research highlights

Check for
updates

DO0I:10.1145/3422598

» BLeak: Automatically Debugging

Memory Leaks in Web

Applications

By John Vilk and Emery D. Berger

Abstract

Memory leaks in web applications are pervasive and difficult
to debug. Leaks degrade responsiveness by increasing gar-
bage collection costs and can even lead to browser tab
crashes. Previous leak detection approaches designed for
conventional applications are ineffective in the browser
environment. Tracking down leaks currently requires inten-
sive manual effort by web developers, which is often
unsuccessful.

This paper introduces BLEAK (Browser Leak debugger),
the first system for automatically debugging memory leaks
in web applications. BLEAK’s algorithms leverage the obser-
vation that in modern web applications, users often repeat-
edly return to the same (approximate) visual state (e.g., the
inbox view in Gmail). Sustained growth between round trips
is a strong indicator of a memory leak. To use BLEAK, a devel-
oper writes a short script (17-73 LOC on our benchmarks) to
drive a web application in round trips to the same visual
state. BLEAK then automatically generates a list of leaks
found along with their root causes, ranked by return on
investment. Guided by BLEAK, we identify and fix over 50
memory leaks in popular libraries and apps including
Airbnb, Angular]S, Google Analytics, Google Maps SDK, and
JjQuery. BLEAK’s median precision is 100%; fixing the leaks it
identifies reduces heap growth by an average of 94%, saving
from 0.5MB to 8MB per round trip.

1. INTRODUCTION
Browsers are one of the most popular applications on both
smartphones and desktop platforms. They also have an
established reputation for consuming significant amounts
of memory. To address this problem, browser vendors have
spent considerable effort on shrinking their browsers’ mem-
ory footprints™ ' and building tools that track the memory
consumption of specific browser components.**°

Memory leaks in web applications only exacerbate the
situation by further increasing browser memory footprints.
These leaks happen when the application references
unneeded state, preventing the garbage collector from col-
lecting it. Web application memory leaks can take many
forms, including failing to dispose of unneeded event listen-
ers, repeatedly injecting iframes and CSS files, and failing to
call cleanup routines in third-party libraries. Leaks are a
serious concern for developers since they lead to higher gar-
bage collection frequency and overhead. They reduce appli-
cation responsiveness and can even trigger browser tab
crashes by exhausting available memory.

146 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL.63 | NO. 11

Despite the fact that memory leaks in web applications
are a well-known and pervasive problem, there are no effec-
tive automated tools that can find them. The reason is that
existing memory leak detection techniques are ineffective
in the browser: leaks in web applications are fundamentally
different from leaks in traditional C, C++, and Java programs.
Staleness-based techniques assume leaked memory is
rarely touched,> & > 16 but web applications regularly
interact with leaked state (e.g., via event listeners). Growth-
based techniques assume that leaked objects are uniquely
owned or form strongly connected components in the heap
graph.” ' In web applications, leaked objects frequently
have multiple owners, and the entire heap graph is often
strongly connected due to widespread references to the
global scope (window).

Faced with this lack of automated tool support, develop-
ers are currently forced to manually inspect heap snapshots
to locate objects that the application incorrectly retains."®
Unfortunately, these snapshots do not necessarily provide
actionable information (see Section 2.1). They simultane-
ously provide too much information (every object on the
heap) and not enough information to actually debug these
leaks (no connection to the code responsible for leaks). Since
JavaScript is dynamically typed, most objects in snapshots
are labeled as objects or arrays, which provides little assis-
tance in locating leak sources. The result is that even expert
developers are unable to find leaks: for example, a Google
developer closed a Google Maps SDK leak (with 117 stars
and 62 comments) because it was “infeasible” to fix as they
were “not really sure in how many places [it’s] leaking”.!

We address these challenges with BLEAK (Browser Leak
debugger), the first system for automatically debugging
memory leaks in web applications. BLEAK leverages the fol-
lowing fact: over a single session, users repeatedly return to
the same visual state in modern web sites, such as Facebook,
Airbnb, and Gmail. For example, Facebook users repeatedly
return to the news feed, Airbnb users repeatedly return to
the page listing all properties in a given area, and Gmail
users repeatedly return to the inbox view.

We observe that these round trips can be viewed as an

! https://issuetracker.google.com/issues/35821412.

The original version of this paper appeared in the Proceedings
of the 39" ACM SIGPLAN Conference on Programming
Language Design and Implementation (Philadelphia, PA,
USA, June 18-22, 2018), 15-29.

http://dx.doi.org/10.1145/3422598
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3422598&domain=pdf&date_stamp=2020-10-22

oracle to identify leaks. Each time a web application returns
to the same visual state, it should consume approximately
the same amount of memory. Sustained memory growth
across round trips is thus a clear indicator of a memory leak.
BLEAK builds directly on this observation to find memory
leaks in web applications, which (as Section 6 shows) are
widespread and severe.

To use BLEAK, a developer provides a short script (17-73
LOC on our benchmarks) to drive a web application in a
loop that takes round trips through a specific visual state.
BLEAK then proceeds automatically, identifying memory
leaks, ranking them, and locating their root cause in the
source code. BLEAK first uses heap differencing to locate
locations in the heap with sustained growth between each
round trip, which it identifies as leak roots. To directly iden-
tify the root causes of growth, BLEAK employs JavaScript
rewriting to target leak roots and collect stack traces when
they grow. Finally, when presenting the results to the devel-
oper, BLEAK ranks leak roots by return on investment using
a novel metric called LeakShare that prioritizes leaks that
free the most memory with the least effort by dividing the
“credit” for retaining a shared leaked object equally among
the leak roots that retain them. This ranking focuses devel-
oper effort on the most important leaks first.

Guided by BLEAK, we identify and fix over 50 memory
leaks in popular JavaScript libraries and applications
including Airbnb, Angular]S, jQuery, Google Analytics,
and Google Maps SDK. BLEAK has a median precision of
100% (97% on average). Its precise identification of root
causes of leaks makes it relatively straightforward for us
to fix nearly all of the leaks we identify (all but one).
Fixing these leaks reduces heap growth by 94% on aver-
age, saving from 0.5MB to 8MB per return trip to the
same visual state. We have submitted patches for all of
these leaks to the application developers; at the time of
writing, 16 have already been accepted and 4 are in the
process of code review.

This paper makes the following contributions:

« It introduces novel techniques for automatically locat-
ing, diagnosing, and ranking memory leaks in web
applications (Section 3) and presents algorithms for
each (Section 4).

It presents BLEAK, an implementation of these tech-
niques. BLEAK’S analyses drive websites using Chrome
and a proxy that transparently rewrites JavaScript code
to diagnose leaks, letting it operate on unmodified
websites (including over HTTPS) (Section 5).

« Using BLEAK, we identify and fix numerous leaks in
widely used web applications and JavaScript libraries
(Section 6).

2. BACKGROUND

Before presenting BLEAK and its algorithms, we first

describe a representative memory leak we discovered using

BLEAK (see Figure 1) and discuss why prior techniques and

tools fall short when debugging leaks in web applications.
This memory leak is in Firefox’s debugger, which runs as

Figure 1. This code from Firefox’s debugger (truncated for
readability) leaks 0.5MB every time a developer opens a source file
(Section 2). BLeak finds all four leaks automatically.

1 class Preview extends PureComponent {

2 // Runs when Preview is added to GUI

3 componentDidMount () {

4 const { codeMirror } = this.props.editor;

5 const wrapper = codeMirror.getWrapperElement () ;

6 codeMirror.on("scroll", this.onScroll);

7 wrapper.addEventListener ("mouseover", this ._mover) ;
8 wrapper.addEventListener ("mouseup", this. mup) ;

9 wrapper.addEventListener ("mousedown", this. mdown) ;

10 }
1 }

a normal web application in all browsers. Lines 6-9 register
four event listeners on the debugger’s text editor (codeMir -
ror) and its GUI object (wrapper) every time the user views
a source file. The leak occurs because the code fails to
remove the listeners when the view is closed. Each event lis-
tener leaks this, which points to an instance of Preview.

2.1. Leak debugging via heap snapshots

There are currently no automated techniques for identifying
memory leaks in web applications. The current state of the
artis manual processing of heap snapshots. As we show, this
approach does not effectively identify leaking objects or pro-
vide useful diagnostic information, and it thus does little to
help developers locate and fix memory leaks.

The most popular way to manually debug memory leaks
is via the three heap snapshot technique introduced by the
Gmail team.® Developers repeat a task twice on a webpage
and examine still-live objects created from the first run of
the task. The assumption is that each run will clear out most
of the objects created from the previous run and leave
behind only leaking objects; in practice, it does not.

To apply this technique to Firefox’s debugger, the devel-
oper takes a heap snapshot after loading the debugger, a
second snapshot after opening a source file, and a third
snapshot after closing and reopening a source file. Then, the
developer filters the third heap snapshot to focus only on
objects allocated between the first and second.

This filtered view, as shown in Figure 2a, does not
clearly identify a memory leak. Most of these objects are
simply reused from the previous execution of the task and
are not actually leaks, but developers must manually
inspect these objects before they can come to that conclu-
sion. The top item, Array, conflates all arrays in the appli-
cation under one heading because JavaScript is
dynamically typed. Confusingly, the entry (array) just
below it refers to internal V8 arrays, which are not under
the application’s direct control. Developers would be
unlikely to suspect the Preview object, the primary leak,
because it both appears low on the list and has a small
retained size.

Even if a developer identifies a leaking object in a snap-
shot, it remains challenging to diagnose and fix because the
snapshot contains no relation to code. The snapshot only
provides retaining paths in the heap, which are often con-
trolled by a third-party library or the browser itself. As Figure
2b shows, the retaining paths for a leaking Preview object

NOVEMBER 2020 | VOL.63 | NO.11 | COMMUNICATIONS OF THE ACM 147

research highlights

Figure 2. The manual memory leak debugging process: Currently, developers debug leaks by first examining heap snapshots to find leaking
objects (a). Then, they try to use retaining paths to locate the code responsible (b). Unfortunately, these paths have no connection to code,

so developers must search their codebase for identifiers referenced in the paths (see Section 2.1). This process can be time-consuming and
ultimately fruitless. BLeak saves considerable developer effort by automatically detecting and locating the code responsible for memory leaks.

Summary ¥ Class filter

Objects allocated between Snapshot 1 and Snap

Constructor Distance | Objects Count | Shallow Size Retained Size

¥ Preview 6 1 0% 200 0% 489016 0%

Constructor Distance | Objects Count | Shallow Size Retained Size | »Preview @io(6|
» Array 4 3143 0% 100576 0% 31099 584 26 % Retainers
> (array) 4] 6190 0% 24387568 20 % | 24497176 21 % D — Distance: | Shellow.Shza; | Retalnad Stze
» BranchChunk 5 502 0%| 33152 0% 7496720 6% MDLLUED e U S Gl S 5202
> [0] in Array @700847 4 32 0% 64 0%

» LeafChunk 5 2382 0% 114336 0% 7385168 6% »0 in (object elements)[] @285973 5| 32 0% 32 0%
»Line 4 59549 4% | 4287528 4% 6717288 6% »onScroll in Preview @400119 6/ 200 0% 489016 0
» (string) 5 3823 0% 4761800 4% 4761800 4% vthis in system / Context @397635 5 56 0% 56 0

)) vcontext in () @387667 4 72 0% 160 0%
» (sliced string) 5 55931 4%| 2237240 2% 2237240 2% vnative in HTMLDivElement @3624 3 a5 0% s
» Doc 3 1 0% 200 0% 1965840 2% v [97] in Document DOM tree / 2 0 0% 0 0%
» Preview 6 1 0% 200 0% 489016 0% 1 in (Document DOM trees) 1 0 0% 0 0%

(a) A truncated heap snapshot of the Firefox debugger, filtered using the
three snapshot technique. The only relevant item is Preview, which

appears low on the list underneath nonleaking objects.

(b) The retaining paths for Preview, the primary leaking
object in the Firefox debugger. Finding the code
responsible for leaking this object involves searching the
entire production code base for identifiers in the retaining
paths, which are commonly managed by third-party
libraries and obfuscated via minification.

stem from an array and an unidentified DOM object.
Locating the code responsible for a leak using these retain-
ing paths involves grepping through the code for instances
of the identifiers along the path. This task is often further
complicated by two factors: (1) the presence of third-party
libraries, which must be manually inspected; and (2) the
common use of minification, which effectively obfuscates
code and heap paths by reducing most variable names and
some object properties to single letters.

3. BLEAK OVERVIEW

This section presents an overview of the techniques BLEAK
uses to automatically detect, rank, and diagnose memory
leaks. We illustrate these by showing how to use BLEAK to
debug the Firefox memory leak presented in Section 2.

Input script: Developers provide BLEAK with a simple script
that drives a web application in a loop through specific
visual states. A visual state is the resting state of the GUI after
the user takes an action, such as clicking on a link or submit-
ting a form. The developer specifies the loop as an array of
objects, where each object represents a specific visual state,
comprising (1) a check function that checks the precondi-
tions for being in that state, and (2) a transition function
next that interacts with the page to navigate to the next
visual state in the loop. The final visual state in the loop array
transitions back to the first, forming a loop.

Figure 3a presents a loop for the Firefox debugger that
opens and closes a source file in the debugger’s text editor.
The first visual state occurs when there are no tabs open in
the editor (line 8), and the application has loaded the list of
documents in the application it is debugging (line 10); this
is the default state of the debugger when it first loads. Once
the application is in that first visual state, the loop transi-
tions the application to the second visual state by clicking
onmain. js in the list of documents to open it in the text
editor (line 12). The application reaches the second visible
state once the debugger displays the contents of main. js

148 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL.63 | NO.11

(line 18). The loop then closes the tab containingmain. js
(line 24), transitioning back to the first visual state.

Locating leaks: From this point, BLEAK proceeds entirely auto-
matically. BLEAK uses the developer-provided script to drive the
web application in a loop. Because object instances can change
from snapshot to snapshot, BLEAK tracks paths instead of
objects, letting it spot leaks even when a variable or object
property is regularly updated with a new and larger object. For
example,history = history.concat (newItems) over-
writes history with a new and larger array.

During each visit to the first visual state in the loop,
BLEAK takes a heap snapshot and tracks specific paths from
GC roots that are continually growing. BLEAK treats a path
as growing if the object identified by that path gains more
outgoing references (e.g., when an array expands or when
properties are added to an object).

For the Firefox debugger, BLEAK notices four heap paths that
are growing each round trip: (1) an array within the codeMir-
ror object that contains scroll event listeners, and internal
browser event listener lists for (2) mouseover, (3) mouseup,
and (4) mousedown events on the DOM element containing the
text editor. Since these objects continue to grow over multiple
loop iterations (the default setting is eight), BLEAK marks these
items as leak roots as they appear to be growing without bound.

Ranking leaks: BLEAK uses the final heap snapshot and the
list of leak roots to rank leaks by return on investment using a
novel but intuitive metric we call LeakShare (Section 4.3) that
prioritizes memory leaks that free the most memory with the
least effort. LeakShare prunes objects in the graph reachable
by nonleak roots and then splits the credit for remaining
objects equally among the leak roots that retain them. Unlike
retained size (a standard metric used by all existing heap
snapshot tools), which only considers objects uniquely owned
by leak roots, LeakShare correctly distributes the credit for
the leaked Preview objects among the four different leak
roots since they all must be removed to eliminate the leak.

Figure 3. Automatic memory leak debugging with BLeak: The only input developers need to provide to BLeak is a simple script that drives the
target web application in a loop (a). BLEak then runs automatically, producing a ranked list of memory leaks with stack traces pointing to the

code responsible for the leaks (b).

1 exports.loop

2 { // a s Jocu

3 check: function() {

4 const nodes = $('.node');

5 // No doc s are open

6 return $('.source-tab').length === 0 &&

7 // Target doc 1t appears in doc list

8 nodes.length > 1 && nodes[1l].innerText === "main.js";
9 by

15 // Editor displ

16 $('.source-tab'

17 // Tab contains a clos

18 $('.close-btn') .length ===

19 b

20 next: function() { $('.close-btn').click(); }

21 I3

(a) This script runs the Firefox debugger in a loop and is the only
input BLEAK requires to automatically locate memory leaks.
For brevity, we modify the script to use jQuery syntax.

906358432530

Leak Root 1 [LeakShare: 811920]

Leak Paths
* Event listeners for 'mouseover' on window.cm.display.wrapper
Stack Traces Responsible

1. Preview.componentDidMount
http://localhost:8000/assets/build/debugger.js:109352:22
2. http://localhost:8000/assets/build/debugger.js:81721:24
3. measureLifeCyclePerf
http://localhost:8000/assets/build/debugger.js:81531:11
4. http://localhost:8000/assets/build/debugger.js:81720:31
5. CallbackQueue.notifyAll
http://localhost:8000/assets/build/debugger.js:61800:21
6. ReactReconcileTransaction.close
http://localhost:8000/assets/build/debugger.js:83305:25
7. ReactReconcileTransaction.closeAll
http://localhost:8000/assets/build/debugger.js:42268:24

(b) A snippet from BLeak's memory leak report for the Firefox
debugger. BLEAK points directly to the code in Figure 1 responsible
for the memory leak.

Diagnosing leaks: BLEAK next reloads the application and
uses its proxy to transparently rewrite all of the JavaScript
on the page, exposing otherwise-hidden edges in the heap
as object properties. BLEAK uses JavaScript reflection to
instrument identified leak roots to capture stack traces
when they grow and when they are overwritten (not just
where they were allocated). With this instrumentation in
place, BLEAK uses the developer-provided script to run
one final iteration of the loop to collect stack traces. These
stack traces directly zero in on the code responsible for
leak growth.

Output: Finally, BLEAK outputs its diagnostic report: a ranked
list of leak roots (ordered by LeakShare), together with the
heap paths that retain them and stack traces responsible for
their growth. Figure 3b displays a snippet from BLEAK’S out-
put for the Firefox debugger, which points directly to the
code responsible for the memory leak from Figure 1. With
this information in hand, we were able to quickly develop a
fix that removes the event listeners when the user closes the
document. This fix has been incorporated into the latest ver-
sion of the debugger.

4. ALGORITHMS

This section formally describes the operation of BLEAK’s
core algorithms for detecting (Section 4.1), diagnosing
(Section 4.2), and ranking leaks (Section 4.3).

4.1. Memory leak detection

The input to BLEAK’s memory leak detection algorithm is a
set of heap snapshots collected during the same visual state,
and the output is a set of paths from GC roots that are grow-
ing across all snapshots. We call these paths leak roots.
BLEAK considers a path to be growing if the object at that
path has more outgoing references than it did in the previ-
ous snapshot. To make the algorithm tractable, BLEAK only
considers the shortest path to each specific heap item.

Figure 4. ProracATEGROWTH propagates a node’s growth status
(n.growing) between heap snapshots. BLeak considers a path in the
heap to be growing if the node at the path continually increases its
number of outgoing edges.

PROPAGATEGROWTH(G, G)

1 Q = [(G.root,G .root)], G'.root.mark = TRUE
2 for each node n € G'.N

3 n.growing = FALSE

4 while |Q| >0

5 (n,n') = DEQUEUE(Q)

6 E, = GETOUTGOINGEDGES(G, n)

7 E;, = GETOUTGOINGEDGES(G',n")

8 n’.growing = n.growing A |E,| < |E,|

9 for each edge (ni,n2,l) € E,
10 for each edge (n',n5,l') € E),
11 if | == 1’ and nb.mark == FALSE
12 nb.mark = TRUE
13 ENQUEUE((n2, n5))

Each heap snapshot contains a heap graph G = (N, E) with
a set of nodes N that represent items in the heap and edges
E where each edge (n,, n,,) € E represents a reference from
node n, to n, with label /. A label [is a tuple containing the
type and name of the edge. Each edge’s type is either a clo-
sure variable or an object property. An edge’s name corre-
sponds to the name of the closure variable or object
property. For example, the object O = {foo:3} hasanedge e
from O to the number 3 with label [= (property, “f0o”). A path
P is simply a list of edges (e, e,, ..., e) where e, is an edge
from the root node (G.root).?

For the first heap snapshot, BLEAK conservatively marks
every node as growing. For subsequent snapshots, BLEAK runs
PROPAGATEGROWTH (Figure 4) to propagate the growth
flags from the previous snapshot to the new snapshot and
discardstheprevioussnapshot.Online 2, PROPAGATEGROWTH

* For simplicity, we describe heap graphs as having one root.

NOVEMBER 2020 | VOL.63 | NO.11 | COMMUNICATIONS OF THE ACM 149

research highlights

initializes every node in the new graph to not growing to pre-
vent spuriously marking new growth as growing in the next
run of the algorithm. Since the algorithm only considers paths
that are the shortest path to a specific node, it is able to asso-
ciate growth information with the terminal node, which rep-
resents a specific path in the heap.

PROPAGATEGROWTH runs a breadth-first traversal across
shared paths in the two graphs, starting from the root node
that contains the global scope (window) and the DOM. The
algorithm marks a node in the new graph as growing if the
node at the same path in the previous graph is both growing
and has fewer outgoing edges (line 8). As a result, the algo-
rithm will only mark a heap path as a leak root if it consis-
tently grows between every snapshot and if it has been
present since the first snapshot.

PROPAGATEGROWTH only visits paths shared between the
two graphs (line 11). Ata given path, the algorithm considers
an outgoing edge e, in the old graph and e/ in the new graph
as equivalent if they have the same label. In other words, the
edges have to correspond to the same property name on the
object at that path, or a closure variable with the same name
captured by the function at that path.

After propagating growth flags to the final heap snapshot,
BLEAK runs FINDLEAKPATHS (Figure 5) to record growing
paths in the heap. This traversal visits edges in the graph to
capture the shortest path to all unique edges that point to
growing nodes. For example, if a growing object O is located
at window.O and as variable p in the function window.L. z,
FINDLEAKPATHS will report both paths. This property is
important for diagnosing leaks, as we discuss in Section 4.2.

BLEAK takes the output of FINDLEAKPATHS and groups it
by the terminal node of each path. Each group corresponds
to a specific leak root. This set of leak roots forms the input
to the ranking algorithm.

4.2. Diagnosing leaks

Given a list of leak roots and, for each root, a list of heap
paths that point to the root, BLEAK diagnoses leaks through
hooks that run whenever the application performs any of the
following actions:

Figure 5. FinoLEakPATHS, which returns paths through the heap to
leaking nodes. The algorithm encodes each path as a list of edges
formed by tuples (t).

FINDLEAKPATHS(G)

1 Q=1 Ter = {}

2 for each edge e = (n1,n2,l) € G.E where ny == G.root
3 e.mark = TRUE
4 ENQUEUE(Q, (NIL, €))
5 while |Q| >0
6 t = DEQUEUE(Q)
7 (tp,(nhnz,l)) =1t
8 if no.growing == TRUE
9 Tar = Tar U {t}
10 for each edge e = (nf,n5,l') € G.E
11 if n} == no and e.mark == FALSE
12 e.mark = TRUE
13 ENQUEUE(Q, (¢, ¢€))

14 return Tq.-

150 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

« Grows a leak root with a new item. This growth occurs

when the application adds a property to an object, an

element to an array, an event listener to an event target,
or a child node to a DOM node. BLEAK captures a stack
trace and associates it with the new item.

Shrinks a leak root by removing any of the previously-

mentioned items. BLEAK removes any stack traces

associated with the removed items, as the items are no
longer contributing to the leak root’s growth.

* Assigns a new value to a leak root, which typically occurs
when the application copies the state from an old ver-
sion of the leaking object into a new version. BLEAK
removes all previously-collected stack traces for the
leak root, collects a new stack trace, associates it with
all of the items in the new value, and inserts the grow
and shrink hooks into the new value.

BLEAK runs one loop iteration of the application with all
hooks installed. This process generates a list of stack traces
responsible for growing each leak root.

4.3. Leak root ranking
BLEAK uses a new metric to rank leak roots by return on
investment that we call LeakShare. LeakShare prioritizes
memory leaks that free the most memory with the least
effort by dividing the “credit” for retaining a shared leaked
object equally among the leak roots that retain them.
LeakShare first marks all of the items in the heap that are
reachable from nonleaks via a breadth-first traversal that
stops at leak roots. These nodes are ignored by subsequent
traversals. Then, LeakShare performs a breadth-first tra-
versal from each leak root that increments a counter on all
reachable nodes. Once this process is complete, every node
has a counter containing the number of leak roots that can
reach it. Finally, the algorithm calculates the LeakShare of
each leak root by adding up the size of each reachable node
divided by its counter, which splits the “credit” for the node
among all leak roots that can reach it. Our PLDI paper pres-
ents the full algorithm for LeakShare."

5. IMPLEMENTATION

BLEAK consists of three main components that work
together to automatically debug memory leaks (see Figure 6):
(1) a driver program orchestrates the leak debugging pro-
cess; (2) a proxy transparently performs code rewriting on-
the-fly on the target web application; and (3) an agent script
embedded within the application exposes hidden state for
leak detection and growth events for leak diagnosis. We
briefly describe how these components work here; our PLDI
paper provides further details.*

To initiate leak debugging, the BLEAK driver launches
BLEAK’s proxy and the Google Chrome browser with an
empty cache, a fresh user profile, and a configuration that
uses the BLEAK proxy. The driver connects to the browser via
the standard Chrome DevTools Protocol, navigates to the
target web application, and uses the developer-provided
configuration file to drive the application in a loop. During
each repeatvisit to the first visual state in the loop, the driver
takes a heap snapshot via the remote debugging protocol

Figure 6. BLEAk system overview. White items are BLEak components,
gray items are rewritten by the proxy during leak diagnosis, and
black items are unmodified.

Google Chrome

app.config.js
PP o) MITMProxy

Bleak
Proxy

Remote Debugging

Protocol
app.config.js Leak Report.txt

L4
BLeak Driver

and runs PROPAGATEGROWTH (Figure 4) to propagate

growth information between heap snapshots.

At the end of a configurable number of loop iterations (the
default is 8), the driver shifts into diagnostic mode. The driver
runs FINDLEAKPATHS to locate all of the paths to all of the leak
roots (Figure 5), configures the proxy to perform code rewriting
for diagnosis, and reloads the page to pull in the transformed
version of the web application. The driver runs the application
in a single loop iteration before triggering the BLEAK agent
to insert diagnostic hooks that collect stack traces at all of
the paths reported by FINDLEAKPATHS. Then, the driver runs
the application in a final loop before retrieving stack traces
from the agent. Finally, the driver runs LeakShare (Section 4.3)
torank leak roots and generate a memory leak report.

bleak_agent.js

HTTP/
HTTPS Network

6. EVALUATION
We evaluate BLEAK by running it on production web applica-
tions. Our evaluation addresses the following questions:

« Precision: How precise is BLEAK’S memory leak detec-

tion? (Section 6.2)

Accuracy of diagnoses: Does BLEAK accurately locate

the code responsible for memory leaks? (Section 6.2)

« Impact of discovered leaks: How impactful are the
memory leaks that BLEAK finds? (Section 6.3)

« Utility of ranking: Is LeakShare an effective metric for
ranking the severity of memory leaks? (Section 6.4)

Our evaluation finds 59 distinct memory leaks across five
web applications, all of which were unknown to application
developers. Of these, 27 corresponded to known-but-unfixed
memory leaks in JavaScript library dependencies, of which
only 6 were independently diagnosed and had pending fixes.
We reported all 32 new memory leaks to the relevant devel-
opers along with our fixes; 16 are now fixed, and 4 have fixes
in code review. We find new leaks in popular applications
and libraries including Airbnb, Angular JS (1.x), Google
Maps SDK, Google Tag Manager, and Google Analytics.

We run BLEAK on each web application for 8 round trips
through specific visual states to produce a BLEAK leak
report, as shown in Figure 3b. We describe these loops using
only 17-73 LOC. This process takes less than 15 min per

application on our evaluation machine, a MacBook Pro with
a 2.9GHz Intel Core i5 and 16GB of RAM. For each application,
we analyze the reported leaks, write a fix for each true leak,
measure the impact of fixing the leaks, and compare
LeakShare with alternative ranking metrics.

6.1. Applications

Because there is no existing corpus of benchmarks for web
application memory leak detection, we created one. Our
corpus consists of five popular web applications that both
comprise large code bases and whose overall memory
usage appeared to be growing over time. We primarily
focus on open source web applications because it is easier
to develop fixes for the original source code; this repre-
sents the normal use case for developers. We also include
a single closed-source website, Airbnb, to demonstrate
BLEAK’s ability to diagnose websites in production. We
present each web application, highlight a selection of the
libraries they use, and describe the loop of visual states we
use in our evaluation:

Airbnb: A website offering short-term rentals and other ser-
vices, Airbnb uses React, Google Maps SDK, Google
Analytics, the Criteo OneTag Loader, and Google Tag
Manager. BLEAK loops between the pages /s/all, which
lists all services offered on Airbnb, and /s/homes, which
lists only homes and rooms for rent.

Piwik 3.0.2: A widely-used open-source analytics platform;
we run BLEAK on its in-browser dashboard that displays ana-
lytics results. The dashboard primarily uses jQuery and
Angular]S. BLEAK repeatedly visits the main dashboard
page, which displays a grid of widgets.

Loomio 1.8.66: An open-source collaborative platform for
group decision-making. Loomio uses Angular]JS, LokiJS, and
Google Tag Manager. BLEAK runs Loomio in a loop between
agroup page, which lists all of the threads in that group, and
the first thread listed on that page.

Mailpile v1.0.0: An open-source mail client. Mailpile uses
jQuery. BLEAK runs Mailpile’s demo in a loop that visits the
inbox and the first four emails in the inbox.

Firefox Debugger (commit 91f5¢63): An open-source JavaScript
debugger written in React that runs in any web browser. We
run the debugger while it is attached to a Firefox instance
running Mozilla’s SensorWeb. BLEAK runs the debuggerin a
loop that opens and closes SensorWeb’s main.js in the
debugger’s text editor.

6.2. Precision and accuracy
To determine BLEAK’s leak detection precision and the accu-
racy of its diagnoses, we manually check each BLEAK-reported
leak in the final report to confirm (1) that it is growing without
bound and (2) that the stack traces correctly report the code
responsible for the growth. Figure 8 summarizes our results.
BLeak has an average precision of 96.8% and a median
precision of 100% on our evaluation applications. There

NOVEMBER 2020 | VOL.63 | NO.11 | COMMUNICATIONS OF THE AcM 151

research highlights

are only three false positives. All point to an object that
continuously grows until some threshold or timeout
occurs; developers using BLEAK can avoid these false posi-
tives by increasing the number of round trips. Two of the
three false positives are actually the same object located in
the Google Tag Manager JavaScript library.

With one exception, BLeak accurately identifies the code
responsible for all of the true leaks. BLEAK reports stack
traces that directly identify the code responsible for each
leak. In cases where multiple independent source locations
grow the same leak root, BLEAK reports all relevant source
locations. For one specific memory leak, BLEAK fails to
record a stack trace. Guided by BLeak’s leak reports, we were
able to fix every memoryleak. Each memory leak took approx-
imately 15 min to fix.

6.3. Leak impact

To determine the impact of the memory leaks that BLEAK
reports, we measure each application’s live heap size over
10 loop iterations with and without our fixes. We use
BLEAK’s HTTP/HTTPS proxy to directly inject memory leak
fixes into the application, which lets us test fixes on closed-
source websites like Airbnb. We run each application
except Airbnb 5 times in each configuration (we run Airbnb
only once per configuration for reasons discussed in
Section 6.4).

To calculate the leaks’ combined impact on overall heap
growth, we calculate the average live heap growth between
loop iterations with and without the fixes in place and take
the difference (Growth Reduction). For this metric, we ignore
the first five loop iterations because these are noisy due to
application startup. Figures 7 and 8 present the results.

On average, fixing the memory leaks that BLeak reports
eliminates over 93% of all heap growth on our benchmarks
(median: 98.2%). These results suggest that BLEAK does not
miss any significantly impactful leaks.

6.4. LeakShare effectiveness

We compare LeakShare against two alternative ranking met-
rics: retained size and transitive closure size. Retained size
corresponds to the amount of memory the garbage collector
would reclaim if the leak root were removed from the heap
graph and is the metric that standard heap snapshot viewers
display to the developer. The transitive closure size of a leak
root is the size of all objects reachable from the leak root as
used by Xu et al.*® Since JavaScript heaps are highly con-
nected and frequently contain references to the global scope,
we expect this metric to report similar values for most leaks.

We measure the effectiveness of each ranking metric by
calculating the growth reduction (as in Section 6.3) over the
application with no fixes after fixing each memory leak in
ranked order. We then calculate the quartiles of this data,
indicating how much heap growth is eliminated after fixing
the top 25%, 50%, and 75% of memory leaks reported ranked
by a given metric. We sought to write patches for each evalu-
ation application that fix a single leak root at a time, but this
is not feasible in all cases; some leaks share the same root
cause. In these cases, we apply the patch during a ranking
for the first relevant leak root reported.

We run each application except Airbnb for ten loop iter-
ations over five runs for each unique combination of met-
ric and number of top-ranked leak roots to fix. We avoid
running duplicate configurations when multiple metrics

report the same ranking. Airbnb is challenging to evaluate

Figure 7. Impact of fixing memory leaks found with BLeak: Graphs display live heap size over round trips; error bars indicate the 95%
confidence interval. Fixing the reported leaks eliminates an average of 93% of all heap growth.

Leaks Fixed — AlL---* None
g Airbnb Firefox Debugger Loomio Mailpile Piwik
S B0-eememeet —+—4 i e
Q goemmtT . 90- =g 40 I_l__|.-|' 15 -y i 90-
o 40 60~ o 10- oo 60~
g 20- 20- I
i.‘j 20 30- 5- 30- a2
(8] 0- ' ' ' '] 0- ' ' ' ' ' 0- ' ' ' ' ' 0- ' 1 1 0 1 0- 1 1 1 0 1
5 00 25 50 75 100 00 25 50 75100 00 25 50 75100 00 25 50 75100 00 25 50 75 100

Round Trips

Figure 8. BLeak precisely finds impactful memory leaks: On average, BLeak finds these leaks with over 95% precision, and fixing them

eliminates over 90% of all heap growth.

Program Loop LOC Leak Roots False Positives Distinct Leaks Precision Growth Reduction
Airbnb 17 32 2 32 94% 1.04 MB (81.0%)
Piwik 32 17 0 11 100% 8.14 MB (99.3%)
Loomio 73 10 1 9 90% 2.83 MB (98.3%)
Mailpile 37 4 0 3 100% 0.80 MB (91.8%)
Firefox Debugger 17 4 0 4 100% 0.47 MB (98.2%)
Total / mean: 35 67 3 59 96.8% 2.66 MB (93.7%)

152 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO.11

Figure 9. Performance of ranking metrics: Growth reduction by metric
after fixing quartiles of top-ranked leaks. Bold indicates greatest reduction
(+1%). We omit Firefox; it has only four leaks, which must all be fixed (see

Section 2). LeakShare generally outperforms or matches other metrics.

Growth Reduction for Top Leaks Fixed

Program Metric 25% 50% 75%
LeakShare oK 111K 462K
Airbnb Retained Size oK 0K 105K
Trans. Closure Size 0K 196K 393K
LeakShare oK 1083K 2878K
Loomio Retained Size 64K 186K 2898K
Trans. Closure Size 59K 67K 2398K
LeakShare 613K 817K 820K
Mailpile Retained Size 613K 817K 820K
Trans. Closure Size 0K OK 201K
LeakShare 8003K 8104K 8306K
Piwik Retained Size 2073K 7969K 8235K
Trans. Closure Size 103K 110K 374K

because it has 30 leak roots, randomly performs A/B tests
between runs, and periodically updates its minified code-
base in ways that break our memory leak fixes. As a result,
we were only able to gather one run of data for Airbnb for
each unique configuration. Figure 9 displays the results.
In most cases, LeakShare outperforms or ties the other met-
rics. LeakShare initially is outperformed by other metrics on
Airbnb and Loomio because it prioritizes leak roots that share
significant state with other leak roots. Retained size always pri-
oritizes leak roots that uniquely own the most state, which pro-
vide the most growth reduction in the short term. LeakShare
eventually surpasses the other metrics on these two applica-
tions as it fixes the final leak roots holding on to shared state.

7. RELATED WORK

Web application memory leak detectors: BLEAK automatically
debugs memory leaks in web applications; past work in this
space is ineffective or not sufficiently general. LeakSpot locates
allocation and reference sites that produce and retain increasing
numbers of objects over time and uses staleness as a heuristic to
refine its output.* On real applications, LeakSpot typically
reports over 50 different allocation and reference sites that develop-
ers must manually inspect to identify and diagnose memory
leaks. JSWhiz statically analyzes code written with Google
Closure type annotations to detect specific leak patterns.*

Web application memory debugging: Some tools help web
developers debug memory usage and present diagnostic
information that developers must manually interpret to
locate leaks (Section 2 describes Google Chrome’s DevTools).
MemlInsight summarizes and displays information about the
JavaScript heap, including per-object-type staleness informa-
tion, the allocation site of objects, and retaining paths in the
heap.” Unlike BLEAK, these tools do not directly identify
memory as leaking or identify the code responsible for leaks.

Growth-based memory leak detection: LeakBot looks for
patterns in the heap graphs of Java applications to find

memory leaks.’ LeakBot assumes that leak roots own all of
their leaking objects, but leaked objects in web applica-
tions frequently have multiple owners. BLEAK does not rely
on specific patterns and uses round trips to the same visual
state to identify leaking objects.

Staleness-based memory leak detection: SWAT (C/C++),
Sleigh (JVM), and Hound (C/C++) find leaking objects using a
staleness metric derived from the last time an object was
accessed and identify the call site responsible for allocating
them.®> ' Leakpoint (C/C++) also identifies the last point in
the execution that referenced a leaking memory location.?* Xu
et al. identify leaks stemming from Java collections using a
hybrid approach that targets containers that grow in size over
time and contain stale items. As we discuss in our PLDI
paper, staleness is ineffective for at least 77% of the memory
leaks BLEAK identifies.*

8. CONCLUSION

This paper presents BLEAK, the first effective system for debugging
client-side memory leaks in web applications. We show that BLEAK
has high precision and finds numerous previously-unknown
memory leaks in web applications and libraries. BLeak is open
source and is available for download at http://bleak-detector.org/.

Acknowledgments

John Vilk was supported by a Facebook PhD Fellowship. This
material is based upon work supported by the National Science
Foundation under Grant No. 1637536. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

vTfYdiLkdGaR9OhXRNOLICEmu2s.
Mitchell, N., Sevitsky, G. LeakBot: An
automated and lightweight tool for
diagnosing memory leaks in large
Java applications. In ECOOP, 2003,
351-377.

Mozilla. about: memory, 2017. https://
developer.mozilla.org/en-US/docs/
Mozilla/Performance/about:memory.
Nguyen, N. The best firefox ever, 2017.
https://blog.mozilla.org/
blog/2017/06/13/faster-better-firefox/.
Novark, G., Berger, E.D., Zorn, B.G.
Efficiently and precisely locating
memory leaks and bloat. In PLDI,
ACM, Dublin, Ireland, 2009, 397-407.
Pienaar, J.A., Hundt, R. JSWhiz: Static
analysis for JavaScript memory leaks.
In CGO, IEEE Computer Society,
Shenzhen, China, 2013, 11:1-11:11.

References

1. Basques, K. Fix memory problems, 2017. 9.
https://developers.google.com/web/tools/
chrome-devtools/memory-problems/.

2. Bond,MD, McKinley, K.S. Bell: Bit-encoding
online memory leak detection. In
ASPLOS, ACM, San Jose, CA,2006,61-72. 10.

3. Clause, J.A, Orso, A. LEAKPOINT:
Pinpointing the causes of memory
leaks. In ICSE, ACM, Cape Town, 1L
South Africa, 2010, 515-524.

4. Google. Speed up google chrome,

2017. https://support.google.com/ 12.
chrome/answer/1385029.

5. Hara, K. Oilpan: GC for blink, 2013.
https://docs.google.com/presentation/
d/1YtfurcyKFSOhxPOnC3UBJJroM8a 13.
RP48Yf0QWznZ9jrk.

6. Hauswirth, M., Chilimbi, TM.

Low-overhead memory leak detection

using adaptive statistical profiling. In 14. Rudafshani, M., Ward, P.A.S. Leakspot:
ASPLOS, ACM, Boston, MA, 2004, Detection and diagnosis of memory
156-164. leaks in javascript applications. Softw.

7. Jensen, S.H,, Sridharan, M, Sen, K., Pract. Exp. 1, 47 (2017), 97-123.
Chandra, S. MemInsight: Platform- 15. Vilk, J., Berger, E.D. BLeak:

independent memory debugging for
JavaScript. In FSE, ACM, Bergamo,
Ttaly, 2015, 345-356.

8. Lee, L., Hundt, R. BloatBusters: 16.
Eliminating memory leaks in Gmail,
2012. https://docs.google.com/
presentation/d/IwUVmf78gG-ra5a0Ox

Automatically debugging memory
leaks in web applications. In PLDI,
ACM, Philadelphia, PA, 2018, 15-29.
Xu, G.H., Rountev, A. Precise memory
leak detection for Java software
using container profiling. TOSEM 3, 22
(2013):17:1-17:28.

John Vilk and Emery D. Berger ({jvilk, emery}@cs.umass.edu), College of Information
and Computer Sciences, University of Massachusetts Amherst.

Copyright held by authors/owners. Publication rights licensed to ACM.

NOVEMBER 2020 | VOL.63 | NO.11 | COMMUNICATIONS OF THE AcM 153

