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Abstract 

In this study, we employed machine learning (ML) to classify the cardiomyocyte (CM) content on 

day 10 of the differentiation of human-induced pluripotent stem cell (hiPSC)-laden microspheroids 

using easily acquirable non-destructive phase-contrast images taken in the middle of 

differentiation and tunable experimental parameters. Scale-up suspension culture, use of 

engineered tissues to support stem cell differentiation, and CM production for improved control 

over cellular microenvironment in the suspension system need non-destructive methods to track 

engineered tissue development. The ability to couple images that capture experimenter perceived 

“good” or “bad” batches based on visualization at early differentiation time points with actual 

experimental outcomes in an unbiased way is a step towards building these methods. In recent 



years, ML techniques have been successfully applied to identify critical process parameters and 

employ this information to build models that describe process outcomes in cell production and 

hiPSC differentiation. Building upon these successes, here, we utilize convolutional neural 

networks (CNNs) to build a binary classifier model for CM content on differentiation day 10 

(dd10) for hiPSC-CMs. We consider two separate data sets as potential input features for the 

classification models. The first set includes phase-contrast images of microspheroid tissues taken 

on days 3 and 5 of the differentiation batches at different experimental conditions. The second set 

supplements the images with tunable experimental differentiation parameters, such as cell 

concentration and microspheroids’ size. The CM content classes were sufficient and insufficient. 

The accuracy of the CNN classifier using images only was 63%. The addition of experimental 

features increased the accuracy to 85%, indicating the importance of tunable parameters in 

predicting CM content.  

Keywords: cardiac differentiation, machine learning, convolutional neural networks, 

image processing, human pluripotent stem cell, engineered heart tissue 

Impact Statement 

Machine learning approaches were employed to predict the final cardiomyocyte content 

class (sufficient versus insufficient) of engineered cardiac tissue microspheroids produced through 

suspension-based cardiac differentiation of human-induced pluripotent stem cell-laden engineered 

tissue microspheroids. The models used specified experimental features and data collected using 

non-destructive, inexpensive methods, specifically phase-contrast images taken during the initial 

days of differentiation as inputs. The best model was a convolutional neural network trained using 

experimental features and differentiation day 5 images. It classified the cardiomyocyte content 



with 85% accuracy and replicated and formalized experimenter’s visual intuition about 

differentiation outcomes by incorporating images from early time points. 

 

Introduction 

Machine learning (ML) techniques are powerful tools to predict experimental outcomes 

using multi-factor experimental and/or visual data in bioprocesses for cell production and 

biomanufacturing. The information extraction from multi-factor data and images for these 

processes may not be possible without using ML techniques. Tracking and predicting final 

engineered tissue properties using non-destructive approaches and without the use of reporter 

genes is challenging. Particularly when starting with stem cells, the process of engineered tissue 

formation can take multiple weeks or longer; the ability to predict outcomes earlier and identify 

and tune key experimental parameters is essential to establishing more efficient approaches for 

commercial translation. Machine learning techniques have been applied to analyze and integrate 

information from high-resolution, three-dimensional images of developing tissues (1), for a range 

of applications in medical image computing, including histopathological image analysis (2) and 

for guiding bioprinting of engineered tissue scaffolds (3, 4). Employing machine learning 

techniques to detect characteristics of engineered tissues, extract information and hidden features 

and integrate image and non-image information has the potential to provide valuable guidance for 

identifying optimal initial experimental input parameters, e.g., matrix composition, tissue 

structure, and cell seeding density, for engineered tissue formation and tracking and predicting 

outcomes, e.g., endpoint cellular composition and potentially even tissue maturation and function.    

Recently, there has been an increased focus on producing cardiac tissue from human-

induced pluripotent stem cells to address cardiovascular diseases (CVDs), the number one cause 



of mortality in recent years and the cause of one death every 36 seconds in the United States (5). 

Due to the limited regenerative capacity of human cardiomyocytes (CMs) and the loss of over one 

billion CMs post-heart attack (6), there is a considerable need for cardiomyocytes and cardiac 

tissue to replace and regenerate damaged heart tissue. Human-induced pluripotent stem cells 

(hiPSCs) have been demonstrated to be a promising cell source for hiPSC-derived CM (hiPSC-

CM) production and may contribute to developing and testing therapeutics for CVD (7). Large-

scale production of hiPSC-CMs in suspension culture is needed for use in cell therapy, drug 

discovery, and disease modeling (8).  

Although suspension differentiation platforms hold considerable potential for scaling-up 

hiPSC-CM production, obtaining consistent and robust cardiac differentiation outcomes has been 

challenging (9) due to the complex and multifactorial process of 3-dimensional (3D) 

differentiation platforms (10). Accurately predicting cardiac differentiation outcomes, such as CM 

content on a certain differentiation day, for 3D platforms, especially using data collected using 

non-destructive and inexpensive methods, is an important enabling step for production scale-up. 

Through visual inspection, experienced experimenters have the opinion that it is possible to 

distinguish “good” hiPSC-CM production batches, although the potential perceived differences 

are difficult to describe. Extracting the underlying information from images and coupling this 

visual information with actual experimental outcomes in an unbiased way is challenging but could 

be a useful tool in accurately predicting outcomes. Frequently, day 10 flow cytometry data is used 

to characterize bioreactor-produced cardiomyocytes and determine if batches can move forward 

for downstream applications (11-13). The ability to non-destructively predict cardiac 

differentiation outcomes at an earlier time point would significantly reduce the time and expense 



involved for hiPSC-CM and engineered cardiac tissue production by avoiding the continuation of 

the differentiation process for low-yield batches.  

In recent years, machine learning (ML) techniques have been successfully used to represent 

expensive and complex systems with reduced-order models. These techniques map the information 

from process inputs to the outcomes (outputs). The input data can consist of different types, such 

as process parameters, categorical variables, and images. Different ML algorithms with various 

types of data have also been implemented in bioprocesses (e.g. (14, 15)). Increasing computational 

power and the progress in ML algorithms have enabled using the information in images for 

building predictive models. For example, CM contraction, measured based on single 

cardiomyocyte deformation dynamics, was quantified using image correlation analysis (16), and 

plant diseases were detected using neural networks trained based on images of the plants (17).  

Convolutional neural networks (CNN) (18) are commonly used for image processing. For 

instance, Vardhana, Arunkumar (19) discuss the implementation of the CNN for biomedical image 

segmentation and disease detection by classification. Kusumoto and Yuasa (20) developed CNN 

models using phase-contrast images to identify morphology-based cell types for differentiated 

cells from induced pluripotent stem cells. Orita, Sawada (21) trained a CNN model using bright-

field images of human-induced pluripotent stem cell-derived cardiomyocytes to classify cell 

culture quality into normal and abnormal groups. The automatic feature extraction capability of 

CNN makes them a robust toolset for image processing to generate and select features that are the 

most predictive of the output. CNN models can handle more than one type of data, making them 

an excellent candidate method for building models for biological systems with experimental and 

other types of data, such as images, present.   



In our previous experimental studies, we established  the ability to produce engineered 

cardiac tissue through hiPSC hydrogel encapsulation and direct differentiation within the 3D 

engineered tissue microenvironment (22-24), eliminating the need to pre-differentiate, dissociate, 

and re-assemble CMs. The cardiac differentiation in these hydrogel encapsulation platforms has 

been confirmed by displaying an expression of appropriate cardiac markers and genes, well-

defined and aligned sarcomeres and T-tubules formation, and appropriate response of cardiac 

tissues to outside pacing and drug treatment (22-25). We then transitioned this approach to 

suspension-based cardiac differentiation by using a microfluidic system to form spheroidal hiPSC-

laden engineered microtissues (25, 26). Using this system, multiple tunable parameters can be 

adjusted during the differentiation protocol timeline, phase-contrast images of the microspheroids 

(including microsphere and microrod (27)) are taken at regular time intervals and the CM content 

is evaluated on differentiation day 10 (dd10) using flow cytometry for all differentiation batches.   

In this study, we investigated the ability to classify CM content on day 10 of hiPSC-laden 

microspheroid differentiation using easily acquired non-destructive images taken on days 3 and 5 

(middle of the differentiation period, after small molecules addition) and tunable experimental 

parameters from days -3 (three days before the start of differentiation) through day 0 of 

differentiation (Figure 1). The percentage of cells that are cardiomyocytes on the specific 

differentiation day is defined as CM content. It is our hypothesis that ML can capture the 

information contained in the combination of the tunable experimental parameters from the early 

days of differentiation with the phase-contrast images of the microspheroids taken during 

differentiation (Second row in Figure 1 and Figure 2) to distinguish batches that will have 

sufficient CM content on day 10 from those that will have insufficient CM content. Based on our 

recent experience in hiPSC-laden microspheroid cardiac differentiation (25) and other studies 



which have defined a range of target hiPSC-CM percentages for successful CM differentiation 

(65-92%) (28-31), output was labeled as sufficient for CM content from flow cytometry above 

70% and insufficient for otherwise. Convolutional neural networks (CNNs) were implemented to 

predict the CM content class. The best classifier had an accuracy of 85%. A brief description of 

the experiments, data collection, and construction of the classification model are included in the 

Methods. The model training details are discussed in Computational Experiments, followed by the 

classification model statistics and their analysis in Results and Discussion. The takeaway message 

is summarized in Conclusions.  

  

 

Figure 1. Schematic of the process to collect experimental data for building a classification model of CM content from 
cell encapsulation experiments and classification model workflow. Human induced pluripotent stem cells (hiPSCs) were 
resuspended in PF precursor solution, including the photo initiator at a concentration of 30, 40, 50, and 60 million cells mL-1 of 
PF. The precursor solution and mineral oil were infused into the top and bottom inlets of the PDMS mold, respectively. With 
breaking the surface tension of the precursor solution, the microspheroids of hydrogel were created and crosslinked in the outlet by 



using visible light. Microspheroids were collected at the end of the PDMS mold and removed from the oil phase, and cultured in 
two different stem cell media for expansion for 3 days. Cardiac differentiation was initiated on day 0 using two different 
differentiation protocols, as shown in the timeline. Experimental features that were measured and intentionally changed were 
fibrinogen (Fb) concentration in polyethylene glycol - fibrinogen (PF) and hiPSCs concentration in PF on day -3, microspheroid 
size and shape measured on day -2, and CHIR concentration on day 0. The phase-contrast images of microspheroids were taken on 
days 3 and 5 of differentiation. The output was CM content in each batch of encapsulation which was measured by flow cytometry 
data on day 10 of differentiation. Convolutional neural networks were the machine learning method used to build the CM content 
classification model.  

Methods  

HiPSC Culture, Encapsulation within a Hydrogel, Expansion, and Directed Differentiation  

Two hiPSC lines, IMR-90 Clone 1 and the Un-Arc 16 Facs II cell line (32), which is 

genetically encoded with a voltage (ArcLight) fluorescent indicator, were used in this study. The 

hiPSCs were cultured in stem cell media, mTeSR-1 medium (Stem Cell Technologies) or E8 

medium as described (25, 33), in T-25 flasks coated with Matrigel (Corning) or Geltrex (Gibco), 

respectively. Briefly, hiPSCs were detached using Accutase (Innovative Cell Technologies) for 

about two minutes in the incubator and resuspended in stem cell media supplemented with ROCK 

inhibitor (5-10 μM, RI, Y 27632, Stem Cell Technologies).  

PEG-fibrinogen (PF) as a biomaterial for encapsulation was synthesized as previously 

described (25, 34). To characterize the PF fibrinogen concentration, the Pierce BCA assay 

(Thermo Scientific) was used. By changing the fibrinogen amount during the synthesis, PF with a 

range of different fibrinogen concentrations can be produced (8-14 mg/mL). A novel microfluidic 

system was used as previously described (27) to prepare hiPSC-laden microspheroids. PF at a final 

protein concentration from 8.6 to 12.3 mg/mL in Phosphate Buffered Saline (PBS) was used in 

this study. To prepare the precursor solution, hiPSCs were resuspended in PF with different 

concentrations (30, 40, 50, and 60 million cells mL-1 PF). Then, this precursor solution was injected 

from the top inlet and mineral oil was infused from the bottom inlet of the PDMS mold to break 

the surface tension of the precursor solution; using this approach, microspheroidal hydrogels were 

created (Figure 1). To manipulate the size and shape of these microspheroids, experimental 



parameters, including junction size, precursor solution and mineral oil flow rates, and outlet 

channel diameter, were adjusted as previously described (27). To photo crosslink the liquid PF-

cell mixture, a 2.7W light source (Prior Lumen 200) was employed. Stem cell media supplemented 

with ROCK inhibitor (5-10 μM, RI, Y 27632, Stem Cell Technologies) was used for collecting 

and culturing the microspheroids for 24 h (day -3). Microspheroids were then cultured for an 

additional 48 h in mTeSR 1 or E8 medium with daily media changes (days -2 and -1).  

Two differentiation protocols were used, as briefly described here. For the first 

differentiation protocol, cardiac differentiation was initiated (day 0) by activation and inhibition 

of the Wnt signaling based on a method previously established for use in stirred tank bioreactors 

(12). To reduce the differentiation cost and produce the clinically relevant quantities of hiPSC-

CMs, a cost-effective and xenobiotic-free (xeno-free) media, chemically defined medium, 3 

components (CDM3) (35) was used. CDM3 medium was supplemented with 5µM CHIR99021 

(Stem Cell Technologies) on day 0 of differentiation, and the well plate was placed on a shaker. 

After 24 hours (day 1), the medium was replaced with CDM3 medium supplemented with 5µM 

IWP2 (Stem Cell Technologies) to inhibit Wnt signaling. After 48 hours, the medium was changed 

to RPMI/B27 containing insulin (Invitrogen), with subsequent medium changes every other day 

until day 7 and every 3 days thereafter. Cardiac tissue contraction was observed on day 10 

(Supplementary Video 1).  In the second differentiation protocol, cardiac differentiation (36) was 

initiated (day 0) by switching the medium from mTeSR-1 to RPMI/B27 minus insulin (RPMI/B27-

I, Thermo Fisher) supplemented with CHIR (10-12 μM, Stem Cell Technologies). After 24 h (day 

1), the medium was removed, and fresh RPMI/B27-I (4 mL) was added. After an additional 48h 

(day 3), 2 mL of old media was combined with 2 mL of fresh RPMI/B27-I supplemented with 

IWP2 (5 μM, Stem Cell Technologies). After another 48 h (day 5), media was replaced with 



RPMI/B27-I (4 mL); on day 7, RPMI/B27-I was changed to RPMI/B27 medium (Thermo Fisher). 

RPMI/B27 medium was replaced every three to four days following differentiation. 

Phase-contrast images were taken (Ti Eclipse, Nikon equipped with an Andor Luca S 

camera) on differentiation days 3 (dd3) and 5 (dd5) of the hiPSC-laden microspheroids, as shown 

in Figure 2.  

Cardiomyocyte content of each batch of differentiated engineered cardiac tissue microspheroids 

was assessed on day 10 by flow cytometry as previously described (25). Following microspheroid 

dissociation, cells were washed with PBS, and unlabeled samples were collected. The cells were 

then incubated in Zombie dye (Biotium), fixed and permeabilized overnight with cold Foxp3 

Fixation/Permeabilization (ThermoFisher) working solution at 4 °C. Cells were labeled with 

primary antibodies (cTnT 1:400, Thermo Scientific; MF20 1:200, AbCam; IgG Isotype 1:1000, 

ThermoFisher) for 1 hour at room temperature, washed with Permeabilization Buffer, and 

incubated in secondary antibody (1:300, Alexa Fluor 647, Invitrogen) for 45 minutes. Following 

washing, cells were analyzed with a CytoFLEX LX flow cytometer (Beckman Coulter). For 

visualization of produced CMs, differentiated microspheroids were dissociated and replated on 

Matrigel (Corning) coated coverslips for 2-4 days. Then the hiPSC-CMs were immunostained with 

alpha-sarcomeric actinin (Sigma Aldrich) as described previously (25). Images were taken by 

using a Nikon A1R laser-scanning confocal microscope. Representative images of day 30 hiPSC-

CMs derived through CDM3 microspheroid differentiation and extracted morphological data using 

an unbiased algorithm, SarcOmere Texture Analysis (SOTA) (37) are shown in Supplementary 

Figure 1. To verify the relative functionality of CDM3 differentiated microspheroids from different 

batches, videos of microspheroid tissue contractions were taken using an Andor Luca S camera 



attached to the microscope on day 10 and analyzed by using motion-tracking software, an open-

source MATLAB code (38). Data are provided in Supplementary Figure 2 and Video 1.  

 

Figure 2. Representative differentiation day 5 phase-contrast images for four individual batches with CM content higher 
than 70% and four batches with CM content lower than 70%. The initial tunable size (diameter) and shape (axial ratio) of each 
batch have been provided in the table.  

Data Used for Building the Classification Models 

Two types of data were collected from the experiments during the differentiation timeline. 

Several experimental feature values were tuned and measured from day -3 to day 0 of the 

differentiation. These features included PF fibrinogen concentration, hiPSC concentration, 

microspheroid size (diameter) and axial ratio (ratio between axis), media type, and CHIR molecule 

concentration. These experimentally specified adjustable features were used to derive additional 

features. The derived features included microspheroid surface area (S), the ratio of CHIR 

concentration to microspheroid surface and its inverse (CHIR/S, S/CHIR), and the ratio of the 

CHIR concentration to microspheroid surface area to volume ratio (CHIR concentration/S/V) and 

its inverse (S/V/CHIR concentration).  



The second data type consisted of phase-contrast images taken on days 3 and 5 of 

differentiation. These time points, days 3 and 5, were selected because they are early in the 

differentiation process. Furthermore, day 5 is the first time point after finishing incubating the 

samples with the small molecules. And at this time point, experienced experimenters felt that they 

could reliably guess whether or not the final CM content of the resulting engineered cardiac tissue 

microspheres would be “good” (sufficient) based on visualization of the differentiating hiPSC-

laden engineered tissue microspheroids. For the purposes of this study, which aimed to predict the 

CM content classes of the cardiac tissues on day 10 of differentiation, the latter time points (such 

as day 7) were considered too late. Being able to predict the CM content at an earlier time point 

(days 3 or 5 versus day 7) enables earlier termination of differentiation of batches with insufficient 

CM content. 

The output was the corresponding CM content of the resulting engineered cardiac tissue 

microspheroids measured using flow cytometry on day 10 of differentiation. The data included 

280 images of 56 batches for day 3 and 303 images of 64 batches for day 5 of engineered tissue 

microspheroid cardiac differentiation experiments, with their output labeled as sufficient and 

insufficient for CM content above and below 70%, respectively. The data was divided to test and 

training sets with a ratio of 20% and 80%, respectively, for both day 3 and day 5 points. The data 

was relatively balanced, with 53.5% sufficient and 46.5% insufficient CM content labels.  

Classification Model Construction and Performance Metrics 

Convolutional neural networks (CNN) (18) mimic the human brain’s visual perception 

mechanism (39). They are mainly used for image processing and can handle mixed data types (19, 

40). Unlike most ML modeling approaches, where feature engineering and extraction are crucial 



steps for building accurate models, in CNN models, the features are extracted automatically and 

used for predictions (39).  

Accuracy (41), recall (42), precision (42), and Mathew’s correlation coefficient (MCC) 

(43) were the metrics used for comparing the performance of the classifiers. All these metrics are 

calculated using the confusion matrix shown in Figure 3. The four cells in Figure 3 correspond to 

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). Our study 

associated positive and negative classes with sufficient and insufficient CM content classes. 

 

Figure 3. Confusion matrix for calculating the classification performance metrics based on the actual and predicted 
CM content classes. TP: True positive, TN: True negative, FN: False negative, FP: False positive.  

 

Accuracy (41) calculates the ratio of the correct predictions of the classes (Eq. 1), and it is 

a value between 0 and 1, corresponding to wrong and perfect classification for all the points, 

respectively. Recall (42) presents the ratio of the actual positive class points predicted correctly, 

with a value between 0 and 1 (Eq. 2). A value of zero suggests that all the positive class points 

were incorrectly classified as negative, and a value of one corresponds to all correct class 

identification for the positive class points. Precision (42) indicates the proportion of the times the 

points predicted to be in the positive class corresponding to the actual positive class (Eq. 3). 

Finally, MCC (43) is a metric between -1 and 1, representing the correlation between the predicted 



and actual classification for all the points (Eq. 4). The value of one for MCC means a perfect 

positive correlation between the predictions and original labels. The value of -1 shows a perfect 

inverse correlation suggesting that all the prediction classes were wrong for the data points. The 

value of 0 corresponds to the situation where the classification is no different than the random 

label assignment for each point.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 (2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 (3) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
(𝑇𝑇𝑇𝑇× 𝑇𝑇𝑇𝑇)− (𝐹𝐹𝐹𝐹× 𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝑇𝑇+ 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+ 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+ 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+ 𝐹𝐹𝐹𝐹)
 (4) 

 

Computational Experiments 

Details of the CNN Classification Model Architecture, Training, and Comparison Studies 

Two types of classification models based on the input data type were constructed to predict 

the CM content of engineered cardiac tissue microspheroids on differentiation day 10 and 

compared to each other. In the first model, only phase-contrast images were used as inputs to the 

CNN model (CNNimage). The second model employed mixed data types, i.e., experimental features 

and images (CNNmixed). Monte-Carlo cross-validation (44) with 30 replications was used for tuning 

the parameters in CNN models with a validation set ratio of 20%. The comparison metrics were 

calculated for each model using the test data. Models were trained and evaluated using Keras (45) 

library in Python 3.7. The experimental features consisted of twelve features listed in Methods 



section, and the images had a size of 496 × 658 pixels. The final architecture of both CNNimage 

models of days 3 and 5 consisted of five convolutional layers with filter sizes of 16, 32, 64, 64, 

and 64, respectively. A pooling layer with (2, 2) stride was added right after the first convolutional 

layer. After flattening, two dense layers with 1000 and 500 fully connected neurons were 

employed. For CNNmixed, parallel to the CNNimage architecture, two dense layers with 16 fully 

connected neurons were implemented for the experimental features. The outputs from both parts 

were combined and fed to two dense layers of 256 and 128 fully connected neurons. The activation 

function for all the layers was Relu function, except for the output layer, where a sigmoid function 

was utilized. The trained models are available at the Cremaschi research group GitHub repository 

(https://github.com/SCremaschi-Research-Group/Image_processing). 

For a comprehensive evaluation of the classification models, the two classifiers of 

CNNimage and CNNmixed trained using either day 3 or day 5 images were compared to two models 

from our previous studies (46, 47). The first model was a Gaussian process classifier (GPEfeatures) 

trained only using experimental features as inputs (47), and the second model used support vector 

machines (SVMimage) with images as inputs (46). Finally, the performance of the best classifier 

was tested on another cell line, IMR-90, to evaluate the model’s capability to predict CM content 

outcomes for cell lines not included in the training set. The data set from the IMR-90 cell line 

included 26 data points from 7 batches.  

Results and Discussion 

Figure 4 shows the classification results for CNNd3
image, CNN d3

mixed, SVM d3
image 

CNNd5
image, CNN d5

mixed, SVM d5
image (46), and GPEfeatures (47) based on the four metrics of 

accuracy, recall, precision, and MCC calculated for the test points. The superscripts of each model 

represent the day of differentiation images used for training the models, where d3 and d5 

https://github.com/SCremaschi-Research-Group/Image_processing


correspond to days 3 and 5, respectively. According to Figure 4, CNNd5
mixed has the highest metric 

values, with 0.85 for accuracy, 0.82 for recall, 0.92 for precision, and 0.72 for MCC. The recall of 

CNNd5
mixed is the only metric lower than two other classifiers, SVMd3

image and SVMd5
image, with a 

recall of 0.93 and 0.92, respectively. Although SVMimage had a higher recall using both day 3 and 

5 images, all other metric values were lower than those of CNNd5
mixed, with a difference of around 

0.2. These metric values indicate that both SVMimage models correctly label more of the true 

positives; however, they do so at the expense of yielding more false negatives and positives, given 

their lower accuracy and precision values. The classifier with the second-highest metric values is 

SVMd5
image, followed by SVMd3

image, CNNd3
mixed, GPEfeatures, CNNd5

image, and finally CNNd3
image. 

The accuracies for different classifiers range between 0.85 to 0.54, indicating that all models have 

reasonably identified the correct classes; however, there is a considerable change in accuracies of 

the CNNmixed and CNNimage for both models trained using either day 3 or day 5 images. The MCCs 

of the classifiers are between 0.1 and 0.72, and the model with the lowest MCC employs day 3 

images only. 

The best model, CNNd5
mixed, was used to evaluate if the CM content on day 10 for the IMR-

90 cell line could be classified as sufficient or insufficient. For the IMR-90 cell line data, the 

accuracy was 0.46, recall and precision were 0.39, and MCC was -0.08, revealing that CNNd5
mixed 

cannot accurately predict sufficient or insufficient CM content classes for this cell line. These 

results suggest that the models trained using data from only one cell line could not be directly used 

for predictions for a different cell line CM content. The ML models, such as the classifier models 

trained in this study, are data-driven, meaning they only perform accurately within the ranges of 

the training data. To train models that can predict CM content for other cell lines or multiple cell 

lines, we posit that the training data should include the necessary information, such as images, 



experimental features, and CM content labels for multiple lines. Future work is needed to assess 

the performance of classification models trained using multiple cell line data. 

The results agree with our hypothesis that the information contained in the images of 

differentiating engineered tissue microspheroids combined with tunable experimental features can 

be extracted to build a classifier model to distinguish experimental runs with sufficient and 

insufficient CM contents on day 10 of the differentiation. The inclusion of features that non-

destructively capture the information about the progression of stem cell growth and differentiation 

within the engineered tissue microspheres, represented by the images in our study, improves the 

prediction of the CM content class in comparison to the GPEfeatures, which only utilizes tunable 

experimental features from the early days of the differentiation process (day -3 to 0). On the other 

hand, the lower metric values of the CNNimage and SVMimage compared to CNNmixed reveal the 

critical impact experimental features play in the accurate prediction of the output class. The 

difference is more significant between CNNd5
image and CNNd5

mixed, whose accuracy and precision 

values are 0.22 apart, and recall and MCC values vary by 0.24 and 0.42, respectively. The 

accuracy, recall, precision, and MCC of CNNd3
image and CNNd3

mixed
 are also apart by 0.18, 0.3, 0.4, 

and 0.37, respectively. This result may be partially due to the limited number of data available to 

train the CNN classifiers because CNNs, a deep learning method, require a large number of data 

for accurate predictions. However, the improvement in the CNN classifier predictions with the 

addition of tunable experimental features indicates that the limited data is not the sole reason for 

the lower metric values yielded by CNNimage.  

The information contained in the images, even though this cannot be directly linked to the 

ongoing biological processes within the engineered tissues, accompanied by the right set of 

experimental features, is essential for building accurate classification models for bio-processes like 



the current one. In the future, adding images from earlier time points, including the pre-

differentiation expansion phase, and other features capturing information regarding the 

differentiation process could enhance the prediction results. Features like dissolved oxygen, pH, 

media composition at different time points, and their changes through the process can provide 

high-quality information for building predictive models, similar to our previous study on the 

production of CMs in a bioreactor (11). With a more extensive feature set, we will take another 

step in constructing predictive models and consider building regression models instead of 

classifiers for estimating CM content on day 10 of differentiation. It is also important to note that 

expert knowledge should be incorporated when building predictive ML models for the hiPSC 

differentiation process to train accurate models. The expert knowledge informs the construction of 

the features that should be considered for training the models via identifying the relevant 

measurements containing the pertinent information and advising in forming additional engineered 

features generated by modifying the measurements. Cardiomyocyte functionality and maturation 

in the batches with sufficient and insufficient CM content were not compared here and could be 

different. We plan to investigate employing ML to predict the optimal differentiation conditions 

for enhancing hiPSC-CM functionality and maturation using related outcomes, such as contraction 

velocity; cell morphology, sarcomere organization, and length by using an unbiased algorithm, 

SarcOmere Texture Analysis (SOTA) (37); mitochondrial location and morphology, etc., in a 

future study (Supplementary Figures 1 and 2). Our study demonstrated that training ML models to 

predict differentiation outcomes using correct features representing the process is a promising 

field.  

 



 

Figure 4. Comparison of performance metrics, accuracy, recall, precision, and MCC, for predicting CM content on day 
10 of hiPSC differentiation using seven classification models. GPEfeatures: Only experimental features were used as input for a 
Gaussian process classifier. SVMd3image and SVMd5image: Phase-contrast images taken on day 3 and day 5 of differentiation, 
respectively, were used to train support vector machine classifiers. CNNd3image and CNNd5image: Days 3 and 5 images were used to 
train convolutional neural network classifiers. CNNd3mixed and CNNd5mixed: Both experimental features and images were used as 
the input features of convolutional neural network classifiers, using images taken on either day 3 or day 5 of differentiation. 

 

Conclusion 

In this study, classification models for predicting the CM content were constructed using 

convolutional neural networks, and these classifiers were compared to two previously developed 

models. The first set of models (CNNimage and SVMimage) used phase-contrast images of the 

differentiating hiPSC-laden engineered tissue microspheroids on days 3 and 5 of differentiation. 

The second model type (CNNmixed) used a combination of the images and experimental features as 



inputs. The results demonstrated that CNNd5
mixed had the highest accuracy, recall, precision, and 

MCC of 0.85, 0.82, 0.92, and 0.72, respectively. Its performance in predicting the CM content 

classes of the resulting engineered cardiac tissue microspheroids on day 10 of differentiation was 

significantly better than the other six classifiers.  
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