Quality (IAQ) describes the interior and exterior air quality
around a building structure. IAQ is affected by gases like
Carbon Monoxide (CO), Carbon Dioxide (C'O;), Volatile
Organic Compound (VOC') etc. VOC' includes any form of
carbon compound excluding CO and C'Os. Since both VOC
and CO, are used to derive IAQ measures, the aim of this
study is to predict CO5 concentration with VOC, in realtime,
by deploying a trained Machine Learning model on the iBUG
processor. The BMEG80 sensor collects Gas Resistance values
which is used as a proxy for VOC.

A. Data Acquisition and Processing

The dataset used was collected using iBUG’s SME4x C'O4
sensor and BME680 Gas Resistance (R) sensor. The COq
concentration (CONC) is measured in Parts Per Million
(PPM), where as the Gas Resistance (R) is measured in Kilo-
Ohms (K (). The data collection experiment was conducted
in a university laboratory, consisting of a single occupant.
The data collection was carried out over a time period of 11
hours and 20 minutes. The sensors read each quantity at a
five-second interval. Figure-3 and 4 shows the CONC' and
R readings over time, from the two settings. As shown in
the two figures, CONC and R have a negative correlation
which is calculated from the collected dataset as -0.76. It is
recommended in the sensor guidelines to run the sensor for 30
minutes in the desired mode before considering any readings.
As shown in the two figures, there is a sharp drop in the
CONC level during the initial data collection step. However,
per the sensor guidelines, the data points of the first 30 minutes
were still discarded.

The dataset D = {&,y}, is a set of feature and target
vectors, where Z = {R} and § = {CONC'?}. The first 80% of
the data was used as the training set, and the remaining 20%
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was used for model testing. The last 20% of the training set
was further separated for validation during training.

B. Model Overview

In this paper, two distinct Deep Learning (DL) architec-
tures were implemented, namely- Artificial Neural Network
(ANN) and Long Short-Term Memory (LSTM) network. The
implemented ANN consists of an input layer, followed by
three hidden layers and an output layer. ANN is feed-forward
in nature, that is the connection between the neurons in
the consecutive layers does not form a cycle. This means
information flows through the network in a single direction.
The second implemented model, LSTMs are a descendant of
Recurrent Neural Networks (RNN) and more details about its
architecture can be found in [13]. In contrast to a feed-forward
network, a standard RNN forms a directed graph amongst
it’s neurons, based on temporal characteristics. Due to this
RNN and its variants, we are able to take into account the
temporal properties of a time series data. RNN consists of
a single Neural Network(NN) layer, whereas LSTM consists
of four NN layers, interacting with each other in a specific
way. In Figure-3, the lines carry input/output vectors, to/from
a node. The vector C;_1-C} represents the cell state. The
LSTM network has the ability to edit information to the cell
state, which is imposed by structures called gates. Gates allow
information to pass depending on the values of particular
operations. A gate consists of a sigmoid neural network (o-
NN) layer and a pointwise multiplication operation. The output
of the o layer is a binary value, where O indicates that
information will not pass and 1 indicates that all information
shall pass. LSTM consists of 3 gates, which it uses to interact
with the cell state, namely- forget gate; input gate; and output
gate.

Depending on the output from time step ¢ — 1, hy—; and
input from time step t, x:, the output gate decides decides



which information to discard from cell state C;_;. The output
gate value is calculated as shown in Equation-1, and fe (0,1).
The terms Wy and by represents the weight and the bias of
the forget gate respectively.

fr = o(Wylhi—1, 2] + by) ey

With the aid of the input gate and a tanh layer, information
is added to the cell state. The input gate generates the output
i; and the tanh layer gives an output in the form of a
candidate state ét. The mathematical calculation is exhibited
in Equation-2 and 3, where i€ (0,1); (W;, b;) and (W, b.) are
the weights and biases of the input gate and the tanh layer
respectively.

iy = o(Wilhe—1, 4] + b;) 2

Cy = tanh(We[hs_1, x) + be) 3)

The new cell state C} is derived by using pointwise addition
and multiplication operations on the gate outputs with the old
cell state, C;_1 and the candidate state C’t. The mathematical
operation is exhibited in Equation-4.

Ci = fiCr1 + i:C, €]

Next, the output h; is calculated. The cell state C; is passed
through a tanh layer and a pointwise multiplication operation
is carried out between the result of the tanh layer and the
output of the output gate, o;. The calculations are shown in
Equation-5 and 6, where W, and b, are the weights and biases
of the output gate. The final output from he LSTM gets passed
to a Dense layer, which ensures that all the predicted outputs
y are mapped to the output layer of the implemented model
properly.

Equation-7 denotes Mean Squared Error (MSE), which is
used as the loss function for both the models. The loss function
is minimized using the training and validation dataset, to find
the optimal set of weights, which in turn indicates the optimal
connection between neurons. In this paper, the RMSprop
optimizer was used to minimize the loss function. RMSprop is
a form of first order stochastic gradient descent optimization
technique. The first order nature indicates that it uses a first
derivative. RMSprop uses an adaptive learning rate, which
means the learning rate changes over time. It achieves this by
normalizing the gradient using a moving average of squared
gradients. This normalization step in turn decreases the step
size for large gradients and increases it for small gradient.

The two models were separately trained offline, using the
same training and validation set. The test set was used to
make offline prediction of C'O5 concentration (CON Cors)
and to calculate the offline model accuracy for each model
architecture. Using tensorflow-lite and the Arduino IDE each
of the trained models were separately deployed inside iBUG.
For each model variant, the realtime or online prediction of
C' O concentration (C’ON Con), along with the corresponding

actual CONC from the CO5 were obtained in order to
calculate online prediction accuracy.

o = c(Wolhi—1, 2] + bo) (5
ht = Ottanh(Ct) (6)
| X
L(w) = N Z(yz — i) (N
i=1

C. Deployment On iBUG

We converted the model using TensorFlow Lite to be
deployed on the RAK11300 microprocessor. First, the model
was converted to a lite version. Then quantization method was
applied to the model to reduce the model size. Quantization
reduces the model size, keeping the performance almost
unchanged. Next, the quantized model was converted to ¢
header file using a Linux command which contains an array
of the prediction model. We used EloquentTinyML, a library,
to reduce some of the boilerplate code of TensorFlow Lite. It
gives a clean and straightforward way to code and deploys in
iBUG using Arduino IDE. Anyone with a bit of knowledge
of ¢ programming should be comfortable with it. Finally, the
model was flashed into the iBUG and tested in a condition
similar to the data collection environment.

V. RESULTS AND DISCUSSION

To test the realtime prediction capability of the deployed
models, the iBUG board was placed in an environment similar
to the one from where the training data was collected. The
BME and SME4x sensors collects the R and CONC' values
at five seconds interval, and the deployed model predicts the
corresponding C'O, concentration in realtime. Figure-5 and
Figure-6 shows the actual versus predicted value of CONC
for the deployed ANN and LSTM model respectively. The
actual and predicted CONC' data are time series in nature
and it lacks any form of formal trend. Therefore, simple
exponential smoothing operation were applied on the collected
and predicted CONC' before generating the plots. From the
figures, it can be observed that the results generated by the
ANN model is better at capturing the trend of the actual
CONC, compared to the one predicted by the LSTM model.
The is assessment of the performance is also supported by the
realtime prediction accuracy of both the models. The ANN
has a realtime prediction accuracy of 74.01%, where as the
LSTM has a realtime prediction accuracy of 69.21%. The
offline prediction accuracy of each model were calculated,
where the ANN model had an accuracy of 85.02%, whereas
LSTM had an accuracy of 84.98%. The accuracy of both
the models are comparable when used for offline prediction.
Although, the offline results of the model out performs it’s
realtime counterpart, it is to be noted that objective of this
experiment was to exhibit the realtime prediction capability
of the iBUG board, with a relatively small dataset. However,
a larger dataset with more variability would allow the model
to be better trained. For this paper, the testing area had a stable



environment with the number of people present varying from
two to six. In the future, further parameter and model tuning
will be performed in order to reap better accuracy when it
comes to realtime prediction.
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An application of the realtime prediction could in it’s current
form could be to detect anomalies. The predictions can be
treated as estimates, where a threshold value can be used to
detect any abrupt changes in the C'O5 concentration. Another
application of this board, is that it can be treated as a go-
to device for both researchers and students so that they can
focus on the primary problem they’re seeking to address.
For example, researchers working in environmental sensing
or remote sensing can use this board to quickly get started
on their project without worrying about integrating all of
the components and sensors needed for data collecting and
real-time decision making. Students will likewise benefit in
the same way. This gives them everything they need in one
package to learn and play with real-time machine learning.
Students are already utilizing it in a graduate course at

the University of New Hampshire called Real-time Machine
Learning (ECE 992), which focuses on machine learning on
embedded devices. Our code will be available as libraries so
that anyone can easily train their model with data where they
want to deploy iBUG. We used ANN and LSTM as example,
but any other deep learning method can be used if necessary.

VI. CONCLUSION

The growth of the Internet of Things (IoT) and intelligent
devices has resulted in a tremendous increase in data pro-
duction. To lower data transfer costs, computation is being
shifted to the periphery. Real-time machine learning on edge
devices has emerged as a powerful tool in this scenario. In this
paper, we demonstrate a real-time machine learning capable
board that may be used for a number of applications, including
environmental sensing. We also included a case study that
shows how machine learning models can be utilized as a
feasible sensor replacement. It will be thrilling to discover
many more use cases and work on increasing performance in
the future.
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