126

SmaQ: Smart Quantization for DNN Training
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Abstract—Advancam ants in modam desap leaming have shown that desper
natworks with larger datasets can achieve staie of the ant results in many differant
tasks. As natwarks bacoma dagpear, the mamary requiramant of neural netwark
training proves to be the primary bottlenack of single-madhing training. In this
letter, wa first study the charaderisics of naural network weight, gradiant, featurs
map, gradient map, and optimizer state dishibutions for some popular naural
natwork architectures. Our invesfgation shows that the majority of fhe data
structuras used by neural networks can have their value distributions be
approxdmated with nomal distibutions. We fhen introduce Smart Quantization
(Small), a quantization schemea that exploits this observed nomal distibution to
quantize the data structuras. Our dynamic quantization mathod calcul ates tha
samplad mean and standard deviafion of tansors and quanfizes each tensor
alamant o 6 or Bbits basad on the z-scora of fhat valua. Our schamea reducas tha
mamony usage during training by up o 6. Tx with minor losseas in accuracy.

Index Terms—Appraximats methads, machine lsaming, quantizagion
+

1 INTRODUCTION

DEEF neural networks have been very successful at many different
tasks, such as computer vision and natural language processing.
The abundance of available training data, as well as the existence
of ever more powerful processing units (GPGPUs and TPUs), have
resulted in deeper models capable of learning more complex rela-
tiorships. Recent deep learning research has shown that increasing
the model depth and the dataset size leads to higher performance
in most deep leaming tasks. At the same time, this increase can be
problematic, as the memory capacity of GPUs and TPUs is quite
limited. Traditional data parallelism techniques will, thus, struggle
to fit the architecture’s weights, gradients, and feature maps onto
memory, which has become a bottfleneck. As a result, methods that
decrease memory utilization during training can be very valuable,
as they allow for deeper models to be trained at higher training
batch sizes.

We study the value distribution of different neural network
data structures and observe that these distributions have the major-
ity of their data in clusters close to the mean and thus can be mod-
eled with a normal distibution. We therefore introduce a
quantization technique, SmaQ, that exploits this observed distribu-
tion and, thus, utilimes estimated statistical variables, mean and
standard deviation, to convey the tensor information in a summa-
rized, encoded form. We then evaluate our method, comparing our
technique’s memory usage and neural network inaccuracy as a
product of data loss to other similar methods.

In this work, we aim to make progress towards a fully quan-
tized training technique. While there is significant active research
into reducing the memory footprint of DNN training, the existing
solutions efther are too complex, expensive, do not reduce the
memory usage enough, or degrade training-accuracy.
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In general, reduced precision datatypes and quantization have
been the techniques most recently investigated in the pursuit of solu-
tiors. Reduced precision datatypes of 16 bits have been used before
in practice. The IEEE 754-2019 standard defines the IEEE FP16 for-
mat as containing 5 exponent bits and 10 mantissa bits. Note that it
has 3 less bits on the exponent than the IEEE FFP32 format, thus
reducing its dynamic range. To increase the dynamic range while
still using 16 bits only (including the sign bit), the BFloat16 (BF16) [6]
format uses 8 bits for theexponent and 7 for the mantissa.

Even lower bit-width precision datatypes and/or quantizations
that are suitable for DNN training have been difficult to be achieve.
These have resulted in a degree of information loss and numerical
instability issues such as swamping [11], which is a characteristic
of floating point addition and it arises from the truncation that
occurs whenever a large number is added to a small mumber [5].
Wang et al. [11] proposed an 8-bit floating point format, with a 5-
bit exponent and a 2-bit mantissa, but which requires chunk-based
accumulation, stochastic rounding, and maintaining the first and
the last layers in 16-bit precision. Park ef al. proposed V-Cuant[8],
which is a quantization technigue similar to ours in philosophy in
that it attempts to quantize each element based on its value, rela-
tive to its distribution. V-Cluant uses full precision values for ele-
ments with large values — identified through sorting the input
data, and proposes compressing such outliers with conventional
sparse data representation such as CSE. Finally, V-Quant only
quantizes feature maps in most experiments. For its LSTM lan-
guage model experiments, V-Quant only quantizes the weights,
noting that LSTMs feature map distribution does not follow the
assumption of the paper and thus is not wellsuited for V-Cuant.
V-Quant's need to sort the input data and usage of the CSR format
make it suboptimal to use in large scales. In order to address the
existing challenges with the current methods, Cambier et al. [2]
proposed Shifted and Squeezed 8-bit floating point (S2FP8), which is
the most closely related work to our proposed technique in that it
uses mean and standard deviation of the data to relay information.
S2FFB attempts to address the precision challenge of 8-bit training
without requiring chunking, stochastic rounding, loss scaling, or
maintaining some full or half precision layers. Itinvolves encoding
values into transformed values where the transformations shift
and squeeze the values in order to be able to cover the wide
dynamic range with the reduced bit-width. It uses 32-bit floating
point number statistics (the shift and the squeeze statistics) to
transform the values and requires expensive exponentiation in cal-
culating its squeeze parameter.

2 BACKGROUND AND MOTIVATION

2.1 Quantizing Neural Network Data Structures

The different data structures that we can attempt to quantize during
neural network trafning include weights, feature maps (forward
pass activation values), gradients, gradient maps (intermediate par-
tial derivatives calculated in the backward pass and immediately
used in the next layer), and optimizer-specific data structures such
as momentum vectors. Different works in prior art have attempted
to quantize or compress different subsets of these data structures
(e.g., weights only) or treat different data structures differently, but
our method quantizes all these data structures and applies the same
technique for all, reducing complexity.

2.2 Characteristics of Neural Network Memory

Fig. 1 shows histograms for the weight, feature map, gradient, and
gradient map values values of one of the convolution layers in
ResNet 34 [4]. Most importantly, these distributions are consistently
observed across most evaluated cases. Wenotice that the majority of
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Fig. 1. (a) and (b) show tha weight distribufion for 2 comealution and downsamgpla
layarin RasMat 34, respactivaly, while (c) and (d) show the feature map and gradi-
ant values for the sama convolution layar. Mormal distributions, using the mean
and standard deviation of the data, are overayed on the histograms.

the values within these distributions are contained in a very close
bounding box around the mean and that these distributions are
even more tightly clustered around the mean than the normal distri-
bution. We believe that an encoding mechanism that exploits this
heavily concentrated nature of neural network data structure distri-
butions can potentially introduce some major memory savings for
both neural network training and inference.

3 ALGORITHM

The primary motivation behind our scheme is that, in the observed
distributions of neural network data structure values, the majority
of the data is contained within the cluster closest to the mean. We
will refer to these values as inliers, and the rest of the data as out-
liers. Our mechanism exploits this property to use a lower-bit
representation for inliers and a higher-bit representation for out-
liers. To encode, we first normalize the input to its z-score form,
which has a sensible range. We store the mean and standard devia-
tion as metadata. Then, we quantize the normalized tensor. To
decode, we dequantize the quantized tensor into the normalized
format. Then, we retrieve the tensor's metadata and use it to undo
the normalization process. Fig. 2 shows an example of this encod-
ing scheme in effect.

3.1 HNomalizing the Data

One major challenge of using quantization is that we need to find
sensible lower and upper bounds for the input data. Quantization
methods for inference usually employ observers during the train-
ing process to find these bounds for weights. This is much harder
to do for fully quantized training, however, and involves tedious
hyperparameter adjustment. Our method does not require this
kind of fine-tuning,

Therefore, to encode some input, we first normalize it to its z-
score format, which has a sensible range of (u - 20, u +20). As
such, we define our normalization and de-normalization functions,
hand A7L, as

X =
AMX ~ () =T‘u (1
N (Mormalizeds i, ) = X - o + pu. ()]

3.2 Quantizing the Normalized Data

In uniform quantization to IV bits, the real value input space is uni-
formly divided into 25 discrete buckets, and the bucket index is
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Fig. 2. (a) shows an exampla of ancoding a value within our bounding box, which is
quanfized to 6 bits (outlier bit = 0). (b) shows an exampla of encoding an outlier
valua, which is quantizad o 8 bits (outher bit=1).
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used as the quantized representation. Our smart tization
method builds on top of uniform quantization, but the number of
bits of each quantized element depends on whether it is an inlier or
an outlier,

Afba'nﬂrma]mg the data, we create a bounding-box of 1 stan-
dard deviation® around the mean. We treat the values within the
bounding box as inliers and those outside the bounding box as out-
liers. We then uniformly quantize the inliers — which have a range
of [t — o, 1 + o] — t0 Lipger — 1 bits and the outliers — which have
a range of [u—20,u —o)U i +o,u+20] — 0 Lo — 1 bits.
Each input element's final representation will contain 1 metadata
bit which indicates whether that element is an inlier or an outlier.
For example, SmaQ) (6, 8) will encode inliers to 6 bits (5 data bits
and 1 outlier metadata bit) and outliers to 8 bits (7 data bits and 1
outlier metadata bit).

Our uniform quantization function takes the real-valued input
and discretizes it by linearly interpolating the z-score value onto
the range of the desired integer. After the interpolation, we use sto-
chastic rounding to truncate the value into an integer.

4 EVALUATION

4.1 Methodology

In this section, we evaluate our quantization method by encoding
some very popular neural network architectures during training.
This allows us to measure the accuracy loss and storage benefit as
a result of different methods. We compare our results to FP32,
FP16, BF16, FP8, and S2FP8 [2]. To simulate S2FP8, we use the fol-
lowing truncation equatiml:

Xsars = [27#{truncatepps (25X ]")}[*=. ®

Any usable encoding method must be generally applicable to
most classes of popular neural network architectures. In our
experiments, we evaluate this quality by running our tests on the
following architectures: ion MNetworks (InceptionMNet) [9],
Residual Networks (ResNet) [4], and Bidirectional Encoder Repre-
sentations from Transformers (BERT) networks [3]. InceptionMNets
and ResNets are two of the most popular neural network architec-
tures for computer vision applications such as image classification
and semantic segmentation. BERT is one of the most widely used
networks for natural language processing tasks like machine trans-
lation and semantic similarity. We train ResNet and InceptionNet
on the CIFAR10 image classification task and BERT on the Seman-
tic Textual Similarity (STS) task from the GLUE dataset [10].

1. The size of the bounding box is an adjustable hy perparameter.
2. This is taken from Equation (5) of the S2FP8 paper.
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TABLE1
Experimental Results
InceptionMet ResMet 34 BERT
Encoding Agcuracy Storag e Benefit Agcuracy Storage Benefit Acouracy Storage Benefit
Smal) (6,58) QR 4.93 BT 4.92 0.794 4455
SIFPE 5.13% ¥ H.32% 387 N/A N/A
FP8 15.99% 4.00 18.80% 4.00 0.766 400
FPi6 18.24% 200 238% 2,00 0.793 200
BF16 AT 200 89.00% 2,00 0791 200
FP32 4% 1.00 89.20% 1.00 0.793 100

The networks are trained using the PyTorch framework. For
ResMet, we use the stochastic gradient descent optimizer with a
learning rate of 0.003, momentum of 0.9, and weight decay of 0,
and we train for 100 epochs. For BERT, we use the AdamW opti-
mizer [7] with a leaming rate of 2e-5 and weight decay of 0.01, and
we train for 6 epochs.

We simulate the inaccuracy of encoding and decoding during
training for every data structure by encoding and immediately
decoding the data structure (we refer to this as applying inaccuracy).
This inaccuracy is applied at the following steps:

s After the forward pass of each computation graph node,

we apply inaccuracy to the fefure maps.

*  After the backward pass of each computation graph node,

we apply inaccuracy to the gradient maps.

+ Before PyTorch's parameter update stage (ie., optimizer

step), we apply inaccuracy to the gradients.

s After PyTorch's parameter update stage, we apply inaccu-

racy to weights and optimizer state.

For each network, we evaluate the accuracy and storage benefit of
training the network with each encoding mechanism. The accuracy
metric depends on the network evaluated: For InceptionMNet and
ResNet 34, the accuracy is the top-1 validation accuracy. For BERT,
the accuracy is the mean of the Pearson and Spearman coefficients.
The storage benefit refers to the average memory savings — rela-
tive to FP32 — of all encoded tensors over the entire training run.
Its equation can be found in Equation (4). The additional 64 bits in
the numerator are added to account for the mean and standarnd
deviation storage cost

)

Storage Benefit= E({;[&H (6 « Niger + 8- Nm}])_

S [32 - (Ninkier + Nowthicr)]

We measure the overhead of our software emulation frame-
work by measuring the training time of the network with and with-
out our instrumentation. Our profiling results show that the
framework increases training time by adding a factor of 2.5x (eg.,
if the baseline trains in 1 second, SmaQ trains in 3.5 seconds). This
limitation makes evaluating very large datasets ime-consuming,
It's important to note, however, that this overhead is a result of
software emulation. With proper hard ware and software optimiza-
tion effort, a sed implementation of Sma() would
have a much more manageable overhead.

42 Results

Table 1 shows the accuracy and storage benefit for the Inception-
MNet, ResMNet, and BERT experiments. The takeaways from our
experimental results are explained in this section

4.2.1 Accuracy Loss and Storage Benefit

Sma() attains a top-1 accuracy of 92.22% on InceptonMet, 84.74%
on ResNet, and a Pearson and Spearman coefficient mean of 0.794
on BERT. 52FP8, on the other hand, attained 25.13% on Inception-
MNet, 20.32% on ResMNet, and was not even able to complete training

on BERT due to numerical instability issues leading to NaN and
infinity float values being produced. FP8, similarly, produced
lower accuracy values across the board: 15.99% on InceptionMNet,
18.80% on ResMet, and 0.766 on BERT. This data shows that Sma()
heavily outperforms other encoding mechanisms that produce
competitive Storage Benefit (S2FP8 and FP8). FP16 shows similar
results to FP8, producing 18.24% on InceptionMNet, 22.38% on
ResMet, and 0.793 on BERT, all of which are lower than Sma()'s.

Sma()'s accuracy values are even competitive with FP32 and
BF16, which set the current industry standard for neural network
floating point value encoding. FP32 and BF16, respectively, pro-
duce accuracy values of 92.14% and 92.49% on ionMet,
89.20% and 89.00% on ResMet, and 0793 and 0.791 on BERT.
Sma()’s accuracy results outperform FP32 and BF16 in BERT and
are within 5 percentage points in ResNet34. Most importantly,
SmaQ) exhibits these competitive accuracy values while using the
least amount of memory, with a Storage Benefit of 4.93x, 492,
4.93x for Inception, ResNet, and BERT, respectively.

4.22 Gradient Map and Optimizer State Encoding

Our results show 52FF8 is not able to perform well in any of the
evaluated tasks. Further investigation shows that S2FP8 struggles
with gradient map and optimizer state encoding. The original
authars of the S2FP8 paper did not explicitly intend for S2FP8 to be
used for gradient map or optimizer state encoding. For gradient
maps, this is because they are usually immediately consumed after
allocation, making them a suboptimal target for memory compres-
sion. We, however, believe that it is important for an encoding
mechanism to be robust to all kinds of data distributions observed
during DNN training, and that robustness of an encoding mecha-
nism on different types of data distributions observed during
DMNMN training can increase the reliability of the encoding mecha-
nism as a whole. Our experimental results in Table 1 show that
S2FP8 lacks robustness and is suboptimal for encoding gradient
maps and optimizer state. For ResNet, S2FP8 produced 20.32%
accuracy and for BERT, the training loop stopped due to detected
MNaM and infinite values for the loss and weights.

We re-ran the BERT and ResMNet experiments with gradient map
and optimizer state encoding disabled. This allows us to compare
our algorithm’s performance to S2FP8 under the same cond itions
(ie., with the same data structures being encoded) that the S2FP8
authors evaluated. Table 2 shows these results. While S2FP8

TAELE 2
No Gradient Map and Optimizer State Encoding
ResMet 34 BERT

Encoding Accuracy Storage Benefit Accuracy Storage Benefit
Smal) B6.96% 4.88x 079 4.95x
S2FP8 B6.46% 387x MN/A MN/A

FP8 8B22% 4x 0766 4x

FFi6 89.03% 2x 0.7% Ix

BF16 BE22% 2 079z 2x

FP32 B9.20% 1x 0793 1x
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performs much better with a ResNet accuracy of 86.49%, Sma() is
still outperforms S2FP8 with a ResNet accuracy of 86.86%. SmaQ
does this while using less memory than S2FPS, with Sma) exhibit-
ing a storage benefit of 4.88x, compared to S2FP8's 3.87x. S2FP8 still
shows numerical instability problems for BERT.

5 CoNCLUSION

We present Smart Quantization (Sma(), an encoding scheme that
exploits the observed normal distributions to quantize neural net-
waork data structures. Sma() is an appealing option for neural net-
work training as it can be applied to weights, feature maps,
gradients and optimizer state. Sma() (6, 8), on average, used 1.5
less bits than FP8 or 52FF8, all the while exhibiting higher accuracy
values than S2FP8, FP8, and even FP16. 5SmaQ’s accuracy is com-
petitive with FP32 and BF16 5maQ) achieves these results while
maintaining a simple implementation at its core. Given the mean
and standard deviation, SmaQ only requires N multiplications and
N additions for encoding and decoding of an entire tensor of size
N, and one additional division than that for encoding. Our future
waork includes exploring implementation optimizations, such as
the ones below:

s We can partition the encoded tensor into chunks and
decode the chunks in parllel. Outlier bits can be stored in
a structure of arrays format as a single bitmask, reducing
the need to scan data values. Padding bytes can be used to
deal with alignment issues.

s Using reservoir sampling algorithms, we can take a sample
from the input tensor and calculate the mean and standard
deviation of that sample.

s The standard deviation can be estimated using a method
similar to range batch-normalization [1] through the usage
of the product of a scale adjustment variable and the range
of the input sample.

s Calculated statistics can be re-used per iteration, removing
the need for further calculation of mean and standard devi-
ation beyond the initial computation.
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