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A B S T R A C T   

Study region,Montana, U.S.A. Study focus Creating adaptation plans for projected imbalances in 
the western U.S. agricultural water demand-supply system are difficult given uncertainty in 
climate projections. It is critical to understand the uncertainties and vulnerabilities of the regional 
agricultural system and hydrologic impacts of climate change adaptation. We applied a sto-
chastic, integrated hydro-economic model that simulates land and water allocations to analyse 
Montana farmer adaptations to a range of projected climate conditions and the response of the 
hydrologic system to those adaptations. Satellite observations of crop types, productivity, water 
use, and land allocation were used for model calibration. A suite of climate models was employed 
to quantify end-of-century impacts on streamflows, water and land use, production, and net 
revenues.New hydrological insights for the region Simulations showed summer streamflows were 
influenced by a state-wide 18.2% increase in agricultural water use. Decreased summer water 
availability with increased demand could have far reaching impacts downstream. Land use for 
irrigated crops increased 1.6%, while rainfed crops decreased 6.5%, implying state-level decrease 
in planted area. Even with increased land and water use for irrigated crops, production decreased 
0.5%, while rainfed production decreased 2.7%. Corresponding losses in net revenues totaled 
1.5% and 7.2% for irrigated and rainfed crops, respectively.Results highlight vulnerabilities of 
semi-arid agricultural regions and can aid water managers in sustaining agriculture in these 
regions.   

1. Introduction 

Agriculture in the western United States (U.S.) is critical to the nation’s cattle, barley, and wheat production. Production of these 
commodities in the arid and semi-arid West is highly dependent on seasonal precipitation and irrigation. Ongoing climate change 
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coupled with growing water demands is placing the region’s water system under increased pressure. In many cases the water demands 
already exceed average supplies (Anderson et al., 2018; Averyt et al., 2013; Ficklin et al., 2013; Grantham and Viers, 2014; Slaughter 
et al., 2010; Ward et al., 2006). Throughout the West, farmers respond to temporal variations in climate, water availability, and market 
and policy signals by changing water allocations, crops grown, and land apportionment to each of the crops. Irrigation in the western 
U.S. has generally increased over the last century, but at varying paces across different agricultural regions (Edwards & Smith, 2018). 
In arid and semi-arid regions, irrigation water availability allows farmers to reduce exposure to periods of precipitation shortfall and to 
meet increasing demands for agricultural products (Hanjra et al., 2009; Schaible et al., 2010; Tack et al., 2017; Warrick and Gardner, 
1983); however, potential climate change impact on water supplies is increasing the risk for farmers. With current water sources 
committed and fewer opportunities to develop new sources, irrigators and water managers will need to become more efficient with 
existing water supplies. 

Fig. 1. a) Location of the study region and representation of the elementary sub-catchment network (grey polygons), river network (blue polylines), 
water diversion nodes (brown points), and Montana county outlines (black polygons). b) Montana’s counties and climate regions. 
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Hydro-economic models have been utilized by water resource managers for decades (Brouwer and Hofkes, 2008; Harou et al., 
2009). These models are used at various spatial and temporal scales to analyze, anticipate and manage competing demands between 
water supply systems and agriculture under different climate extremes (Esteve et al., 2015; Falloon and Betts, 2010; Maneta et al., 
2009; Medellín-Azuara et al., 2011; Torres et al., 2012; Ward et al., 2006), and the influence of economic and policy scenarios (Ghosh 
et al., 2014; Howitt et al., 2012; Varela-Ortega et al., 1998). There are numerous studies that implement hydro-economic models with a 
focus on irrigated agriculture (Borrego-Marín et al., (2020); Connell-Buck et al., 2011; Ghosh et al., 2014; Medellín-Azuara et al., 2011; 
Ward et al., 2006), but fewer studies have focused on regions with mixed rainfed and irrigated crops (Maneta et al., 2009; Siderius 
et al., 2016). Conversion of rainfed to irrigated cropland will increase pressure on water resources as climate change progresses 
(Lauffenburger et al., 2018). In the past it was difficult to accurately quantify land use (LU) allocated to rainfed and irrigated crops but 
advances in remote sensing technology have helped fill this data gap (Colligan et al., 2021; Ketchum et al., 2020). 

In this study we analyze producer adaptive behavior in the state of Montana using a regional scale hydro-economic model forced 
with end-of-century climate projections from a suite of downscaled climate models. Farming and ranching activity in the state of 
Montana is representative of the larger U.S. Northern Rocky Mountains region. The hydro-economic model was recently developed and 
calibrated for regional-scale analysis and incorporates observational and climate projection uncertainty in its predictions. A novelty is 
that the model calibration leverages a decade-long remote sensing record of agricultural activity (cropland allocation, production and 
crop evapotranspiration) and advances in remote sensing data assimilation methods. We use model results to analyze the potential 
impacts of projected climates on streamflow (SF), water diversions (WD), agricultural LU and water use (WU), and crop production 
(PD) and farm net revenues (NR) in Montana, a state that includes portions of both the Northern Rockies and Northern Great Plains 
(NGP). A key objective of this study is to quantify the net hydro-economic impact attribu` to producer adaptive response to projected 
worse-case end-of-century conditions as represented by the Representative Concentration Pathway (RCP) 8.5 scenario. We isolated the 
net effects of farmer adaptive decision-making, by assuming policy and technology status-quo, i.e., no development of new water 
sources, no irrigation infrastructure adaptations, no new crop types or varieties, and no policy changes to water rights or access to 
water resources. The results reflect the end-member impact scenario for producers if no action is taken. 

This study overcomes some limitations of previous studies by calibrating the model with observations from an extended spatial and 
temporal period that covers a wide range of climatic and economic conditions, and by explicitly treating the effect of observation and 
climate projection uncertainty in the results. The specific objectives of this study are (1) to reveal the impacts of climate change in rural 
regions of the agricultural western U.S.; (2) to determine the crop types that farmers are more likely to prioritize under future climates; 
and (3) to investigate the economic and hydrologic costs of farmers’ adaptive measures to climate change. Our study provides insight 
on the specific topic of agricultural vulnerability to climate that water resource managers can consider to inform effective agricultural 
water policy. 

2. Study region 

Situated in the Northern Rocky Mountain range and straddling the continental divide, Montana (Fig. 1a) includes part of the 
Intermountain West and the NGP. The northwest and southwest regions (Fig. 1b) are characterized by mountains, valleys, milder 
winters, cooler summers, and more year-round precipitation, while the central and eastern regions are characterized by warmer 
summers, colder winters, and less precipitation (Silverman et al., 2017). The topographic and climatic gradients across Montana have a 
strong influence on SF and LU. The western watersheds tend to be smaller, but considerably wetter than the eastern watersheds, 
resulting in most of the state’s surface water flowing into the Columbia River basin (MT DNRC, 2014). The topography of the western 
watersheds is a factor in the distribution of land properties that favors smaller farms and ranches located in the mountain valleys. The 
central and eastern watersheds are considerably larger and the agricultural land holdings more extensive, but surface water is less 
accessible except along the main river corridors. While dryland and irrigated agriculture are practiced across the state most of the 
irrigated acreage occurs in western Montana while eastern Montana is primarily rainfed (MT DNRC, 2014; USDA NASS, 2017). 
Roughly 96% of total water withdrawals are used for irrigated agriculture, and 98% of those withdrawals come from surface waters (U. 
S. Geological Survey (USGS), 2018). 

Agriculture is a major contributor to Montana’s gross domestic product and critical in supporting rural livelihoods. According to the 
2017 Census of Agriculture, alfalfa, barley, spring wheat, and winter wheat dominate Montana’s agriculture both in NR and LU; these 
four crops collectively accounted for over $2 billion in revenues and over 54% of the total cropland area (USDA NASS, 2017). Alfalfa 
PD, mainly to support the cattle industry, is ubiquitous state-wide, with the central and southwest regions (Fig. 1b) being the most 
productive. The north central region was dominated by barley PD. Roughly 27% of all LU to irrigated barley was in Teton County. 
Approximately 76% of all spring wheat PD occurred in the north central and northeast regions, much of which was non-irrigated. 
While winter wheat was produced across the state, a cluster of 11 counties in the north central and central regions, known as the 
“Golden Triangle”, accounted for approximately 81% of the state’s total PD, with Chouteau County alone accounting for 24%. 
Although irrigation of winter wheat occurred in 11 counties in the eastern half of the state, the acreage values were low and therefore 
our study assumes all winter wheat is rainfed. 

3. Methods 

3.1. Hydro-economic model 

In our analysis we applied a stochastic hydro-economic modeling framework that integrates climate, surface and subsurface 
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hydrology, agronomy, economics of agricultural production and institutional constraints (Maneta et al. 2020). A comprehensive 
description of the model and the calibration method is provided in Appendices A, B, and C, but here we present an overview of the 
structure and processes simulated relevant to interpret the results. Our hydro-economic model integrates a semi-distributed hydrologic 
model that simulates the rainfall-runoff and water routing processes through the hydrologic network of the study region (Fig. 1a). We 
implemented a gridded version of the Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Bergström and Forsman, 1973; 
Bergström, 1995; Lindström et al., 1997) to simulate daily sub-catchment runoff (Fig. A1) in combination with the Muskingum-Cunge 
model (Cunge,1969) to route daily streamflows through the river network. The agroeconomic component of the model simulates 
agricultural water demands, which are used to calculate WD at specific river nodes (Fig. 1a). The river network propagates the effects 
of agricultural WD downstream in the form of reduced SF available to downstream users. 

The agroeconomic component of the model relies on the assumption that farmers have historically allocated resources (land and 

Fig. A1. Conceptual structure of the modified HBV model (model inputs and outputs and model state variables in capital letters; model parameters 
in lower case letters). 

Fig. 2. Schematic of the interactions and feedbacks between the hydrologic and the economic components of the model. The components iterate 
until the economic model converges to a state that is consistent with the available land and water resources. 
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water) to the crops they chose to grow with the objective of maximizing farm-level NR subject to land and water constraints (Eq. B1). 
The constraints in Eq. B1 require that the total LU and WU for all crops in the region is less than or equal to the total land and water 
available for cultivation, as well as standard non-negativity constraints. The production function that simulates crop growth is a 
generalized constant elasticity of substitution (CES) production function that maps resource allocation (land and water) to PD (Eq. B2). 
Our model accommodates both irrigated and rainfed crops by separating water provided via precipitation (which is costless to the 
farmer) from water applied via supplemental irrigation (which does incur costs) (Maneta et al., 2020). 

Water availability can be constrained by policy rules, or by physical water availability at diversion points as simulated by the 
hydrologic component. Limits on land availability can be restricted to less than the physical agricultural land in the county to simulate 
the effect of fallow on crop rotations or extend the available land to simulate double cropping (Fig. 2). A production function embedded 
in the economic model relates LU and WU to PD and is used in conjunction with information on production costs, crop prices, and 
water and land availability to calculate county-scale revenues. 

The hydrologic and economic components interact through water diversions for supplemental irrigation. Seasonal WU calculated 
by the economic component for each crop is transformed into daily diversion rates according to the crop development state and 
irrigation and conveyance efficiency factors (Eq. B.4). These diversion rates are subtracted from streamflows at corresponding 
diversion nodes of the hydrologic network. Daily diverted water rates are proportionally redistributed over pixels marked as cropland 
in a predefined crop mask (Eq. B.3). 

In total, there are eight inputs necessary to run the hydro-economic model (Table 1). The hydrologic component required pre-
cipitation and temperature data (Fig. B1). The economic component required data on natural crop water use (CWU, which we define as 
water consumed by crops not coming from supplemental irrigation), crop prices, variable unit costs of cultivating land, and cost of 
applying water (USDA NASS, 2017). Planting and harvesting dates used to calculate crop growth stage were derived from the U.S. 
Bureau of Reclamation (2016) AgriMet tables. Irrigation-system efficiencies were derived from MT DNRC (2017) data using Brouwer 
et al. (1989). 

He et al. (2019) calculated baseline total water used by each crop from natural sources (CWUbase) from remote sensing data over 
fields known to be rainfed. End-of-century total natural crop water use (CWUeoc) was estimated by adjusting CWUbase by the projected 
percent change in mean growing season aridity index (AI). The growing season (April 1st – September 30th) used was chosen to be 
inclusive of the usual planting and harvesting dates reported by the USDA NASS (2010), and because irrigation water rights in Montana 
begin on April 1st of each growing season (MT DNRC, 2017). AI is defined as the ratio of mean growing season reference evapo-
transpiration (ETr) to mean growing season precipitation (P). ETr was calculated following the American Society of Civil Engineers 
(ASCE) standardized reference evapotranspiration (ETr) equation (Walter et al., 2000) using downscaled precipitation, temperature, 
relative humidity, and downwelling solar radiation grids from each of the considered GCMs within the MACA dataset. Wind velocity 
data was obtained from the gridMET dataset and used for all future ETr calculations due to the lack of wind velocity grids in the MACA 
datasets. For each GCM, future ETr was calculated for every 4 × 4 km resolution grid cell for every daily time-step over the entire 
11-year end-of-century period, then aggregated at the county-scale for each growing season. CWUeoc for each county, crop and sce-
nario year was calculated as the difference between CWUbase and the inverse of AI multiplied by CWUbase. If the resulting CWUeoc 
returned a value equal to or less than zero, then the CWUeoc value was set to the minimum value greater than zero over all scenario 
years for that county and crop. 

3.2. Spatial discretization of the hydrologic and economic models 

Sub-catchments and the structure of the regional drainage network was generated using the USGS GTOPO30 digital elevation 
model (DEM) at 1 km resolution (USGS, 1996). The location of active USGS National Water Information System (NWIS) discharge 
gages were used to place the initial set of nodes to divide the model domain into sub-catchments (Maneta et al., 2020). Additional 
ungaged nodes were added to generate more sub-catchments and achieve the spatial detail that we considered adequate in resolving 

Table 1 
Hydro-economic model inputs required for scenario simulations. Superscripts: D denotes the input is deterministic, S denotes the input is stochastic, 
VS denotes the input varies spatially, and CS denotes the input is constant spatially.  

Input Units Source Resolution 

PrecipitationD,VS mm MACA (Abatzoglou, 2013) 4 km, daily 
TemperatureD,VS ◦C MACA (Abatzoglou, 2013) 4 km, daily 
Crop pricesS,CS $ USDA NASS (2015) State-level, annual 
Production costs per crop per unit 

landS,CS 
$/ha USDA NASS (2015) State-level, annual 

Cost of waterS,CS $/mm- 
ha 

USDA NASS (2015) State-level, annual 

Crop development stagesD,CS day USBR (2016) AgriMet State-level, daily 
Irrigation-system efficiencyD,CS % MT DNRC (2017) County-level, annual 
Crop water use baselineS,VS mm-ha Remote sensing (He et al., 2019) 30 m, 8 day (aggregated to county- 

level, annual) 
Crop water use end-of-centuryS,VS mm-ha Derived fromHe et al. (2019) & MACA (Abatzoglou, 2013) using 

Walter et al. (2000) 
County-level, annual  
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spatial variability of SF. The final hydrologic system model was represented with 330 sub-catchments. Each sub-catchment contains 
one river reach. 

Montana’s 56 counties were used as the spatial units for the economic component (Fig. 1b). Each economic unit (county) receives 

Fig. B1. Evolution of the parameter ensemble for 20 data assimilation periods during calibration in Beaverhead County. Shaded areas are the 95 
and 68 percentile confidence intervals of the ensemble (form Maneta et al., 2020). 
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irrigation water from one node of the stream network (termed diversion nodes) selected from the river reach that passes through the 
county. 

3.3. Model calibration datasets and procedures 

3.3.1. Hydrologic component calibration 
The hydrologic model (HBV + Muskingum-Cunge) has a total of 13 hydrologic component parameters, which were calibrated using 

the brute-force Monte Carlo method on 32 pilot sub-catchments, each containing a USGS NWIS discharge gage and a USDA Natural 
Resources Conservation Service (NRCS) Snow Telemetry (SNOTEL) station. The current version of the model cannot simulate the effect 
of reservoirs. Because of this limitation we vetted the USGS NWIS gage locations and selected those not impacted by reservoirs. This 
process resulted in the 32 pilot sub-catchments used for calibration. Calibration was done against 10-year historical (2009–2018) USGS 
NWIS discharge gage and SNOTEL stations data using the Kling-Gupta Efficiency (KGE) statistical metric (Gupta et al., 2009) as the 
objective function. Historical precipitation and air temperature data used during hydrologic model calibration was obtained from the 
gridded meteorological database (gridMET) (Abatzoglou, 2013). The 330 sub-catchments in the domain were grouped by similarity 
using a K-Means clustering analysis (Hartigan & Wong, 1979) based on eight catchment descriptors: total area, stream gradient, stream 
length, percent land use (agriculture, forest, grassland, urban), and mean percent clay in upper soil (0–150 cm). Catchment areas and 
stream descriptors were calculated from the GTOPO30 DEM using GIS procedures. Land use and soil classification descriptors were 
obtained from the USDA NRCS Soil Survey Geographic Database (SSURGO) (Soil Survey Staff, 2018). The optimum number of clusters 
was determined using a silhouette plot (Rousseeuw, 1987) and each of the 330 sub-catchments was grouped into one of three clusters. 
Cluster 1, 2 and 3 included 2, 28, and 2 of the 32 pilot sub-catchments, respectively. Cluster 2 contained a majority of the headwater 
sub-catchments, which have less probability of being impacted by reservoirs and contain the most SNOTEL stations. This explains the 
disproportionate number of pilot sub-catchments in cluster 2. The pilot sub-catchments assigned to each cluster were calibrated using 
10,000 brute-force Monte Carlo simulations using 10-year (2009–2018) historical daily input time series of snow water equivalent and 
streamflow. At the conclusion of the Monte Carlo simulations, the set of parameter values from the model run that achieved the best 
combined (USGS NWIS and SNOTEL data) KGE value was used as the parameter set for all sub-catchments within the same cluster. 
Table A1 provides additional details on the parameters of the hydrologic component. 

3.3.2. Economic component calibration 
The economic component was calibrated in a previous study using a using recursive Bayesian filter (Maneta et al., 2020). The 

calibration was done independently of the hydrologic model and involved ingesting historical (2008–2018) information of production 
costs and crop prices, and remote sensing observations of area planted, crop type, crop yields, and crop evapotranspiration (as an 
approximation of crop water use) to determine the parameters of Eq. (B1). Under the assumption that resource allocation is driven by 
maximizing profit, past observations of LU and WU to each crop i are solutions to the objective function that maximizes farm NR (Eq. 
(B1)). The calibration of the economic component using the Bayesian filter yields the probability distribution of parameter values that 
satisfy the first- and second-order conditions that solve Eq. (B1) for a maximum at the observed probability distributions of LU, WU, 
and PD. The nonlinear optimization program that solves Eq. (B1) treats the model parameters as an ensemble of stochastic variables 
that are recursively adjusted by the sequence of agricultural observations using a recursive Bayesian filter. The result of the process is 
an ensemble of parameters conditioned to the history of observations of LU and WU in each economic unit (county). An example of the 
dynamics of the model parameter ensemble for one county is provided in Fig. (B1). The range in the values of the parameter ensemble 
approximates the probability distribution of optimal parameters given the uncertainty of the historical observations. In this analysis we 
reconstructed the probability distribution of each parameter using ensembles sizes of 300 members. Description of the economic 
component’s data sources is provided in Appendix C. 

Table A1 
Hydrologic model parameters and calibrated values for the three clusters. Refer to technical appendices in Maneta et al. (2020) for a detailed 
description of the hydrologic component.  

Parameter Name 
(units) 

Parameter description Cluster 1 Cluster 2 Cluster 3 

pp_temp_thres (◦C) Precipitation temperature threshold 1.45 1.92 -0.74 
ddf (mm◦C−1d−1) Degree day factor 3.58 2.65 4.92 
soil_max_wat (mm) Maximum soil water content 211.05 100.21 121.47 
soil _beta (-) Empirical soil routing coefficient 4.55 2.19 1.31 
aet_lp_param (-) Evapotranspiration limit 0.37 0.50 0.35 
hbv_hl1 (mm) Storage parameter for upper groundwater compartment (UZ) 3.84 71.82 15.43 
hbv_ck0 (d−1) UZ vadose zone conductance 3.75 1.75 14.37 
hbv_ck1 (d−1) UZ saturated zone conductance 14.24 25.22 8.33 
hbv_ck2 (d−1) Lower groundwater compartment (LZ) conductance 8861.34 3183.61 4959.04 
hbv_perc (d−1) Percolation from UZ to LZ 22.87 13.37 27.53 
hbv_pbase (h) River routing transformation routine parameter 4 4 4 
K (d) Muskingum-Cunge parameter controlling the celerity of wave routing through the channel 83,265.77 86,481.24 84,027.74 
e (-) Muskingum-Cunge parameter controlling the dispersion of wave routing through the 

channel 
0.52 0.50 0.50  
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3.4. Model application 

The application of our calibrated hydro-economic model for Montana compares end-of-century climate change projections 
(2080–2090) from hindcast (2008–2018) conditions simulated by five downscaled global climate models (GCMs) under the high-risk 
RCP 8.5 carbon emissions scenario. Our analysis assumes that no new crop types including genetically modified varieties are intro-
duced in the future, no new technologies that affect irrigation efficiency, no new sources of available water, and now new agricultural 
policies that alter the amount of water farmers can legally access. Under these projections and assumptions our results represent the net 
impact of on-farm adaptation strategies when no other mitigating action is taken. Our aim was to isolate the hydro-economic effects of 
farmers’ adaptive behavior in response to climate change. This scenario provides water resource managers and policy makers a worst- 
case limit on the economic impacts of climate on agriculture. 

3.4.1. Climate and economic scenarios 
Baseline (2008–2018) and end-of-century (2080–2090) climatological daily precipitation and temperature datasets needed to run 

the model were drawn from a 4 × 4 km gridded statistical downscaling of five GCM outputs using the Multivariate Adaptive Con-
structed Analogs (MACA) method (Abatzoglou, 2013). The five GCMs chosen for this study (Supplementary Material Table D.1) were 
participants in the Coupled Model Intercomparison Project 5 (CMIP5) and were chosen based on their overall low relative error 
simulating historical mean temperature and precipitation in the U.S. Pacific Northwest (Rupp et al., 2013). Each of the five GCMs 
provides a climate scenario with 11 years of historical baseline data and 11 years of end-of-century data. 

To represent economic conditions, we used 11 years, 2008–2018, of agricultural market observations of crop prices and production 
costs. Each year was considered an independent economic scenario with mean crop prices and input costs equal to the observed value 
each year and a common variance equal to the variance of the data during the 11-year record. 

For each climate scenario and period, the hydro-economic model was run 11 times, once for each of the 11 economic scenarios. This 
generated 121 years of hydro-economic information (11 years of GCM simulation x 11 agricultural market scenarios) for each of the 
five GCMs and each of the periods (baseline and end-of-century). Section 3.4.3 describes how the ensemble was processed to 
reconstruct the final model forecast probabilities. 

3.4.2. Model spin-up 
For each GCM and each climate scenario the model was spun-up by rerunning the hydrologic component enough times to allow the 

HBV water storage compartments to achieve steady-state conditions. Then, for each of the 11 economic scenarios, the spun-up hydro- 
economic model was spun-up once more by running one full cycle through all 11 climate scenario years. This step permits the hy-
drologic model to stabilize again under the new economic scenario. Once these spin-up runs were completed, the model was run again, 
and model results were collected for analysis. 

3.4.3. Propagation of model uncertainties and reduction of forecast ensembles 
The stochastic nature of our hydro-economic model permits to propagate uncertainties from different sources used and generates 

probabilistic forecasts of SF, WD, LU, WU, PD, and NR for the 56 counties of the state of Montana. The uncertainty in any single model 
forecast reflects the uncertainty from the economic model parameters, which in turn reflects the uncertainty in the observations of 
agricultural activity used to calibrate the model, as well as the uncertainty associated with the interannual variability of precipitation 
and potential evapotranspiration, and the interannual variability of crop prices, production costs, and water available for irrigation. 
The final ensemble of model forecasts also reflects the uncertainty associated with the spread in climate model projections (dis-
agreements between GCMs). The model forecasts do not consider the effect of uncertainties in the hydrologic model parameters due to 
computational limitations; however, SF forecasts reflect uncertainties associated with interannual variability of precipitation and 
evapotranspiration as well as the effects of the spread (disagreements) between climate models. The way we have handled uncertainty 
and aggregated the ensemble of model simulations is described here. 

To represent the total uncertainty in the system associated with climate and economic variability and with GCM projection dis-
agreements we run all combinations of economic and climate scenarios from 5 GCMs resulting in 605 simulated years (11 years of 
climate records per period x 11 economic scenarios x 5 GCMs) per period (baseline and end-of-century). These 605 simulated years 
span the range of precipitation, temperature, natural crop evapotranspiration, and agricultural market conditions of the baseline and 
forecast periods including variations associated with GCM disagreements. 

Total uncertainty in the forecasts of daily SF and WD for each period was obtained by stacking the 605 years to generate an 
ensemble of daily SF and WD. We used this ensemble to approximate the probability distribution of daily SF and WD each period and to 
calculate the probability distribution of relative change between them. These ensembles represent the interannual variability in each 
climate scenario (GCM), the variability between GCMs, and the variability induced by varying WD associated with farmer adaptation 
to the economic and climatic conditions. The effect of the uncertainty in the hydrologic parameters was not factored in. 

Total uncertainty in the forecasts of LU, WU, PD, and NR for each crop and county were calculated differently. This is because these 
forecasts are annual, and because for each of the 605 simulated years in each period the economic component also produced a 300- 
member ensemble forecast that reflect the uncertainty in the calibrated economic model parameters. To reduce the size of the 
ensemble we calculated the median of each ith member across all 605 simulated years in each period and used the resulting 
consolidated ensembles in each period to calculate the ensemble of relative change in these variables between baseline and end-of- 
century. 
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Fig. 3. Global climate models (rows) county-scale mean growing season aridity index for baseline (left), end-of-century (center), and percent 
change between baseline and end-of-century (right). 
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4. Results 

4.1. Changes in climate aridity 

All five GCMs agreed mean growing season average temperature (Tavg) would increase by end-of-century and that the western 
portion of the state would increase more than the eastern portion, on a percent change basis (Supplementary Material Fig. D.1). Among 
all five GCMs Tavg was expected to increase 31% state-wide. There was little model agreement in end-of-century P. The CanESM2 model 
projected increased P state-wide, the GFDL-ESM2G model projected decreased P state-wide, and the other three models projected 
regional changes, none of which agreed on spatial patterns (Supplementary Material Fig. D.2). Among all five GCMs P was expected to 
increase 4.9% state-wide. All five GCMs agreed ETr would increase state-wide, but there was little spatial agreement on which regions 
would experience the largest percent change (Supplementary Material Fig. D.3). Among all five GCMs ETr was expected to increase 
20% state-wide. 

As with P, there was little model agreement in end-of-century AI (Fig. 3). Among all five GCMs AI was expected to increase 21% 
state-wide. The most extreme end member GCMs were the GFDL-ESM2G and CanESM2 models. The GFDL-ESM2G model projected a 
57% state-wide increase in AI. However, the CanESM2 model projected a 3.5% state-wide reduction in AI, albeit with high spatial 
variability and some counties showed an increase. The only spatial uniformity among all five GCMs was in the northwest counties, 
where all projected increased AI. Although there was little spatial agreement among the GCMs, the magnitude of projected changes 
was important. As indicated on the colorbar in Fig. 3, the range across all GCMs spanned − 19–102%. The CanESM2 model was 
balanced, ranging from − 19–17%, but the other models were unbalanced towards more arid conditions by the end of the century. 

4.2. Water diversions and water use 

The overarching result in SF projections from our model align with previous studies that analyzed streamflow variations in the 
western U.S. (Bales et al., 2006; Das et al., 2011; Li et al., 2017; McCabe and Clark, 2005; Pederson et al., 2011; Rauscher et al., 2008; 
Regonda et al., 2005). Further hydrology results analysis and hydrographs for all counties are provided in Supplementary Material 
(Appendix E). 

Projected changes in total WD for irrigated agriculture showed a high level of uncertainty, both statistically and spatially. Ravalli 
County for instance is a productive irrigated region that relies on water from the Bitterroot River (Fig. 4b). Simulated mean total WD 
for agriculture in the Bitterroot River intensified by approximately 2.4% throughout the growing season, but projections showed a very 
large spread that reflected both the uncertainty in the economic model parameters and the disagreements in P and AI among the GCMs. 
The majority of counties (63%) projected an increase in the maximum mean percent change in WD (Fig. 5a). The dominant temporal 
trend in mean total WD showed lower changes in the early and late growing season and higher changes in the middle portion when 
crops were in full coverage and irrigation requirements were higher (Figs. 4b, c, 5b & c). 

Overall average state-wide median projections in WU showed a slight decrease for irrigated alfalfa, and large increases for irrigated 
barley and irrigated spring wheat (Table 2); therefore, collectively our results projected increased total WU for the state. The spatial 
patterns of median percent change in WU showed increases for irrigated alfalfa across the majority of counties in the northwest and 
southwest regions, slight changes (both positive and negative) in the central region, and predominantly decreases across the rest of the 
state (Fig. 6a). As a whole, less than half of the counties increased WU for irrigated alfalfa (29%). The majority of counties projected 
increased WU for irrigated barley (73%); however, the Gallatin (southwest region), Marias (central region) and most of the lower 
Missouri river corridor counties (central and northeast regions) projected slight decreases (Fig. 6b). The vast majority of counties 
projected increased WU for irrigated spring wheat (95%), with the western and eastern ends of the state projected to increase the most 
(Fig. 6c). 

Table 3 shows the regional average values of projected changes in WU for each irrigated crop type. Projections showed the 
northwest and southwest regions to increase WU for irrigated alfalfa, while the other five regions all projected decreases. The 

Fig. 4. a) Mean percent change in streamflows over the winter (January - March). Ravalli County highlighted by the pink oval, Richland County 
highlighted by the green oval. Hydrograph of the dominant river segment for b) Ravalli and c) Richland counties. Primary y-axis: Mean percent 
change in streamflow between baseline and end-of-century climate projections (blue line), grey shading indicating 95% uncertainty envelope 
associated with interannual climate variability and climate model error. Secondary y-axis: Mean percent change in water diversions for irrigated 
agriculture between baseline and end-of-century projections (red line), magenta shading indicating the 0.45–0.55 and 0.4–0.6 uncertainty range of 
modeled diversions. d) Mean percent change in streamflows over the spring (April - June). Symbols represent the maximum value of the mean 
percent change in water diversions over the growing season. 
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northwest and southwest regions have more abundant water, and closer sources of water, reducing total irrigation costs. Farms and 
ranches outside of the northwest and southwest regions are larger in area, with nearby water sources less abundant, which historically 
resulted in lower adoption of irrigation infrastructure due to the high cost of installation and water conveyance. These factors, as well 
as wheat and barley being more dominant in other regions, resulted in the northwest and southwest regions prioritizing and inten-
sifying irrigated alfalfa. The other regions prioritized irrigated barley and spring wheat (Fig. 6a & 6c). Historically, the southwest 
region devoted the most land to irrigated alfalfa, and our projections showed the largest change in WU for irrigated alfalfa in that 
region. The north central and southwest regions were the largest producers of irrigated barley and our projections showed increased 
WU. The northwest region was projected to have the largest change in WU for irrigated barley, which resulted from the low acreage of 
irrigated barley grown in the region historically; therefore, the comparatively small increase in the volume of irrigation water 
translated into the large percent change in WU. The northeast region projected the largest increase in WU for irrigated spring wheat, 
more than two times the state-wide average. Likewise, the northwest region projected significantly increased WU for spring wheat. All 
seven regions projected increased WU for irrigated barley and spring wheat. 

4.3. Land allocations 

On the state-wide- and regional-scale, average values of the median percent changes in LU to all non-irrigated crops were projected 
to decrease (Table 2 & 4). That decrease applied to the majority of the state, with a small number of counties (two to six) projected to 
increase LU for non-irrigated crops (Fig. 7b, d, f, & g). Conversely, average state-wide projections showed increased LU for all irrigated 
crops (Table 2). Regionally, irrigated alfalfa projected mixed spatial results (four of seven regions projected increases), irrigated barley 
projected increases in all regions, and irrigated spring wheat projected increases in all but the north central region (Table 4). There was 
no distinct spatial pattern in LU for irrigated crops (Fig. 7a, c, & e), but the majority of counties increased LU for irrigated barley and 
irrigated spring wheat (66%) and less than half of the counties increased LU for irrigated alfalfa (43%). 

4.4. Crop production 

Not all counties that increased LU and/or WU increased PD (Fig. 8). For irrigated alfalfa only seven counties showed increased PD 
(Fig. 8a), and all seven increased both LU and WU (Fig. 7a & 6a, respectively). Twenty counties showed increased PD of irrigated 
barley (Fig. 8c), all of which increased LU (Fig. 8c), but only 16 of those 20 increased WU (Fig. 7b). Fifty-three counties increased WU 
for irrigated spring wheat, but only 19 increased PD (Fig. 8e) and all 19 increased both LU and WU (Fig. 7e & 6c, respectively). Only 
Sheridan County increased PD of any non-irrigated crop, and only for winter wheat (Fig. 8g). Sheridan County increased LU for winter 
wheat by 10.3% (Fig. 7g) but only increased PD by 0.5%. Regionally, only the southwest region projected increased PD (for both 
irrigated barley and irrigated spring wheat) (Table 5). State-wide, average projections showed decreased PD of all crops (Table 2). 

4.5. Farm net revenue 

Taking into account all predicted changes in LU, WU, and PD, only 20 of 56 counties projected increased NR across any crops 
(Fig. 9). Regionally, only irrigated barley in the southeast region projected an increase in NR (Table 6). Historically, the southeast 
region grew significantly less irrigated barley (and therefore used less water) than the other regions. Model results showed the 
southeast region would increase LU for irrigated barley by 8.0% (Table 4), increase WU by 19.2% (Table 3), which only resulted in a 
0.8% increase in NR (Table 6). Overall average state-wide projections showed decreased NR for all crops, and all non-irrigated crops 
decreased more than any irrigated crop (Table 2). 

4.6. Projection uncertainty of resource allocation 

In order to convey the uncertainty in the model results, the probability distributions of economic variables for each crop type in 

Fig. 5. a) Mean percent change in streamflows over the summer (July - September). Powell County highlighted by the pink oval, Phillips County 
highlighted by the green oval. Hydrograph of the dominant river segment for b) Powell and c) Phillips counties. Primary y-axis: Mean percent 
change in streamflow between baseline and end-of-century climate projections (blue line), grey shading indicating 95% uncertainty envelope 
associated with interannual climate variability and climate model error. Secondary y-axis: Mean percent change in water diversions for irrigated 
agriculture between baseline and end-of-century projections (red line), magenta shading indicating the 0.45–0.55 and 0.4–0.6 uncertainty range of 
modeled diversions. d) Mean percent change in streamflows over the fall (October - December). Symbols represent the maximum value of the mean 
percent change in water diversions over the growing season. 
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Table 2 
Statewide average values of the projected median percent change for each crop type and economic variable. Total range given in parentheses.   

Irrigated Alfalfa Non-irrigated Alfalfa Irrigated Barley Non-irrigated Barely Irrigated Spring Wheat Non-irrigated Spring Wheat Winter Wheat 

Water Use -1.0 
(−15.8 to 27.1) 

N/A 17.4 
(−7.2 to 164.4) 

N/A 38.1 
(−8.9 to 257.8) 

N/A N/A 

Land Use 0.5 
(−6.6 to 33.6) 

-8.6 
(−19.2 to 4.3) 

2.8 
(−4.0 to 25.0) 

-6.0 
(−12.8 to 2.7) 

1.5 
(−4.6 to 14.1) 

-6.1 
(−13.0 to 1.4) 

-5.1 
(−12.2 to 11.4) 

Production -1.1 
(−3.5 to 3.4) 

-3.2 
(−11.3 to −1.2) 

-0.2 
(−1.9 to 4.1) 

-2.6 
(−6.8 to −0.1) 

-0.2 
(−2.9 to 2.1) 

-2.4 
(−6.6 to −0.3) 

-2.4 
(−7.0 to 0.5) 

Net Revenue -2.5 
(−8.2 to 15.9) 

-9.2 
(−16.3 to −5.1) 

-0.8 
(−7.0 to 7.0) 

-6.7 
(−14.3 to −2.3) 

-1.3 
(−5.9 to 3.6) 

-6.9 
(−11.2 to −3.6) 

-6.1 
(−9.9 to 1.7)  
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Fig. 6. County-scale median percent change (across all model climatic and economic scenarios) between the baseline (2008–2018) and end-of- 
century (2080–2090) projections. Different color scales for each crop type. 
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Ravalli and Richland counties are presented here (Fig. 10 and 11, respectively). The probability distributions for all counties are 
presented in Supplementary Material (Appendix F). Ravalli County was chosen as representative of the Northern Rockies region 
because it has large LU and WU devoted to irrigated agriculture and model results showed increased WU for all irrigated crops. 
Richland County was chosen as representative of the NGP region because it has the most LU for irrigated spring wheat in the state. Even 
with our methodology of producing the aggregated ensembles, the LU and WU distributions in both counties spanned large projected 
changes and zero percent change was within the 95% confidence interval. The changes in WU distributions were skewed right (Figs. 10 
& 11), signifying modestly higher probabilities of large increases in WU for irrigation. The probability distributions of the change in PD 
were quite narrow. These narrow changes in PD probability distributions did not directly translate to narrow changes in NR probability 
distributions. As with the changes in LU and WU probability distributions, the change in PD and NR probability distributions spanned 
zero percent change, which lies within the 95% confidence interval. The uncertainty around these values was largely due to the 
model’s response to the different climate projections represented by the GCMs, but also incorporated the effects of parameter un-
certainty in the economic component. 

5. Discussion 

5.1. Climate change uncertainty 

Differences in the GCMs’ projections of P contributed to the large potential range of hydro-economic outcomes across Montana, as 
evidenced by large uncertainty envelopes around SF and WD changes, spatial and magnitude uncertainty in AI, and wide probability 
distributions for LU, WU, PD, and NR. Projections of precipitation changes across the western U.S. were similarly uncertain (U.S. 
Global Change Research Program (2017)) which makes water resource management planning difficult (Groves et al., 2008; Tanaka 
et al., 2006). Conversely, there was agreement that temperatures will increase in Montana and across the western U.S. (U.S. Global 
Change Research Program (2017)). Increased temperatures can impact agricultural productivity in numerous ways. For example, 
optimal crop growth occurs within specific intermediate temperature intervals and excessive heat is detrimental to physiological 
processes which therefore decrease crop yield (Anderson, 2016; Schauberger et al., 2017). On the other hand, warmer spring tem-
peratures may allow for earlier planting dates which could increase crop productivity (Lanning et al., 2010), but at the risk of 
damaging frosts (Kim et al., 2014). While increasing temperatures could impact crop production, the aridity index might be a better 
proxy for the viability of future agricultural productivity (Paltasingh et al., 2012); however, the complexities of plant water use ef-
ficiency of photosynthesis with changing atmospheric CO2 concentrations has been shown to alter relations between hydrology and 
ecology parameters (Greve et al., 2019; Roderick et al., 2015). 

Future modeled projections of changes in annual aridity index showed increasing trends (more arid conditions) across most of the 
western U.S. (Ficklin & Novick, 2017; Fu & Feng, 2014; Scheff & Frierson, 2015; Sherwood & Fu, 2014). While our results did show 
disagreements in end-of-century AI among the five GCMs, the overall magnitude of change after aggregating all projections indicated 
more arid conditions by the end of the century. The more arid conditions were driven by increased atmospheric evaporative demands, 
i.e., increased ETr (Supplementary Material Fig. D.3). Wurster et al. (2020) examined historic (1979–2016) ETr, price and precipi-
tation anomalies impact on crop production in Montana and surrounding states. Their results highlighted that alfalfa production was 

Table 3 
Regional average values of the projected median percent changes in water allocated to each irrigated crop type. Total range given in parentheses.   

Irrigated Alfalfa Irrigated Barley Irrigated Spring Wheat 

Northwest 6.2 
(−2.7 to 27.1) 

43.8 
(−7.2 to 164.4) 

63.0 
(−2.4 to 255.6) 

Southwest 7.1 
(−3.2 to 20.1) 

8.4 
(−2.2 to 32.4) 

13.0 
(4.4–31.0) 

North Central -3.4 
(−12.4 to 11.3) 

10.8 
(−5.3 to 37.3) 

11.1 
(0.8–39.8) 

Central -0.7 
(−4.8 to 5.7) 

2.1 
(−4.7 to 31.1) 

29.7 
(1.3–97.1) 

South Central -3.8 
(−8.7 to −1.9) 

19.5 
(−3.0 to 43.8) 

15.8 
(−8.9 to 33.3) 

Northeast -6.3 
(−14.0 to 6.5) 

12.9 
(−5.9 to 73.6) 

81.3 
(−1.0 to 257.8) 

Southeast -5.2 
(−15.8 to 8.2) 

19.2 
(−0.7 to 87.1) 

39.7 
(10.2–124.2)  
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most sensitive to ETr anomalies across the majority of Montana, although irrigation largely decoupled alfalfa production from climate 

Fig. 7. County-scale median percent change (across all model climatic and economic scenarios) between the baseline (2008–2018) and end-of- 
century (2080–2090) projections. Different color scales for each crop type. 
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conditions. Winter wheat production in the western and eastern border counties were most sensitive to ETr anomalies. Maxwell et al. 
(2017) stated the possibility of a transition to winter wheat from spring wheat as a result of warmer winter temperatures. Our results 
did not match the Maxwell et al. (2017) prediction and evidence of that transition was not observed in the 2008–2018 USDA NASS 
data. As new observations of agricultural activity become available our hydro-economic model may capture that transition if present. 

5.2. Land use and water use 

In Montana and throughout the Intermountain West, agricultural lands are still prevalent in counties that are rapidly urbanizing. 
Adjacent to and upstream of more urban counties are counties dominated by farming and ranching. For example, Missoula County is 
rapidly urbanizing, agricultural water demands are decreasing, but projected upstream intensification of agricultural WD in Ravalli 
and Powell counties (Fig. 4b & 5b, respectively) would impact Missoula’s available water supply. Increases in agricultural water 
demand could amplify climate change impacts on summer SF. This is especially true in western Montana where our results showed 
summer SF would decrease (Fig. 4b & 5b). While the certainty around summer SF decreasing in the eastern plains were less conclusive, 
the majority of counties in the central and north central region projected slight decreases in maximum WD, but these regions still 
showed decreasing SF (Fig. 5a). Climate projections play a role, but upstream increases in WU could be the more significant translation 
of downstream water shortages. Therefore, the decisions farmers make in the headwater counties could have significant impact on 
counties situated downstream. Continuing historical trends experienced in the western U.S., end-of-century projected decreases in 
snowpack, growing season SF quantities, and shifts to earlier peak spring runoff (Bales et al., 2006; Das et al., 2011; Li et al., 2017; 
McCabe & Clark, 2005; Pederson et al., 2011; Rauscher et al., 2008; Regonda et al., 2005; Udall and Overpeck, 2017) will add further 
stress to agricultural water demands (Cross et al., 2017; Pathak et al., 2018). Tavg was projected to increase more in the mountainous 
western portion of Montana (Supplementary Material Fig. D.1), which is where the majority of irrigation takes place (MT DNRC, 
2014). Increasing temperatures could require increased irrigation to avoid crop stress and counteract increased evaporation (Asseng 
et al., 2013; Döll, 2002; Fischer et al., 2007; Xiao et al., 2005). There is little room for increased surface water diversions from any basin 
across the state as the percentage of basin totals are already diverted at 95% or greater (MT DNRC, 2014). 

5.3. Adaptation strategies 

Our methodology considers a limited set of the adaptation strategies available to farmers, e.g., farmers could only change LU and/ 
or WU but not change irrigation technology or introduce new crop varieties. Combining that with the variations in farming costs and 
crop market prices resulted in considerable noise surrounding our predictions of farmers’ response to climate change. Medellín-Azuara 
et al. (2011) isolated how land and water allocations, crop prices, and agricultural revenues in California would change under a 

Table 4 
Regional average values of the projected median percent changes in land allocated to each crop type. Total range given in parentheses.   

Irrigated 
Alfalfa 

Non-irrigated 
Alfalfa 

Irrigated 
Barley 

Non-irrigated 
Barely 

Irrigated Spring 
Wheat 

Non-irrigated Spring 
Wheat 

Winter 
Wheat 

Northwest -0.4 
(−6.6 to 5.8) 

-6.1 
(−12.0 to 4.3) 

3.1 
(−1.3 to 13.6) 

-6.4 
(−10.9 to 1.5) 

4.0 
(−1.1 to 11.0) 

-5.4 
(−11.0 to 1.4) 

-3.6 
(−8.4 to 
11.4) 

Southwest 1.5 
(−3.4 to 5.5) 

-5.9 
(−8.5 to −2.3) 

1.1 
(−1.2 to 4.3) 

-6.3 
(−8.2 to −4.9) 

1.8 
(−0.2 to 3.8) 

-6.2 
(−9.1 to −3.8) 

-2.1 
(−7.0 to 5.6) 

North 
Central 

-1.3 
(−5.9 to 5.5) 

-9.4 
(−12.0 to −6.4) 

1.3 
(−4.0 to 8.5) 

-5.3 
(−10.8 to −0.7) 

-0.7 
(−4.6 to 1.4) 

-6.1 
(−9.3 to −2.5) 

-8.7 
(−12.2 to 
−2.7) 

Central -0.9 
(−5.1 to 3.6) 

-8.4 
(−12.8 to −5.2) 

1.4 
(−2.0 to 4.1) 

-4.8 
(−9.8 to −1.1) 

0.6 
(−1.7 to 3.3) 

-6.8 
(−10.6 to 2.5) 

-6.7 
(−9.1 to 
−4.9) 

South 
Central 

-0.3 
(−3.8 to 4.8) 

-9.1 
(−14.2 to −5.1) 

2.7 
(−3.0 to 12.0) 

-4.6 
(−10.3 to 2.7) 

0.7 
(−4.4 to 3.9) 

-5.4 
(−9.3 to 0.1) 

-5.3 
(−9.5 to 
−0.3) 

Northeast 3.6 
(−4.0 to 33.6) 

-9.1 
(−14.2 to 1.7) 

2.3 
(−2.6 to 8.2) 

-8.4 
(−12.8 to −3.3) 

0.9 
(−2.0 to 3.3) 

-7.4 
(−13.0 to −3.7) 

-1.2 
(−7.4 to 
10.3) 

Southeast 2.5 
(−4.1 to 11.5) 

-12.1 
(−19.2 to −9.1) 

8.0 
(−0.1 to 25.0) 

-6.4 
(−11.5 to 1.4) 

3.7 
(−0.1 to 14.1) 

-5.5 
(−9.7 to 0.3) 

-6.4 
(−8.6 to 
−3.6)  
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Fig. 8. County-scale median percent change (across all model climatic and economic scenarios) between the baseline (2008–2018) and end-of- 
century (2080–2090) projections. Different color scales for each crop type. 
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mid-century climate change scenario. They estimated larger reductions in LU compared to our results, reductions in WU state-wide, 
moderate increases in crop prices, and a reduction in total gross revenues. However, their study showed that shifting to higher value 
crops, over less land, may translate into increased revenue per unit area in California. Likewise, farmers may choose to fallow their land 
and sell or lease their water to other users (Ghosh et al., 2014; Howitt et al., 2012). Montana has a limited crop portfolio and does not 
have a climate suitable for widespread production of high value crops that can be used to mitigate economic losses in the way Cal-
ifornia could. If in fact crop prices increase (and/or farming costs decrease), resulting in marginal land becoming economically viable, 
then Montana farmers may increase the extent of land area under production. Wurster et al. (2020) documented historical price 
anomaly impacts on crop production and showed that the majority of eastern Montana’s barley production and the majority of central 
Montana’s winter wheat production were the most sensitive to price anomalies. Therefore, shifts in market demands for barley and 
wheat by the end of the century could have implications for LU and WU that are not captured by our model. 

5.4. Assumptions and limitations 

Economic results indicated that most counties could experience PD and NR losses across all crops by the end-of-century under an 
RCP 8.5 carbon emissions scenario. The RCP 8.5 is increasingly considered an unrealistic scenario (Hausfather & Peters, 2020), 
therefore model outputs reflect the relatively extreme worst-case outcome. Our results focused on isolating the net climatic effects on 
agriculture; therefore, we assumed there would be no significant changes in production costs or crop market prices. Another 
assumption in these results was the timing of planting and irrigating. There is the potential that farmers will be able to produce more by 
end-of-century given warmer temperatures will allow for earlier planting dates. Crop productivity could increase with elevated CO2 
concentrations, but studies are inconclusive on the benefits of higher CO2 when accounting for other factors, e.g., higher temperatures, 
disease, weather extremes (Tubiello et al., 2007). Finally, this study assumed farmers will not plant new crop types. With changing 
temperatures, precipitation and aridity patterns farmers may have genetically modified species, and/or begin to grow other crops, 
better suited for arid climates. Such crops include sorghum and pearl millet (Chipanshi et al., 2003; Jukanti et al., 2016; Silungwe et al., 
2018). 

In addition to the assumptions made in this study, the hydro-economic model has important limitations. First, the model did not 
simulate dams nor irrigation water derived from pumping groundwater. Montana’s dams are important for water storage and flood 
mitigation and inclusion of these water storage basins could impact results in many counties. Currently, approximately 98% of 
Montana’s water withdrawals come from surface water, therefore baseline results are deemed appropriate. On the other hand, 
groundwater use increases during drought periods (Taylor et al., 2013) and the severity and duration of western U.S. droughts are 
expected to increase (Gutzler & Robbins, 2011; Trenberth et al., 2014; Silverman et al., 2017); therefore, groundwater use for irri-
gation in Montana is expected to expand by the end of the century (Brown et al., 2013). However, the effects of these model limitations 

Table 5 
Regional average values of the projected median percent changes in production for each crop type. Total range given in parentheses.   

Irrigated 
Alfalfa 

Non-irrigated 
Alfalfa 

Irrigated 
Barley 

Non-irrigated 
Barely 

Irrigated Spring 
Wheat 

Non-irrigated Spring 
Wheat 

Winter 
Wheat 

Northwest -1.1 
(−3.0 to 0.7) 

-2.8 
(−4.3 to −1.7) 

-0.2 
(−1.1 to 1.4) 

-3.3 
(−6.8 to −0.7) 

0.0 
(−2.9 to 1.9) 

-2.6 
(−6.5 to −1.0) 

-2.9 
(−7.0 to 
−1.3) 

Southwest -0.4 
(−1.8 to 0.4) 

-2.1 
(−2.3 to −1.8) 

-0.5 
(−1.9 to 0.3) 

-2.3 
(−2.9 to −1.6) 

-0.2 
(−1.1 to 0.4) 

-2.4 
(−3.6 to −1.6) 

-2.0 
(−3.6 to 
0.0) 

North 
Central 

-1.2 
(−2.2 to −0.1) 

-2.9 
(−3.7 to −1.9) 

-0.3 
(−1.6 to 1.6) 

-1.7 
(−3.0 to −0.8) 

-0.6 
(−1.9 to 0.3) 

-1.8 
(−4.1 to −0.4) 

-2.8 
(−4.4 to 
−1.3) 

Central -1.2 
(−2.1 to −0.2) 

-2.7 
(−4.1 to −1.2) 

-0.4 
(−0.8 to 0.2) 

-1.9 
(−2.9 to −0.7) 

-0.1 
(−0.8 to 0.4) 

-2.5 
(−4.3 to −1.2) 

-2.3 
(−3.2 to 
−1.5) 

South 
Central 

-1.5 
(−2.5 to −0.3) 

-3.3 
(−3.9 to −1.9) 

-0.2 
(−1.0 to 1.4) 

-1.9 
(−3.2 to −0.1) 

-0.4 
(−2.1 to 0.5) 

-2.4 
(−3.2 to −0.3) 

-1.9 
(−3.0 to 
−0.5) 

Northeast -1.2 
(−3.5 to 3.3) 

-3.6 
(−4.9 to −2.5) 

-0.3 
(−1.6 to 1.1) 

-3.8 
(−6.0 to −2.9) 

-0.3 
(−1.9 to 0.5) 

-2.7 
(−5.6 to −1.0) 

-1.8 
(−2.9 to 
0.5) 

Southeast -0.7 
(−2.3 to 1.6) 

-5.1 
(−11.3 to −2.3) 

1.0 
(−0.9 to 4.1) 

-3.0 
(−4.4 to −0.7) 

0.3 
(−0.5 to 2.1) 

-2.2 
(−3.5 to −0.8) 

-2.6 
(−3.1 to 
−2.3)  
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Fig. 9. County-scale median percent change (across all model climatic and economic scenarios) between the baseline (2008–2018) and end-of- 
century (2080–2090) projections. Different color scales for each crop type. 
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on the current analysis are limited because we did not use SF to estimate water available for irrigation or to calibrate the economic 
component. Farmer response was calibrated using water availability constraints derived from remote sensing estimates of actual crop 
water use during years of maximum irrigation, rather than water available in the streams (Maneta et al., 2020). In fact, SF provides a 
poor metric of irrigation water constraints because access to irrigation water is most often set by water regulations and not by the 
physical availability of water. 

Regarding alfalfa production, the model optimized for NR based on market prices. Alfalfa sold on the market is valued much lower 
than barley or wheat. However, much of the alfalfa grown in Montana is used on-farm for cattle production, which provides a far 
higher value to the farmer. Since we did not incorporate the indirect revenues generated from cattle sales in the price of alfalfa, we 
interpreted the alfalfa market price as an opportunity cost: if a farmer chooses to use alfalfa for cattle rather than sell it on the market, 
then the observed price reflects a lower bound on the value of alfalfa for cattle production. 

6. Conclusion 

We applied an innovative, satellite-informed, integrated hydro-economic model that overcame limitations of previous studies 
while filling an important knowledge gap about the impacts of climate change on streamflows, land and water use, crop production, 
and farm net revenues. The uncertainty in climate projections and diversity of farmer adaptation responses to climate change resulted 
in wide uncertainty in predicted states of streamflow, agricultural water use, and net revenues. By the end of the century, the majority 
of rivers across Montana would experience streamflow declines of 10–30% during the summer months. Our simulations showed a 
state-wide increase of 1.6% in land area devoted to irrigated crops accompanied by an 18.2% increase in agricultural water use. 
Montana is the headwaters to three major watersheds; therefore, declines in growing season water availability and increases in 
agricultural water demand would have far reaching impacts downstream. Even accounting for the increases in irrigated land and water 
use, irrigated crop production and farm net revenues were expected to decline by 0.5% and 1.5%, respectively. Projections for rainfed 
crops were more dire. Collectively, state-wide land allocated to rainfed crops declined 6.5%, production declined 2.7%, and net 
revenue declined 7.2%. While our study simulated the hydro-economic impacts of climate change in Montana, our results are 
representative of what many regions in the Intermountain West would experience. Our study filled important knowledge gaps by 
incorporating a wide range of economic and climate variability that are reflected in a comprehensive range of future predictions. 

Table 6 
Regional average values of the projected median percent changes in net revenue for each crop type. Total range given in parentheses.   

Irrigated 
Alfalfa 

Non-irrigated 
Alfalfa 

Irrigated 
Barley 

Non-irrigated 
Barely 

Irrigated Spring 
Wheat 

Non-irrigated Spring 
Wheat 

Winter 
Wheat 

Northwest -4.0 
(−6.9 to −1.1) 

-8.6 
(−13.3 to −5.3) 

-1.2 
(−7.0 to 3.7) 

-7.4 
(−14.3 to −2.3) 

-0.4 
(−2.5 to 3.6) 

-6.1 
(−9.8 to −3.6) 

-5.1 
(−7.9 to 
1.5) 

Southwest -1.7 
(−3.6 to 0.2) 

-7.3 
(−8.6 to −5.1) 

-1.7 
(−5.2 to −0.1) 

-6.7 
(−8.5 to −4.1) 

-1.8 
(−5.5 to 0.6) 

-6.6 
(−8.3 to −4.6) 

-4.1 
(−6.7 to 
0.6) 

North 
Central 

-2.6 
(−5.1 to 0.6) 

-9.2 
(−11.3 to −6.7) 

-0.7 
(−2.4 to 1.7) 

-5.4 
(−8.5 to −3.4) 

-1.4 
(−5.9 to 0.0) 

-6.4 
(−8.4 to −4.8) 

-7.5 
(−9.9 to 
−4.1) 

Central -2.4 
(−5.2 to −0.8) 

-8.0 
(−10.1 to −5.6) 

-1.1 
(−4.3 to 0.4) 

-4.9 
(−7.5 to −2.9) 

-1.1 
(−1.7 to −0.1) 

-6.7 
(−11.2 to −4.2) 

-6.4 
(−8.3 to 
−5.0) 

South 
Central 

-2.3 
(−3.7 to −0.5) 

-9.4 
(−12.0 to −5.3) 

-0.6 
(−2.2 to 2.1) 

-5.9 
(−9.9 to −2.2) 

-1.6 
(−2.6 to −0.3) 

-7.1 
(−8.8 to −4.8) 

-6.5 
(−8.8 to 
−4.8) 

Northeast -1.7 
(−8.2 to 15.9) 

-9.9 
(−13.1 to −5.2) 

-1.1 
(−3.4 to 1.3) 

-8.9 
(−11.6 to −6.3) 

-2.0 
(−3.1 to −0.9) 

-8.4 
(−11.1 to −5.2) 

-4.6 
(−7.5 to 
1.7) 

Southeast -2.3 
(−4.6 to 1.0) 

-11.6 
(−16.3 to −9.0) 

0.8 
(−2.4 to 7.0) 

-8.1 
(−10.7 to −4.5) 

-1.1 
(−1.9 to 0.6) 

-7.3 
(−8.9 to −4.2) 

-8.4 
(−9.1 to 
−7.5)  
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Fig. 10. Probability distributions of economic model results (columns) for each crop type (rows) for Ravalli County. Refer to Fig. 1b for county 
location and Fig. 4b for hydrologic model results. 
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Fig. 11. Probability distributions of economic model results (columns) for each crop type (rows) for Richland County. Refer to Fig. 1b for county 
location and Fig. 4c for hydrologic model results. 
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Appendix A. Hydrologic component 

The HBV model conceptualizes each sub-catchment delineated in Fig. 1a as a cascade of four compartments that represent water 
storages (Fig. A1) (Wallner et al., 2013). Daily water outputs from the soil and two groundwater compartments are transformed into 
runoff to the stream using a convolution with a triangular unit hydrograph (Soil Conservation Service, 1972). Runoff is then routed 
through the stream network using the Muskingum-Cunge method of river routing (Cunge, 1969). The Muskingum-Cunge method is a 
water routing model that enforces the conservation of mass at each node of the river network. See technical appendices in Maneta et al. 
(2020) for a detailed description of the hydrologic component. 

Appendix B. Economic component 

The objective function for the economic component is as follows: 

maxxland,i ,xwater,i net =
∑

i

{
piπi

(
xland,i, xwater,i; μi, βland,i, βwater,i, ρi, δi

)
− cland,ixland,i − cwater,ixwater,i

}

Subject to: 
∑

i
xland,i ≤ L  

∑

i
xwater,i ≤ W  

xland,i = xland,i [λland,i]

xwater,i = xwater,i [λwater,i]

xland,i, xwater,i ≥ 0 (B1) 

where net is the net revenue, defined as revenue less the cost of land and water use; the index i = 1, …, I represent crops; xland,i, 
xwater,i represent land and water resource inputs for crop i, respectively; pi is the price received for crop i; πi is the production function 
that associates resource inputs to total production of crop i; and cland,i, cwater,i are the unit costs associated with land and water use to 
produce crop i. The parameters µ, β, ρ, δ are production function parameters (described below). The constraints in Eq. (B1) require that 
the total land and water used for all crops in the region is less than or equal to the total land L and water W available for cultivation, as 
well as standard non-negativity constraints. The Lagrange multiplier parameters, λland,i and λwater,i, associated with the observed land 
and water-use constraints, respectively, represent the shadow prices of land and water. 

πi = μi[βland,ix
ρi
land,i + βwater,i(xwater,i + xprecip,i)

ρi ]
δi
ρi (B2)  

where µ, β, ρ, δ represent the production factor, share parameter, elasticity of substitution and return-to-scale parameter, respectively. 
The PMP methodology finds the production and cost function parameters that maximize Eq. (B1) while the values of land and water 
allocation are fixed to observed levels. The PMP methodology results in a calibrated function that captures observed producer behavior 
under the assumption that producers allocate resources to maximize net revenues subject to resource constraints (Howitt, 1995). 
Information on supply elasticity and yield elasticity is taken into account during the calibration following Mérel et al. (2011) and 
Garnache et al. (2017). The model captures producer response to crop prices and the geographical sensitivity of crop production to 
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water applications. The model also adjusts the cost of land and water in geographical space from county-level observations of land and 
water allocations via the calibrated shadow values. 

We specify daily water diversion rates from source node j in the stream network, and for each crop i, by redistributing the mean of 
the modeled probability distribution of seasonal water allocation [xwater,i] into daily amounts over the growing season according to a 
fractional weight coefficient ωi,t+1 that reflects the growth stage of the crop at a given day: 

qirr
j,i,t+1 =

E[xwater,i] ∗ ωi,t+1

Ieff i

(B3)  

where: 

ωi,t+1 =
Kci,t+1

∑
tKci,t+1

(B4)  

where qirr
j,i,t+1 is the water volume diverted for irrigation from stream node j for crop i at day t + 1; E[xwater,i] is the expectation of the 

ensemble of water allocations produced by the economic component of the model; Ieff i 
is an irrigation and conveyance efficiency factor 

for crop i; and ωi,t+1 is a weight factor that represents the fraction of the total crop water requirement that corresponds to day t + 1 and 
is a function of crop coefficients Kct+1 that vary through the season from plant emergence to full cover to termination. Kc reflects the 
crop evapotranspiration at a given growth stage with respect to evapotranspiration of a fully developed reference crop (alfalfa). We 
obtained crop coefficients and growth curves for each crop from the U.S. Bureau of Reclamation (USBR) for the Pacific Northwest 
Region AgriMet program (USBR, 2016). 

Appendix C. Economic model data sources 

Refer to Maneta et al. (2020) for a comprehensive description of the economic model. Data on annual variations of crop type mosaic 
and land area in crops over each economic unit (county) were obtained from the USDA Cropland Data Layer, which provides 
satellite-based remote sensing crop-specific land cover classification at a 30 m spatial resolution (USDA NASS, 2015). Crop production 
was calculated using a satellite-driven light use efficiency model to estimate gross primary production at a 30 m resolution and 8-day 
time step (He et al., 2018), and then aggregated to produce county-scale total production. Total water used by each crop (CWUbase), 
which includes both evapotranspiration from precipitation and from supplemental irrigation, was estimated at 30 m spatial resolution 
and 8-day temporal frequency by adapting the operational NASA MOD16A2 global evapotranspiration product (Mu et al., 2011) for 
agricultural applications (He et al., 2019). County-scale CWUbase volumes were obtained by accumulating pixel-scale, 8-day evapo-
transpiration estimates over the growing season (April 1st – September 30th). Uncertainty in CWUbase was obtained by scaling the 
spatial standard deviation of crop evapotranspiration by the area planted. Planting and harvesting dates vary year to year based on 
many factors, most notably field and crop conditions. The growing season date range we used was chosen to be inclusive of the usual 
planting and harvesting dates reported in USDA NASS (2010), and because irrigation water rights in Montana start April 1st (MT 
DNRC, 2017). Crop price data and the approximated costs of cultivating land and applying water were obtained from USDA NASS at 
the state-scale. Irrigation-system efficiencies for each economic unit were calculated using the Food and Agriculture Organization of 
the United Nations (FAO) scheme irrigation efficiency equation (Brouwer et al., 1989). Irrigation method (flood or sprinkler) statistics 
were obtained from the Montana Water Rights Database (MT DNRC, 2017). 

Appendix D. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ejrh.2022.101127. 
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