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Abstract—Smart grid is built by the combination of electric and
information technologies and achieves the two-way interaction
between power utilization and power generation. Unfortunately,
new security threats appears together with the cyber-physical
communication systems. In order to properly monitoring the
power network, the cyber attack detection and state estimation
is required to identify attack and states. This paper considers the
problem of robust state estimation in smart grid and suggests a
technique for the distributed state estimation in power networks.
Firstly, the distribution power system incorporating multiple
synchronous generators are modelled as a state-space framework
where attack occurs in measurements. Basically, the false data
injection attacks can interfere with state estimation by tampering
with sensor measurements. Using mean squared error principle,
the distributed dynamic state estimation algorithm is designed
where local and neighbouring gains are obtained using optimal
filter and graph theory. Extensive simulation results show that the
proposed approach can able to estimate the system state within
a short period of time.

Index Terms—Cyber attacks, distributed dynamic state esti-
mation, false data injection attack, graph theory, optimal filter.

I. INTRODUCTION

The conventional electric grid is undergoing a significant
transformation in its power generation, transmission and dis-
tribution units [1], [2]. Interestingly, the use of advanced infor-
mation and communication technology, sensors, and actuators
are able to achieve these imperative milestones [3], [4], [5].
Basically, the smart grid enables two-way communications
between the utility operator and consumer, so it is more
vulnerable to cyber attacks. Therefore, significant technical
challenges arise for wide area monitoring, planning, and
controlling the smart grid network [6], [7]. To fulfil these
challenges and meet customer satisfaction, the utility operator
is monitoring the operational characteristics of power networks
through a process called state estimation, which performs the
task by filtering and fusing various sensor measurements. The
attacks cause losses measurements between the grid and the
energy management system (EMS) and can provide misleading
information to the EMS. Generally speaking, the transmission
of massive measurements to the centralised control center
is expensive and infeasible, so the distributed estimation is
gaining more popular. In distributed estimation, each agent in
the power network is locally process and exchange information
to recover system states [8], [9]. Therefore, the distributed
state estimation considering cyber attack is an important area
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of research, and this paper deals with this emerging security
issue.

From filtering point of view, the Kalman filter (KF) ex-
tended KF (EKF), H-infinity EKF, unscented KF and cubature
KF algorithms are used for power system state estimations
[10], [11], [12]. Moreover, the forecasted-aided KF algorithm
considering cyber attacks is explored in [13] where Euclidean
distance metric is used to detect cyber attack. The observer
based anomaly detection scheme is presented in [14]. In
addition, the wavelet transform-based mixed Kalman particle
filter based dynamic state estimation algorithm under FDIA is
presented in [15], [16]. The scenario based unsupervised learn-
ing algorithm for cyber physical power system is developed
in [17]. All the aforementioned algorithms are designed for
centralised state estimation which requires all measurements
and prone to vulnerable and single point failure. Due to dereg-
ulation of power systems, the distributed state estimation is
gaining more attention in industrial and research communities.

In order to estimate the discrete time-varying cyber physical
system states, an iterative finite impulse response filter is
designed [18]. It can effectively estimate the hidden sys-
tem states without using any specific initialization scheme.
For improvement of estimation accuracy, the robust type
chandrasekhar-based maximum correntropy KF algorithm for
cyber physical system is proposed in [19]. The idea is extended
in [20], where attack-resilient remote state estimation scheme
is proposed and verified. The attackers are manipulated the
sensor measurements and fusion center combines them for
state estimations. Using residual prewhitening method, the
cyber attack detection method is proposed in [21]. Technically,
when the covariance matrix of the residual error is not full-
rank, this method is used to solve the cyber attack detection
and estimation problem.

Furthermore, the resource constraint based optimal state
estimation algorithm for cyber physical system is presented
in [22]. Besides, the mixed mixed integer linear programming
based cyber attack protection scheme for power system is
developed in [23]. The computational complexity is very
high and requires significant amount of time as it is a
bilevel optimization problem. In order to guarantee cyber
and operational security, a command authentication approach
is proposed to detect intrusion [24], [25]. Distributed state
estimations face real environments where cyber attacks, and
noisy measurements are present [26]. Differentiated from prior
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literature, this study is the first of its kind to solve distributed
state estimation problem for smart grid under cyber attacks
using the optimal filter theory and Bayesian learning process.

II. DISTRIBUTION POWER SYSTEMS STATE-SPACE
REPRESENTATION

Fig. 1 shows the typical synchronous generators and loads
which are connected to the 8-bus distribution lines [27],
[28], [29]. Basically, the nth-synchronous generators can be
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Fig. 1: Distributed power network incorporating synchronous
generators.

Load 3

represented by the following third order differential equations
as follows [28], [29], [30]:
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Here, ¢, is the rotor angle, w, is the rotor speed, H, is
the inertia constant, D,, is the damping constant, P, is the
active power delivered at the terminal, E(’m is the quadrature-
axis transient voltage, E,, is the exciter output voltage, 77 .
is the direct-axis open-circuit transient time constant, Xg, is
the direct-axis synchronous reactance, X}, is the direct-axis
transient reactance, and I, is the direct-axis current [27].

Generally, an automatic voltage regulator (AVR) is used
to control the excitation current which leads to control the
terminal voltage [28], [31]. A second-order transfer function
is used to represent the AVR as follows [28]:

A-Efn = bOnzln + binz2n. @
Zon = —ClnZ2n — ConZ1in + AUp. (6)

Here, 21, and z,, are the AVR internal states, by, and by,
are transfer function coefficients of the AVR, ¢y, and ¢y, are
the transfer function coefficients of the excitation system and
Awv,, is the control input signal.

Considering N generators in the power network, the d-axis
current I4; and electrical power P,; are represented as [31]:

N
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Here, n,m € {1,--- ,N}, Gnm and By, are the real and
imaginary part of the admittance Y € RY*YN  which is
described in the Appendix A.

After linearizing (7) and (8), AP,, and Aly, are written
as follows [28], [32], [33]:

AP., =% 5| (86 AEY). ©
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Here, AE(’I and A¢ are the transient voltage deviations and
rotor angle deviations. By combining (1)-(6) and (9)-(10), it

can be written as follows:
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Here, the generator state s, = [Ad, Aw, AE(’W Zon Z1n)’s

the control input signal w, = Awv,, N, indicates
a set of connected generators, the system matrices
A, € R®%5 B, € R5*! and A,,, € R®*5 are: A,, =
0 1 0 0 0
_ 1 8P, _ D, 1 0P, 0 0
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B, =[00010] [28] and X,, = XénXin
don
The aforementioned system can be written in continuous-
time form:

§=A°+Bu+w. (12)

Here, s €¢ R?V*1 ue RMX! we RSV*! is the process
noise which can follow the Gaussian distribution incorporating
zero mean and Q covariance, i.e., N(0, Q), A° € R3V*5N apd

Ar Ap Al

Ay Ay Aoy
B® ¢ R5VXN are given by: A° = . .

An1 An2 AN
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Fig. 2: Interconnected distribution power subsystems incorporating synchronous generators.

and B° = diag(B1---By). Now, it can be written as a
discrete-time form as follows:

s(t + 1) = As(t) + Bu(t) + w(t), (13)

where A = I+ A°At, At is the sampling time, and B; =
B°At.

III. MEASUREMENT AND CYBER ATTACK FRAMEWORKS

The distributed control centers are interconnected through
communication links as shown in Fig. 2. In this figure,
there are i-th distribution subsystems which are connected to
the neighbours units [33]. These control centers can share
information with their neighbours in a distributed way. The
sensors are installed into subsystem units to obtain distributed
measurements. These sensing information is telemetered to the
control centres to estimate system states such as rotor angle.
The measurements are obtained as follows:

z;(t) = C;s(t) + v;(¢).

Here, z;(t) € R? is the measurement, and v; ~» N(0,R;) is
the measurement noise, and C; is the sensing matrix.

When the sensing information is transmitted to the control
center, the attacker hack the communication network and
manipulated measurements. There are different kind of attacks
such as false data injection attack (FDIA) and replay attack
[34]. For FDIA, the attacker is added intended information to
the actual measurement over time, then report it to the control
center for misleading. In later case, the adversary records the
normal measurements over time [35]. During attack, the actual
measurements are replaced to recoded one and thereby moving
the system into an incorrect state [36]. Mathematically, when
there is attack then the system measurement can be written:

29(t) = Cis(t) + v(t) + a;(t). (15)

Here, a;(t) is the cyber attack. We consider that the attach
vector a; is a Gaussian distribution with mean p; and co-
variance RY, i.e., a; v~ N(us,R;) [37], [38]. It is assumed

(14)

that the attack sequence is uncorrelated to each measurement.
Let define the system model parameters ¢; = (u;, lA{,-),
where ﬁi = R; + R} is the combined covariance of noise
and cyber attack. Based on this noisy and corrupted version
of measurements, the proposed state estimation algorithm is
developed in the following section.

IV. PROPOSED DISTRIBUTED SMART GRID STATE
ESTIMATION ALGORITHM

The proposed distributed state estimation algorithm is ob-
tained using the optimal filter and Bayesian learning ap-
proaches. Based on the interconnected structure in Fig. 2, the
designed scheme is mathematically written as follows:

8 (t+1) = As;(¢) + Bu(t) + G;(¥)[z7 (t) — C;8(2)]
+Lie) Y B () - &)

JEN;

(16)

Here, §;(t + 1) is the posterior estimated system state, §;(¢)
is the previous estimated state, G;(¢) and L;(¢) are the local
and consensus gains which can minimise the residual error
dynamic z () — C;8(t) and neighbouring estimation mismatch
§7(t)—8;(t) over time. Basically, the last term of the distributed
scheme (16) is used for neighboring connections in Fig. 2,
while the third term is included for self estimation unit.
The following theorem is used to compute these gains for
distributed smart grid state estimation.

Theorem 1: After defining the error 7),(t) = s(t) — §;(?)
between the true and estimated system states and using the
optimal filter as well as graph theory, the designed gains are
obtained as follows:

Gi(t) =[AP;()C; + Li(t) Y _ {P"(t) — Pi(1)}C]]
rEN;

[CP(k)C + R, 17
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Using mean squared error principle, the estimation error
covariance P;(t + 1) = E[n,;(t + 1)nj(t + 1)] is determined
by:

Pt(t <+ 1) - APi (t)A, — AP.; (t)Ci [C,‘,Pi (t)C:+

R;]'CP;(HA’ + Q. (18)
Here, P;(t) is the prior estimation error covariance [39]. Using
the Bayesian learning formula, the covariance R; is computed
as follows:

R; = (ayR; + pi[diag(;))* — (pi + 1)[diag(p:)]*+ (19)
[diag(z¢ — Ci8:)]%)/ (e + 1).
i = (pili + 2 — Ci8;)/(pi +1).

Here, R; and fi¢ are the initial values, a; and p; are the hyper-
parameters.

For mathematical simplicity, we assume that neighbouring
gain L;(t) = vI, where v is the designed gain coefficient.
Under a steady state condition, it can be computed through
the following convex optimization process:

(20)

U= arg?ax [I" I‘J < 0. (21)
Here, I' = I, ® A — bdiag{LC;} — v(L, ® I), and L, is the
the Laplacian operator which is obtained through the graph
theory after combining all error dynamics in a compact form.
The Proof is derived in [33], [40]. The symbol & indicates the
Kronecker product. After computing gains and covariance, the
estimation process (16) is run in an iterative way. The step
by step procedure of the whole system is described in the
simulation section.

V. NUMERICAL SIMULATION RESULTS AND ANALYSIS

To estimate the system state, the proposed algorithm is
applied to the distribution power network as shown in Fig. 2.
For simplicity, we assume that there are ¢ = 4 interconnected
distributed controllers as shown in Fig. 2. The simulation
is conducted through MATLAB and YALMIP environments.
The simulation parameters are described in [29]. Basically,
the process and measurement noise covariances are followed
by Gaussian distributions with covariances are 10~“I and
2x10~I, respectively. In addition, the sampling period is 0.02
seconds, and there are five synchronous generators connected
to the 8-bus distribution network as shown in Fig. 1. The
simulation is conducted considering FDIA.

First of all, it assumes that the attacker is added the FDIA
into measurement during 0.1 to 0.5 seconds. In this case, the
simulation results are illustrated in Figs. 3-4. Basically, Fig. 3
shows the generator 1 true rotor angle and it estimation result.
This state is increasing order, and the proposed algorithm can
properly estimate this state within 10 seconds. From 4, the
actual rotor speed can estimate within 6 seconds. This is due to
the fact that the proposed algorithm can find the suitable gains
so the estimated states converge to the actual states within a
short period of time. Note that

Generator 1
25 T T
—— Actual grid state
--------- Estimated: Proposed
20 Estimated: Existing
o7
@ 15¢
o
=
m
S 10t
[=]
(42
5t
0 i ; ?
0 5 10 15 20

Time, sec

Fig. 3: Generator 1: Actual rotor angle and it estimation with

FDIA.
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Fig. 4: Generator 1: Actual rotor speed and it estimation
with FDIA.

VI. CONCLUSION AND FUTURE WORK

State estimation is the key task for power system operation
and maintain stability as well as observability. However, the
smart grid infrastructure is prone to cyber threats. In order
to protect the power network from cyber attacks, this paper
proposes a distributed state estimation algorithm. Specifically,
we have made three main contributions to enhance the cyberse-
curity and resiliency of smart grids. First, the 8-bus distribution
grid incorporating synchronous generators are modelled as a
state-space framework where measurement are obtained by a
set of sensors. The measurement data is manipulated by cyber
attacks such as FDIA. Second, we proposed an attack-resilient
distributed state estimation algorithm based on the optimal
filter and graph theory. Finally, simulation results show that the
proposed algorithm can able to estimate system state within
a short time. We will try to develop a data-drive distributed
state estimation algorithm considering cyber attacks.
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