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Modeling the tunable thermal conductivity of
intercalated layered materials with three-
directional anisotropic phonon dispersion and
relaxation times†

Chengjie Wang, ab Maogang He,a Xiangyang Liua and Jonathan A. Malen*bc

An analytical model using three-directional anisotropic (TDA) dispersion and a novel anisotropic

relaxation time (RT) relation for modeling the thermal conductivity (k) of intercalated layered materials is

developed. The TDA dispersion eliminates the restriction of in-plane isotropy and is suitable for TDA

materials such as black phosphorous. We compare calculations of k of bulk intercalated layered

materials using the isotropic Debye dispersion and BvK dispersion with our TDA dispersion model, paired

with both isotropic and anisotropic RTs. We find that calculated k values by the TDA dispersion model

agree best with the experimental data. Furthermore, anisotropic RTs largely improve the performance of

the Debye and BvK dispersion models whose average relative deviations for the in-plane k are reduced

from 17.3% and 23.0% to 4.4% and 8.5%, respectively. Finally, thermal conductivity accumulation

functions of intercalated MoS2 and graphite are numerically calculated based on the TDA dispersion with

anisotropic RTs. These models predict that intercalants cause increased contributions from phonons

with shorter mean free paths, especially for in-plane thermal conductivity.

Introduction
Layered materials such as graphite, black phosphorus and
transition-metal dichalcogenides (TMDs) comprise atomic
layers with strong intra-layer covalent bonds stacked together
by weak van der Waals (vdW) bonds.1–4 The layered structure of
these materials generates unique electronic, optical and ther-
mal properties that are of great significance to energy storage,
thermoelectric (TE) and optoelectronic devices.5–8 Thermal
conductivity is an important consideration in the design of
these devices. For heat dissipation it should be maximized, but
in TE devices its reduction enhances the thermoelectric figure
of merit (ZT).9–11

Intercalation introduces guest ions or atoms into the vdW
gaps of layered materials.12 As a consequence, structural and
compositional disorder between layers are induced, which can
effectively tune the thermal conductivity of host materials
and optimize the TE efficiency.3 For example, the thermal

conductivities of black phosphorus (black P) along the cross-
plane, zigzag (ZZ) and armchair (AC) directions have been
reduced by intercalating low-concentration Li+ ions into the
vdW gaps.13 Liu et al. simultaneously reduced the thermal
conductivity and enhanced the electrical transport properties
of polycrystalline SnSe2 through intercalation of Ag+ ions, and
achieved a peak ZT at 789 K along the cross-plane direction,
which is 1.6 times larger than that of the original material.14

The tunability of thermal conductivity of intercalated
layered materials has been previously studied by experiments
and simulations.1,3 An analytical model that offers insight into
phonon transport and guides the tunability of thermal conduc-
tivity with intercalants is needed. Only Kang et al. analytically
calculated the thermal conductivity of intercalated black P by the
Callaway model15 in which the Debye dispersion and relaxation
time (RT) approximation to the Boltzmann transport equation16

are used.13 Although their calculated thermal conductivity agrees
well with the experimental data at low intercalant concentra-
tions, the Callaway model is based on the isotropic assumption
despite the anisotropic thermal conductivity of layered materi-
als. Despite Kang et al.’s meaningful work on black P, our
extension of their model to evaluate the thermal conductivity
of other intercalated layered materials such as MoS2 and gra-
phite, does not compare favorably with experiments.

In this work, we aim to improve upon two aspects of the
Callaway model for intercalated layered materials. Firstly, the
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original Callaway model assumes isotropic dispersion which we
herein replace with an anisotropic dispersion. Chen et al.
proposed an anisotropic Debye dispersion by considering the
first Brillouin zone (FBZ) boundary and the isoenergy surface as
ellipsoids, by which the interfacial thermal conductance
between graphite and metals, and minimum thermal conduc-
tivity of WSe2 were successfully studied.17,18 However, this
dispersion model assumes that the in-plane phonon dispersion
is isotropic which is incompatible for materials such as black P
that exhibit three-directional anisotropy. Here we generalize the
anisotropic Debye dispersion to accommodate three-direction
anisotropy (i.e., the TDA dispersion model). Second, the origi-
nal RT does not consider the effect of intercalants on the
atomic volume of the host materials, and we herein develop
an anisotropic RT based on a virtual unit cell.19 By combining
our anisotropic RT and TDA dispersion model, we calculate the
anisotropic thermal conductivity of intercalated layered materi-
als such as MoS2, graphite, black P, TiS2 and SnSe2. For
comparison, the original and anisotropic RT are also combined
with the Debye and BvK dispersion models.20,21 Finally, we
numerically calculate the anisotropic thermal conductivity
accumulation function based on our TDA dispersion model
for two typical intercalated layered materials (i.e. MoS2 and
graphite).

Analytical models
Callaway and BvKS models for thermal conductivity

There have been quite a few analytical models22–26 for thermal
conductivity, among which the Callaway13 and BvKS
models20,21 are particularly classic. The Callaway model13 is
based on the Debye dispersion o = vsq where vs is the sound
speed and q is the wave vector. It calculates thermal
conductivity as

k ¼ kB
2p2vs

kB
!h

! "3

T3

ðyD=T

0

X4eX

eX " 1ð Þ2
tdX (1)

where T, kB, yD, and !h are the temperature, Boltzmann constant,
Debye temperature, and reduced Planck constant, respectively.
The combined phonon relaxation time (RT), t, will be explained

later. The dimensionless parameter X is defined as !ho/(kBT)
where o is the phonon frequency.

The BvKS model uses the Born–von Karman (BvK)
dispersion20,21

o ¼ om sin
p
2

q

qm

! "
(2)

where qm is the cutoff wave vector based on the number density
of primitive unit cells (Np) qm = (6p2Np)1/3 and om is the

maximum frequency om ¼
2

p
vs 6p2Np

$ %1=3.20,21 It calculates ther-

mal conductivity as

k ¼ 1

3

X

p

kB2Tqmom

!hp3

ðym=T

0
arcsin

TX

ym

! "& '2

%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1" TX

ym

! "2
s

X2eX

eX " 1ð Þ2
tdX

(3)

where subscript p indexes the polarization of phonons and ym

is defined as !hom/kB.

The three-directional anisotropic dispersion model

The original anisotropic Debye model17 expresses thermal
conductivity as an integral over frequency

ks ¼
X

p

ð

o
!hoGs oð Þ@fBE

@T
tdo (4)

where subscript s means different directions in reciprocal
space, Gs is the density of states weighted by the square of
the s-direction projected velocity (referred to as the v2DOS),
which is defined in ref. 17 as

Gs oð Þ ¼
1

8p2

ðð

So

vg & ŝ
$ %2

vg
)) )) dSo (5)

where vg is the group velocity (vector), ŝ is the unit vector in
s direction, dSo is an elemental area on an isoenergy surface
within the FBZ (see Fig. 1). In what follows we have assumed a
truncated linear dispersion relationship to evaluate Gs, but
more accurate and complex representations of the dispersion
(e.g. polynomial or trigonometric) could be used with this

Fig. 1 The relationship between the isoenergy surface and effective FBZ for three frequency regimes. Case 1, o o oc, all of the states on the isoenergy
surface are allowed; Case 2, oc o o o ob, orange shading on the isoenergy surface is the allowed states; Case 3, ob o o o oa, orange shading on the
isoenergy surface is the allowed states.
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formalism by evaluating Gs from eqn (5), which is discussed in
Section B of the ESI.†

The original anisotropic Debye model assumes isoenergy

surface o2 = vab
2qab

2 + vc
2qc

2 and FBZ
qab2

qab;m2
þ qc2

qc;m2
¼ 1 are

ellipsoidal, where vab and vc are the sound speeds, qab and qc are
the wave vectors, and qab,m and qc,m are the cutoff wave vectors
along the ab and c directions. In ref. 17 the in-plane a and b
directions are equivalent, but we instead use a more general
expression to produce a three-directional anisotropic model.
Furthermore, Li et al. pointed out that the phonon dispersion
in ref. 17 was linear and failed to capture the real group

velocities of the phonons near the FBZ boundary.9 We apply a
truncated dispersion for longitudinal acoustic (LA) and trans-
verse acoustic (TA) branches just as Li et al.9 did, which sets the
phonon group velocity to the sound speed except near the FBZ
boundaries where it is zero. For the flexural (ZA) branch we do
not use a piecewise group velocity for simplicity.9

With the above assumptions, equations describing the iso-
energy surface and FBZ in our model are

o2 = va
2qa

2 + vb
2qb

2 + vc
2qc

2 (6)

qa
2

qa;eff 2
þ qb

2

qb;eff 2
þ qc

2

qc;eff 2
¼ 1 (7)

where qa,eff, qb,eff and qc,eff are the effective cutoff wave vectors
along the a, b and c directions, satisfying oa = vaqa,eff,

ob = vbqb,eff and oc = vcqc,eff where oa, ob and oc are cutoff
frequency. We define an effective FBZ within which phonons
have nonzero group velocity,9 so qa,eff, qb,eff and qc,eff represent the
boundary of the effective FBZ. If we assume oa 4 ob 4 oc, the
area of the isoenergy surface So within effective FBZ is defined by
three cases that correspond to the conditions case 1: oo oc, case
2: oc o oo ob and case 3: ob o oo oa as shown in Fig. 1. The
shading area indicates the allowed phonon states in the
effective FBZ.

Integrating Gs(o) in eqn (5) over the shaded isoenergy sur-
face for three cases, we get expressions for Gs(o) in the a, b and
c directions

Ga(o), Gb(o) and Gc(o) in the case 1 is the same as that in the
ref. 17, but they are different for the other two cases. eqn (8)–
(10) are derived under the premise that oa 4 ob 4 oc, Ga(o),
Gb(o) and Gc(o) for the other situation (oa 4 oc 4 ob) are
similar. Substituting eqn (8)–(10) into eqn (4), the thermal
conductivity along the three directions can be calculated. The
detailed derivation of this TDA dispersion model is detailed in
Section A of the ESI.† Notably, our TDA dispersion model
reduces to the anisotropic Debye model17 when the in-plane
dispersion is isotropic and linear.

In the calculation by this model, we follow Chen et al.17 and
Li et al.9 to decompose the longitudinal acoustic (LA) and
transverse acoustic (TA) branches into TL1 and TL2 branches
for black P based on the continuum elasticity theory.27 Then we

GaðoÞ ¼

vao2

6p2vbvc
; 0 ( oooc

vaoco
4p2vbvc

ob
2 " o2

ob
2 " oc

2

& '1
2

" vaoc
3

12p2vbvco
ob

2 " o2

ob
2 " oc

2

& '3
2

; oc ( ooob

vao2

6p2vbvc
" vaoD;a

3

6p2vbvco
ob

2 " o2

ob
2 " oa

2

& '32
; ob ( o ( oa

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(8)
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evaluate the anisotropic thermal conductivity of pure graphite
and black P and compare the result to the experimental data by
Sun et al.2 and Nihira et al.,28 and first-principle (1stP) calcula-
tion by Zhu et al.29 and Jain et al.30 Fig. 2 shows that the result
of our model matches well with the experimental thermal
conductivity for graphite and black P, indicating the validity
our TDA model.

Relaxation time relations

The effective relaxation time t is contributed by impurity
scattering ti, anharmonic (Umklapp) phonon scattering tU,
and boundary scattering tb, following the Matthiessen rule15

t"1 ¼ ti"1 þ tU"1 þ tb"1

¼ Ao4 þ Po2T exp "CU

T

! "
þ v

L
(11)

where L is the distance between boundaries and A, P and CU are
numerical coefficients. As the calculation is only performed at
T = 300 K, we use one parameter B to represent PTexp("CU/T).
For bulk materials at room temperature where L is large, tb

"1 is
much smaller than ti

"1 and tU
"1 and can be neglected. We have

compared the relaxation times of pure MoS2 and graphite in the
in-plane direction using eqn (11) with published results from
first-principles calculations31,32 in Section E of the ESI.† Mod-
ifications to eqn (11) allow us to model intercalated materials.
The impurity scattering coefficient A (A = 0 for pure materials)
can be further expressed as two terms to describe mass disorder

and lattice disorder contributing to impurity scattering19,33,34

A ¼ V

4pvs3
X

i

fi 1" Mi

Mavg

! "2

þ e
X

i

fi 1" ri
ravg

! "2
" #

(12)

where V is the atomic volume, fi, Mi and ri are the mole fraction,
atomic mass and atomic radius of component i in the lattice,
Mavg is the average atomic mass of all the components and ravg

is the average atomic radius. To describe lattice disorder, the
phenomenological adjustable parameter, e, is introduced and
can be determined by experimental fitting. There is no lattice
disorder when e = 0, and e is constrained to be larger than 0.
Klemens built a formalism that can be used to relate e to the
Gruneisen parameter for cubic crystal structures, but its calcu-
lations with our model of layered materials deviated signifi-
cantly from the experimental results.16

The atomic volume V in the mass disorder term in eqn (12)
was originally defined as the Vu/n (where Vu is the volume of the
unit cell and n is the number of atoms in the unit cell)16 for
elemental crystals. In order to get V of a semiconductor alloy,
Abeles used the virtual crystal approach and computed V by V =
d3 = (Sfidi)

3 (where fi and di are the concentration and cube root
of the atomic volume of component i of the alloy respectively).19

In order to consider the effect of the intercalants on the
structure of the host lattice, we attempt to apply Abeles’s
approach to the intercalated layered materials and regard the
host atoms and intercalants as two components in the lattice,
just like two phases in the alloy. We define the cube root of the
atomic volume of the intercalated materials as the atomic
distance d, so that V = d3 and d is expressed as

d = fgdg + fhdh (13)

where the subscripts g and h signify guest (intercalants) and
host atoms. For the anisotropic materials in this paper, the
atomic distance dh along different directions varies, and is
related to the lattice constants (a0, b0, and c0). By assuming
the atoms distribute randomly in the unit cell, dh along the a, b
and c directions are a0=

ffiffiffi
n3
p

, b0=
ffiffiffi
n3
p

and c0=
ffiffiffi
n3
p

. If the material is
in-plane isotropic such as graphite, dh should be

ffiffiffiffiffiffiffi
Sab

p * ffiffiffi
n3
p

(
ffiffiffiffiffiffiffi
Sab

p
is the in-plane area of the unit cell) along the in-plane

direction and c0=
ffiffiffi
n3
p

along the cross-plane direction. Substitut-
ing dh into the eqn (13), the effective atomic volume Veff along
the in-plane and cross-plane directions can be obtained. We
further refer to the relaxation time defined by eqn (11)–(13)
with this Veff as the directionally dependent relaxation time
(anisotropic RT).

Results and discussion
Calculation of the thermal conductivities of intercalated
layered materials

Intercalants have been experimentally added to several layered
materials,1,3,5,13,14,35–45 most of which exhibit reduced thermal
conductivity with some important exceptions. Pawula et al.
reported that intercalated Fe atoms enhance the cross-plane
thermal conductivity of TiS2 slightly because Fe may create

Fig. 2 Calculated thermal conductivity using our TDA dispersion model
for black P and graphite, compared to the experimental data of black P by
Sun et al.2 and that of graphite by Nihira et al.,28 in which the 1stP
calculations for black P by Zhu et al.,29 and phosphorene by Jain et al.30

are also shown.
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phonon conduction paths instead of phonon scattering sources
in the lattice.44 Zhu et al. showed that the thermal conductivity
of LixMoS2 decreases at small concentrations but increases with
greater concentrations of intercalated Li atoms.3 This increased
thermal conductivity is attributed to a phase transition that
occurs with high Li concentration. Since our model describes
the intercalated thermal conductivity reductions through
increased phonon scattering, we will not choose these excep-
tions as test cases. The following data were considered here:
anisotropic thermal conductivity data of LixMoS2 (synthetized
by electrochemical intercalation, measured by time-domain
thermoreflectance (TDTR)),3 LixP (black phosphorus, synthe-
tized by electrochemical intercalation, measured by TDTR),13

LixC (graphite, molecular dynamics simulation),5 WSe2(1"x)Te2x

(layered-material alloy with disorder which is similar to the
intercalated material, synthesized by chemical vapor transport,
measured by TDTR),46 CuxTiS2 (synthetized by melting com-
bined with spark plasma sintering, measured by laser flash
system)35 and SnSe2Clx (synthetized by melting-quenching
combined with spark plasma sintering, measured by laser
flash).36 For CuxTiS2 and SnSe2Clx, only the cross-plane thermal
conductivity data are available.

We compare the thermal conductivities of the selected materi-
als at T = 300 K using the Debye, BvK and TDA dispersion models

in Fig. 3 (in-plane) and Fig. 4 (cross-plane), in which both the
original and anisotropic RT are considered. The optimized fitting
parameters and input parameters in the calculation are listed in
Table 1 and Table S1 in Section D of the ESI,† respectively. Fig. 3
shows that the TDA dispersion model agrees best with the
experimental data whether the original or anisotropic RT is used.
With the original RT, Debye and BvK dispersion models under-
estimate the in-plane thermal conductivities of MoS2, black P and
graphite, attributed to the large impurity scattering coefficient A
in the calculation, which is reflected by the fact that the fitting
parameter eab is zero as shown in Table 1. However, this under-
estimation is improved by our anisotropic RT which decrease A
along the in-plane direction because Veff along this direction is
smaller than the original V. The calculated cross-plane thermal
conductivities by three thermal conductivity models are all in a
good agreement with the experimental data as shown in Fig. 4.

A parity plot of the experimental and calculated thermal
conductivities using original and anisotropic RT are displayed
in Fig. 5. It shows that our anisotropic RT enhances the
accuracy of the Debye and BvK dispersion models when mod-
eling the in-plane thermal conductivities of MoS2, BP and
graphite. In order to quantify the improvement comprehen-
sively with the anisotropic RT, the average relative deviations
(ARDs) and root mean square errors (RMSEs) between the

Fig. 3 Calculated in-plane thermal conductivity of (a) MoS2, (b) graphite, (c) BP and (d) WSe2(1"x)Te2x by Debye, BvK and TDA dispersion models
combined with the original and anisotropic RT at different intercalant concentrations x, compared to the experimental data (square) of MoS2 by
Zhu et al.,3 graphite by Wei et al.,5 black P by Kang et al.13 and WSe2(1"x)S2x by Qian et al.,46 in which ART represents anisotropic RT. For black P, square and
triangle represent the thermal conductivity along armchair (AC) and zigzag (ZZ) directions, respectively.
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experimental and calculated thermal conductivity are obtained
in Table 2, whose equations are

ARD ¼ 1

N

XN

i¼1
ki;cal " ki;exp
++ ++*ki;exp
$ %

(14)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ki;cal " ki;exp
$ %2

vuut (15)

where N is the number of thermal conductivity data, kexp and
kcal are the experimental and calculated thermal conductivity.
ARD is a relative parameter and RMSE is an absolute one. With the
anisotropic RT, the ARDs for the in-plane thermal conductivity by
Debye and BvK dispersion models decrease from 17.3% and 23.0%
to 4.4% and 8.5%, respectively and the RMSEs using these two
models decrease from 103.8 W m"1 K"1 and 108.9 W m"1 K"1 to
16.7 W m"1 K"1 and 17.4 W m"1 K"1. The high accuracy of the
TDA dispersion model is not improved. For the cross-plane

Fig. 4 Calculated cross-plane thermal conductivity of intercalated (a) MoS2, (b) graphite, (c) black P, (d) WSe2(1"x)Te2x, (e) TiS2 and (f) SnSe2 by Debye,
BvK and TDA dispersion models combined with the original and anisotropic RT at different intercalant concentrations x, compared to the experimental
data (diamond) of MoS2 by Zhu et al.,3 graphite by Wei et al.,5 black P by Kang et al.,13 WSe2(1"x)S2x by Qian et al.,46 TiS2 by Guilmeau et al.35 and SnSe2 by
Shu et al.,36 in which ART represents anisotropic RT.
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thermal conductivity, ARDs and RMSEs for three dispersion
models using anisotropic RT (7.3% and 0.2 W m"1 K"1) are almost
the same as that using original RT (7.2% and 0.2 W m"1 K"1).

It is worth noting that the thermal conductivity of black P
along the ZZ and AC directions calculated by Callaway model

(Debye dispersion + original RT) in our paper differs from that
in ref. 13 as the black line shows in Fig. 3. Kang et al.13 used Vu

to calculate A in eqn (12), but we used V like Klemens,16

Abeles,19 Zhou et al.33 and Yang et al.34 Kang et al. does not
provide the input parameters used in their calculations,13 so we

Table 1 Fitting parameters for LixMoS2, LixP (black phosphorus), LixC (graphite), WSe2(1"x)Te2x, CuxTiS2 and SnSe2"xClx in the calculation by Debye, BvK
and TDA dispersion models combined with the original and anisotropic RT, respectively

Material Dispersion model RT Bab (10"16 s) Bc (10"15 s) eab ec

LixMoS2 Debye Original 0.48 1.43 0 347
Anisotropic 0.48 1.43 0 20

BvK Original 0.50 0.61 0 857
Anisotropic 0.50 0.61 0 61

TDA Original 0.67 0.96 4 106
Anisotropic 0.67 0.96 11 6

LixC Debye Original 0.028 0.45 0 19
Anisotropic 0.028 0.45 0 2

BvK Original 0.025 0.32 0 24
Anisotropic 0.025 0.32 0 3

TDA Original 0.070 0.143 0.8 2.9
Anisotropic 0.070 0.143 1.3 0.3

LixP Debye Original 0.42(ZZ), 1.59(AC) 0.51 0 8
Anisotropic 0.42(ZZ), 1.59(AC) 0.51 0 0

BvK Original 0.61(ZZ), 1.92(AC) 0.81 0 3
Anisotropic 0.61(ZZ), 1.92(AC) 0.81 0 0

TDA Original 1.36(ZZ), 1.05(AC) 1.39 0 28
Anisotropic 1.36(ZZ), 1.05(AC) 1.39 3(ZZ) 0(AC) 3

WSe2(1"x)Te2x Debye Original 2.20 0.81 32 556
Anisotropic 2.20 0.81 156 22

BvK Original 1.26 0.46 82 1020
Anisotropic 1.26 0.46 327 45

TDA Original 1.13 0.4 306 388
Anisotropic 1.13 0.4 1224 10

CuxTiS2 Debye Original 0.73 214
Anisotropic 0.73 61

BvK Original 0.87 159
Anisotropic 0.87 45

TDA Original 0.94 70
Anisotropic 0.94 25

SnSe2"xClx Debye Original 1.46 71
Anisotropic 1.46 20

BvK Original 1.59 114
Anisotropic 1.59 20

TDA Original 1.60 28
Anisotropic 1.60 6

Fig. 5 Parity plot of the experimental and calculated thermal conductivity of intercalated MoS2, black P, graphite, WSe2(1"x)Te2x, TiS2 and SnSe2 by
Debye, BvK and TDA dispersion models, in which ART represents anisotropic RT. (a) In-plane thermal conductivity; (b) cross-plane thermal conductivity.
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are unable to further confirm the source of this discrepancy. Here
we present our input parameters in Table S1 in Section D of the
ESI,† which are extracted from ref. 9 (MoS2 and graphite), ref. 47
(black P), ref. 48 (WSe2(1"x)Te2x), ref. 49 (TiS2) and ref. 50 (SnSe2).

Table 1 shows that e fitted using the Debye and BvK disper-
sion models are zero for the in-plane direction but large along
the cross-plane direciton (except for WSe2(1"x)Te2x), suggesting
that lattice distortion only influences phonon transport in the
cross-plane direction. This result is different from that of our
TDA dispersion model, which shows that lattice distortion
influences phonon transport in both directions. It also shows
that anisotropic RT has the potential to mediate the degree of
lattice disorder for both direcitons which increases eab and
decreases ec. e for black P, MoS2 and graphite are genearlly less
than that of WSe2(1"x)Te2x alloy, indicating that large atomic
mass difference between Li+ ion and host atoms (P, Mo and C)
provides the major contribution to the impurity scattering.13

Thermal conductivity accumulation function

To study the contributions of the mean free path (MFP) of
phonons to the bulk thermal conductivity (kbulk), the cumulative
MFP-dependent thermal conductivity accumulation function for
layered material is derived. For isotropic materials, kbulk can be
expressed as a function of MFP L, where L = vgt51,52 and

kbulk ¼
ð1

0
kLdL (16)

where kL is the thermal conductivity per unit MFP. By restricting
the upper limit of integration and normalizing by kbulk, the

normalized accumulation function21 is defined as

a L)ð Þ ¼ 1

kbulk

ðL)

0
kLdL (17)

which represents the fractional contribution of phonons with
MFPs less than L* to the total thermal conductivity. It is possible
to derive an explicit expression as a function of MFP for the
Debye and BvK dispersion models, however, an analytical expres-
sion as a function of MFP cannot be derived for the TDA
dispersion model. Herein we numerically calculate the thermal
conductivity accumulation function using TDA dispersion
model, which is detailed in Section C of the ESI.†

Since MoS2 and graphite are the most widely studied layered
materials, we calculate their normalized accumulation function
at T = 300 K with Debye, BvK and TDA dispersion models.
Comparison between the calculated result and first-principle
(1stP) calculations53–56 is presented in Fig. 6 for MoS2 and Fig. 7
for graphite. The distribution of a by three dispersion models
spans a broader range of phonon MFPs than that by 1stP53 for
MoS2, in which phonons with MFP less than 103 nm contribute
96% to kab for 1stP but 70–80% for the three models considered
here. Predictions of a the by TDA dispersion model matches best
with the 1stP result, especially at the short MFP. For graphite, the
normalized accumulation function for the in-plane thermal
conductivity aab by the TDA dispersion model agrees well with
the 1stP calculation by Lindsay55 at short MFP, but become
closer to the 1stP result of Kuang56 at long MFP, see from Fig. 7a.
There are no 1stP calculation for the cross-plane thermal con-
ductivity of graphite. Result by MD (molecular dynamics)57 is

Table 2 ARDs and RMSEs of three dispersion models (Debye, BvK and TDA models) in the calculation combined with original and anisotropic RT,
respectively

Dispersion model

ARD (%) RMSE (W m"1 K"1)

In-plane Cross-plane In-plane Cross-plane

Original RT Anisotropic RT Original RT Anisotropic RT Original RT Anisotropic RT Original RT Anisotropic RT

Debye 17.3 4.4 7.2 7.1 103.8 16.7 0.2 0.2
BvK 23.0 8.5 7.1 7.5 108.9 17.4 0.2 0.2
TDA 5.0 4.6 7.4 7.4 22.4 22.5 0.2 0.2

Fig. 6 Normalized accumulation function for the (a) in-plane and (b) cross-plane thermal conductivity of pure MoS2 by Debye, BvK and TDA dispersion
models, compared to the result of Gandi et al.53 and Sood et al.54 by 1stP.
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presented in Fig. 7b, which differ a lot from our result at short
MFP, but agree well with ours at long MFP.

To exemplify how the normalized thermal conductivity
accumulation function change as a function of intercalant
concentration, we show that of LixMoS2 and LixC (graphite)
at T = 300 K with TDA dispersion model in Fig. 8 and 9. This

calculation suggests that intercalants cause aab of MoS2 and
graphite to span a broader range of phonon MFPs. Shorter MFP
begin to contribute to the thermal conductivity, and long MFP
contributions gradually decrease. The intercalants do not affect
ac as drastically as aab and only slowly reduce the contribution
of phonons with long MFP to the cross-plane thermal

Fig. 7 Normalized thermal conductivity accumulation function for the (a) in-plane and (b) cross-plane thermal conductivity of pure graphite by Debye,
BvK and TDA dispersion models, compared to result of Lindsay et al.55 and Kuang et al.56 by 1stP, and Wei et al.57 by MD.

Fig. 8 Normalized accumulation function for the (a) in-plane and (b) cross-plane thermal conductivity of LixMoS2 by the TDA dispersion model.

Fig. 9 Normalized accumulation function for the (a) in-plane and (b) cross-plane thermal conductivity of LixC (graphite) by the TDA dispersion model.
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conductivity of graphite and have negligible effect on ac of MoS2

when x is less than 0.15. Overall, the intercalants have a larger
impact on a of graphite compared to MoS2, because the volume
and atomic mass of the graphite lattice is much smaller than
that of MoS2 and the intercalants cause greater disorder to the
graphite lattice.

Conclusion
Here we derive a three-directional anisotropic dispersion model
based on the work of Chen et al.17 and pair it with anisotropic
relaxation time to understand the thermal conductivity of
intercalated layered materials. Debye, BvK and our TDA disper-
sion models are compared using both original and anisotropic
RT. The TDA dispersion model performs best and the aniso-
tropic RT improves the accuracy of calculations using Debye
and BvK dispersion models whose average relative deviations
decrease from 17.3% and 23.0% to 4.4% and 8.5%, and root
mean square errors decrease from 103.8 W m"1 K"1 and
108.9 W m"1 K"1 to 16.7 W m"1 K"1 and 17.4 W m"1 K"1, as
compared to the original RT. The normalized thermal conduc-
tivity accumulation functions based on the TDA dispersion
model for pure and intercalated MoS2 and graphite are numeri-
cally calculated. The intercalants cause larger in-plane than
cross-plane changes to thermal conductivity accumulation
where phonons with shorter MFPs contribute more signifi-
cantly, while phonons with long MFPs contribute less.
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