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Abstract—We investigate a linear quadratic Gaussian (LQG)
tracking problem with safety and reachability constraints in the
presence of an adversary who mounts an FDI attack on an
unknown set of sensors. For each possible set of compromised
sensors, we maintain a state estimator disregarding the sensors
in that set, and calculate the optimal LQG control input at each
time based on this estimate. We propose a control policy which
constrains the control input to lie within a fixed distance of
the optimal control input corresponding to each state estimate.
The control input is obtained at each time step by solving a
quadratically constrained quadratic program (QCQP). We prove
that our policy can achieve a desired probability of safety and
reachability using the barrier certificate method. Our control
policy is evaluated via a numerical case study.

Index Terms—Barrier certificate, false data injection attack,
LQG tracking, safety and reachability constraints.

I. INTRODUCTION

Safety [1], [2] and reachability [3] are critical properties
of control systems. The safety constraint requires that the
system state should remain in a safe region. The reachability
constraint requires that the system should reach a set of goal
states within a desired time interval. Safety and reachability are
fundamental requirements for critical applications including
healthcare, transportation, and power systems.

Control systems have been shown to be vulnerable to
malicious attacks. Various attacks targeting at actuators and
measurement channels have been reported [4], [5]. Particularly,
false data injection (FDI) attacks, which compromise the
sensor measurements, need special concerns because they are
easily mounted [6], stealthy if the adversary knows the full
information of the system [7], [8], and can cause serious fi-
nancial loss or even personal damage [9]. One example is GPS
spoofing against unmanned aerial vehicles and autonomous
cars, which results in deviation from the desired trajectory, as
well as violations of safety and reachability [10], [11]. The
threat of such attacks has led to significant research interest
in modeling [12]–[14], mitigating [15], and detecting FDI [8],
[16]. Resilient state estimation is also investigated in [17]–
[19]. The authors of [20] aim at computing a safe operational
windows to guarantee the safety property of a deterministic
linear system with complete information. [15] assumes that
the correct sensor measurements of system state are always
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available to the controller even when the system is under
attack. An emergency controller is assumed in [21] which
can be invoked when an alert on attacks is raised. In [22],
a single-input single-output system under false data injection
attack targeting at actuator is studied.

At present, less attention has been paid to the design of
closed-loop controllers with safety and reachability guarantees
under FDI attacks. In the preliminary conference version of
this work [23], we investigated the linear quadratic Gaussian
(LQG) reference tracking problem, in which there was only
one possible set of compromised sensors. In this paper, we
generalize the problem so that multiple possible compromised
sensor sets are given, each of which corresponds to a different
attack scenario. The goal of our approach is to develop a
control policy that ensures safety and reachability under each
attack scenario while also minimizing the LQG tracking cost
when no adversary is present.

Under our approach, for each attack pattern, the system
maintains a state estimate that ignores the sensor measure-
ments corresponding to that attack pattern. The control action
chosen at each time step is then constrained to be within a
fixed distance of the optimal control action corresponding to
each state estimate. The key challenge is that, when there
are multiple possible attack scenarios, the state estimates may
be inconsistent from each other. To overcome this difficulty,
we propose a scheme for detecting and resolving inconsis-
tencies between state estimates. The selected state estimates
are utilized to construct constraints that guarantee safety and
reachability with desired probability.

The contribution of this paper is two-fold. First, a barrier
certificate based policy is proposed to solve the LQG tracking
problem with safety and reachability constraints under FDI
attack that targets at an unknown set of sensors. We solve
a quadratically constrained quadratic program (QCQP) to
calculate the control policy at each time step. We develop a
procedure to resolve the potential infeasibility of the QCQP.
We prove that the controller obtained using our approach
guarantees safety and reachability with desired probabilities.
We show the feasibility and performance guarantees of the
controller when the adversary is absent. Second, we derive a
closed-form solution of the controller for a special case of the
problem where there is a unique attack pattern. The derived
controller not only guarantees safety and reachability, but also
achieves better approximation with respect to the expected
cost, compared with our preliminary work [23].

The note is organized as follows. Section II states the system
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and adversary models and the problem formulation. Section
III and IV propose the control policy for the multiple- and
single-adversary scenarios, respectively. Section V contains
simulation results. Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first present the system and adversary
models. We then give the problem formulation.

A. System and Adversary Models
We consider a linear time invariant (LTI) system with state

x(t) ∈ Rn, input u(t) ∈ Rm, and observations y(t) =
[y1(t), . . . , yp(t)]

T ∈ Rp. The system dynamics are

ẋ(t) = Ax(t) +Bu(t) +w(t) (1a)
y(t) = Cx(t) + v(t) + a(t) (1b)

In Equation (1), w(t) and v(t) are independent Gaussian
processes with means identically zero and autocorrelation
functions Rw(τ) = Σwδ(τ) and Rv(τ) = Σvδ(τ), respec-
tively, where δ(τ) denotes the Dirac delta function. We use
Σw and Σv to denote the covariance matrices of w(t) and
v(t) at each time t. We assume (A,Nw) is stabilizable, where
NwNT

w = Σw. The initial state x(0) is equal to x0. Denote
I(t) as the information available to the controller at time t. We
have I(t) = {y(t′)|t′ ≤ t} ∪ {u(t′)|t′ < t} and I(0) = y(0).
The control policy of the system is defined as a function
µ(I(t)) ∈ Rm.

In Equation (1b), a(t) is the attack signal injected by the
adversary. There exists a collection of attack patterns {Ai :
i ∈ {1, . . . , q}}. Here Ai ⊆ {1, . . . , p} is a subset of sensors,
in which it is possible that Ai

⋂
Aj ̸= ∅. The adversary

chooses one A∗ from A1, . . . ,Aq. The adversary then chooses
a(t) with arbitrary values such that support(a(t)) ⊆ A∗

for all time t ∈ [0, T ]. The controller knows the possible
compromised sets A1, . . . ,Aq, but does not know which set
A∗ has been chosen by the adversary. At each time t, the
adversary knows the control policy µ(I(t)), the system state
x(t′), the system output y(t′), and the control input u(t′) for
all t′ ≤ t. Denote the adversary policy ν(t) as a function
which maps {x(t′),u(t′),y(t′) : ∀t′ ≤ t} to a(t).

Let G and U be the goal states and unsafe states defined
as G = {x ∈ Rn : gG(x) ≥ 0}, and U = {x ∈ Rn : gU (x) ≥
0}, respectively. Define the safety constraint as x(t) /∈ U ∀t ∈
[0, T ], which prevents the system state from reaching U for
all time t ∈ [0, T ]. We define the reachability constraint as
x(T ) ∈ G, which requires the system state to be in G at final
time T. A reference trajectory {r(t) ∈ Rn : t ∈ [0, T ]} is
given, which satisfies r(t) /∈ U and r(T ) ∈ G.

B. Problem Formulation
The problem studied in this work is

min
µ

E[(x(T )− r(T ))TF (x(T )− r(T )) +

∫ T

0

(u(t)TRu(t)

+ (x(t)− r(t))TQ(x(t)− r(t))) dt|µ, β = 1] (2)
s.t. max

ν
{Pr(∪t∈[0,T ]{x(t) ∈ U}|µ, ν)} ≤ ϵs

min
ν
{Pr(x(T ) ∈ G|µ, ν)} ≥ 1− ϵr

The objective function implies that the goal of the system
is to minimize the expected cost when there is no adversary
(β = 1), while guaranteeing safety and reachability when the
system is under attack (β = 0). The first constraint implies that
the probability of violating the safety constraint in the worst
case over all the adversary policies should be lower than the
bound ϵs. The second constraint means that the probability of
achieving the reachability constraint should be greater than the
threshold 1− ϵr under any adversary’s policy.

III. CONTROL STRATEGY FOR MULTIPLE-ADVERSARY
SCENARIO

In this section, we present the solution approach for multi-
adversary scenario. Our solution approach is based on the
observation that the adversary can only bias the system state
by injecting false measurements to the sensors to induce
erroneous control inputs. Hence, if we can restrict the control
inputs to stay within a particular neighborhood of each optimal
control signal uα,i(t) that corresponds to the measurements
from {1, . . . , p} \ Ai for each attack pattern Ai, then we can
limit the impact from the adversary’s attack signal.

A. Control Policy Construction

Let yα,i(t) be the measurements of sensors in {1, . . . , p} \
Ai. Denote Cα,i and vα,i(t) as C and v(t) with rows indexed
by {1, . . . , p} \ Ai, so that yα,i(t) = Cα,ix(t) + vα,i(t).
We assume that all systems (A,Cα,i) ∀i ∈ {1, . . . , q} are
observable. Let Σvα,i

denote the covariance matrix of vα,i.
The Kalman Filter (KF) estimates x̂α,i(t) are [24]

˙̂xα,i(t) =Ax̂α,i(t) +Buα,i(t)

+ Θα,i(t)(yα,i(t)− Cα,ix̂α,i(t)) (3)

Θα,i(t) =Φα,i(t)C
T
α,iΣ

−1
vα,i

(4)

Φ̇α,i(t) =AΦα,i(t) + Φα,i(t)A
T +Σw

− Φα,i(t)C
T
α,iΣ

−1
vα,i

Cα,iΦα,i(t)
T (5)

where Φα,i(0) and x̂α,i(0) are given.
From [24], the optimal LQG control based on x̂α,i(t) is

uα,i(t) =
1

2
K(t)x̂α,i(t)−

1

2
R−1BT s(t)

K(t) = −R−1BTP (t)

−Ṗ (t) = ATP (t) + P (t)A− 1

2
P (t)BR−1BTP (t) + 2Q

ṡ(t) = (−AT +
1

2
P (t)BR−1BT )s(t) + 2Qr(t)

where s(t) and P (t) have boundary conditions s(T ) =
−2Fr(T ) and P (T ) = 2F .

Denote x̂∗
α(t) as the KF estimate of x(t) based on y∗

α(t) of
sensors in {1, . . . , p} \ A∗. Dynamics of x̂∗

α(t) is analogous
to Equations (3)-(5). Similarly, we define u∗

α(t) as the LQG
tracking optimal control input based on {y∗

α(t
′) t′ ≤ t}.

Define the set of feasible control inputs at time t
with respect to attack pattern Ai as Uγi(t) ≜ {u(t) :

(u(t)− uα,i(t))
T
(u(t)− uα,i(t)) ≤ γ2

i }, where γi ≥ 0 is
a parameter that will be discussed in Section III-B. Define
U∗
γ (t) ≜ {u(t) : ∥u(t) − u∗

α(t)∥2≤ γ∗} and U(t) ≜
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⋂q
i=1 Uγi

(t). Using this constraint instead of the constraint
in (2), the problem becomes

min
u(t)

E[

∫ T

0

((x(t)− r(t))TQ(x(t)− r(t)) + u(t)TRu(t))dt

+ (x(T )− r(T ))TF (x(T )− r(T ))] (6a)
s.t. u(t) ∈ U(t), ∀t ∈ [0, T ]. (6b)

The solution of (6) can be computed by solving a stochastic
Hamilton-Jacobi-Bellman (HJB) equation [25]

0 = minu(t)∈U(t)

{
(x(t)− r(t))TQ(x(t)− r(t))

+Vx(t,x)(Ax(t) + Bu(t)) + 1
2tr(Vxx(t,x)Σw)

+ u(t)TRu(t) + Vt(t,x)
}
,

(7)

where the optimal u(t) with respect to Equation (7) is equal
to the minimizer of Equation (7) for all t ∈ [0, T ].

Solving the constrained partial differential equation (PDE)
(7) is challenging, so we relax the constraint of problem (7),
and approximate the value function of (7) by relaxing the
constraint (6b). We observe that, while we relax (6b) when
approximating the value function, the input will still satisfy
u(t) ∈ U(t). The value function is equal to [24]

V (t,x) =
1

2
x(t)TP (t)x(t) + β(t) + s(t)Tx(t) + s0(t), (8)

where ṡ0(t) = 1
4s(t)

TBR−1BT s(t) − r(t)TQr(t) and
−β̇(t) = 1

2tr(P (t)Σw).
Substituting Equation (8) into Equation (7), we have

0 = min
u(t)∈U(t)

{
(x(t)− r(t))TQ(x(t)− r(t)) + ṡ0(t) + β̇(t)

+ u(t)TRu(t) + x(t)TP (t)(Ax(t) + Bu(t)) + x(t)T ṡ(t)

+
1

2
x(t)T Ṗ (t)x(t) + s(t)T (Ax(t) +Bu(t))

}
(9)

We approximate the optimal u(t) with respect to Equation (7)
by the minimizer of Equation (9). Computing the minimizer
of Equation (9) is equivalent to solving a QCQP

min
u(t)

u(t)TRu(t) + x̂(t)TP (t)Bu(t) + s(t)TBu(t)

s.t. u(t) ∈ U(t), ∀t ∈ [0, T ].
(10)

at each time t. QCQPs in the form of Equation (10) can be
solved efficiently using existing solvers [26] [27].

B. Safety and Reachability Verification

Parameters γi in Uγi = {u(t) : ∥u(t) − uα,i(t)∥2≤ γi}
determines the size of the set of feasible control inputs at
each time t. Larger γi provides a larger feasible region of
u(t), which improves the performance of the system in the
attack-free scenario. However, enlarging the feasible control
input set also increases the probability that the system may be
biased and leads to the unsafe states. Thus, there is a tradeoff
between the performance and the risk of violating safety and
reachability when selecting γi.

In [23], we developed a binary search algorithm to find the
maximal feasible γi which satisfies the safety and reachability
constraints in Equation (2). We used the barrier function
method to determine whether safety and reachability are

guaranteed for each value of γi. The idea is to construct a
barrier function Di(x) for each γi such that, for some L < K,
Di(x0) ≤ L, Di(x) > K for all x(t) ∈ U , and Di(x) is
decreasing over any feasible trajectories of x(t). Thus, if this
Di(x) exists for each γi, x(t) will not enter the unsafe region.

Let γi = min{γs
i , γ

r
i }. Satisfying Uγi(t) can guarantee

safety and reachability if A∗ = Ai. This result is formally
stated using the following theorem based on [23].

Theorem 1. If A∗ = Ai, there exist γs
i and γr

i such that
satisfying ||u(t)− uα,i(t)||2≤ γs

i and ||u(t)− uα,i(t)||2≤ γr
i

guarantee safety and reachability with probabilities 1−ϵs and
1− ϵr, respectively.

Proof. Please see [23] for the detailed proof.

Since the controller does not know which Ai is A∗, we
let the control input u(t) ∈ U(t) =

⋂q
i=1 Uγi

(t) to guarantee
safety and reachability for all attack patterns {Ai}. However,
it is possible that U(t) = ∅. Thus, we need a mechanism to
find out feasible solutions when U(t) = ∅.

C. Selection of Constraints
In this subsection, we present a policy to provide feasible

u(t) when U(t) = ∅. Denote I(t) as the set of the indexes of
the constraints Uγi(t). Define γmin = mini γi, i ∈ {1, . . . , q}.
In order to identify those Uγi

(t) which cause U(t) = ∅, we first
give a sufficient condition that U(t) ̸= ∅. We then express the
sufficient condition in terms of the state estimates, and provide
a method to select I(t) such that

⋂
i∈I(t) Uγi(t) ̸= ∅.

Proposition 1. If there exists a ball of radius γmin such that
uα,i i ∈ {1, . . . , q} are contained in the ball, then U(t) ̸= ∅.

Proof. Suppose there exists such a ball with center u0. We
have ∥u0−uα,i∥2≤ γmin ≤ γi ∀i ∈ {1, . . . , q}. Hence, u0 ∈
U(t), and U(t) ̸= ∅.

In the following proposition we show the sufficient condi-
tion that the ball in Proposition 1 exists, and thus U(t) ̸= ∅.

Proposition 2. For all i, j ∈ {1, . . . , q}, denote {̂i, ĵ} =
argmaxi,j{di,j}, where di,j = ∥uα,i − uα,j∥2. If dî,ĵ >
2γmin, the ball which satisfies Proposition 1 does not exist.
If dî,ĵ ≤ 2γmin, and ∥uα,k − (uα,̂i + uα,ĵ)/2∥2≤ γmin ∀k ∈
{1, . . . , q} \ {̂i, ĵ} holds, then there exists a ball that satisfies
Proposition 1.

Proof. If dî,ĵ > 2γmin, then the distance between uα,̂i and
uα,ĵ is greater than the diameter of the ball in Proposition 1.
Thus, there does not exist such ball that satisfies Proposition 1.
If dî,ĵ ≤ 2γmin, then ∥uα,̂i − (uα,̂i + uα,ĵ)/2∥2= ∥uα,ĵ −
(uα,̂i+uα,ĵ)/2∥2=

1
2∥uα,̂i−uα,ĵ∥2=

1
2dî,ĵ ≤ γmin. Since we

also have ∥uα,k−(uα,̂i+uα,ĵ)/2∥2≤ γmin ∀k ∈ {1, . . . , q}\
{̂i, ĵ}, we have that uα,i are in the ball with center (uα,̂i +
uα,ĵ)/2 and radius γmin for all i ∈ {1, . . . , q}.

By definition of uα,i(t) and contraposition, if U(t) = ∅,
then

∥K(t)(x̂α,i(t)− x̂α,̂i(t))/4 +K(t)(x̂α,i(t)− x̂α,ĵ(t))/4∥2
> γmin. (11)
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where K(t) is the KF gain. In the next lemma, we split (11)
into two inequalities, with each containing only two estimates.

Lemma 1. If U(t) = ∅, then either ∥ 14K(t)(x̂α,i(t) −
x̂α,̂i(t))∥2>

1
2γmin or ∥ 14K(t)(x̂α,i(t)− x̂α,ĵ(t))∥2>

1
2γmin,

or both of them hold.

Proof. Applying triangle inequality to the left hand side of
inequality (11), we then have

∥K(t)(x̂α,i(t)− x̂α,̂i(t))/4∥2+∥K(t)(x̂α,i(t)− x̂α,ĵ(t))/4∥2

≥
∥∥∥∥K(t)(x̂α,i(t)− x̂α,̂i(t))

4
+

K(t)(x̂α,i(t)− x̂α,ĵ(t))

4

∥∥∥∥
2

> γmin. (12)

Inequality (12) is satisfied if at least one of ∥ 14K(t)(x̂α,i(t)−
x̂α,̂i(t))∥2>

1
2γmin and ∥ 14K(t)(x̂α,i(t)−x̂α,ĵ(t))∥2>

1
2γmin

is satisfied.

Motivated by Lemma 1, our approach to selecting I(t)
such that

⋂
i∈I(t) Uγi ̸= ∅ is to compare between two state

estimates. Next, we show this comparison.
Denote Cα,i,j as C with rows indexed by {1, . . . , p} \

(Ai

⋃
Aj). We assume that all systems (A,Cα,i,j) ∀i, j ∈

{1, . . . , q} i ̸= j are observable. Introduce the KF state
estimate x̂α,i,j(t), which is obtained via yα,i,j(t), the output
with the measurements indexed by {1, . . . , p} \ (Ai

⋃
Aj).

Lemma 2. If ∥ 14K(t)(x̂α,i(t) − x̂α,j(t)∥2> 1
2γmin, then

at least one of ∥ 14K(t)(x̂α,i(t) − x̂α,i,j(t)∥2> 1
4γmin and

∥ 14K(t)(x̂α,j(t)− x̂α,i,j(t)∥2> 1
4γmin holds.

Proof. Applying triangle inequality, we have

γmin/2 <∥K(t)(x̂α,i(t)− x̂α,j(t))/4∥2
≤∥K(t)(x̂α,i(t)− x̂α,i,j(t))/4∥2
+ ∥K(t)(x̂α,j(t)− x̂α,i,j(t))/4∥2 (13)

In order for inequality (13) to hold, at least one of the
following inequalities holds:

∥1
4
K(t)(x̂α,i(t)− x̂α,i,j(t)∥2 >

1

4
γmin (14)

∥1
4
K(t)(x̂α,j(t)− x̂α,i,j(t)∥2 >

1

4
γmin (15)

We use inequalities (14)-(15) later to identify the Uγi that
leads to infeasibility of QCQP (16). Intuitively, for a certain
pair of {i, j} ∈ {1, . . . , q}, if the measurements are only
affected by the noises, ∥x̂α,i(t)− x̂α,j(t)∥2 should be smaller
than some thresholds. If Ai = A∗ or Aj = A∗, x̂α,i,j(t)
should not be biased by a(t). Thus, when ∥ 14K(t)(x̂α,i(t) −
x̂α,j(t)∥2> 1

2γmin, x̂α,i,j(t) can be utilized as a benchmark
for checking whether x̂α,i(t) and x̂α,j(t) are affected by the
attack and diverge from the unaffected values.

Since both the noise and attack may result in the divergence
between state estimates, it is necessary to determine the worst
case probability that the noise results in ∥ 14K(t)(x̂α,j(t) −
x̂α,i,j(t)∥2> 1

4γmin, which could result in measurements
being excluded erroneously. We derive the following theorem
to show the probability that ∥ 14K(t)(x̂α,j(t) − x̂α,i,j(t)∥2>

1
4γmin ∀i, j ∈ {1, . . . , q} happens during t ∈ [0, T ] is upper-
bounded when no adversary is present. We will utilize this
theorem later to eliminate Uγi(t) which may render U(t) = ∅.

Theorem 2. Suppose A∗ = Ai. There exists ηi,j such that for
each j ∈ {1, . . . , q} \ {i}

Pr( sup
t∈[0,T ]

∥K(t) (x̂α,i(t)− x̂α,i,j(t)) ∥2> γmin) ≤ ηi,j ,

where ηi,j = 4(λ∗
iΓi + λ∗

i,jΓi,j)K
2
/γ2

min, x̂α,i(t)
and x̂α,i,j(t) are estimates calculated using KF and
measurements of sensors indexed by {1, . . . , p} \ Ai

and {1, . . . , p} \ (Ai

⋃
Aj), respectively, K =

supt∈[0,T ]||K(t)||2, λ∗
i = supt∈[0,T ] {λmax(Σi(t))},

λ∗
i,j = supt∈[0,T ] {λmax(Σi,j(t))}, Σi(t) and Σi,j(t)

are the covariance matrices of (x(t) − x̂α,i(t)) and
(x(t)− x̂α,i,j(t)), respectively, λmax(·) denotes the maximum
eigenvalue of a matrix, Γi = E

(
ei(0)

TΣi(0)
−1

ei(0)
)

,

Γi,j = E
(
eij(0)

TΣij(0)
−1

eij(0)
)
, ei(0) = x̂α,i(0) − x0,

and eij(0) = x̂α,i,j(0)− x0.

Proof. The proof is analogous to the proof of Theorem 1
in [23] and we omit the proof due to space constraints.

Define {||K(t) (x̂α,i(t)− x̂α,i,j(t)) ||2> γmin} as Ωij
i ,

{||K(t) (x̂α,i(t)− x̂α,i,j(t)) ||2≤ γmin} as Ω
ij

i . Theorem 2
implies that the probability that Ωij

i occurs during t ∈ [0, T ]
is bounded above by ηi,j ∀i, j ∈ {1, . . . , p} when A∗ = Ai.
In other words, we can eliminate x̂i(t) if Ωij

i occurs, and the
probability that we improperly eliminate an uncompromised
estimate x̂i(t) (A∗ = Ai but we eliminate Uγi ) is bounded
above by ηi,j . Applying the results of Propositions 1 and 2
and Theorem 2, we propose the function I Selection in Algo-
rithm 1 to select constraints that can provide feasible control
inputs u(t) to guarantee safety and reachability requirements.

Algorithm 1 works as follows. It requires the number of
attack patterns q, the LQG controller gain K(t), the state
estimates excluding each attack pattern x̂α,i(t), the state
estimates excluding each pair of attack patterns x̂α,i,j(t), the
minimum of radii for all constraints γmin, the feasible control
input set corresponding to each attack pattern Uγi

as the inputs,
and returns the set of indexes of selected constraints I(t) as
the output. The algorithm selects constraints Uγi(t) that can
provide feasible control inputs u(t) to guarantee safety and
reachability properties with desired probability. The existence
of the feasible control inputs u(t) is guaranteed by satisfying
the sufficient conditions in Proposition 2. Specifically, the
condition dî,ĵ ≤ 2γmin is guaranteed by line 5 - line 10. The
condition ∥uα,k−(uα,̂i+uα,ĵ)/2∥2≤ γmin ∀k ∈ {1, . . . , q}\
{̂i, ĵ} is verified via line 11 - 22. The judgment statements in
line 12 and line 17 select the pairs of state estimates that
may be affected by the adversary based on Lemma 1. The
constraints that are likely to be affected are eliminated in line
13 - 16 and line 18 - 21 based on Lemma 2.

D. Control Strategy Design

Our proposed control design is summarized in Algorithm 2.
In line 2 and 3, we initialize I(t) and U(t) as the indexes and
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Algorithm 1 Algorithm for selecting constraints Uγi(t) that
can guarantee safety and reachability properties with desired
probability.

1: procedure I SELECTION(q, K(t), x̂α,i(t), x̂α,i,j(t),
γmin , Uγi(t), i, j ∈ {1, . . . , q}, i ̸= j)

2: I(t)← {1, . . . , q}
3: di,j ← ∥x̂α,i(t)− x̂α,j(t)∥2, i, j ∈ I(t), i ̸= j
4: {̂i, ĵ} ← argmaxi,j∈I(t){di,j}
5: while dî,ĵ > 2γmin do
6: if Ωîĵ

î
then

7: I(t)← {1, . . . , q} \ {̂i}
8: if Ωîĵ

ĵ
then

9: I(t)← {1, . . . , q} \ {ĵ}
10: {̂i, ĵ} ← argmaxi,j∈I(t){di,j}
11: for each i ∈ I(t) do
12: if || 14K(t)(x̂α,i(t)− x̂α,̂i(t))||2>

1
2γmin then

13: if Ωîi
i then

14: I(t)← I(t) \ {i}
15: if Ωîi

î
then

16: I(t)← I(t) \ {̂i}
17: if || 14K(t)(x̂α,i(t)− x̂α,ĵ(t))||2>

1
2γmin then

18: if Ωiĵ
i then

19: I(t)← I(t) \ {i}
20: if Ωiĵ

ĵ
then

21: I(t)← I(t) \ {ĵ}
22: {̂i, ĵ} ← argmaxi,j∈I(t){di,j}
23: return I(t)

intersection of all constraints. In line 4, we first check whether
U(t) = ∅. In line 5, if U(t) = ∅, we utilize I Selection in
Algorithm 1 to identify and eliminate those Uγi

(t) which result
in U(t) = ∅ and output I(t). In line 6, the algorithm invokes
the existing solver, denoted as QCQP(I(t)), at each time t to
solve the QCQP with the form

min
u(t)

u(t)TRu(t) + x̂(t)TP (t)Bu(t) + s(t)TBu(t)

s.t. u(t) ∈ Uγi
(t), i ∈ I(t)

(16)

Algorithm 2 Proposed control policy that guarantees safety
and reachability constraints under multiple-adversary scenario.

1: procedure CONTROL POLICY(q, Uγi(t), i ∈ {1, . . . , q})
2: I(t)← {1, . . . , q}
3: U(t)←

⋂
i∈I(t) Uγi

(t)
4: if U(t) == ∅ then
5: I(t) ← I Selection(q, K(t), x̂α,i(t), x̂α,i,j(t),

γmin, Uγi
(t), i, j ∈ {1, . . . , q}, i ̸= j)

6: u(t)← QCQP(I(t)) in Equation (16)
7: return u(t)

When there is no attack, the controller attempts to minimize
the objective function. Due to the existence of noise, di,j may
deviate from 0 for ∀i, j ∈ {1, . . . , q}. This may lead to smaller

feasible region U(t), and suboptimal performance with respect
to expected cost. If all uα,i(t) can be proved to be close to
the optimal control u∗(t), the feasibility and performance of
the proposed approach can be guaranteed.

Lemma 3. Let u∗(t) = 1
2K(t)x̂(t) − 1

2R
−1BT s(t). Define

λ∗ = supt {λmax(Σ(t))}, where Σ(t) is the covariance matrix
of (x(t) − x̂(t)). Let η = max{ηi : ∀i ∈ I(t)}, where ηi =

(λ∗Γ + λ∗
iΓi)K

2
/γ2

min and Γ = E
(
e(0)TΣ(0)

−1
e(0)

)
.

When β = 1, we have

Pr( sup
t∈[0,T ]

||u∗(t)− uα,i(t)||2 ≤ γmin) ≥ 1− η, ∀i ∈ I(t),

P r (u∗(t) ∈ U(t) ∀t ∈ [0, T ]) ≥ 1− Σi∈I(t) ηi

Proof. Based on the definitions of u∗(t) and uα,i(t), we have

Pr(supt∈[0,T ] ||u∗(t)− uα,i(t)||2 ≥ γmin)

= Pr(supt∈[0,T ] ||K(t)(x̂(t)− x̂α,i(t))||2 ≥ 2γmin)

According to Theorem 2, we have

Pr( sup
t∈[0,T ]

||K(t)(x̂(t)− x̂α,i(t))||2 ≥ 2γmin) ≤ ηi.

Thus,

Pr( sup
t∈[0,T ]

||u∗(t)− uα,i(t)||2 ≤ γmin) ≥ 1− ηi (17)

We have

Pr( sup
t∈[0,T ]

||u∗(t)− uα,i(t)||2 ≤ γmin) ≥ 1− η, ∀i ∈ I(t).

(18)
Based on Equation (17) we can obtain

Pr (u∗(t) ∈ U(t) ∀t ∈ [0, T ])

= 1− Pr(∪i∈I(t)u
∗(t) /∈ Uγi(t) ∀t ∈ [0, T ]))

≥ 1− Σi∈I(t) ηi (19)

Based on (18), the probability that in the non-adversary case⋂
i∈I(t) Uγi

(t) ̸= ∅ is lower bounded by 1− η. Our proposed
approach guarantees feasibility under benign environment.
Equation (19) implies that the probability that our proposed
approach provides the same utility as the best possible control
when no adversary is present is lower bounded.

E. Safety and Reachability Guarantees

In this subsection, we present the safety and reachability
guarantees provided by the control policy obtained by Algo-
rithm 2. Define Ωsr ≜ (

⋂
t∈[0,T ]{x(t) /∈ U})

⋂
{x(T ) ∈ G},

ΩU ≜
⋂

t∈[0,T ]{u(t) ∈ U∗
γ (t)}, and ΩU ≜

⋃
t∈[0,T ]{u(t) /∈

U∗
γ (t)}. The safety and reachability analysis of our proposed

control policy is based on bounding the probability P0 =
Pr (Ωsr). We define P1 ≜ Pr(Ωsr|ΩU ) as the probability
that safety and reachability constraints are satisfied given that
the control inputs are from U∗

γ (t). This probability has been
discussed in Theorem 1. We denote P2 ≜ Pr(ΩU ) as the
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probability that at any time t the control input u(t) satisfies
the correct constraint U∗

γ (t). We have

P0 = Pr (Ωsr)
= Pr(Ωsr|ΩU ) · Pr(ΩU ) + Pr(Ωsr|ΩU ) · Pr(ΩU )
≥ P1 · P2

Here P0 denotes the probability that safety and reachability
are guaranteed and the control input u(t) is in U∗

γ (t), ∀t, and
can be expressed using P1 and P2. If there exist lower bounds
for both P1 and P2, the lower bound for P0 exists.

The safety and reachability guarantees of the proposed
control policy is presented by the following theorem.

Theorem 3. The control strategy returned by Algorithm 2
satisfies the safety and reachability constraints in Equation (2).

Proof. The probability that safety and reachability are guar-
anteed when the control input u(t) is in U∗

γ (t) for all
t, with probability P0 = P1 · P2. P1 is bounded be-
low by Theorem 1. Assume A∗ = Ai. P2 is equiva-
lent to the probability that Uγi

(t) is never eliminated at
each time t, which is bounded below by the probability
that {supt∈[0,T ]||K(t) (x̂α,i(t)− x̂α,i,j(t)) ||2≤ γmin ∀j ∈
{1, . . . , q} \ {i}}. Thus, we obtain

P2 = Pr(∩j∈{1,...,q}\{i} sup
t∈[0,T ]

Ω
ij

i )

= 1− Pr(∪j∈{1,...,q}\{i} sup
t∈[0,T ]

Ωij
i )

≥ 1− Σj∈{1,...,q}\{i}Pr( sup
t∈[0,T ]

Ωij
i )

≥ 1− Σj∈{1,...,q}\{i}η
i,j , (20)

P0 ≥ P1 ·
(
1− Σj∈{1,...,q}\{i}η

i,j
)
. (21)

By choosing γi, ∀i ∈ {1, . . . , q} and γmin properly, we can
make P0 ≥ max{1− ϵs, 1− ϵr} ∀i ∈ {1, . . . , q}.

Theorem 3 implies that there exists a lower bound of the
probability that the safety and reachability constraints can be
satisfied for ∀Ai. We observe that this lower bound given in
Equation (20) depends on γi ∀i ∈ {1, . . . , q}, γmin, and the
noise characteristics of the system. By choosing appropriate
γi ∀i ∈ {1, . . . , q} and γmin, and constructing corresponding
set of feasible control inputs Uγi(t), we can attempt to make
the lower bound be within [max{1− ϵs, 1− ϵr}, 1].

F. Selection of γi and γmin

The parameters γi ∀i ∈ {1, . . . , q} and γmin affect both
P1 and P2. In P1, smaller γi ∀i ∈ {1, . . . , q} can make the
system be more difficult to be biased. In P2, larger γmin

is more likely to make the correct constraint be kept. In
order to guarantee safety and reachability for all Ai, we
need to keep P0 ≥ max{1 − ϵs, 1 − ϵr} ∀i ∈ {1, . . . , q}.
Since the closed form expression of P1 as a function of
γi is not clear, we utilize a heuristic method to search for
proper value of γi ∀i ∈ {1, . . . , q} and γmin which satisfies
P1 ·P2 ≥ max{1− ϵs, 1− ϵr} for all Ai. The intuition is that
we initialize P1 first to compute the corresponding γi to the
candidate P1, and calculate the corresponding γmin = mini γi

Algorithm 3 Algorithm for computing the parameters {γi, i ∈
1, . . . , q} and γmin that ensures safety and reachability.

1: procedure γ SELECTION(ϵs, ϵr, iter times, K, λ∗
i , λ

∗
i,j ,

i, j ∈ 1, . . . , q}, i ̸= j)
2: ϵ← max{1− ϵs, 1− ϵr}
3: for each i ∈ {1, . . . , q} do
4: P 1,i ← 1, P 1,i ← (P 1,i − ϵ)/iter times

5: γi ← Barrier Certificate(P 1,i)
6: Update γmin and imin.
7: for each i ∈ {1, . . . , q} do
8: ηi,j ← 4(λ∗

iΓi + λ∗
i,jΓi,j)K

2
/γ2

min

9: Update P 2,i and P 0,i via (20) and (21).
10: i← 1
11: while i ≤ iter times do
12: P 1,imin

← P 1,imin
− P 1,imin

13: γimin ← Barrier Certificate(P 1,imin )
14: Update γmin and imin.
15: for each i ∈ {1, . . . , q} do
16: ηi,j ← 4(λ∗

iΓi + λ∗
i,jΓi,j)K

2
/γ2

min

17: Update P 2,i and P 0,i via (20) and (21).
18: if ∀P 0,i ≥ ϵ then
19: break
20: i← i+ 1

21: if i > iter times then
22: return null
23: return {γi, i ∈ 1, . . . , q}, γmin

for all i ∈ {1, . . . , q}. Here we assume existence of a function
Barrier Certificate that returns the γi. Then we check the
lower bound of P0 for all Ai according to inequality (21).
If the lower bound is greater than max{1 − ϵs, 1 − ϵr} for
all Ai, the safety and reachability constraints are satisfied.
Otherwise, we enlarge γmin by reducing the P1 corresponding
to the minimal γi, recalculating this γi under the updated P1,
and checking the lower bounds of P0 for all Ai under new
γmin. We do this procedure iteratively until the lower bounds
of P0 for all Ai are greater than max{1− ϵs, 1− ϵr} for all
Ai. The proposed procedure is shown in Algorithm 3.

IV. CONTROL STRATEGY FOR SINGLE-ADVERSARY
SCENARIO

In this section, we consider a special case where there
exists a unique attack pattern, denoted as A1. Both the
controller and the adversary have the knowledge of A∗ = A1.
However, the controller does not know which sensors in A1

are compromised by the adversary.
In the single-adversary scenario, Equation (6) in the

multiple-adversary scenario becomes

min
u(t)

E[

∫ T

0

((x(t)− r(t))TQ(x(t)− r(t)) + u(t)TRu(t))dt

+ (x(T )− r(T ))TF (x(T )− r(T ))] (22)
s.t. u(t) ∈ Uγ1(t), ∀t ∈ [0, T ].

When solving (7), we do not know which Ai is A∗, and
I(t) is changing at each time step t. Thus, we have to relax the
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constraints Uγi
(t) for all i ∈ I(t). Since A∗ = A1 is known in

the single-adversary scenario, we use the method of Lagrange
multipliers to construct the dual problem of Equation (22)
rather than relax the constraint Uγ1

(t) when solving the HJB
equation. Denote the Lagrange multiplier corresponding to
constraint Uγ1

(t) as λ(t). The dual problem of (22) is [28]

max
λ(t)

min
u(t)

E

{∫ T

0

[(x(t)− r(t))TQ(x(t)− r(t))

+ u(t)TRu(t)− λ(t)
(
γ2
1 − ∥u(t)− uα,1(t)∥22

)
]dt

+ (x(T )− r(T ))TF (x(T )− r(T ))

}
(23a)

s.t. λ(t) ≥ 0, ∀t ∈ [0, T ] (23b)

Choosing the value of λ(t) at each time step t is challenging,
so we relax the problem by assuming λ(t) ≡ λ ≥ 0 for all
t ∈ [0, T ]. The following analysis can be repeated for different
values of λ to obtain a lower bound on the solution to (20),
and hence a lower bound on the value function. The inner
minimization problem of Equation (23) can be rewritten as

min
u(t)

E

{∫ T

0

[(x̃(t)− r̃(t))T Q̃(t)(x̃(t)− r̃(t))

+ u(t)T (λI +R)u(t)− x̃(t)TM(t)u(t)− λγ2
1 ]dt

+ (x̃(T )− r̃(T ))T F̃ (x̃(T )− r̃(T ))

}
, (24)

where x̃(t) = [x(t)T , x̂α,1(t)
T , s(t)T ]T , r̃(t) = [r(t)T , 0, 0]T ,

Q̃(t) =

Q 0 0
0 λK(t)TK(t) − 1

2λK(t)TR−1BT

0 − 1
2λBR−1K(t) 1

4λBR−1R−1BT


M(t) =

 0
2λK(t)T

−λBR−1

 , F̃ (t) =

F 0 0
0 0 0
0 0 0


The solution of Equation (24) can be obtained by solving a
stochastic HJB equation [25]. Solving that HJB equation yields

u∗(t) =− 1

2
(R+ λI)−1(B̃T P̃ (t)−M(t)T )x̃(t)

− 1

2
(R+ λI)−1B̃T s̃(t), (25)

where B̃ =
[
B B 0

]T
,

− ˙̃
P (t) = ÃT P̃ (t) + P̃ (t)Ã+ 2Q̃

−1

2
(B̃T P̃ (t)−M(t)T )T (R+ λI)−1(B̃T P̃ (t)−M(t)T )

˙̃s(t) = (−ÃT +
1

2
P̃ (t)B̃(R+ λI)−1B̃T

− 1

2
M(t)B̃)s̃(t) + (2Q̃− P̃ (t)H)r̃(t)

with boundary conditions s̃(T ) = −2F̃ r̃(T ) and P̃ (T ) = 2F̃ .
Define the optimal value of Equation (22) as V1, the value

of Equation (22) using the solution of QCQP (10) as V2, and
the value of Equation (22) using Equation (25) as V3. Based
on the weak duality [28], V3 ≤ V1. Note that when λ = 0,

Fig. 1. The states of the proposed policy and uα,2(t) converge to the
goal region without reaching the unsafe region in spite of a constant attack.
Meanwhile the state of the LQG controller using all measurements and
uα,1(t) violates safety and/or reachability constraints.

Fig. 2. The average costs of the proposed policy and uα,2(t) are 31.8519
and 29.6224, respectively, which are lower than those of the LQG controller
using all measurements and uα,1(t).

V3 = V2. Since 0 is a feasible solution of λ and Equation (23a)
maximizes over λ, we have that V2 ≤ V3, which further yields
that V3 is a tighter bound to V1 than V2.

V. CASE STUDY

In this section, we evaluate the proposed policy via a
numerical case study. Consider a system with 2 states, 2 inputs,
and 6 sensors. There are q = 3 attack patterns, denoted as
A1 = {1, 4}, A∗ = A2 = {2, 5}, and A3 = {3, 6}. The
adversary selects a(t) = (0, 1, 0, 0, 1, 0)T . Matrices A and
B are set to be identity matrices I with proper dimensions.

Matrix C =

(
1 1 1 0 0 0
0 0 0 1 1 1

)T

. The noises w(t) and

v(t) are Gaussian with means 0 and covariances Σw = 0.1I
and Σv = 0.1I. The cost matrices are selected as Q = I,
F = 0.03I, and R = 1× 10−3I with proper dimensions.

The system tracks a parabolic reference trajectory with the
form x2(t) = −4× (x1(t)− 0.5001)2 + 0.9999, where x1(t)
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and x2(t) denote the first and second dimensions of the state at
time t. The initial state x0 = (0.0001,−0.0001)T . We choose
that Φα,i(0) = 10I and x̂α,i(0) = (0, 0)T . The system is
required to avoid the set of unsafe states U = {x : 0.22−(x1−
0.5001)2− (x2 +0.0001)2 > 0} and reach the set of the goal
states G = {x : 0.22− (x1− 1.0001)2− (x2 +0.0001)2 > 0}
at T = 10. The worst case probability that the safety and
reachability constraints are violated are designed as ϵs = 0.3
and ϵr = 0.3.

The proposed policy is compared with three LQG con-
trollers. One LQG controller utilizes the measurements of all
sensors, while the other two LQG controllers uα,1(t) and
uα,2(t) which eliminate the measurements of sensors indexed
by A1 and A2, respectively. The performances of the four
controllers are shown in Fig. 1 and 2. As shown in Fig. 1,
the proposed controller and uα,2(t) can satisfy the safety and
reachability constraints, while the LQG controller using all
measurements and uα,1(t) are biased by the attack and violate
the constraints. From Fig. 2, we see that the cost of proposed
controller converges to the cost of uα,2(t), which is less than
the costs of the LQG controller using all measurements and
uα,1(t). From the results shown in Fig. 1 and 2, the proposed
controller guarantees safety and reachability, and at the same
time provides comparable cost performance with uα,2(t).
This results from the fact that after the function I Selection
eliminates the contraints Uγ1

(t) and Uγ3
(t), the controller is

not biased by the adversary. The LQG controller uα,2(t) is
optimal, but the attack pattern A∗ = A2 is not known by the
controller a prior. Thus, in real world, uα,2(t) is not realizable
because A∗ = A2 is only known by the adversary.

VI. CONCLUSION

This paper considered the LQG tracking problem with
safety and reachability constraints and unknown FDI attack.
We assumed that the adversary can compromise a subset of
sensors. The controller only knows a collection of possible
compromised sensor sets, but has no information about which
set of sensors is under attack. We computed a control policy by
bounding the control input with a collection of quadratic con-
straints, each of which corresponds to a possible compromised
sensor set. We used a barrier certificate based algorithm to
constrain the feasible region of the control policy. We proved
that the proposed policy satisfies safety and reachability con-
straints with desired probability. We provided rules to resolve
the possible conflicts between the quadratic constraints. We
validated the proposed policy with a simulation study.
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