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Abstract—Due to the global warming and increasing of green
house gas emissions, the renewable distributed energy resources
(DERs) are going to be integrated into the smart grid. As the grid
can spread the intelligent energy management system to the long-
distance remote areas, thus it requires a real-time dynamic state
estimation and stabilization algorithm for monitoring and main-
taining stability of these intermittent DERs. This paper proposes a
belief propagation algorithm and H-infinity controller for system
state estimation and stabilization using the internet of things
(IoT) communication network. Basically, the IoT based smart
sensors are deployed to gather the measurement information
where the binary phase shift-keying are used for modulation. The
system state and it error covariance are propagated between root
and leave nodes of the considered Baysian tree network. Using
forward and backward propagation of the these variables, an
accurate state estimation is obtained. Using Parseval’s theorem,
bounded real lemma and Schur’s complement, the discrete-time
H-infinity controller is designed. The numerical simulation results
demonstrates that the algorithms can effectively estimate and
stabilize the microgrid states.

Keywords—Belief propagation, distributed energy resources,
dynamic state estimation, H.. controller, Internet of Things (IoT),
microgrid.

I. INTRODUCTION

The microgrid has been widely deployed in residential
areas due to sustainable resources, and reduce energy cost [1],
[2], [3]. As their generation patterns are random in nature, so
they will need to be closely monitored. To do this, the internet
of things (IoT) is the potential network for transmitting massive
amount information to the control centre [2], [4], [5], [6],
where the state estimation and stabilization can be performed
to know the operating conditions of microgrids incorporating
distributed energy resources (DERs). The IoT consists of sens-
ing, actuating and communication elements [7]. The designing
the IoT communication network is one the biggest challenges
nowadays as they can be applied in many different applications
such as smart grid, transportation systems, vehicle automation,
communication, and smart health-care [8], [9], [10], [11]. From
digital communication point of view, this paper proposes the
IoT communication network for microgrid state estimation and
stabilization.

Basically, the Kalman filter (KF) based dynamic state esti-
mation (SE) is extensively used in the literature that provides
an iterative update of the state variables [12], [13], [14]. Un-
fortunately, it requires high sampling measurement data, and
the process and measurement noises covariances are required
to be known. For improving the estimation performance, the
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accuracy dependent-KF scheme is proposed in [15], [16].
Moreover, the extended KF, unscented KF, and cubature KF
algorithms for non-linear system stare estimation are deigned
in [17], [18], [19]. However, taking the partial derivative of
measurement function with respect to the state variables and
required transformations are mathematically difficult.

The static state estimation using belief propagation
(BP)algorithm for distribution power system is presented in
[20], [21]. In fact, a factor graph based estimation process
for unregulated dynamic system is explored in [22], [23].
Unfortunately, the system states are continuously changing
over time and requiring to monitor them effectively. These
type of algorithms are extensively applied in different appli-
cations such as smart grid, microgrid, and satellite position
estimation [24], [25], [26], [27], [28]. Moreover, the system
state estimation considering fading channel and IoT network
are proposed in [29], [30], [31].

For maintaining stability of the islanded microgrid, the
Hy controller is designed in [32], [6], [13]. The idea is
extended in [33], [34], where the controller is applied for
estimation and stability of wind turbine. The semidefinite
programming approach for system stabilization is presented in
[35], [36]. Furthermore, the H,, controller with non-realtime
application is proposed in [37]. For application point of view,
the H., controller for non-isolated converter is designed in
[38]. In addition, the digitally controlled dual active bridge
converter for distributed power system is presented in [39].
The nonlinear system model with capacitor is modelled first
then the controller is applied for stability analysis. Moreover,
the generalized discrete-time controller for a regional power
system stability is presented in [40]. The discrete-time linear
quadratic controller is explored [12], [41].

This paper proposes a BP algorithm and H, controller for
system state estimation and stabilization using the IoT network.
The microgrid state and it error covariance are rectified be-
tween root and leave nodes of the Baysian tree network. Using
the bounded real lemma and Schur’s complement, the proposed
H ., controller is developed. The numerical simulation results
show that the algorithms can effectively estimate and stabilise
the system states.

Organisation: The microgrid model is illustrated in Sec-
tion II, which follows the proposed algorithms. The simulation
results and conclusion are in Section IV and V.

Notations: The upper and lower bold letters are repre-
sented matrix and vector, respectively.



II.  MICROGRID MODEL AND IOT COMMUNICATION
NETWORK

The block diagram of a microgrid incorporating multiple
DERs is illustrated in Fig. 1 [42], [32]. There are N intercon-
nected DERs in the microgrid where each DER is represented
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Fig. 1. Microgrid integrating multiple DERs [42], [32].

by a DC voltage source with a voltage source converter (VSC).
For simplicity, this paper considers that three DERs and the
system can be written in the following discrete form:

x(k+ 1) = Agx(k) + Bgu(k) + n(k), (1)

where x = [Aill Aidl Al’tl Aleilg Aidg A’L'tg A’UQ Ailg
Aigs Avg]/, u = [Avdl Avgo Avdg}l, A; =1+ AAL B; =
BAt and At is the sampling period. The system state A and
input matrices are given in [42], [32]. Here, Aig;,Aiy; and
Ay, are the current deviation of DE R, transmission line and
load, respectively and Awv; is the Point of Common Coupling
(PCC) bus voltage deviation. The symbol n is the Gaussian
process uncertainty with covariance 3, [21].

The sensors (IoT elements) are deployed to measurer
system state as [2], [5]:

y(k) = Cx(k) + w(k), )

where y(k) and C are the observation and it matrix, and w
is the zero mean Gaussian process noise whose covariance is
3w [21]. The sensing information by the IoT based sensors is
transmitted to the nearby base station that is also connected to
the internet [43], [43], [6], [16], where sequence of bits b(k)
are obtained by quantizer. To illustrate, Fig. 2 shows IoT based
communication network and microgrid state estimation process
[21], [44], [24], [25]. For long-distance data transmission via
the internet, this paper uses binary phase shift keying (BPSK)
as a modulation technique, which is generally not possible in
the low rate power line communication (PLC). The received
signal, r(k), is given by:

r(k) = s(k) +e(k), 3)
where e(k) and s(k) are the additive white Gaussian noise and
modulated signal.

III. PROPOSED ALGORITHMS

The factor graph (FG) is a message passing scheme to
achieve the optimal estimation [44], [24], [25]. In this process,
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Fig. 2. Communication with state estimation process.

the 7 (priori information) and A (likelihood) terms are the mes-
sages sent to the virtual node x from its parents wuy, us, . .., Unm,
and children y1,ys, ..., yn, respectively [21], [44], [24], [25].
The priori message passing from parents wu,, to children x
is Ty, »(Um) where m,, . (u;) denotes the m message sent
between u and z. Based on the Bayesian tree network Fig.
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Fig. 3. Messages exchange in the factor graph [24], [25].

3, the system state is passed between forward, backward and
smoothing. In each step, the state and error covariance are
determined based on forward, backward and smoothing rules
which are described in [44], [24], [25]. The calculated state
and error covariance are rectified in this tree structure from
root to leaf. When the estimated states match to the actual
state then the algorithm is stop or user can define the iteration
step. The detail process is described in [24], [25], where the
communication system is not considered.

Using separation principle, the feedback control law is
defined as [45]:

u(k) = —Fx(k). (€]

Here, F is the state feedback gain. The following two lemmas
are used to obtain F in Theorem 1.

Lemma 2: If the system (1) and (2) is stable, then the
following inequality holds [37]:

Y (k)y(k) - du'(k)u(k)] > 0. )

k=0
Proof: See Appendix A.

Lemma 3: The system is stable, if there exists P > 0 and
[|C(21 — Ay) " 'By||oc < 8 such that Bounded Real Lemma



holds:
—P PA; PBy 0
AZlP —P 0 C’
B/,P 0 —6I 0
0 C 0 —pI

Proof: In Appendix B.

<0. (©)

Theorem 1: The system is stable with F = YX ', if there
exists a slack variable Y and S > 0 such that the following
equality holds:

-X AX-B;Y B; 0
XA/, - Y'B) -X 0 X
B 0 g1 o | <% D
0 CcX 0 I

Proof: See Appendix C.

IV. SIMULATION RESULTS

The simulation parameters are shown in Table I [42].
The simulation is conducted using Matlab and YALMIP [46].
From Fig. 4, it is clearly seen that the proposed algorithm

TABLE 1. SYSTEM PARAMETERS [42], [32], [20], [21].
Parameters Values Parameters Values Parameters Values
Ry; 76 Ohm R; 76 Ohm id1 300 Amp
i 76 Amp Ri1 1 Ohm id2 900 Amp
Rio 5 Ohm Ris 10 Ohm id3 1500 Amp
i1 0.1 Amp 2 10 Amp C; 09F
Quantization 16 bits Ra1 1.5 Ohm L; 76 H
Rz 6 Ohm Ras 10 Ohm At 0.02 sec
X 0.01*1 Yw 0.1*1 Modulation BPSK

achieves significant performance improvement compared with
the existing KF technique [9]. This is due to the fact the
system state and error covariance are propagated between
root and leave nodes of the considered Baysian tree network.
Using forward and backward propagation, they are rectified
which leads to an accurate estimation. On the other hand, the
existing KF has only a node where the estimation can perform.
Technically, the proposed algorithm has many steps but it can
be computed in a nature of distributed way in the tree structure.

From the simulation result in Fig. 5, it is revealed that the
proposed controller is able to keep PCC voltage deviations
driven towards zero within a short period of time. This is due
to the fact that designed H, controller can find the optimal
gain to stabilise the system states.

V. CONCLUSION

This paper proposes a belief propagation algorithm and
H, controller. In each step of the considered tree network,
the estimation error is minimized which leads to an accurate
estimation results. The numerical results show that proposed
controller can regulate the microgrid states. In future, we will
consider the delay in the measurement and will propose the
data-drive cyber-resilient state estimation algorithm [47], [48].
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Fig. 5. Controlling the system states.

Appendix A (Proof of Lemma 2)

Generally speaking, the system is asymptotically stable
regardless of inputs or disturbances. Basically, the transfer
function of the considered system without noises is given by:

H(z) = C(zI — Ay) 'By. ®)

Let’s ¥(z) and (z) represent for the Z-transform of m-
dimensional output vector and r-dimensional input vector [37].
Indeed, the following input and output relationship is true:

y(z) = H(z)a(z). ©
15 (2)[] < [[H(z)]] [[a(z)]] (10)

Here, ||H(2)|| is the Hs norm of the transfer function H(z).
Mathematically, Ho norm property states as follows:

1

= [[H(z)|loo < [H)]| < V7 [[HE)[le: (D

3



According to the Parseval’s theorem and ||H(2)||o = V/d with
(10), it can be written as follows:

11
NG < %HH(Z)H <Vr
_ 1< 5@l > o ¥ (R)y(k)

Vol[a@) VoS, w(kuk)

= ¥ (k)y(k) — ou' (k)u(k)] > 0.

k=0

12)

Appendix B (Proof of Lemma 3)

Since (5) is positive for sufficient large k, so we consider the
following Lyapunow function v[x(k)] [37]:

k—1

VIx(k)] = X (k)Px(k) + 871 Y[y (7)y(j) — 82 (ju(j)] > 0.

J=0

Now, the forward difference along the solution of the system
is expressed as follows:

AV = [X'(k+ 1)Px(k+ 1)+ 87y (k)y(k)—
pu’(k)u(k) — x'(k)Px(k)] < 0

— {[Aax(k) + Bau(k)) P{Ax(K) + Bau(k)] + 5~x'(F)
C'Cx(k) — pu’(k)u(k) — x'(k)Px(k)} <0

i i [P+ ALPA, + B7ECC A, PB,
= {[x'(k) u'(%)] B,PA, _BI+B.PBy
[x() u(_z)}} <0
-P 0 c’ AP
={x'(k)u(k)]| 0 —pL 0 |+ |B,P
| C 0 —-pI 0
P '[PA, PB, 0][x(k) u(k)]} < 0. (13)
Using the Schur’s complement leads to the Lemma 3.
Appendix C (Proof of Theorem 1)
The H.(2) of Ay = Ay — B4F is given by [37]:
H.(z) = C(zI — A,) 'B,. (14)

Considering the transfer functions in (8) and (14), we can
substituting A.; into the Lemma 3 yields:

p P(A,—B.F) PB;, 0
(Aq — B4F)'P p 0 C
B/P 0 s o | <0 U9
0 C 0 Al

Define X = P~! and multiplying (15) by diag (X X I I):

—X (Ad — BdF)P By 0
X(Ay — B4F) -X 0 Xxc
B, 0 a0 | < 0. (16)
0 ().¢ 0 I

By denoting Y = FX, (16) leads to the Theorem 1.
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