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Abstract—We investigate a linear quadratic Gaussian (LQG)
tracking problem with safety and reachability constraints in the
presence of an adversary who mounts an FDI attack on an
unknown set of sensors. For each possible set of compromised
sensors, we maintain a state estimator disregarding the sensors
in that set, and calculate the optimal LQG control input at each
time based on this estimate. We propose a control policy which
constrains the control input to lie within a fixed distance of
the optimal control input corresponding to each state estimate.
The control input is obtained at each time step by solving a
quadratically constrained quadratic program (QCQP). We prove
that our policy can achieve a desired probability of safety and
reachability using the barrier certificate method. Our control
policy is evaluated via a numerical case study.

Index Terms—Barrier certificate, false data injection attack,
LQG tracking, safety and reachability constraints.

I. INTRODUCTION

Safety [1], [2] and reachability [3] are critical properties
of control systems. The safety constraint requires that the
system state should remain in a safe region. The reachability
constraint requires that the system should reach a set of goal
states within a desired time interval. Safety and reachability are
fundamental requirements for critical applications including
healthcare, transportation, and power systems.

Control systems have been shown to be vulnerable to
malicious attacks. Various attacks targeting at actuators and
measurement channels have been reported [4], [5]. Particularly,
false data injection (FDI) attacks, which compromise the
sensor measurements, need special concerns because they are
easily mounted [6], stealthy if the adversary knows the full
information of the system [7], [8], and can cause serious fi-
nancial loss or even personal damage [9]. One example is GPS
spoofing against unmanned aerial vehicles and autonomous
cars, which results in deviation from the desired trajectory, as
well as violations of safety and reachability [10], [11]. The
threat of such attacks has led to significant research interest
in modeling [12]-[14], mitigating [15], and detecting FDI [8],
[16]. Resilient state estimation is also investigated in [17]—
[19]. The authors of [20] aim at computing a safe operational
windows to guarantee the safety property of a deterministic
linear system with complete information. [15] assumes that
the correct sensor measurements of system state are always
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available to the controller even when the system is under
attack. An emergency controller is assumed in [21] which
can be invoked when an alert on attacks is raised. In [22],
a single-input single-output system under false data injection
attack targeting at actuator is studied.

At present, less attention has been paid to the design of
closed-loop controllers with safety and reachability guarantees
under FDI attacks. In the preliminary conference version of
this work [23], we investigated the linear quadratic Gaussian
(LQG) reference tracking problem, in which there was only
one possible set of compromised sensors. In this paper, we
generalize the problem so that multiple possible compromised
sensor sets are given, each of which corresponds to a different
attack scenario. The goal of our approach is to develop a
control policy that ensures safety and reachability under each
attack scenario while also minimizing the LQG tracking cost
when no adversary is present.

Under our approach, for each attack pattern, the system
maintains a state estimate that ignores the sensor measure-
ments corresponding to that attack pattern. The control action
chosen at each time step is then constrained to be within a
fixed distance of the optimal control action corresponding to
each state estimate. The key challenge is that, when there
are multiple possible attack scenarios, the state estimates may
be inconsistent from each other. To overcome this difficulty,
we propose a scheme for detecting and resolving inconsis-
tencies between state estimates. The selected state estimates
are utilized to construct constraints that guarantee safety and
reachability with desired probability.

The contribution of this paper is two-fold. First, a barrier
certificate based policy is proposed to solve the LQG tracking
problem with safety and reachability constraints under FDI
attack that targets at an unknown set of sensors. We solve
a quadratically constrained quadratic program (QCQP) to
calculate the control policy at each time step. We develop a
procedure to resolve the potential infeasibility of the QCQP.
We prove that the controller obtained using our approach
guarantees safety and reachability with desired probabilities.
We show the feasibility and performance guarantees of the
controller when the adversary is absent. Second, we derive a
closed-form solution of the controller for a special case of the
problem where there is a unique attack pattern. The derived
controller not only guarantees safety and reachability, but also
achieves better approximation with respect to the expected
cost, compared with our preliminary work [23].

The note is organized as follows. Section II states the system
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and adversary models and the problem formulation. Section
IIT and IV propose the control policy for the multiple- and
single-adversary scenarios, respectively. Section V contains
simulation results. Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first present the system and adversary
models. We then give the problem formulation.

A. System and Adversary Models

We consider a linear time invariant (LTI) system with state
x(t) € R"™, input u(t) € R™, and observations y(t) =

[y1(t),. .. 7yp(t)}T € RP. The system dynamics are
x(t) = Ax(t) + Bu(t) + w(t) (1a)
y(t) = Cx(t) + v(t) + a(t) (1b)

In Equation (1), w(¢) and v(¢) are independent Gaussian
processes with means identically zero and autocorrelation
functions Ry (7) = Xwd(7) and Ry (1) = X,6(7), respec-
tively, where 0(7) denotes the Dirac delta function. We use
Yw and X, to denote the covariance matrices of w(t) and
v(t) at each time ¢. We assume (A, Ny, ) is stabilizable, where
Nw NI = ¥. The initial state x(0) is equal to xq. Denote
J(t) as the information available to the controller at time ¢. We
have J(t) = {y(t)|[t' <t} U {u(®)|t’ <t} and T(0) = y(0).
The control policy of the system is defined as a function
w(J(t)) e R™.

In Equation (1b), a(t) is the attack signal injected by the
adversary. There exists a collection of attack patterns {A; :
1€{1,...,q}}. Here A; C {1,...,p} is a subset of sensors,
in which it is possible that A;()A; # (. The adversary
chooses one A* from A4, ..., A,;. The adversary then chooses
a(t) with arbitrary values such that support(a(t)) C A*
for all time ¢t € [0,7]. The controller knows the possible
compromised sets A;,..., A, but does not know which set
A* has been chosen by the adversary. At each time ¢, the
adversary knows the control policy u(J(t)), the system state
x(t'), the system output y(t'), and the control input u(¢’) for
all ¢ < t. Denote the adversary policy v(t) as a function
which maps {x(t'),u(t"),y(t") : V¢’ <t} to a(t).

Let G and U be the goal states and unsafe states defined
as G={xeR":gg(x)>0},and U = {x € R": gy(x) >
0}, respectively. Define the safety constraint as x(t) ¢ U V¢ €
[0, T, which prevents the system state from reaching U for
all time ¢ € [0,7]. We define the reachability constraint as
x(T) € G, which requires the system state to be in G at final
time 7. A reference trajectory {r(t) € R™ : t € [0,T]} is
given, which satisfies r(t) ¢ U and r(T) € G.

B. Problem Formulation

The problem studied in this work is
T
min B[(x(T) — x(T))" F(x(T) — x(T)) + / (u(t)" Ru(t)

+ (x(t) — ()T Q(x(t) — x(1))) dt|n, 8 = 1] 2)
5. max {Pr(Usepo,m{x(t) € U p,v)} < e

min {Pr(x(T) € Glu,v)} > 1 —¢,
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The objective function implies that the goal of the system
is to minimize the expected cost when there is no adversary
(8 = 1), while guaranteeing safety and reachability when the
system is under attack (8 = 0). The first constraint implies that
the probability of violating the safety constraint in the worst
case over all the adversary policies should be lower than the
bound €. The second constraint means that the probability of
achieving the reachability constraint should be greater than the
threshold 1 — €, under any adversary’s policy.

III. CONTROL STRATEGY FOR MULTIPLE-ADVERSARY
SCENARIO

In this section, we present the solution approach for multi-
adversary scenario. Our solution approach is based on the
observation that the adversary can only bias the system state
by injecting false measurements to the sensors to induce
erroneous control inputs. Hence, if we can restrict the control
inputs to stay within a particular neighborhood of each optimal
control signal u, ;(t) that corresponds to the measurements
from {1,...,p} \ A; for each attack pattern .4;, then we can
limit the impact from the adversary’s attack signal.

A. Control Policy Construction
Let ya,(t) be the measurements of sensors in {1,...,p}\
A;. Denote C,, ; and v, ;(t) as C and v(¢t) with rows indexed
by {1,....p} \ A;, so that y,;(t) = Coix(t) + va(t).
We assume that all systems (A4,C,;) Vi € {1,...,q} are
observable. Let ¥, , denote the covariance matrix of v ;.
The Kalman Filter (KF) estimates X, ;(t) are [24]

Xai(t) =A%, i(t) + Bug i(t)

+00,i(t)(¥a,i(t) — Ca,iXa,i(t)) 3)
Oa,i(t) =Pai(t)Co ;57! 4)
Do i(t) =ADy (1) + @i (H) AT + 2y

— @0 ()CL ST Coi®ai(t)” (3)

a,i vy,

where ®, ;(0) and %X, ;(0) are given.
From [24], the optimal LQG control based on X, ;(t) is

U,,i(t) = %K(t)fca,i(t) — %R‘lBTs(t)
K(t)=—-R'BTP(t)

—P(t) = ATP(t) + P(t)A — %P(t)BR‘lBTP(t) +2Q

5(t)

where s(t) and P(t) have boundary conditions s(T) =
—2Fr(T) and P(T) = 2F.

Denote X7, (t) as the KF estimate of x(¢) based on y(¢) of
sensors in {1,...,p} \ A*. Dynamics of X,(¢) is analogous
to Equations (3)-(5). Similarly, we define u?(¢) as the LQG
tracking optimal control input based on {y%(t') ¢’ < t}.

Define the set of feasible control inputs at time ¢
with respect to attack pattern A; as U, (t) = {u(t)
(u(t) — tas(0)” (W) — wailt)) < 12}, where 3 > 0 is
a parameter that will be discussed in Section III-B. Define
Ui(t) 2 {u(t) ¢ Jult) — wi)< 77} and UE) 2

(AT + %P(t)BR_lBT)s(t) +2Qr(t)
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¢, U, (t). Using this constraint instead of the constraint

in (2), the problem becomes
T
min E[/O ((x(t) = r()"Q(x(t) — r(t)) + u(t)” Ru(t))dt
+ (x(T) —x(T))" F(x(T) — x(T))]
s.t. u(t) e U(¢),Vt € [0,T).

(6a)
(6b)

The solution of (6) can be computed by solving a stochastic
Hamilton-Jacobi-Bellman (HJB) equation [25]

0 = mingpeu {(x(t) —r(t)" Qx(t) — r(t))
+Vi(t,x)(Ax(t) + Bu(t)) + str(Vax(t,x)Sw)  (7)
+u(t)TRu(t) + Vi(t,x)},

where the optimal u(t) with respect to Equation (7) is equal
to the minimizer of Equation (7) for all ¢ € [0,T].

Solving the constrained partial differential equation (PDE)
(7) is challenging, so we relax the constraint of problem (7),
and approximate the value function of (7) by relaxing the
constraint (6b). We observe that, while we relax (6b) when
approximating the value function, the input will still satisfy
u(t) € U(t). The value function is equal to [24]

Vi(t%) = x0T PX(1) + 5(1) + ()7 x(1) + 50(0), (8)

where $o(t) = $s(t)"BR™'BTs(t) — r(t)"Qr(t) and
—B(t) = Str(P(1)Sw).
Substituting Equation (8) into Equation (7), we have
min

wemin {6e(1) = P() " QUx(r) — x(1) + (1) + (1)
+u(t)T Ru(t) + x(t)T P(t)(Ax(t) + Bu(t)) + x(t)T's(t)
+ %x(t)TP(t)x(t) +s(t)T(Ax(t) + Bu(t))} )

O:

We approximate the optimal u(¢) with respect to Equation (7)
by the minimizer of Equation (9). Computing the minimizer
of Equation (9) is equivalent to solving a QCQP

Iun(ltl)l u(t)"Ru(t) + x(t)" P(t)Bu(t) + s(t)” Bu(t) 10
s.t. u(t) € U(t), vt € [0,T].

at each time t. QCQPs in the form of Equation (10) can be
solved efficiently using existing solvers [26] [27].

B. Safety and Reachability Verification

Parameters v; in U,, = {u(t) : ||u(t) — ua,i(t)]2< Vit
determines the size of the set of feasible control inputs at
each time t¢. Larger ; provides a larger feasible region of
u(t), which improves the performance of the system in the
attack-free scenario. However, enlarging the feasible control
input set also increases the probability that the system may be
biased and leads to the unsafe states. Thus, there is a tradeoff
between the performance and the risk of violating safety and
reachability when selecting ;.

In [23], we developed a binary search algorithm to find the
maximal feasible +; which satisfies the safety and reachability
constraints in Equation (2). We used the barrier function
method to determine whether safety and reachability are
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guaranteed for each value of 7;. The idea is to construct a
barrier function D;(x) for each +; such that, for some L < K,
Di(Xo) < L, Dl(x) > K for all X(t) € U, and DL(X) is
decreasing over any feasible trajectories of x(¢). Thus, if this
D;(x) exists for each ~;, x(t) will not enter the unsafe region.

Let 7; = min{y7,~!}. Satisfying U, (t) can guarantee
safety and reachability if A* = A;. This result is formally
stated using the following theorem based on [23].

Theorem 1. If A* = A;, there exist v; and ~] such that
satisfying |[u(t) — oi(8)]1< 75 and |[u(t) — i ()]]2< 77
guarantee safety and reachability with probabilities 1 — €, and
1 — €, respectively.

Proof. Please see [23] for the detailed proof. L]

Since the controller does not know which A; is A*, we
let the control input u(t) € U(t) = (i, U, (t) to guarantee
safety and reachability for all attack patterns {.4;}. However,
it is possible that 2/(¢t) = (. Thus, we need a mechanism to
find out feasible solutions when U(t) = .

C. Selection of Constraints

In this subsection, we present a policy to provide feasible
u(t) when U(t) = (). Denote Z(t) as the set of the indexes of
the constraints U, (t). Define v, = min; v;, i € {1,...,¢}.
In order to identify those U, () which cause U(t) = 0, we first
give a sufficient condition that 2/(t) # (). We then express the
sufficient condition in terms of the state estimates, and provide
a method to select Z(t) such that ;7 Uy, (t) # 0.

Proposition 1. If there exists a ball of radius Vi, such that
u.; i €{1,...,q} are contained in the ball, then U(t) # (.

Proof. Suppose there exists such a ball with center uyg. We
have HUO — UOM‘HQS Ymin < Vi Vi € {1, o ,q}. Hence, ug €
U(t), and U(t) # 0. O

In the following proposition we show the sufficient condi-
tion that the ball in Proposition 1 exists, and thus U(t) # 0.

Proposition 2. For all i,j € {1,...,q}, denote {i,j} =
argmaxihj{di,j}, where d; ; = |Ua,; — Uajll2. If di,}' >
29min, the ball which satisfies Proposition I does not exist.
Ifdi,j < 29min, and ||u0(,k: - (ua,i + ua,j)/QHZS Ymin Vk €
{1,...,q} \ {i,7} holds, then there exists a ball that satisfies
Proposition 1.

Proof. 1f d;j > 2%min, then the distance between u,; and
u,, - is greater than the diameter of the ball in Proposition 1.
Thus, there does not exist such ball that satisfies Proposition 1.
If d; 5 < 29min, then [lu, ; — (u,; +u,;)/2[2= |lu,; —
(ua,i+u(x,d)/2”2: %”ua,%_ua,jHQ: %dij S Ymin- Since we
also have |fua,;c —(u,;+u,5)/22< Ymin Yk € {1,...,q}\
{,7}, we have that u,; are in the ball with center (u,_ ; +

ua73)/2 and radius 7, for all ¢ € {1,...,q}. O

By definition of u, () and contraposition, if U(t) = 0,
then

(1) (Ra,i () = R 5(8)) /4 4+ K(8) (Rai(t) = R, 5(2)) /42
> Ymin- (11)
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where K (t) is the KF gain. In the next lemma, we split (11)
into two inequalities, with each containing only two estimates.
Lemma 1. If U(t) = 0, then either ||XK(t)(RXa,(t) —
Ra i (Ol2> 537min or (13K (£)(%ai(t) =% 5 (8) 12> 5Vmin,
or both of them hold.

Proof. Applying triangle inequality to the left hand side of
inequality (11), we then have

1 (1) Rai(6) = % 5 00) /4K () Ras(0) = %5 (0)/ 4]
K OGail®) = 20i0) | K0 Failt) — %o 5(0)
> | . + !

2

> Ymin- (12)

Inequality (12) is satisfied if at least one of || K (t)(%q,i(t) —
%o (02> Trmin and || K (6)Rei (8) K1 () ]2 S5
is satisfied. O

Motivated by Lemma 1, our approach to selecting Z(t)
such that (;,cz) Uy, # 0 is to compare between two state
estimates. Next, we show this comparison.

Denote C,;,; as C with rows indexed by {1,...,p} \
(A;UA;). We assume that all systems (A,C,; ;) Vi,j €
{1,...,q} © # j are observable. Introduce the KF state
estimate X ; ;(t), which is obtained via yq ; ;(t), the output
with the measurements indexed by {1,...,p}\ (A; U A;).

Lemma 2. If ||[1K(t)(Ra,i(t) — Ra,j(t)]2> $Ymin, then
at least one of ||iK(t)(5ca7i(t) — Rai i (t)]|2> i’ymm and
155 (1) (Ra,j () = Xa,i i (t)ll2> §Ymin holds.
Proof. Applying triangle inequality, we have

Ymin/2 <|[K(t)(Ra,i(t) — Ka,j(t)/4]]2
<K () (Ra,i(t) — Raii () /42
+ K (#) (R (1) = Kai i () /4]]2

In order for inequality (13) to hold, at least one of the
following inequalities holds:

13)

1 1
15K O &ailt) = RaisOll2 > Jrmin (149

1 1
[RECICHOEENFDIFEE S
O

We use inequalities (14)-(15) later to identify the U{,, that
leads to infeasibility of QCQP (16). Intuitively, for a certain
pair of {i,j} € {1,...,q}, if the measurements are only
affected by the noises, || X4 ;(t) —Xq,;(t)||2 should be smaller
than some thresholds. If A; = A* or A; = A%, X4, ;(t)
should not be biased by a(t). Thus, when || 1K (¢)(%a,i(t) —
Ra,j(t)||2> F¥min, Xa,i,j(t) can be utilized as a benchmark
for checking whether %X, ;(t) and X, ;(t) are affected by the
attack and diverge from the unaffected values.

Since both the noise and attack may result in the divergence
between state estimates, it is necessary to determine the worst
case probability that the noise results in || K (t)(Ra,;(t) —
Re,iyj (B)]]2> %%m»n, which could result in measurements
being excluded erroneously. We derive the following theorem
to show the probability that ||+ K (t)(Ra,;(t) — Rai;(t)]l2>
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$Ymin Vi,j € {1,...,q} happens during ¢ € [0, 7] is upper-
bounded when no adversary is present. We will utilize this
theorem later to eliminate U4, (¢) which may render U(t) = 0.

Theorem 2. Suppose A* = A;. There exists n*7 such that for
each j € {1,...,q} \ {i}

Pr( sup [[K() (os(t)  %ass(0) 23 Ymen) <0
te[0,T]
where 0l = AT+ AT K s Kaat)
and X ;;(t) are estimates calculated using KF and
measurements of sensors indexed by {1,...,p} \ A,
and {1,....,p} \ (AiUA;), respectively, K =
SuPte[o,T]HK(t)H% Al = SUP¢¢(o0,1) {Amaa (Zi(1))
Alg = subeor) {Amaa (B (1)}, Ei(t) and % ;(t)
are the covariance matrices of (x(t) — Xa.(t)) and
(x(t) —Xa,,5(t)), respectively, Aoz (-) denotes the maximum
eigenvalue of a matrix, T'; = E(ei(O)TEi(O)_lei(O)),

Lij = E (e5(0)725(0) ey (0)), €(0) = %aa(0) = o,
and el—j (0) = )A(Oéyi,j (0) — Xp-.

Proof. The proof is analogous to the proof of Theorem 1
in [23] and we omit the proof due to space constraints. [

Define {||K(f) (Rai(t) = Ra,ij(t) 2> Ymin} as Q7,
{IIK () (Rai(t) = %aij(t) |[2< Ymin} as Q; . Theorem 2
implies that the probability that 2}’ occurs during ¢ € [0, T
is bounded above by ™I Vi,j € {1,...,p} when A* = A;.
In other words, we can eliminate x;(t) if Q7 occurs, and the
probability that we improperly eliminate an uncompromised
estimate x;(t) (A* = A; but we eliminate {£,,) is bounded
above by n*J. Applying the results of Propositions 1 and 2
and Theorem 2, we propose the function Z_Selection in Algo-
rithm 1 to select constraints that can provide feasible control
inputs u(t) to guarantee safety and reachability requirements.

Algorithm 1 works as follows. It requires the number of
attack patterns ¢, the LQG controller gain K (t), the state
estimates excluding each attack pattern X, ;(t), the state
estimates excluding each pair of attack patterns X, ; ;(t), the
minimum of radii for all constraints 7,,;,, the feasible control
input set corresponding to each attack pattern I/, as the inputs,
and returns the set of indexes of selected constraints Z(t) as
the output. The algorithm selects constraints U, (¢) that can
provide feasible control inputs u(t) to guarantee safety and
reachability properties with desired probability. The existence
of the feasible control inputs u(t) is guaranteed by satisfying
the sufficient conditions in Proposition 2. Specifically, the
condition d; » < 27, is guaranteed by line 5 - line 10. The
condition ||, — (u,;+tu,5)/2l2< Yimin VE € {1,....q}\
{,7} is verified via line 11 - 22. The judgment statements in
line 12 and line 17 select the pairs of state estimates that
may be affected by the adversary based on Lemma 1. The
constraints that are likely to be affected are eliminated in line
13 - 16 and line 18 - 21 based on Lemma 2.

D. Control Strategy Design

Our proposed control design is summarized in Algorithm 2.
In line 2 and 3, we initialize Z(t) and U(t) as the indexes and
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Algorithm 1 Algorithm for selecting constraints U, () that
can guarantee safety and reachability properties with desired
probability.
1: procedure Z_SELECTION(q, K(t), Xa(t), Xa,i;(t),
Ymins Z/{"/'i(t)7 Z.’j € {17 R q}ai 7’é ,7)

2 I« {1,...,q}

3 dij = [%ai(t) = Xaj (|2, 4,5 € Z(1), i # j
4: {1,j} + arg maxi,jeI(t){di,j}

5: while d;,j > 2'Ymin do

6: if 0/ then

8: if Q}J then

10: {1,j} + arg maXi,jez(t){di,j}

11: for each i € Z(t) do

12: if ||iK(t)()A(a7i(t) — ia’;(t))||2> %’ymm then
13: if Qi then

14: Z(t) + Z(t)\ {i}

15: if 07 then

16: I(t) + Z(t) \ {3}

17: if || K (1) (Ra,i(t) — %, 5(1)[]2> 5Ymin then
18: if O/ then

19: Z(t) « Z(t) \ {i}

20: if QJJ then

21: Z(t) < Z(t)\ {j’}

22: {%,j} +— arg maxl-_’jez(t){di_j}

23: return Z(t)

intersection of all constraints. In line 4, we first check whether
UEt) = 0. In line 5, if U(t) = 0, we utilize Z_Selection in
Algorithm 1 to identify and eliminate those U, (¢) which result
in U(t) = 0 and output Z(t). In line 6, the algorithm invokes
the existing solver, denoted as QCQP(Z(t)), at each time ¢ to
solve the QCQP with the form

Illll(ltI)l u(t)"Ru(t) + x(t)" P(t)Bu(t) + s(t)” Bu(t) 6
stou(t) €U, (1), i € I(t)

Algorithm 2 Proposed control policy that guarantees safety

and reachability constraints under multiple-adversary scenario.
1: procedure CONTROL_POLICY(q, U, (t), 7 € {1,...,q})
2 () +{1,...,q}

3: Ut) « ﬂiez(t) Uy, (t)

4

5

if U(t) == 0 then
Z(t) < ZI_Selection(q, K(t), Xa,i(t), Xa,i;(t),
Ymins L{% (t), Z,] € {1, ey q},’l, 7£ ])
u(t) + QCQP(Z(t)) in Equation (16)
return u(t)

e A

When there is no attack, the controller attempts to minimize
the objective function. Due to the existence of noise, d; ; may
deviate from O for V7,5 € {1,...,q}. This may lead to smaller
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feasible region U (t), and suboptimal performance with respect
to expected cost. If all u, ;(¢) can be proved to be close to
the optimal control u*(t), the feasibility and performance of
the proposed approach can be guaranteed.

Lemma 3. Let u*(t) = SK(t)x(t) — 1 R7'BTs(t). Define

A* = sup; { Amaz (X(t)) }, where X(t) is the covariance matrix
of (x(t) —%(t)). Let 1 = max{n’ : Vi € Z(t)}, where n* =
VT + NTOK /42, and T = E (e(O)Tz(o)*le(O))
When 3 = 1, we have

PT( sup Hu*(t) - uoui(t)HQ < 'Ymin) >1 —ﬁ,Vi € I(t)7
t€[0,T]

Pr(u*(t) eU(t) Vt € [0,T]) > 1 = Siezy n'
Proof. Based on the definitions of u*(¢) and u,, ;(t), we have

Pr(supepory |[u™(t) = va,i(t)ll2 > Ymin)
= Pr(supeor [ (8)(X() = Xa,i(t))l]2 = 2Ymin)

According to Theorem 2, we have

Pr( sup ||K(t)(x(t) = Xa,i()l2 = 2ymin) < 7"

te[0,T]
Thus,
Pr( sup [[u*(t) = uai(®)|l2 <ymin) > 1—0" (A7)
t€[0,T]
We have
Pr( sup [[u*(t) = Uai(t)ll2 < Yonin) = 1 —7,Vi € Z(2).
t€[0,T]
(13)
Based on Equation (17) we can obtain
Pr(u*(t) e U(t) vt € [0,77))
=1- Pr(uiez(t)u*(t) ¢ U, (t) Vt €10,77))
Z 1-— ZieI(t) 772 (19)
O]

Based on (18), the probability that in the non-adversary case
Niez U (t) # () is lower bounded by 1 — 7. Our proposed
approach guarantees feasibility under benign environment.
Equation (19) implies that the probability that our proposed
approach provides the same utility as the best possible control
when no adversary is present is lower bounded.

E. Safety and Reachability Guarantees

In this subsection, we present the safety and reachability
guarantees provided by the control policy obtained by Algo-
rithm 2. Define Q,, £ (Miepo,m{x(t) € UHN{x(T) € G},
Qu = MNiep,riul®) € U3 (@)}, and Oy < Usepo,r{ult) ¢
U (t)}. The safety and reachability analysis of our proposed
control policy is based on bounding the probability Py =
Pr(Q.). We define P, = Pr(Q,.|Q) as the probability
that safety and reachability constraints are satisfied given that
the control inputs are from Uf;(t). This probability has been
discussed in Theorem 1. We denote P, 2 Pr({) as the
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probability that at any time ¢ the control input u(t) satisfies
the correct constraint 2/ (t). We have

PQ = P?“ (er) . .
= PT(QST|QZ/{) . PT(QM) + PT(QST|QM) . PT(QL{)
> PP

Here P, denotes the probability that safety and reachability
are guaranteed and the control input u(t) is in U (%), V¢, and
can be expressed using P, and P;. If there exist lower bounds
for both P, and P, the lower bound for P, exists.

The safety and reachability guarantees of the proposed
control policy is presented by the following theorem.

Theorem 3. The control strategy returned by Algorithm 2
satisfies the safety and reachability constraints in Equation (2).

Proof. The probability that safety and reachability are guar-
anteed when the control input u(t) is in UJ(t) for all
t, with probability Py = P; - P,. P; is bounded be-
low by Theorem 1. Assume A* = A;. P is equiva-
lent to the probability that U.,(¢t) is never eliminated at
each time ¢, which is bounded below by the probability
that {sup, (o /[ K (t) (Ra,i(t) = Ra,ij(£) |2 Ymin Vi €
{1,...,4}\ {i}}. Thus, we obtain

P, :Pr(mje{17___7q}\{i} sup QiJ)
t€[0,T)

=1-Pr(Ujeqr, oy sup Q)
t€[0,7)

> 1 =3, q}\{z‘}PT( sup QZJ)
t€[0,T]

(20)
21

>1—Siet, anii}n™,
Po>Pr- (1= Sjeq, . ongin™) -

By choosing ~;,Vi € {1,...
make Py > max{l —e;,1—¢,.} Vi € {1,...

,q} and ., properly, we can
.q} O

Theorem 3 implies that there exists a lower bound of the
probability that the safety and reachability constraints can be
satisfied for V.A;. We observe that this lower bound given in
Equation (20) depends on ~; Vi € {1,...,q}, Ymin, and the
noise characteristics of the system. By choosing appropriate
vi Vi € {1,...,q} and Ymin, and constructing corresponding
set of feasible control inputs I, (¢), we can attempt to make
the lower bound be within [max{l —€;,1 —¢,},1].

E. Selection of ~v; and Ymin

The parameters v; Vi € {1,...,q} and ~,,s, affect both
Py and P,. In P, smaller ; Vi € {1,...,¢} can make the
system be more difficult to be biased. In Ps, larger v,n
is more likely to make the correct constraint be kept. In
order to guarantee safety and reachability for all A;, we
need to keep Py > max{l — €5,1 — ¢} Vi € {1,...,q}.
Since the closed form expression of P; as a function of
~; is not clear, we utilize a heuristic method to search for
proper value of v; Vi € {1,...,q} and 7,;, which satisfies
Py - Py > max{l —e€;,1 —¢,} for all A;. The intuition is that
we initialize P; first to compute the corresponding +; to the
candidate P, and calculate the corresponding ,,;, = min; ~;
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Algorithm 3 Algorithm for computing the parameters {~;, % €
1,...,q} and 7y, that ensures safety and reachability.

1: procedure y_SELECTION(¢;, €., iter_times, K, \f, A}

2,7

i,jE€Ll ....qki# )
22 e+ max{l —¢;,1—¢}
3: for each i € {1,...,q} do
4: Py 1, Py, (Pl,i —€)/iter_times
s: 7; < Barrier_Certificate(P; ;)
6: Update vynin and ipip.
7: for each i € {1,...,q} do
8: nd AN T + ﬁ,jfi,j)KZ/%%m
9: Update P5; and Py ; via (20) and (21).
10: 1+ 1
11: while i < iter_times do
12: Pl@mm — Plﬂmm Ly
13: Yiin ¢ Barrier_Certificate(P1 ;)
14: Update Vpin and 2pmin.
15: for each i € {1,...,q} do
16: n" 4N T + A?,jri,j)Fg/’Y?nm
17: Update ﬁg_’i and Foﬂ- via (20) and (21).
18: if VPy,; > € then
19: break
20: i+ 1
21: if 7 > iter_times then
22: return null
23 return {v;,i € 1,...,q}, Ymin

foralli € {1,...,q}. Here we assume existence of a function
Barrier_Certificate that returns the ~;. Then we check the
lower bound of P, for all A; according to inequality (21).
If the lower bound is greater than max{l — €;,1 — ¢} for
all A;, the safety and reachability constraints are satisfied.
Otherwise, we enlarge ,,,;,, by reducing the P; corresponding
to the minimal ~;, recalculating this +; under the updated P,
and checking the lower bounds of Py for all A; under new
Ymin- We do this procedure iteratively until the lower bounds
of P, for all A; are greater than max{1l — €5, 1 — ¢,.} for all
A;. The proposed procedure is shown in Algorithm 3.

IV. CONTROL STRATEGY FOR SINGLE-ADVERSARY
SCENARIO

In this section, we consider a special case where there
exists a unique attack pattern, denoted as .A;. Both the
controller and the adversary have the knowledge of A* = A;.
However, the controller does not know which sensors in A;
are compromised by the adversary.

In the single-adversary scenario, Equation (6) in the
multiple-adversary scenario becomes

T
min | / ((x(t) — x(£)TQ(x(t) — x(t)) + u(t)” Ru(t))dt
+(x(T) = (1) F(x(T) — x(T))]
s.t. u(t) € Uy, (t),Vt € [0,T7].

When solving (7), we do not know which A; is A*, and
Z(t) is changing at each time step ¢. Thus, we have to relax the

(22)
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constraints U, (t) for all « € Z(t). Since A* = A; is known in
the single-adversary scenario, we use the method of Lagrange
multipliers to construct the dual problem of Equation (22)
rather than relax the constraint U, (¢) when solving the HJB
equation. Denote the Lagrange multiplier corresponding to
constraint U, (t) as A(t). The dual problem of (22) is [28]

T
o min E{ [ 160 - )"t ~ )
Tt Ru(t) — A1) (72 — [[ut) — oy (0]2)]dt
T (x(T) — o(T))T F(x(T) — r(T))}

s.t. A(t) > 0,Vt € [0,T]

(23a)
(23b)

Choosing the value of A(¢) at each time step ¢ is challenging,
so we relax the problem by assuming A(t) = A > 0 for all
t € [0, T). The following analysis can be repeated for different
values of A\ to obtain a lower bound on the solution to (20),
and hence a lower bound on the value function. The inner
minimization problem of Equation (23) can be rewritten as

T
. ~ ~ T =~ ~ ~
i E{ | 10 -5 @ - 7)
+u(t)T (M + R)u(t) — x()T M (t)u(t) — \yi]dt
+ (&(T) — H(T)TFE(T) —F(T))},

where X(t) = [x(t)T, %a.1(6)T,s(t)7]7, T(t) = [r(t),0,0]T,

(24)

~ Q 0 0
Qt)={0 AKWMTK() —IAK®)TR'BT
0 —IABR'K(t) iMBRRBT

0 N F 0 0

M(t) = [22K@®)T | ,F(t)= |0 0 0

—ABRil 0 0 O

The solution of Equation (24) can be obtained by solving a
stochastic HIB equation [25]. Solving that HIB equation yields

w'(t) = — 5 (R+ AN (BT P(t) - M(t)")x(t)

1
2

- %(R + M) BTE(1), (25)

where B = [B B O]T,
_B(t) = ATB(t) + P(t)A + 20
5 (BT P() — M) (R 4+ A1)~ (BT P(t) ~ M(5))

- 1~ = ~
s(t) = (—AT + SPOB(R+ A)~IBT
1
2
with boundary conditions $(T") = —2FF(T) and P(T) = 2F.
Define the optimal value of Equation (22) as V;, the value
of Equation (22) using the solution of QCQP (10) as Vs, and

the value of Equation (22) using Equation (25) as V3. Based
on the weak duality [28], V3 < V). Note that when A = 0,

M()B)S(t) + (2Q — P(t)H)(t)
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Fig. 1. The states of the proposed policy and un,2(t) converge to the
goal region without reaching the unsafe region in spite of a constant attack.
Meanwhile the state of the LQG controller using all measurements and
uq,1(¢) violates safety and/or reachability constraints.
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Fig. 2. The average costs of the proposed policy and uq,2(t) are 31.8519
and 29.6224, respectively, which are lower than those of the LQG controller
using all measurements and uq,1(t).

V3 = V5. Since 0 is a feasible solution of A and Equation (23a)
maximizes over A\, we have that Vs < V3, which further yields
that Vs is a tighter bound to V; than Vs.

V. CASE STUDY

In this section, we evaluate the proposed policy via a
numerical case study. Consider a system with 2 states, 2 inputs,
and 6 sensors. There are ¢ = 3 attack patterns, denoted as
Ay = {1,4}, A* = Ay = {2,5}, and A3 = {3,6}. The
adversary selects a(t) = (0,1,0,0,1,0)7. Matrices A and
B are set to be identity matrices I with proper dimensions.

T
L1100 0) . The noises w(t) and

Matrix C = 000 11 1

v(t) are Gaussian with means 0 and covariances Xy, = 0.17

and Y, = 0.11. The cost matrices are selected as Q) = I,

F =0.031, and R =1 x 1072 with proper dimensions.
The system tracks a parabolic reference trajectory with the

form x5(t) = —4 x (z1(t) — 0.5001)2 + 0.9999, where z1(t)

3 at 21:24:22 UTC from IEEE

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorgg)zublicationsﬁstandards/publications/ri hts/index.html for more information.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on January 10

plore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3153456, IEEE

Transactions on Automatic Control

and x4 (t) denote the first and second dimensions of the state at
time ¢. The initial state xo = (0.0001, —0.0001)%". We choose
that ®,;(0) = 10I and %,:(0) = (0,0)T. The system is
required to avoid the set of unsafe states U = {x : 0.22 —(z1 —
0.5001)2 — (x5 +0.0001)% > 0} and reach the set of the goal
states G = {x : 0.2% — (21 — 1.0001)? — (22 + 0.0001)? > 0}
at T' = 10. The worst case probability that the safety and
reachability constraints are violated are designed as e, = 0.3
and ¢, = 0.3.

The proposed policy is compared with three LQG con-
trollers. One LQG controller utilizes the measurements of all
sensors, while the other two LQG controllers u,1(t) and
U,,2(t) which eliminate the measurements of sensors indexed
by A; and Aj, respectively. The performances of the four
controllers are shown in Fig. 1 and 2. As shown in Fig. 1,
the proposed controller and u, 2(¢) can satisfy the safety and
reachability constraints, while the LQG controller using all
measurements and u,, 1 (¢) are biased by the attack and violate
the constraints. From Fig. 2, we see that the cost of proposed
controller converges to the cost of u, 2(¢), which is less than
the costs of the LQG controller using all measurements and
U,,1(t). From the results shown in Fig. 1 and 2, the proposed
controller guarantees safety and reachability, and at the same
time provides comparable cost performance with ug 2(%).
This results from the fact that after the function Z_Selection
eliminates the contraints U, (¢) and U,,(t), the controller is
not biased by the adversary. The LQG controller u, 2(t) is
optimal, but the attack pattern A* = A5 is not known by the
controller a prior. Thus, in real world, u, 2(t) is not realizable
because A* = Aj is only known by the adversary.

VI. CONCLUSION

This paper considered the LQG tracking problem with
safety and reachability constraints and unknown FDI attack.
We assumed that the adversary can compromise a subset of
sensors. The controller only knows a collection of possible
compromised sensor sets, but has no information about which
set of sensors is under attack. We computed a control policy by
bounding the control input with a collection of quadratic con-
straints, each of which corresponds to a possible compromised
sensor set. We used a barrier certificate based algorithm to
constrain the feasible region of the control policy. We proved
that the proposed policy satisfies safety and reachability con-
straints with desired probability. We provided rules to resolve
the possible conflicts between the quadratic constraints. We
validated the proposed policy with a simulation study.
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