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ARTICLE INFO ABSTRACT

Keywords: Amphibian populations are sensitive to environmental temperatures and moisture, which vary with local weather
Adaptation conditions and may reach new norms and extremes as contemporary climate change progresses. Using long-term
Amphibian

(11-16 years) mark-recapture data from 10 populations of the Columbia spotted frog (Rana luteiventris) from
across its U.S. range, we addressed hypotheses about how demographic relationships to weather depend upon a
population’s position along climate gradients. We estimated the effect of seasonal weather on annual survival
probability and recruitment rates both within populations and across the species’ range from subalpine forests to
semi-arid deserts. We calculated population-specific weather variables that captured seasonal temperature and
precipitation between summer sampling events, both for periods when frogs were active (spring to fall) and inactive
(winter). Across all populations, we marked 15,885 adult frogs, with 33% of frogs recaptured at least once. Pop-
ulation demography varied with seasonal weather across the species’ range. Annual adult survival probability and
recruitment rates of each population were influenced by a unique set of seasonal temperature and precipitation
variables, particularly in winter and spring. Hence, adult survival varied with local conditions but, when analyzed
across all populations, was predictable along a species-environment response curve associated with the timing of
snowmelt and spring moisture. In contrast, recruitment rates for each population peaked at different values along an
environmental gradient associated with the amount of snow during winter, and fall temperature and moisture
levels, suggesting that recruitment may be responding to local conditions independently within each population.
These findings highlight that sampling across the environmental (i.e., elevational and meteorological) gradients
within a species range is necessary to predict species-level responses to regional climate change. This study also
provides evidence of the importance of winter conditions on the demography of temperate amphibians, conditions
that are already responding to climate change. Finally, this study further emphasizes that local context and
spatiotemporal scale of inquiry remain paramount to understanding and potentially managing for climate effects on
populations of amphibian species with broad geographic ranges.
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1. Introduction

Short-term (i.e., daily, seasonal) changes in temperature and pre-
cipitation, as well as other measures of local weather, may affect sur-
vival, reproduction, migration, and other aspects of life history (e.g.,
Nouvellet et al., 2013; Le Corre et al., 2017; Neilson et al., 2020). A
considerable challenge in understanding how climate change will affect
species is addressing the spatial and temporal scales at which weather
affects population demography (Grosbois et al., 2008; Knape and de
Valpine, 2011). This is a particular challenge for species with broad
geographic distributions. Broadly distributed species experience
different weather in different parts of their range, both within and across
years, and any changes in climate are unlikely to be uniform across
geographies (e.g., latitudes) or topographies (Li et al., 2016). Thus,
studies from different locations across a species’ range may produce
different or even conflicting responses to meteorological variation,
which complicates conservation planning for climate risk and mitigation
(Muths et al., 2017).

In temperate regions, climate change is expected to alter seasonal
temperature and precipitation patterns and further increase seasonal
and inter-annual variability in weather. Climates in inland areas of the
western U.S. are predicted to shift towards warmer, wetter winters and
warmer, drier summers (Intergovernmental Panel on Climate Change
(IPCC), 2021). This is already observable as higher nighttime tempera-
tures, reduced snowpack, earlier spring snowmelt, higher peak stream
flows, and increasing extreme weather events. Weather extremes, such
as droughts, deluges, heat waves, deep freezes, and false springs, are
occurring more frequently (Crockett and Westerling, 2018). There is
increasing concern that effects of climate change, when combined with
other stressors (e.g., land use change), will lead to wildlife population
declines and local extirpation (Newbold, 2018).

Among temperate vertebrates, amphibians are experiencing rela-
tively high rates of decline in recent decades (Leung et al., 2017) and are
expected to be particularly vulnerable to climate change (Aratjo et al.,
2006; Foden et al., 2013; Mims et al., 2018). Seasonal changes in tem-
perature or precipitation as well as extreme weather events may affect
amphibian populations by altering survival, breeding, and recruitment,
or displacing individuals (McCaffery et al., 2012; Li et al., 2013; Walls
et al., 2013). As ectotherms, temperate amphibian life history is highly
influenced by seasonal temperatures (Abram et al., 2017; Cayuela et al.,
2021a). With their thin skin and mostly external fertilization, frogs are
also particularly dependent on moist habitats for survival and repro-
duction. Most frogs also move through and forage in terrestrial envi-
ronments, which requires careful timing, selection of microhabitats,
behaviors, or physiological mechanisms to conserve water (Lertzman-
Lepofsky et al., 2020; Bartelt et al., 2022). Climate change is likely to
alter the thermal and moisture conditions that frogs experience,
potentially with consequences for populations (Miller et al., 2018).
These environmental changes will be strongly influenced by changing
seasonal and inter-annual weather patterns. This may be particularly
problematic for temperate pond-breeding frogs that already experience
wide fluctuations in seasonal temperature and precipitation resulting in
changes in surface water availability, hydroperiods, soil moisture, and
vegetation (McCaffery et al., 2014; Kissel et al., 2019; Pilliod et al.,
2021). Alternatively, frogs in these locations may be better able to
handle new weather patterns and extremes because of learned or innate
behaviors, genetic adaptations, or phenotypic plasticity (Storey and
Storey, 2012).

To better understand how climate change may affect different pop-
ulations of a broadly distributed amphibian, we investigated the effects
of local weather conditions on demography of Columbia spotted frogs
(Rana luteiventris) at multiple locations across the species’ range in the
U.S. Specifically, we modeled demographic responses of frog pop-
ulations as a function of seasonal temperature and precipitation, as well
as extreme weather events that occur over days (e.g., cold snaps) or
weeks to months (e.g., droughts). For this analysis, we took advantage of
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10 long-term (11-16 years) mark-recapture datasets. This analysis
allowed us to test for similarities in demographic responses within and
among populations of a species across a range of habitats, elevations,
and latitudes.

We considered two competing hypotheses for effects of seasonal
weather variables on frog survival and recruitment (Fig. 1). Under the
species-trait hypothesis (Fig. 1A), there is a temperature or precipitation
optimum for the species regardless of its position within its range.
Populations that are in areas with lower temperature or precipitation
than optimal (e.g., population Q) would exhibit a positive interannual
association with increasing temperature or precipitation until the opti-
mum is reached, with potential decreases in performance during
droughts or cold snaps. Conversely, populations that are in areas where
temperature and precipitation are higher than optimal (e.g., population
S) would exhibit a positive interannual association with decreasing
temperature or precipitation until the optimum is reached, with po-
tential decreases during deluges or heat waves. Populations located at
the temperature or precipitation optimum (e.g., population R) would
exhibit a Gaussian relationship with local weather variables, unless they
only experienced near optimal conditions, in which case there would be
no detectable relationship with the weather variable. Under the context-
dependent hypothesis (Fig. 1B), each of the three populations would
respond independently to its local temperature and precipitation con-
ditions and each would exhibit its own Gaussian relationship with
temperature or precipitation. Under this scenario, we might expect to
see multiple, population-specific Gaussian response curves along a
gradient and possibly two populations responding in different directions
(i.e., discordance) to the same range of values for a given weather var-
iable (Fig. 1B).

2. Materials and methods
2.1. Study species

The Columbia spotted frog is a pond-breeding anuran that has one of
the largest ranges of any amphibian in western North America. Although
considered secure in the northern portions of its range, southern pop-
ulations tend to be physically and genetically isolated from each other
within a vast, arid landscape (Funk et al., 2008; Pilliod et al., 2015;
Robertson et al., 2018). Successful reproduction is dependent upon the
availability of lentic wetlands with relatively long hydroperiods, emer-
gent vegetation, and few aquatic predators (Pearl et al., 2007; Hossack
et al., 2013). Tadpoles do not overwinter. Post-metamorphic juvenile
and adult frogs overwinter in ponds, streams, and springs (Bull and
Hayes, 2002; Pilliod et al., 2002). Many of the populations in the
southern end of the species’ range persist solely along streams and
spring-fed stock ponds (Arkle and Pilliod, 2015). In most populations,
individuals move among different wetlands seasonally (Pilliod et al.,
2002; Bull and Hayes, 2001) or as interacting subpopulations within a
metapopulation (e.g., Murphy et al., 2010).

2.2. Study area

We compiled Columbia spotted frog capture-recapture data from 10
study areas, each representing a single population in Idaho, Nevada,
Montana, or Oregon (Fig. 2). The two most northerly populations
inhabit multiple lakes and ponds scattered throughout montane basins
with occasional use of intervening small streams and flooded meadows
(Pilliod et al., 2002; McCaffery et al., 2014). Moving southward, pop-
ulations inhabit complexes of wetlands (i.e., ponds, seasonally inun-
dated pools, and beaver dam complexes) in grasslands, shrublands,
aspen woodlands, and mixed coniferous forests, and along streams and
adjacent meadows (Arkle and Pilliod, 2015). Hydroperiods of these
wetlands ranged from seasonal pools that dry in most years to perma-
nent ponds. Study areas ranged in elevation from 1,195 to 2,485 m.
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2.3. Data collection

Frog population data were collected in June, July, or August of each
year over a 11-16-yr period (depending on study sites) between 1997
and 2015. Each study area was surveyed annually during 2-5 capture
events (most sites had 3 capture events per year), where all observed
frogs were captured by hand or net, measured, marked, and released.
These capture events were usually conducted on consecutive days to
approximate a closed population within the annual survey periods.
Surveys were conducted by 2-8 observers each year, depending on study
area complexity and availability of personnel. At initial capture, frogs
were either injected subcutaneously with a 12-mm passive integrated
transponder (PIT) tag or toe-clipped with a unique pattern (LIRO only,
through 2012). Although juveniles were captured and marked in some
populations, we only include data from adult frogs in this analysis. We
defined adults as individuals with a snout-to-vent length (SVL) of > 45
mm.

We divided the time interval between our annual summer sampling
events into three seasonal activity periods for frogs: late summer and fall
(hereafter fall), winter, and spring and early summer (hereafter spring).
The fall period varied by site and year, as it spanned from the annual
date of last capture (i.e., July or August) to the first occurrence of a three
consecutive day period when maximum daily temperature was < 10C
and minimum daily temperature was < 0 C (occurred in the late fall or
early winter). The winter period at each site and year lasted from the end
of fall (defined above) to the first occurrence of a three consecutive day
period when maximum daily temperature was > 10C and minimum
daily temperature was > 0 C (occurred in the spring). This period was
intended to span the time when frogs were inactive and overwintering.
Longitudinal analyses of temperate amphibians have found that winter-
related covariates are good predictors of survival and recruitment,
especially for frogs (Muths et al., 2017). The spring period at each site
and year spanned from the end of winter (defined above) to the date of
first capture of the next survey, which was typically in July.

We compiled weather data for each year for each study population
from 1995 to 2015 to derive variables used in demographic models. Our
selection of weather variables (Table 1) was based on the literature
pertaining to frog biology and the environments occupied by this species
as well as the availability of relevant weather data across all sampled
sites. Daily temperature and precipitation were derived from a single
point representing each population using Daymet, an interpolated
gridded (1-km resolution) weather product (Thornton et al., 2014). This
point was centered on the location where most frogs in a population
were captured. If two locations were needed for a population (because of
a large area relative to the Daymet pixel resolution), the weather data
were compiled for both and then averaged by day. Each variable
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represented an average, cumulative (sum), or extreme in temperature or
precipitation over a seasonal activity period (Table 1).

We represented longer duration moisture trends using the Palmer
Hydrological Drought Index (PHDI; www.ncdc.noaa.gov), a gridded
(2.5 km scale) measure of cumulative hydrological drought and wet
conditions (Quiring, 2009). Because PHDI is calculated monthly, we
used the following time periods to approximate our seasons: fall (August
- October); spring (May — June). PHDI values are relative to location and
drought is considered severe when PHDI values are < 2 (www.ncdc.
noaa.gov). We examined correlations between all variables prior to
analysis (Figs. S1-S6), but we did not remove correlated variables from
our analyses because models were either performed univariately (i.e.,
mark-recapture) or the modeling process (i.e., non-parametric multi-
plicative regression; NPMR) allows for correlated variables as NPMR
selects the variable that has more explanatory power of two correlated
predictors and the second of the two correlated predictors would not
improve model fit enough to meet the improvement criterion threshold
(discussed below). Thus, only one of two (or potentially more) corre-
lated variables will be included in a final model. To help us visualize the
environmental gradients across the species’ range, we further examined
multivariate relationships among predictor variables across populations
using non-metric multi-dimensional scaling (NMS; McCune and Mef-
ford, 2011; Fig. S7).

2.4. Data analysis

Using the capture histories of individually-marked frogs within each
population, we first analyzed the relationship between weather vari-
ables and adult survival probability or recruitment rates in Program
MARK (White and Burnham, 1999) using the f-parameterization of the
Pradel model (Pradel, 1996; Williams et al., 2002). The Pradel model
includes a parameter for capture probability, p;, which is defined as the
probability an individual is captured during the sampling period in year
t. The demographic parameters in the Pradel model are apparent sur-
vival probability, @, (hereafter, survival probability) and adult recruit-
ment rate, f;, where t indexes year.

Survival probability, ®@,, is the probability an individual survives and
remains in the study area from sampling in year t to sampling in year t +
1 (Fig. 3). Although we cannot differentiate emigration from mortality,
we assumed that @, primarily reflected survival probability because
movements out of our designated metapopulations into surrounding
areas were extremely low, where documented. Recruitment rate, f;, is
the number of adults added to the population from sampling in year t to
sampling in year t + 1 per adult in the population during sampling in
year t (Fig. 3). We defined population-level recruitment rates as the
recruitment of unmarked adult (>45 mm SVL) frogs into the marked

(A) Species-trait hypothesis

Q

Performance ==

(B) Context-dependent hypothesis

Discordance

R

Fig. 1. Hypothesized relationships between environ-
mental variables, in this case temperature or precipi-
tation, and performance at the population level (e.g.,
survival, recruitment). The weather conditions at
three populations (Q, R, and S) in different locations
across a species’ range are identified. Under the
species-trait hypothesis (A), all three populations are
adapted to the same environmental conditions but
occur at different positions along the environmental
gradient. Inter-annual changes in survival probability,
for example, depend upon the weather conditions for
a given year at a specific location, but responses
(denoted as arrows) are predictable in relation to an

Temperature or Precipitation===  Temperature or Precipitation s

optimum survival probability for the species. Under
the context-dependent hypothesis (B), each popula-
tion responds independently to local weather condi-
tions resulting in different optimum performance
along an environmental gradient. This would be

observed as discordance between population responses to changing weather conditions, such as observed between populations Q and R at a specific temperature or

precipitation level.
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adult population. In other words, newly recruited adults were mostly
unmarked juvenile frogs the previous year that had reached sexual
maturity (or at least have a SVL > 45 mm; Fig. 3). Although we focus on
weather effects on adult recruitment from our survey period in year t to
year t + 1, we acknowledge that this recruitment rate is also influenced
by processes that affect different life stages over 1-3 years (Fig. 3). For
simplicity, we only included lag effects of seasonal weather on recruit-
ment rates (and adult survival probability) in our range-wide population
analysis (see below).

Each model that we fit to the data included a sub-model for capture
probability, survival probability and recruitment rate. We fit models to
the data in three steps and used AAIC, values and Akaike weights (wj,
where i indexes model) to evaluate models at each step in the analysis
(Burnham and Anderson, 2002). We considered models with AAIC,
values < 7 to contain meaningful information and considered individual
variables in those models to be important if their 95% confidence in-
tervals did not overlap zero (Arnold, 2010; Morin et al., 2020).

In the f-parameterization of the Pradel model, imposing a structure
on annual survival probability might influence the recruitment rate
structure that is best supported in a step-wise approach (Williams et al.,
2002). Therefore, constraints on annual survival probability could affect
estimates of recruitment rate and vice versa (Franklin, 2001). To avoid
unanticipated effects of constraining survival probability on estimates of
recruitment rate (and vice versa), we only evaluated sub-models for
recruitment rate by combining them with the sub-model for survival
probability with full time-dependence (Morin et al., 2020). Similarly, to
evaluate sub-models of survival probability, we combined them with the
fully time-dependent sub-model of recruitment rate.

2.4.1. Weather effects on frog demography within populations

In the first step of model fitting for the population-specific models,
we evaluated two sub-models of capture probability: the null model and
time-dependent model. Sub-models for capture probability that include
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effects of year allowed us to account for differences in the number and
composition of surveyors, as well as account for unmeasured charac-
teristics of the survey year that might have influenced capture rates. The
sub-models for annual survival probability and recruitment rate during
this step included full time-dependence.

In the second step of model fitting for the population-specific models,
we evaluated 21 sub-models for survival probability, ®;. In this step, we
used the fully time-dependent sub-models of capture probability and
recruitment rate in all sub-models of survival probability. Sub-models
for survival probability included the fixed effect of year, a model of no
annual variation (i.e., constant survival), and models where survival
probability is a univariate function of season-specific weather covariates
(Table 1). Preliminary examinations of sub-models with linear versus
quadratic relationships between survival probability and each covariate
indicated that linear trends were far more typical for these frog pop-
ulations. Similarly, preliminary examinations of differences in survival
between males and females indicated that including this covariate in the
sub-models did not improve model fit or relationships with weather
variables. Therefore, our model set focused on linear relationships and
did not include sex-specific estimates of survival.

We evaluated 21 sub-models for recruitment rate and used a similar
approach to model specifications as we used for sub-models of survival
probability. We used the fully time-dependent sub-models of capture
probability and survival probability in all sub-models of recruitment
rate. As described above for survival models, sub-models for recruitment
rate included fixed effects of year, a model of no annual variation (i.e.,
constant recruitment), and models where recruitment is a univariate
function of season-specific weather covariates.

We used model-averaging (Burnham and Anderson, 2002) to
generate annual estimates of survival probability and recruitment rate.
For some combinations of sub-models in the Pradel model, parameters
are confounded with one another. Therefore, we do not report the first
and last estimates of capture probability, the last estimate of survival
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Fig. 2. Map of study region, showing the location of each population of Columbia spotted frog used in the analysis. Gray shading indicates range of the Columbia

spotted frog (IUCN NatureServe 2014).
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Table 1

Definition of average, cumulative, and extreme weather variables used in
models. Temperature variables are listed before precipitation variables for each
season. See text for season definitions.

Season and Definition

Variable

Fall

ave.max.temp. Average daily maximum temperature during the late summer
fall and fall

ave.min.temp.fall  Average daily minimum temperature during the late summer
and fall

Cumulative number of days during the late summer and fall
when the maximum temp was > 10 °C

Cumulative precipitation during the late summer and fall

gdd.fall

precip.fall

phdi.fall Average Palmer Hydrological Drought Index (PHDI) for
August-October, a measure of cumulative moisture relative to
average conditions
Winter
ave.max.temp. Average daily maximum temperature during the winter
winter
ave.min.temp. Average daily minimum temperature during the winter
winter
3 day.min.temp. Average daily minimum temperature during the coldest 3-
winter d period during the winter
var.min.temp. Number of days during the winter when the minimum
winter temperature goes from above freezing one day to below freezing

the next or below freezing one day to above freezing the next
Cumulative precipitation during the winter

Maximum snow-water equivalent (SWE) during the winter
Ordinal day of the last snow on the ground when SWE = 0 or the
first capture date of spring, whichever comes first

Number of days classified as winter using inactive season rules

precip.winter
max.swe
day.0.swe

winter.length
Spring

ave.max.temp. Average daily maximum temperature during the spring and

spring early summer

ave.min.temp. Average daily minimum temperature during the spring and
spring early summer

gdd.spring Cumulative number of days during the spring and early summer

when the maximum temp was > 10 °C

Cumulative number of days during the spring and early summer
when the maximum temp was < 10 °C and the minimum
temperature was < 0 °C

Cumulative precipitation (mm) for the spring and early summer
Average PHDI for May-June

spring.cool.days

precip.spring
phdi.spring

probability, and the first estimate of recruitment rate from each popu-
lation (Williams et al., 2002).

2.4.2. Weather effects on frog demography across populations

We used non-parametric multiplicative regression (NPMR) in
HyperNiche 2.30 (McCune and Mefford, 2009) to model survival prob-
ability and recruitment rates as functions of multiple, interacting
weather variables, without specifying a priori response shapes (McCune,
2011). Response variables were generated from the mark-recapture
time-varying “t” models, which provided an estimate for each year for
each population. The first and last estimate in each population’s time
series were not included for reasons previously described. We
acknowledge that treating parameter estimates generated from the f-
parameterization of the Pradel model as response values ignores the
measure of precision around each of those estimates. Although this
modeling approach is a bit unconventional, it allowed us to test our
hypotheses about species-trait versus context-dependent demographic
responses to temperature and precipitation across the range of the
species.

We included all predictor variables, plus 1- and 2-year time lags of
each variable, in the pool of potential variables available for the final
models. For each analysis, we used a local linear model with Gaussian
weighting functions to carry out free-search iterations of predictor
variables and their associated tolerances (tolerance = SD of Gaussian
weighting function) such that the fit of each candidate model was
maximized, while minimizing overfitting. Model fit was assessed with
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cross-validated R? (xR?) and overfitting was controlled through mini-
mum average neighborhood size, minimum data-to-predictor ratio, and
“leave-one-out” cross validation of xR2,

For each response variable, all combinations of the 18 predictor
variables (plus their 1- and 2-year lags) were run, and models were
identified with the greatest fit for each number of included predictor
variables. The final model for each response variable met an improve-
ment criterion of having a fit at least 5% better than the best model with
one fewer predictor variable. We quantified the stability of each final
model to the inclusion of particular sample units in the dataset by
conducting bootstrap resampling (each dataset was resampled, with
replacement, 100 times) and reporting the average xR? (£SE) of the 100
resulting bootstrapped models. For each final model, we also reported
the average neighborhood size (N*, the average number of sample units
contributing to the estimate of the response at each point on the
modeled surface) and Monte Carlo randomization results (to provide a
measure of fit by using 100 free-search iterations with randomly shuffled
response values). For each predictor included in a final model, we report
a sensitivity value, which indicates the relative importance of the pre-
dictor to the response value. High sensitivity values (i.e., those close to
or greater than one) indicate that a change in the predictor value by
anywhere from —5% to + 5% of its range results in a change of equal
magnitude in the predicted response value (i.e., +£5%; McCune, 2011).

After fitting final models for survival and recruitment, we plotted: 1)
“global” response curves for each predictor variable, intended to show
the overall relationship between all populations and the response vari-
able (i.e., species-trait hypothesis), and 2) simple linear or quadratic
functions for each population’s interannual relationship between the
predictor variable and the response, intended to examine population-
level variation (i.e., context-dependent hypothesis). For the latter, we
first removed sample units identified as multivariate outliers (i.e., >2 SD
from the mean of either predictor or response variables) to ensure that
no individual points had disproportionate influence on response curves.
We calculated traditional R? values to describe the fit between each
NPMR model estimates and “observed” (i.e., program MARK estimated)
survival or recruitment across years for each population, and similar
scores for each population’s inter-annual correlation with each predictor
variable. Because sample sizes for these population-level functions were
limited to 9-14 sample units (i.e., years with demographic estimates for
each population), we did not perform statistical tests on these re-
lationships, but use R? values to demonstrate the relative strength of
patterns and to highlight the number of populations that conform to
expected trends.

3. Results
3.1. Weather effects on frog demography within populations

The number of individuals captured and marked in each population
varied from 305 to 3,817 (Table 2). We recaptured 33.5% of marked
individuals at least once, which ranged from 9% at the lowest elevation
to 52-53% at the highest latitudes. The sub-model of capture probability
with year effects had the lowest AIC. value in 9 of the 10 populations (all
but BICR), compared to a model with a constant capture probability.

The effects of weather on adult survival probability (®,) varied by
population, with little consistency among populations (Table S1). The
lowest elevation population (DRCR) had the lowest average survival
probability (@, = 0.294 + 0.124 SD), whereas average survival was
highest in the population at the highest elevation (BICR: ®;=0.818 +
0.018 SD; Fig. 4A). Three populations had nearly invariant survival
probabilities across years and two of these had the highest average
survival of all 10 populations (Fig. 4A). The other seven populations had
considerable inter-annual variability in survival. The top model selected
within a population had a fully time-dependent structure (i.e., Phi[t]) in
half the populations (Table S1). For the other half, there was either
considerable model uncertainty (BICR, TEGU) or one weather covariate
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Fig. 3. Conceptual diagram of the life history of the Columbia spotted frog in relation to summer surveys. We modeled the effect of seasonal weather variables on
adult survival probability and recruitment rates, which span the period from the last day a frog was captured during the summer survey in year t to the first day a frog
was captured in year t + 1. Only adult frogs > 45 mm were marked and included in our analyses.

explained most of the variation in adult survival (phdi.spring in DRCR;
max.swe in POCR; ave. min.temp.winter in WARN; Table S1). Overall,
average seasonal temperatures and growing degree days were the
strongest predictors of adult survival probability in four of the ten
populations, with both positive and negative effects (Table 3). Seasonal
precipitation, in general, was a weak predictor of adult survival, except
at: DRCR where survival was negatively associated with more spring
moisture (positive values of phdi.spring); INVA where survival was
negatively associated with worsening drought (negative values of phdi.
spring, particularly below —2); and POCR where survival was negatively
associated with more or wetter snow (max.swe; Table 4).

The effects of weather on recruitment rates (f) also varied by popu-
lation, with little consistency among populations (Table S2). Recruit-
ment rates ranged from 0.058 to 1.435 across populations (Fig. 4B). The
populations with the highest median recruitment also had the greatest
variability in recruitment (Fig. 4B). The remainder of the populations
tended to have relatively low interannual variability in recruitment. The
lowest elevation population (DRCR) had substantially greater recruit-
ment across years than other populations (Fig. 4B), but experienced
near-complete recruitment failure in two very wet springs (high values
of precip.spring; Table 5) that coincided with high peak flow events
(Fig. S8). The model that had a fully time-dependent structure (i.e., Phi
[t]) and no weather covariates was the best model of recruitment in half
of the populations (Table S2). For the other half, there was either
considerable model uncertainty (DRCR, GRMO, POCR, TEGU) or one
weather covariate explained most of the variation in recruitment (ave.
max.temp.spring in WARN; Table S2). Overall, average temperatures
best explained recruitment rates at four of 10 populations, with

recruitment increasing with warmer daily high temperatures (ave.max.
temp) in all seasons, particularly in the spring (Table 3). Growing degree
days in spring (gdd.spring) were also positively associated with
recruitment in two populations, whereas one population had lower
recruitment in springs with more unusually cold days (spring.cool.days;
Table 5). Two populations had higher recruitment when winter cold
snaps were less severe (higher values of 3 day.min.temp.winter;
Table 5). Seasonal precipitation was a useful predictor of recruitment,
especially in 3 of the populations (Table 3).

3.2. Weather effects on frog demography across populations

Examinations of interactive effects of temperature and precipitation
on adult survival probability across the species’ range revealed patterns
that were distinct from the population-level analyses. Across all sites and
years, survival was best predicted by an interaction among three vari-
ables: day.0.swe (1-yr lag), phdi.spring, and population (xR? = 0.68; p
< 0.005; N* = 5.6; bootstrap average +/- 1 SE = 0.80 +/- 0.03; Sensi-
tivity: day.0.swe = 0.66, phdi.spring = 0.32). This model fit was 8%
greater than the best two-predicter model and fit well to each population
(R? of observed versus modeled survival averaged 0.65 + 0.07 across
sites; R? range = 0.41-0.98; Table S3; Fig. S9). Populations in locations
where snowpack persisted later in the spring (higher values of day.0.
swe) had higher survival probabilities than populations where melt-out
was earlier, although this effect plateaued after 29-30 May (day 150;
Fig. 5A). The relationship between survival and snowmelt timing within
a population, however, was strongest in locations with lower snow-
packs, where adult survival responded positively to increasing values of
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Table 2
Summary of adult captures at 10 populations of Columbia spotted frogs across
the species’ range. Populations are arranged north to south, by state.

Population State Elevation Years Number Frogs
(m) Sampled of Years Marked
Little Rock Montana 2,138 2000-2015 16 2,134
Creek Basin
(LIRO)
Bighorn Crags Idaho 2,485 2005-2015 11 1,590
(BICR)
Sam Noble Idaho 1,774 1997-2012 16 1,243
Springs
(SANO)
Dry Creek Oregon 1,195 2001-2015 15 3,795
(DRCR)
Tennessee Nevada 2,247 2004-2015 12 818
Gulch
(TEGU)
Pole Creek Nevada 2,241 2005-2015 11 376
(POCR)
Green Nevada 2,341 2004-2015 12 305
Mountain
Creek
(GRMO)
Warners Nevada 2,182 2004-2015 12 1,367
(WARN)
Indian Valley -  Nevada 2,231 2004-2015 12 3,817
Upper
(INVA)
Farrington Nevada 2,086 2004-2015 12 440
Pond
(FAPO)
Total 15,885
(A)
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Fig. 4. Box plot of estimated annual adult survival probability (A) and
recruitment rate (B) for 10 Columbia spotted frog populations showing median,
25%, and 75% quartiles. Whiskers show 5th and 95th percentiles. Outlier years
are indicated by a circle and defined as any value>1.5 times the interquartile
range for that population.

day.0.swe. In contrast, sites at the snowier end of the sampled gradient
exhibited no correlation with day.0.swe and the population with the
latest snowmelt, LIRO, exhibited a negative, albeit weak (R? = 0.07),
relationship with survival. Fits for individual populations’ modeled
survival probabilities to day.0.swe were generally strong (R? average +
1 SE = 0.60 + 0.09), except for the four populations with slopes near
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Table 3

Seasonal temperature and precipitation variables that had the greatest effects on
adult survival probability or recruitment rates of Columbia spotted frogs at 10
populations across the species’ range. Effects are identified by population and
direction of effect. Blank cells indicate variable not relevant to that season.

Survival Recruitment
Variables Fall Winter Spring Fall Winter Spring
Temperature
ave.max.temp BICR BICR FAPO TEGU TEGU FAPO
O] ) O] +) (+); (+);
POCR WARN
+) +)
ave.min.temp BICR WARN FAPO None None POCR
) O] ) “H)
SANO
€]
gdd None BICR None LIRO
©) +);
SANO
(+);
INVA
©
3 day.min. LIRO GRMO
temp.winter (+) (+);
POCR
)
var.min.temp. None None
winter
winter.length None None
spring.cool. None POCR
days Q]
Precipitation
precip None None None FAPO GRMO DRCR
©) “H) ©)
phdi None DRCR None None
)
INVA
€]
max.swe POCR None
©)
day.0.swe None None

zero (R? average + 1 SE = 0.04 + 0.01) near the peak of the global curve.
Besides day.0.swe, spring moisture (phdi.spring) was also an important
predictor of survival, but populations had differing relationships to this
variable (Fig. 5B). Fits for individual populations’ modeled survival
probabilities to phdi.spring were fairly strong (R? average + 1 SE = 0.60
=+ 0.08), including the five populations with slopes near zero.
Recruitment rates across the species’ range were related to different
temperature and precipitation variables than were identified in
population-level analyses and different than (but related to) variables
associated with survival probabilities. Across all populations and years,
recruitment was best predicted by an interaction among four variables:
max.swe, gdd.fall (1-yr lag), phdi.fall, and population (xR? = 0.61; p <
0.009; N* = 1.5; bootstrap average +/- 1 SE = 0.72 +/- 0.09; Sensitivity:
max.swe = 2.49, gdd.fall (1-yr lag) = 1.33, phdi.fall = 0.57). This model
fit was 6.7% greater than the best three-predictor model and fit well to
each population (R? of observed versus modeled recruitment averaged
0.88 +/- 0.05 across sites; R range = 0.60-0.98; Table S4; Fig. S10). In
general, recruitment was negatively related to max.swe, especially
values between 0 and 300 kg/m? (Fig. 6A). Thus, populations in loca-
tions with less snow (lower max.swe) had higher recruitment rates than
populations where the snowpack tended to be high (higher max.swe),
although above 300 kg/m?, max.swe had little effect on recruitment
rates. However, each population exhibited a Gaussian curve in a local-
ized portion of the max.swe gradient. Populations in snowier portions of
the gradient tended to have lower recruitment peaks, but also much
wider tolerance to a range of max.swe values, whereas populations on
the least snowy portion of the gradient tended to have greater peak
recruitment and far less tolerance to years with relatively high max.swe.
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Table 4

Estimated covariate effects on annual survival probability for 10 Columbia
spotted frog populations from models with AAICc < 7 (see Table S1) and 95%
confidence limits on the model estimates that did not overlap zero. See Table 1
for covariate definitions. Populations are arranged north to south, by state.

Population  Covariate Estimated Regression LCL UCL
Coefficient (95%) (95%)
LIRO 3 day.min.temp. 0.409 0.291 0.527
winter
BICR ave.max.temp. —0.380 —0.670 —0.090
fall
ave.min.temp. —0.170 —0.300 —0.050
fall
ave.max.temp. 0.190 0.040 0.340
winter
gdd.spring —0.190 —0.340 —0.040
SANO ave.min.temp. 0.288 0.184 0.392
fall
DRCR phdi.spring —0.807 —0.987 —0.627
TEGU ave.max.temp. 0.870 0.480 1.250
fall
ave.max.temp. 0.790 0.500 1.070
winter
POCR max.swe —0.720 —0.940 —0.510
GRMO none selected - - -
WARN ave.min.temp. —0.561 —0.862 —0.261
winter
INVA phdi.spring 2.028 1.801 2.255
FAPO ave.max.temp. —0.632 —0.886 -0.377
spring
ave.min.temp. —0.540 —0.760 —0.320
spring
Table 5

Estimated covariate effects on annual recruitment rates for 10 Columbia spotted
frog populations for models with AAICc < 7 (see Table S2) and 95% confidence
limits on the model estimates that did not overlap zero. See Table 1 for covariate
definitions. Populations are arranged north to south, by state.

Population ~ Covariate Estimated Regression LCL UCL
Coefficient (95%) (95%)
LIRO gdd.spring 0.774 0.666 0.883
BICR none selected - - -
SANO gdd.spring 0.380 0.220 0.550
DRCR precip.spring —0.676 —0.824 —0.527
TEGU ave.max.temp. 0.870 0.480 1.250
fall
ave.max.temp. 0.790 0.500 1.070
winter
POCR 3 day.min.temp. 0.930 0.170 1.690
winter
ave.max.temp. 0.900 0.160 1.640
winter
spring.cool.days —0.910 —1.790 —0.030
ave.min.temp. 1.220 0.030 2.410
spring
GRMO precip.winter 0.700 0.090 1.300
3 day.min.temp. 0.410 0.000 0.810
winter
WARN ave.max.temp. 0.659 0.546 0.772
spring
INVA gdd.spring —0.591 —0.649 ~0.533
FAPO precip.fall —0.594 —0.827 —0.362
ave.max.temp. 0.561 0.392 0.730
spring

Model fits for individual populations’ modeled recruitment to max.swe
were generally good (R? average + 1 SE = 0.36 + 0.06).

Overall, recruitment was greater in populations with warmer fall
seasons the year prior (gdd.fall with a 1-yr lag), especially where values
were>100 growing degree days (Fig. 6B). However, each population
exhibited a Gaussian relationship with gdd.fall. Populations in portions
of the gradient with cooler falls tended to have lower recruitment peaks,
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Fig. 5. NPMR estimated survival probability versus (A) day.0.swe (1-yr lag)
and (B) phdi.spring across years for 10 Columbia spotted frog populations.
Day.0.swe is the day of year that snow-water equivalent at a location reaches
zero the previous year. Phdi.spring is a unitless measure of the average Palmer
Hydrological Drought Index for May and June. The blue line shows the overall
response of survival to each variable. For day.0.swe (A), black lines show each
population’s interannual association with this variable and the gray line in-
dicates one population that did not follow the expected pattern. For phdi.spring
(B), black solid lines show populations with negative correlations, gray solid
lines show populations with positive correlations, gray dotted lines show pop-
ulations with no correlation, and the dashed line shows one population with a
Gaussian correlation to this variable. Population abbreviations are given near
the high point of each corresponding line. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

whereas populations on the portion of the gradient with warmer falls
tended to have greater peak recruitment. The dip in the global curve
between days 50-70 reflects years on the warm end of the gradient for
BICR and LIRO and on the cool end of the gradient for TEGU, SANO, and
POCR. Fits for individual populations’ modeled recruitment to gdd.fall
(with a 1-yr lag) were generally strong (R? average + 1 SE = 0.53 +
0.09). Finally, recruitment rates were generally greater with increasing
fall moisture (phdi.fall), although populations also tended to exhibit
somewhat independent relationships to this variable (Fig. 6C). Fits for
individual populations’ modeled recruitment to phdi.fall were generally
good (R? average + 1 SE = 0.39 =+ 0.09).

4. Discussion
Understanding the effects of weather on population demography is a

critical first step in evaluating risks associated with rapidly changing
climates and developing climate mitigation strategies. For amphibian
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Fig. 6. NPMR estimated recruitment rates versus (A) max.swe, (B) gdd.fall (1-
yr lag), and (C) phdi.fall across years for 10 Columbia spotted frog populations.
Max.swe is the maximum snow-water equivalent (kg/mz) reached at a location
in a winter. Gdd.fall (1-yr lag) is the cumulative number of days where the
maximum temperature was > 10 °C in the previous summer/fall active season.
Phdi.fall is a unitless measure of the average Palmer Hydrological Drought
Index for August to October. For each panel, the blue line shows the overall
response of recruitment to each variable. Black, gray, and dashed lines show
each populations’ interannual correlation to response variables, with different
line types used simply to assist in distinguishing populations from one another.
Population abbreviations are given near the high point of each corresponding
line. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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populations, most research has focused on the stability and continued
availability of breeding habitats in relation to warming and shifting
patterns of precipitation and wetland or stream hydrology. Ultimately,
however, effects of drying will manifest in changes in demography, such
as reduction or absence of recruitment. For species that occupy large
ranges, sampling across environmental gradients is necessary to better
understand and predict responses to regional climate change, because
large-range species experience greater variability in temperature and
precipitation across their ranges than small-range species (Li et al.,
2016). Further, individual populations of large-range species may
experience unique local weather and some may have adapted to those
environmental conditions. Indeed, when we examined demographic
responses within each of the ten geographically separated populations,
we found that effects of seasonal temperatures and precipitation were
conditional on location. Variation in adult survival probability among
populations, however, was predictable based on where a population fell
along a species-environment response curve. In contrast, maximum
recruitment rates for each population peaked at different values along
an environmental gradient, suggesting that recruitment may be most
influenced by, or perhaps adapted to, local conditions. Although we did
not examine demographic responses in relation to habitat changes, local
(i.e., population-specific) differences in recruitment may have been
influenced by the stability or sensitivity of breeding, rearing, or juvenile
frog overwintering habitats to seasonal and interannual changes in
temperature and precipitation. Although other studies have documented
adaptive responses of amphibians to climate along spatial gradients
(Urban et al., 2014), our findings suggest that those responses may differ
by demographic process and our understanding of those relationships
varies with scale of inquiry (i.e., individual population versus range-
wide). These findings have implications for understanding climate
change effects on the demography, conservation, and management of
this and other broadly-distributed temperate anuran species.

4.1. Weather effects on frog demography within populations

Our analysis of the effects of seasonal temperature and precipitation
on individual Columbia spotted frog populations revealed some
consistent patterns amongst considerable variation. Temperature vari-
ables were generally better predictors of annual adult survival proba-
bility than seasonal precipitation variables within individual
populations. We also found that recruitment rates were positively
influenced by years with warmer daytime high temperatures in all
seasons and more warm days in the spring. While our analysis cannot
assess causal relationships, warm temperatures can facilitate increased
activity and growth directly through increased metabolism (Abram
et al., 2017), and indirectly through increased food resources (e.g., in-
sects, spiders; Blaustein et al., 2010). Although years with warm, dry
conditions may decrease available surface water and shorten wetland
hydroperiods (Kissel et al., 2019), warm, wet years are often ideal for
temperate frogs (Yu et al., 2018). Changes in wetland hydroperiods
associated with shifting climates and weather extremes (e.g., drought)
are worrisome for amphibian biologists because pond drying can elim-
inate entire cohorts and cause population declines (Hossack et al., 2013;
Ray et al., 2016).

Our results add to a growing body of research investigating the ef-
fects of weather and climate on temperate anuran populations. First,
other studies have explored weather effects on a subset of Columbia
spotted frog populations included in this study, though the number of
years in the dataset and the specific weather covariates in each study
have differed. In some cases, our findings have generally been consistent
with previous studies. For example, Muths et al. (2017) found that the
best predictor of survival in BICR was warm days during hibernation,
and one of the better predictors of BICR frog survival in our study was
average maximum winter temperature. In both cases, warmer winters
had a positive effect on this high elevation, northern population. In other
cases, different weather covariates were important to survival and
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recruitment among analyses of the same populations (e.g., SANO: Pilliod
and Scherer, 2015, Muths et al., 2017, and this study; LIRO: Muths et al.,
2017; McCaffery and Maxell, 2010, and this study), which may be a
function of both study length and the selection and quantification of
covariates hypothesized to be important to the populations. For other
species, we also see contrasts in modeled responses within the same
population. For example, Kissel et al. (2019) found that longer winters
and wetter summers were associated with increased survival in the
Cascades frog (Rana cascadae), whereas Muths et al. (2017) found that
unusual hot events in the summer best predicted adult survival in this
same population. These comparisons across studies highlight how co-
variate selection, study length, which years are included, and other
factors can challenge our understanding of weather and climate drivers
in amphibian populations, even in the same well-studied systems
(Winter et al., 2016).

Efforts to synthesize weather drivers of demographic rates and
population growth across populations and species have generally
concluded that effects are context-dependent and population specific.
Whether within (Cayuela et al., 2016, Amburgey et al., 2018, Muths
etal., 2018) or across (Muths et al., 2017) species, no individual weather
covariate has shown consistent patterns with a given demographic
variable. Variation and idiosyncratic responses appear to be the most
consistent pattern, as we found in our analyses of individual Columbia
spotted frog populations. Intrinsic factors like life history traits (Muths
etal., 2017), age structure (Cayuela et al., 2016), or density dependence
(Pellet et al., 2006; Cayuela et al., 2020), and extrinsic factors such as
local habitat conditions or predators may be as important as weather in
regulating demography or may interact in complex ways with weather
to affect populations (Urban et al., 2014). Furthermore, microhabitats
where frogs spend their time may have more stable temperature (e.g.,
Scheffers et al., 2014a,b) and moisture (e.g., Long and Prepas, 2012;
Lannoo and Stiles, 2017) than measured weather variables, potentially
buffering individuals from some variation in seasonal weather.

4.2. Weather effects on frog demography across populations

Despite the apparent idiosyncratic nature of demographic studies,
we found some interesting trends in adult survival and recruitment
across all populations when temperature and precipitation were allowed
to interact and local responses were put into the context of environ-
mental gradients across the species range. Variation in adult survival
across all populations was best explained by two variables that represent
an interaction of temperature and precipitation: timing of snowmelt
(day.0.swe) and spring moisture (phdi.spring). The effect of snowmelt
timing was most predictive with a 1-yr time lag, suggesting that adult
survival may result from carryover effects over multiple years. The
timing of snowmelt, in particular, provided support for our species-trait
hypothesis, whereby populations occur at different points along a
common response curve based on their local weather. Predictable
variation in adult survival across this species’ range was also reported by
Cayuela et al. (2021b) who found lower survival in locations with
warmer mean annual (1990-2019) temperatures (i.e., lower elevations
and southern latitudes). Clearly, both temperature and precipitation are
important predictors of Columbia spotted frog survival, but they interact
in complex ways and their influence on survival may depend upon a
given population’s position along a temperature - precipitation gradient,
as depicted in Fig. 1A.

Much like survival, snow (max.swe) was one of the most important
variables for recruitment across all populations. Specifically, pop-
ulations that experienced less snow (lower max.swe) had greater
recruitment rates than sites with more snow. In contrast to survival, we
found that this relationship supported our context-dependent hypothesis
whereby each population exhibited a Gaussian curve in a localized
portion of the max.swe gradient. Essentially, there appeared to be an
optimum amount of snow for each population, and years with more or
less snow than that optimum had reduced recruitment. We suspect that
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more snow provides more moisture in the spring while providing insu-
lation for overwintering frogs. Too little snow may result in dry condi-
tions in the spring for these snow-dominated hydrologic regimes, or may
expose overwintering frogs to higher mortality risk from cold snaps, at
least for frogs overwintering in shallower locations (e.g., streams, un-
dercut banks). This relationship was less apparent at the lowest end of
the snow gradient, perhaps because these areas have so little snow that
other factors are more important. Other variables influencing recruit-
ment, such as moisture (phdi.fall) and growing degree days (gdd.fall) in
the fall did not appear to have as strong a local effect as snow.

Our results contribute to a growing body of evidence that snow and
winter conditions are important to the demography of temperate am-
phibians, even though they are inactive during this time of year (e.g.,
Corn, 2003; McCaffery et al., 2012; O’Connor and Rittenhouse, 2016). A
time series meta-analysis of 31 populations across 11 temperate
amphibian species revealed that winter-related covariates, such as
winter length, winter severity (number of particularly cold days), and
timing of the onset of winter, were some of the most important pre-
dictors of survival and recruitment (Muths et al., 2017). Similar to our
findings, they found that the direction and magnitude of response to
winter covariates varied by population and was thus context dependent.
Based on our findings, this could be due to populations’ positions along
environmental or weather gradients.

The importance of snow to these and other populations of temperate
amphibians is concerning given the expected decline in snowpack in the
western United States over the coming decades (Siler et al., 2019; Siirila-
Woodburn et al., 2021). This change is happening now. Mote et al.
(2018) reported that over 90% of snow monitoring sites with long re-
cords across the western US show declines, especially in the spring in
locations with milder winters. Increasing winter snowmelt, which is
highly sensitive to temperature, was evident at 34% of those snow
monitoring stations (Musselman et al., 2021). These locations fall to-
ward the lower end of our max.swe gradient, which could be problem-
atic for adult survival and recruitment in some of our Columbia spotted
frog populations without management intervention (Pilliod et al.,
2021).

5. Conclusions

Understanding the relative influence of changing temperature and
precipitation regimes on population demography can ultimately help
determine management options for maintaining amphibian populations
into the future. Our findings highlight the importance of quantifying
population demography across environmental gradients for broadly
distributed species, like the Columbia spotted frog. Populations experi-
ence unique local weather at different locations across a species’ range,
and the conditions that are favorable for one population may be detri-
mental to another. Variable population demography among pop-
ulations, however, can be good from a conservation perspective. Among-
population variability might foster asynchronous population dynamics
across a species’ range, which can reduce extinction risk and increase
opportunities for local adaptation (Liebhold et al., 2004). Our results
have important implications for species conservation, but also put more
onus on resource managers to monitor and understand factors influ-
encing local population cycles and extinction risk. For broadly distrib-
uted species, climates that are becoming too warm and dry for one
population, may be becoming too cool or wet for others. In other words,
timely responses to climate-related population declines or development
of effective climate mitigation strategies, such as habitat restoration or
facilitated dispersal, may need to be largely based on local- or
population-level information.
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