FiGO: Fine-Grained Query Optimization in Video Analytics

Jiashen Cao
Georgia Institute of Technology
jiashenc@gatech.edu

Joy Arulraj
Georgia Institute of Technology
arulraj@gatech.edu

Abstract

Video database management systems (VDBMSs) enable automated
analysis of videos at scale using computationally-intensive deep
learning models. To reduce the computational overhead of these
models, researchers have proposed two techniques: (1) leveraging
a specialized, lightweight model to filter out irrelevant frames or
to directly answer the query, and (2) using a cascade of models of
increasing complexity to answer the query. For both techniques, the
query optimizer generates a coarse-grained query plan for the entire
video. These techniques suffer from four limitations: (1) lower query
accuracy over hard-to-detect predicates, (2) lower filtering efficacy
with frequently-occurring objects, (3) lower accuracy due to non-
trivial model cascade configuration, and (4) missed optimization
opportunities due to coarse-grained planning for the entire video.

In this paper, we present FiGO to tackle these limitations. The
design of FiGO is centered around three techniques. First, it uses
an ensemble of models to support a range of throughput-accuracy
tradeoffs. Second, it adopts a fine-grained approach to query opti-
mization. It processes different chunks of the video using different
models in the given ensemble to meet the user’s accuracy require-
ment. Lastly, it uses a lightweight technique to prune the model
ensemble to lower the query optimization time. We empirically
show that these techniques enable FiGO to outperform the state-
of-the-art systems for processing queries over videos by 3.3X on
average across four video datasets.

CCS Concepts

« Information systems — Query optimization; « Computing
methodologies — Object detection.

Keywords

Video Analytics

ACM Reference Format:

Jiashen Cao, Karan Sarkar, Ramyad Hadidi, Joy Arulraj, and Hyesoon Kim.

2022. FiGO: Fine-Grained Query Optimization in Video Analytics. In Proceed-
ings of the 2022 International Conference on Management of Data (SIGMOD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06...$15.00
https://doi.org/10.1145/3514221.3517857

Karan Sarkar
Georgia Institute of Technology
ksarkar9@gatech.edu

Ramyad Hadidi
Georgia Institute of Technology

rhadidi@gatech.edu

Hyesoon Kim
Georgia Institute of Technology
hyesoon@cc.gatech.edu

'22), June 12-17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3514221.3517857

1 INTRODUCTION

By leveraging recent advances in deep learning (DL), video data-
base management systems (VDBMSs) enable automated analysis of
videos at scale. These systems use 2-D object detection models for
locating objects of interest in the videos. The runtime performance
of these systems is constrained by the computational overhead
associated with processing the frames using the DL model. For
example, the Det-7 model from the EFFICIENTDET family of object
detectors [28] only processes 4 frames per second on Titan XP GPU.

To speed up query execution, researchers have proposed two
techniques for reducing the invocation of the heavyweight, object
detection model (a.k.a., reference model !) in the VDBMS. The first
technique consists of using a lightweight, specialized model [13, 14,
19] for quickly filtering out irrelevant frames. The second technique
consists of using a sequence of lightweight models [2]. We next
describe these two approaches in detail:

MoODEL SPECIALIZATION (MS). This technique consists of using
a lightweight, specialized model to accelerate query processing.
As shown in Figure 1a, a VDBMS may use a specialized model to
filter out irrelevant frames or to even directly answer the query.
By reducing the number of invocations of the heavyweight, ref-
erence model, the VDBMS accelerates the query with a tolerable
drop in accuracy. Two exemplars of this technique are PP [19] and
BrazelT [13]. PP filters out irrelevant frames using the specialized
model (@ in Figure 1a). The frames that are considered relevant are
subsequently processed using the reference model. We refer to this
technique of using specialized models as MS-FILTER. In contrast,
BrazeIT uses the specialized model to directly answer the given
query (® in Figure 1a). It only uses the reference model if the spe-
cialized model is not accurate enough. We refer to this technique
of using specialized models as MS-Skip.

MobpEL CascADE (MC). Another approach for efficiently process-
ing video analytics queries consists of using a sequence of models,
called a model cascade, as shown in Figure 1b. While processing the
query, the VDBMS short-circuits the inference based on the feed-
back returned by each model (e.g., confidence score). An exemplar
of this technique is the Tahoma system [2].

'We refer to the most accurate (and often also the most compute-intensive model) in
the model pipeline as the reference model.

https://doi.org/10.1145/3514221.3517857
https://doi.org/10.1145/3514221.3517857

2]

TTLI TSI Specialized

| Specialized | Yes -
i modelis !/H podel

1

! ’

Not |
Object 1_confident? 4 Object Object
Detector 1 | ==~ ~""°7~ Detector2 | * ** Detector N

(b) Model Cascade - Configuration associated with MC.

Figure 1: Techniques for Accelerating Queries - Two approaches taken
for accelerating queries in state-of-the-art video analytics systems.

1.1 Limitations

While these techniques successfully accelerate queries, they still
suffer from four limitations. We highlight these limitations using
the following illustrative query:

SELECT frameID FROM UA-DeTrac WHERE Count(Bus)>1;

I - MODEL SPECIALIZATION OVERHEAD. In MS-FILTER, since
each filter detects only one object category (e.g., bus), the VDBMS
needs to train several specialized models (i.e., filters) at runtime.
In contrast, with BLAZEIT, since a specialized model directly re-
turns the number of buses in an image, it must maintain a separate
model for each predicate (e.g., Count(Bus)). Thus, with model spe-
cialization, VDBMSs need to train and maintain a large collection
of models for different objects and predicates, respectively. The
overhead of training a specialized model while processing a previ-
ously unseen query is significant. For instance, training a ResNet-34
model on 100 sampled video frames takes 32 seconds.

II - HIGH SELECTIVITY QUERY. The speedup obtained with the
filtering technique used in MS-FILTER relies on the data reduction
rate. Consider a video with N frames. Let the fraction of frames
discarded by the specialized model be r, and the costs of running
the filter and running the reference model be Cy and C, per frame,
respectively. To accelerate the query, r must satisfy this constraint:

N(Cp+(1-71)-Co) < NG,
Cr

r>—
o

This constraint is not met by queries with high selectivity. To illus-
trate this problem, we replicate MS-FILTER using a model from the
EFFICIENTDET family of object detectors [28]. We defer a descrip-
tion of the empirical setup to §7. The results are shown in Figure 2.
MS-FILTER takes more time to process queries with high selectivity
(e.g., r = 0.2). Thus, when the data reduction rate is small, the per-
formance gap between MS-FILTER and NAIVE (i.e., naively running
object detector on every frame) is minimal.

We replicate the model cascade (MC) approach using eight mod-
els from EFrIcIENTDET. This approach also does not work well on
queries with high selectivity. This is because a large fraction of
video frames cannot be filtered out by earlier models in the cascade
leading to slower query processing.

1000

F1 Score
Time (s)

8
100+ P
200 IT
°

0

Query Processing

T T %
! 1

0.0

Figure 2: Comparison of Video Analytics Systems — F-1 score and
query processing time associated with handling the query in Listing 1.1
across different video analytics systems.

III - DIFFICULT-TO-DETECT PREDICATES. MS-SKIP [13] uses a
specialized model to directly return aggregates (e.g., number of cars
in an image). This approach does not generalize to all predicates.
First, the specialized model is designed to be shallow for faster exe-
cution. So, it is unable to deliver high accuracy for harder predicates
(e.g., small objects in the background of the frame). Second, it relies
on a subset of the videos for training. Lack of positive examples
in the selected subset greatly affects the quality of the model. We
replicate MS-Ski1p by training a ResNet-34 model [9]. As shown
in Figure 2, MS-Skip is faster than NAIvE. But, its F-1 score is worser
than its counterparts. While it delivers 0.7 F-1 score on some videos,
it fails to provide useful results on others.

We observe that the model cascade approach also suffers from
accuracy loss. First, short-circuiting based on confidence-scores
does not provide a reliable way to achieve good accuracy. Second,
the confidence score thresholds fail to generalize to the entire video.

IV — COARSE-GRAINED OPTIMIZATION. Another drawback of
state-of-the-art DBMSs is that they adopt a coarse-grained approach
towards finding the model configuration (e.g., a filter followed by
the reference model or a model cascade) to process the query. We
refer to the chosen configuration as a query plan. For instance,
the OPTIMIZER may uniformly sample 10% of the frames from the
video and select a fixed configuration for the entire video. Given an
accuracy constraint, coarse-grained optimization leads to higher
query processing time. Positive events tend to not appear in every
segment of the video, especially with low selectivity queries. If the
OpPTIMIZER picks the same query plan for the entire video, video
segments that are less likely to contain positive events or those that
contain easy-to-detect events are processed using the same slow
model configuration tailored for important segments.

1.2 FiGO

We present FiGO (Fine-Grained query Optimization in video
analytics), a VDBMS that addresses the limitations highlighted
above using a novel model ensemble approach together with fine-
grained optimization. In FiGO, the OpTIMIZER first splits the given
video into a sequence of chunks of varying sizes. It then picks
an appropriate model from a collection of models for each chunk.
Unlike the model cascade approach, the ExecutioN ENGINE in FiGO
only processes a chunk with one model picked from the ensemble.

Prior efforts do not focus on query optimization across a model
ensemble. This is critical since there are several suitable models for
a given vision task. For instance, Faster-RCNN [25] and SSD [18]
object detectors offer different performance-accuracy tradeoffs. We

present a novel technique for optimizing queries using a collec-
tion of models. Another limitation of the model specialization and
cascade approaches is that they require modifications to the neu-
ral network’s architecture or the model configuration. In contrast,
FiGO uses off-the-shelf models to accelerate queries. It does not
train any specialized models to process ad-hoc queries. This enables
it to seamlessly work across diverse queries and video datasets.

FiGO takes a fine-grained approach to query optimization. Since
the content of a video often changes, the optimal model for process-
ing the chunk also varies. FiGO tailors the plan for each chunk. It
uses slower, more accurate models for processing important chunks.
It either skips or applies faster, less accurate models for processing
irrelevant chunks. FiGO uses a novel accuracy-driven sample size
bound to determine the sizes of chunks 2. The OPTIMIZER initially
treats the entire video as a single chunk and then iteratively splits
it into smaller chunks depending on the accuracy constraint.

We illustrate the benefits of the fine-grained approach by con-
structing a baseline that couples a model ensemble approach with
coarse-grained optimization. In this case, the VDBMS picks a sin-
gle optimal model from the ensemble to process the entire video.
We refer to this approach as ME-COARSE. As shown in Figure 2,
to meet the target accuracy constraint, ME-COARSE often picks a
compute-intensive model, even though many segments in the video
do not need such a model. This leads to a higher query processing
time on most of the videos. In contrast, FiGO tailors the model
configuration for each chunk in the video, thereby delivering lower
query processing time while still meeting the accuracy constraint.

Coupling a model ensemble approach with fine-grained opti-
mization leads to a higher query optimization time. The OPTIMIZER
must profile the sampled frames using all the models in the ensem-
ble. To lower this optimization overhead that prior VDBMSs do
not suffer from, we introduce a novel technique for pruning out a
subset of models with limited utility. We demonstrate that FiGO
outperforms state-of-the-art VDBMSs across diverse queries and
video datasets with respect to both accuracy and performance.

ConTRIBUTIONS. FiGO makes the following contributions.

e FiGO adopts a novel model ensemble approach coupled with
fine-grained optimization to accelerate query processing.

e FiGO leverages an accuracy-driven bound for chunking the
given video that strikes a balance between query optimization
time and query execution time.

e FiGO prunes the set of models using a variant of Thompson
sampling to reduce optimization time.

e FiGO is 3.3 faster on average compared to the state-of-the-art
VDBMSs across diverse queries. It generalizes to four different
video datasets by not relying on ad-hoc, specialized models.

2 BACKGROUND

In this section, we provide an overview of the optimizations em-
ployed in state-of-the-art VDBMSs [2-4, 8, 10, 12, 12-14, 16, 19,
22, 32, 34]. Table 1 lists the key characteristics of these VDBMSs:
(1) PP [19], (2) BLazelT [13], (3) NoScorE [14], (4) TaHOMA [2], (5)
PANORAMA [34], and (6) MIRIS [3].

2Like other VDBMSs, we measure accuracy with respect to the most accurate model
(a.k.a., reference model) in the ensemble.

Execution Optimization
System + ot
+MS +MC +ME Coarse Fine
PP v v
Brazelt v 4
NoScore v v
TAHOMA 4 4
PANORAMA v v
MIRris v
FiGO | v | v

MS: Model Specialization, MC: Model Cascade

ME: Model Ensemble, 1: Techniques used in FiGO.
Table 1: Qualitative Comparison of Video Analytics Systems - Key
characteristics of state-of-the-art VDBMSs.

As we discussed in §1, PP, BLazelT, and NOScoPE accelerate
queries using model specialization. They construct lightweight
models in an ad-hoc manner to answer the query. To choose which
specialized model to use, they evaluate the models on a set of
sampled frames during query optimization.

TaHOMA [2] is a closely related VDBMS. It constructs a model
cascade by combining a chain of models (e.g., image classification
or object detection models) and determines when to short-circuit
the inference based on the confidence score of prediction of each
model in the chain. TAHOMA speeds up queries by skipping compute-
intensive models that appear at the end of the chain. Unlike TAHOMA,
FiGO does not use a model cascade. Instead, for each chunk, FiGO
picks only one model to use.

PANORAMA [34] is another state-of-the-art VDBMS that uses a
single cascaded model to solve the unbounded vocabulary prob-
lem in object recognition. Similar to TAHOMA, it offers a set of
performance-accuracy tradeoffs. The model generates multiple
feature embeddings for an input with different levels of quality.
PANORAMA determines the appropriate performance-accuracy trade-
off point based on the delta between the representative embedding
of a category and the embedding of the input.

Miris [3] is a VDBMS focused on multi-object tracking. It uses
a recurrent neural network and a graph neural network to mark
the tracking trajectories between objects. MIRr1s also adopts a fine-
grained approach to tuning the tracking accuracy. It starts sampling
at a low frame rate to gain a high-level perspective of the video at
the beginning and then gradually increases the sampling rate to
improve the accuracy of tracking. FiGO differs from MIris in two
ways. First, FIGO takes a fine-grained approach towards both query
optimization and query processing. Second, it is tailored for object
detection instead of tracking.

3 OUR APPROACH

In this section, we first describe how FiGO couples fine-grained
optimization with a model ensemble approach in §3.1. We discuss
the importance of adaptively changing the optimal model for each
video chunk in lowering query processing time and improving
accuracy. We conclude with an overview of FiGO in §3.2.

3.1 Fine-Grained Optimization over Ensemble

CHUNK. A chunk consists of a contiguous sequence of video frames.
We denote a chunk by V;. Chunks may vary in their size (i.e., number
of frames). The maximum size of a chunk is the size of original
video V. A video V with R chunks may be specified as:

R

VI= Vil 0< Vil < V]
i=1
Two key design decision in FiGO are: (1) it operates at the chunk-

granularity for both optimization and execution. (2) it always picks
a fixed number of samples from a chunk for query optimization.
To obtain more samples in an interesting part of the video, it splits
that part into a larger set of fine-grained chunks. Similarly, it maps
an uninteresting part of the video to a single, coarse-grained chunk.
The OPTIMIZER uses sample size estimation and cost estimation to
determine how to split the video into a sequence of chunks (§4).

QuUERY ExEcUTION. The EXECUTION ENGINE uses a model ensem-
ble M with |M| models (e.g., object detectors). Unlike the model
specialization approach, there is no online training overhead in
FiGO since it does not construct ad-hoc models. Unlike the model
cascade approach, the ExEcuTioN ENGINE only processes each
chunk with exactly one model. FiGO delivers lower query process-
ing time as it only uses the optimal model for processing the chunk.
The ExecuTioN ENGINE completely skips processing irrelevant
chunks (i.e., does not run any of the models in the ensemble over
them). Thus, FiGO accelerates queries by processing less interesting
chunks using faster models and skipping irrelevant chunks.

QUERY OPTIMIZATION. The OPTIMIZER is responsible for picking
the optimal model configuration for each chunk. In FiGO, the query
plan consists of exactly one model or skipping the chunk. Unlike
other VDBMSs, FiGO splits the video into a set of chunks. The size
of each chunk depends on: (1) the estimated number of required
samples, and (2) the estimated execution time for the chunk. After
splitting, the OPTIMIZER evaluates potential plans for each chunk.
Given a chunk, it first picks a few samples V; and then evaluates
each model m’ from the ensemble M over V; to obtain accuracy
and processing time metrics f(x, m’):

Vi = {fee,m’) | x e Vi,m' e M}

For simplicity, FiGO uses uniform sampling during this profiling
step. Lastly, the OPTIMIZER constructs the set of optimal plans P
for all of the chunks:

P~ {[V1,m2], [Vo,m1] ... [VR, m3] }

Since the OPTIMIZER needs to profile multiple models during opti-
mization, the profiling step increases query optimization time. We
will later present a model ensemble pruning technique for lowering
this overhead.

Caske Stupy. We illustrate how FiGO processes the query in Fig-
ure 3. In this example, we assume the VDBMS only has access to
an ensemble with three models (e.g., Det-0, Det-1, and Det-2 from
ErrICIENTDET [28]). Det-0 is the fastest model and Det-2 is the
most accurate model (a.k.a., the reference model). We use the same
query that checks for the existence of a bus object in a frame.

The OpTIMIZER must make two decisions. First, it must deter-
mine how to split the video into chunks. Second, it must decide
which model to use for each chunk or to skip that chunk. To make

Model | Acc.

Det-0 -
D:t-1 Chunk-4: [200, 300) Chunk-5: [300, 400]

Det-2 -
Chunk-2: [0, 200) @ é
Plan - Skip (No Bus)

Model | Acc. Model | Acc.
Det-0 | 7/10 Det-0 | 10/10
Det-1 | 10/10 Det-1 | 10/10
Det-2 | 10/10 Det-2 | 10/10

Chunk-4: [200, 300)
Plan - Det-1

Chunk-5: [300, 400]
Plan - Det-0

Figure 3: Fine-Grained Optimization over a Model Ensemble - Illus-
tration of how FiGO processes the query in Listing 1.1.

these decisions, the OpTIMIZER always picks the same number of
video frames from each chunk (denoted by 4, e.g., A = 10 frames). It
then estimates the number of required samples to find the optimal
model (elaborated in §4). After confirming that the sample size in
a given chunk is sufficient, it picks the model to use based on the
accuracy of each model over the sampled frames from that chunk.
Like other VDBMS, we define accuracy of a given model m based
on the consensus between m and the reference model (typically
also the most computationally-expensive model).

In the example shown in Figure 3, the OpTIMIZER first splits the
video into two chunks: [0, 200] and [200, 400]. The OPTIMIZER next
determines to further split the [200, 400] into two chunks, based
on the sample size bound and the cost model (elaborated in §4).
The profiling results for each chunk are shown in the tables. For
example, in the table associated with chunk-4, the accuracy of Det-0
is % (i.e., it agrees with Det-2 on seven out of ten frames). Based
on collected metrics, the OPTIMIZER constructs the query plan.

Assume that the [0, 200] chunk does not contain any bus. So, all
the models do not find a bus object in any of the sampled frames.
Then the OpTimIZER decides to completely skip processing the other
190 frames in this chunk. Assume that the [200, 300] chunk contains
a bus in the background that is difficult to detect. For this chunk,
the accuracy of the Det-0 model is lower than that of Det-1 and
Det-2. Det-1 provides the same accuracy as Det-2 but is faster than
Det-2. So, the OpTIMIZER picks Det-1 for processing the remaining
frames in this chunk. Assume that the [300, 400] chunk contains a
bus in the foreground that is easy to detect. For this chunk, Det-0 is
sufficient to accurately detect the existence of the bus. Hence, the
OpTIMIZER picks Det-0 for processing the rest of this chunk.

Query Optimizer
Model
Fine-Grained Pruning Execution
|| Optimization Engine
Frame

and Execution Video
Chunking

Figure 4: FiGO - System architecture of FiGO.

THEORETICAL CosT. We now provide a theoretical analysis of
the benefits of fine-grained optimization over other approaches
by quantifying only the execution time without the optimization
overhead. To simplify our analysis, we assume that the VDBMS
only uses two models m1 and m2. Let us denote the cost of running
these models by Cy,1 and Cpy2, respectively (where Cpy1 < Cip2).
In the given video, let us denote the length of video that does not
contain any positive events by a. Let the length of video that may
be correctly processed by either model be f. Let the length of video
that may only be correctly processed by the most accurate model
m2 be y. Then, the execution time of FiGO to process this video is:

ﬂcml + chZ

This is because the OPTIMIZER skips chunks that are unlikely to
contain positive events. In addition, it picks m1 to process the
chunks that are easier to analyze.

With the model specialization approach, we only obtain the
execution cost of the filtering technique since it is hard to guarantee
the accuracy of a specialized model that directly answers the given
query (i.e., MS-Skip). The theoretical execution time of VDBMS
that uses a specialized model for filtering out irrelevant frames is:

PCm2 +yCmaz + €

This is because MS-FILTER is likely to use m2 to process the entire

video to obtain higher accuracy. The specialized model in front of

m2 adds computational overhead (€). The value of € depends on the

specialized model. We observe that this cost is already higher than

that of FiGO as this approach does not leverage both models.
With the model cascade approach, the execution cost is:

aCm1 + BCm1 + y(Cm1 + Cm2)

This is because a VDBMS using a model cascade approach coupled
with coarse-grained optimization never skips processing a chunk.
Furthermore, with a model cascade, the VDBMS always runs the
faster model before running the slower model, which increases the
execution time associated with the y subset of the given video.

3.2 System Architecture

We now present an overview of the system architecture of FiGO.
As shown in Figure 4, the OPTIMIZER is responsible for chunking
the video and pruning the ensemble to lower optimization time.

VipeEo CHUNKING. Video chunking consists of two parts: (1) re-
quired sample size estimation, and (2) cost estimation. The OpT1-
MIZER must pick the optimal model to process a given chunk. By
estimating the number of required samples, the OPTIMIZER deter-
mines whether it must further split the chunk based on the given
sample size bound. A query plan may be sub-optimal with respect
to query execution time even if it meets the target accuracy. The
OPTIMIZER relies on a cost model to estimate the execution cost of

a plan (i.e., the selected model for a particular chunk). If the execu-
tion cost is higher than cost of additional chunking, the OpTIMIZER
further splits the chunk to lower the query execution cost.

MobpEL ENSEMBLE PRUNING. If the OPTIMIZER profiles all the
models in the ensemble over the sampled frames in a chunk, the
optimization overhead may outweigh the benefits of reduced query
execution time. FiGO uses an online ensemble pruning technique
that is based on Thompson sampling. This allows the OPTIMIZER to
only consider a smaller subset of models in the ensemble that have
higher utility, thereby lowering the query optimization time.

4 VIDEO CHUNKING

In this section, we first motivate the need for chunking in §4.1. We
then present a theoretical analysis of the accuracy of a given query
plan based on the number of samples in §4.2. Lastly, we present a
cost model for estimating the execution cost of a query plan in §4.3.

4.1 Variable Chunk Size

In FiGO, the OpTimIZER picks a model for processing a chunk
by first evaluating a set of models over the sampled frames from
the chunk. This profiling step is important to ensure the runtime
performance and accuracy of FiGO. First, if a query is evaluated
over an insufficient number of sampled frames from a chunk, then
the query accuracy with respect to that chunk may be low. This is
because the OPTIMIZER may miss positive events that do not show
up in the sampled frames (but are present in remaining frames of
the chunk). Second, increasing the number of sampled frames leads
to a higher query optimization time due to the profiling cost. If the
plan is nearly optimal, and the VDBMS continues to collect more
samples by further splitting the chunk, then it increases the overall
query processing time.

To overcome these problems, FiGO splits the video into a se-
quence of differently-sized chunks. Since FiGO uniformly picks
a fixed number (1) of samples from each chunk, this approach is
equivalent to varying the sampling rate across the video. A larger
chunk size maps to a lower sampling rate. In contrast, a smaller-
sized chunk maps to a higher sampling rate. During optimization,
A is always fixed. FiGO instead varies each individual chunk size to
strike a balance between accuracy and query execution time. A is a
configurable parameter.

Figure 5 illustrates the chunking process. The OPTIMIZER first
treats the entire video as a single chunk. If the number of samples (1)
obtained from a given chunk c is lower than the estimated number
of required samples, or the OPTIMIZER determines that ¢ may be
further split using the cost model, then it continues to further split
c. We discuss how the OPTIMIZER estimates the lower bound of
the number of required samples and how it uses the cost model
in §4.2 and §4.3, respectively. Once the OPTIMIZER determines that
the actual sample size (1) is higher than the estimated lower bound,
and that the plan cannot be further optimized, it picks the model
for processing the remaining frames within c.

4.2 Sample Size Lower Bound

We now explain how the OPTIMIZER determines if the chunk
is split enough to meet the accuracy constraint. Our key idea is

Yes No

_ Enough | More chunking | Output
" | sample size? " | reduces cost? | plan
No Yes|

\/

Chunking

Figure 5: Video Chunking - Illustration of how the OPTIMIZER chunks a
given video in FiGO.

that, given the configurable sample size for each chunk A, given an
accuracy threshold A, and an acceptable error range t, we estimate
the probability that the accuracy of query execution plan is within
the acceptable error range based on the observed average accuracy
and the average accuracy deviations across all the models in the
ensemble. We then use the probability to obtain a lower bound of
sample size K 3. Using the sample size lower bound, the OPTIMIZER
determines whether it needs to further split the chunk, so that
actual sample size A surpass the estimated lower bound K.

ProoF SKETCH. We now present a theoretical sample size lower
bound of a chunk. To derive the bound, we first obtain the gen-
eralization error bound for a specific model m. We then obtain a
probability bound for all the possible plans for a given accuracy
threshold. By combining those two bounds, we compute the sample
size lower bound.

Assume that the original video V is divided into R chunks.

VoWV Vg

We assume that the OPTIMIZER needs at least K samples for each
chunk, so that the OPTIMIZER is able to derive a query plan with
small error. So, it picks a total of KR samples. We denote the col-
lected samples of the i*" chunk by V;. We assume that the OpT1-
MIZER has a set of models in the ensemble (denoted by M). The
OPTIMIZER evaluates model m on frame x to obtain an accuracy met-
ric denoted by f(x, m). f(x, m) compares results with respect to the
reference model. If they are in consensus, it is set to 1. Otherwise,
it is set to 0.

For a given model m, f(x, m) over sampled frames is likely to
differ from that computed across the entire video. This error is
given by:

E f(x’m)_ E f(xym)
xeV xeV
To facilitate the computation of sample size lower bound, the aver-
age variance is given by:

2
o’= B |fem)- B fam)
xeVm'eM m”eM
It measures the average variance between the accuracy of a model
and the mean accuracy of all models in the ensemble. Given an
error threshold ¢, we next obtain the probability that error is within

t using Bernstein’s inequality [26]:

KRt?)

P| E f(x,m)—x]EEVf(x,m) > t] < EXP(202+2t/3

xeV

3Like other VDBMSs, FiGO computes accuracy based on consensus with respect to
the reference model. This metric is highly correlated with a canonical F-1 score.

Next, we seek to bound the probability that a particular plan
returned by the OPTIMIZER has a better accuracy than the accuracy
threshold A. Let us first define p to be the mean accuracy of all
models from the model ensemble over the all sampled video frames.

p= E fm)

xeV,meM

The bound of a model m that has greater than A accuracy is:

]P[E f(x,m)> A]

xeV

:]P[E feom- E feom)>A- B f(x, m’)]
xeV xeV,meM xeV,meM

:IP[E fxm)— E f(x,m')>A—p]
xev xEV,m’eM

We next use Bernstein’s inequality again to bound the term on
right-hand-side to obtain:

2
IP[E_ f(x,m)> A] < exp(- fR(A—”))
xeV 20 +2(A_l1)/3

This represents the probability that a plan with a specific m has
greater than A accuracy. Since there are |M| models in the ensemble
and R chunks in the video, the total number of possible plans is
|M|R. Using the previous bound, we obtain a bound on the number
of execution plans that have accuracy greater than A:

2
Hm' EM: E f(x,m')> AH < |M|Rexp(- fR(A—_ﬂ))
xeV 20° + Z(A_l-l)/3

So far, we have obtained the bound that error of a plan is within
t. We have also obtained the bound for number of plans that have
accuracy better than A. By combining of these two bounds, we
obtain a bound on the sample size K such that plans with accuracy
better than A have error within ¢. We also simplify the equation by
Jensen’s inequality [11]:

]P[E f(x,m)-]EVf(x,m) > t],Vm eM

xeV
—_)2 2
< IMIRexp(- —KR(A))ex (— _ KRiZ)
202+ 2(A - p)/3 202 +2t/3
KR(A — p)? KRt?
< |M|IR - _
<M mw(202+ 2(A - p)/3 202+2ﬁ3)
RV
< |M|Rexp(B KR(t + A —p))
402 +2(t+A-p)/3

We expect the value to reach 0 as R grows (i.e., in the extreme case,
generalization error should be 0 if query is optimized for every
frame or chunk size is 1). To achieve that, the base should be less
than 1 as expressed below:

K(t+ A —p)?
1>|M -
‘||”p(462+%t+A—yV3)
K(t+ A —p)?

402 +2(t+ A —-p)/3

2 log(IM])

log(IM|)(40? + 2(t + A —)/3)
(t+A—p)?

Thus, given a desired error range t and expected accuracy A, the

OpTIMIZER calculates sample size lower bound K using the observed

?
A=K 2

variance between models and the mean model accuracy. If actual
sample size A in a chunk exceeds the calculated K, the OPTIMIZER
stops further optimization unless forced by the cost model.

4.3 Cost Model

Lastly, we discuss how the OPTIMIZER uses the cost model. The
idea is to compare the cost of further splitting the chunk (i.e., more
optimization time) against the estimated reduction in query execu-
tion time due to more fine-grained plans. If the estimated reduction
in query execution time outweighs the additional optimization
overhead, then the OPTIMIZER proceeds to further split the chunk.

We model the execution cost of a specific chunk as the product
of the cost of the assigned model C;;, and number of frames in a
specific chunk |V;|:

|Vi |Cm
Thus, the total cost of splitting the chunk is given by the sum of
additional optimization cost and the cost of executing the new plan.
Since splitting a chunk into two sub-chunks leads to doubling the
number of samples, the optimization cost is given by the cost of
evaluating all models in a collection M over the additional samples
(A samples for each chunk):

21 Z Cor — A Z Cowr

m'eM m'eM

To estimate the execution cost of the new plan, the challenge here is
that which models will be selected for the sub-chunks is unknown.
However, we may obtain a lower bound on the execution cost. We
denote the estimated cost of model profiling for left and right sub-
chunks by Cy,; and Cyy, , respectively. The models found by next
iteration of optimization to use for the new sub-chunks should be
at least as good as the model for left and right sub-chunks found
during current iteration for providing good accuracy. Their costs
are denoted by Cy,, and C,... So Cipy; and Cp,, must be greater
than or equal to Cyy,;, and Cpy,,, (more expensive or slower model
provides better accuracy). Since the size of the new sub-chunk is
half of that of the original chunk, we estimate execution cost by
calculating its lower bound:

Vil Vil Vil Vil
T g O = Ty O oy G
So, the potential reduction in query execution time is given by:
Vil Vil

Tcml + Tcm, = |Vi|Cpm

To justify the optimization overhead, the reduction in execution
time must be higher than the increase in optimization time:

Vil Wil
XY, Cw < = Cmy + = Crm, = VilCm

m'eM
The OpTIMIZER computes this bound to strike a balance between
query execution time and optimization time. If the estimated in-
crease in optimization time is justified, it continues to split the
chunk even if K is less than A frames.

5 ONLINE MODEL ENSEMBLE PRUNING

In this section, we present the model ensemble pruning technique
that OPTIMIZER uses to lower the optimization overhead. We first
motivate the need for ensemble pruning and its connection to

multi-bandit problem and Thompson sampling [29] in §5.1 and §5.2.
We conclude with a discussion on how we tailor the Thompson
sampling algorithm to the ensemble pruning problem in §5.3.

5.1 Motivation

FiGO uses a collection of models to accelerate queries. In partic-
ular, the ensemble consists of eight object detection models from
the EFFICIENTDET family [28]. Each model offers a unique trade-
off between the accuracy and query execution time. To maximize
speedup, FiGO supports as many models as possible. However, dur-
ing the profiling step, the OPTIMIZER spends a significant amount of
time evaluating all the models over the sampled frames. To tackle
this problem, we leverage the observation that even though differ-
ent models are used across different videos, it is often the case that
only a subset of models is used while processing a given video. Thus,
the OPTIMIZER prunes out the subset of models that is not likely to
be used for a given query or video dataset, thereby lowering the
overhead of the profiling step.

5.2 Connection to Multi-Armed Bandit

In reinforcement learning, the multi-armed bandit problem demon-
strates [15] the dilemma between exploration and exploitation [7,
20]. A player has access to a set of slot machines and the goal is to
maximize gain by playing on these machines. The dilemma lies in
whether: (1) the player should try out other slot machines to dis-
cover machines with higher reward (exploration), or (2) the player
should stick to playing on a certain machine (exploitation).

The OpTIMIZER faces a similar challenge while pruning the model
ensemble. To identify which models to prune, the OPTIMIZER must
evaluate them on the sampled frames during profiling. While this
will eventually lead to better ensemble pruning, the profiling over-
head may outweigh those benefits. On the other hand, if the opti-
mizer only evaluates a subset of models that delivers high accuracy,
that would lead to imperfect model pruning as the OPTIMIZER is
unable to leverage faster, less accurate models.

THOMPSON SAMPLING. This is a widely-used technique [1, 5] for
solving the multi-armed bandit problem. It begins with no assump-
tion about the reward of different actions. It then refines the estima-
tion of reward associated with each action by exploring the action
space. A key benefit of this technique is that it returns the reward
estimate along with a confidence score. We tailor this algorithm to
tackle the ensemble pruning problem in FiGO.

5.3 Ensemble Pruning via Thompson Sampling

The goal of the OpPTIMIZER is to find the performant model that
makes the most correct predictions and discard other models. We
may view the process of evaluating a specific model as an action
a. The reward associated with a model Qg is given by the average
number of correct predictions made by that model. Thus, we for-
mulate the ensemble pruning problem as finding the model among
all models that maximizes the number of correct predictions (Q).

argmax(Qq)

acA

In reality, the Q may only be estimated because the VDBMS does not
know how a model performs a priori. The OPTIMIZER can estimate

Q at time ¢ by using the average of the observed reward value R *
across all the sampled video frames examined before ¢.

o@== 3R
i=1

However, this greedy algorithm requires the OPTIMIZER to evaluate
every model for the same number of times, leading to a higher
optimization overhead.

To overcome this problem, we tailor the Thompson sampling
algorithm to estimate the average number of correct predictions of
each model. The estimator allows the OPTIMIZER to quickly con-
verge to evaluating only a smaller number of models. As Thompson
sampling, the estimator uses three variables: (1) n records how
many times a model is evaluated. (2) 7 represents the confidence of
the estimation (higher confidence level if a model is evaluated more
times), so it is correlated to n. (3) p represents the expected value of
estimated reward E[Q]. For each model, the estimated reward Q is
updated as a running average. The OpTIMIZER updates the expected
value of estimated reward weighted on variable 7 as shown below:

Or+1 (1 - %)Qt + %R

Tepir + nQrt1
Tt +n

Hie+1

When the OpTiMIZER checks the expected reward of a model, at
time t, instead of returning Q directly, it returns a random value
that is sampled from a probability distribution based on y and z:

0~ W)

This distribution not only accounts for the encountered values of
Q, but also incorporates confidence of the evaluation.

PERFORMANCE CosT. Typically, in the multi-armed bandit prob-
lem, the system only cares about an action with the highest reward.
However, in FiGO, the OPTIMIZER needs to consider both accuracy
and execution cost of a particular model. So, we include the ex-
ecution cost of a model C, in the estimator. We use the profiled
inference time per frame of a model as its execution cost.
argmin(Cq) A argmax(Qg)
acA acA

This ensures that if two models have similar accuracy, then the
OPTIMIZER picks the faster model.

ExpPLORATION EXPANSION. The canonical Thompson sampling
algorithm only updates the estimated reward value of the best ac-
tion. However, in FiGO, pruning all models in the model ensemble
to one model does not minimize the query processing time. We
empirically find that pruning the ensemble to three models provides
sufficient flexibility for the OpTIMIZER. Pruning to fewer models
lowers accuracy, and pruning to more models increases optimiza-
tion overhead. So, we configure the OPTIMIZER to only consider
the top three models during query optimization. However, for the
pruning algorithm, OPTIMIZER must initially evaluate all the mod-
els over the first chunk to determine their accuracy and inference

4In FiGO, the observed reward value is 1 if the model is in consensus with the reference
model. Otherwise, it is 0.

Algorithm 1: Query optimization.

Input :V - Video.
M - Model ensemble (e.g., 8 models from EFFICIENTDET).
A — Sample size for each chunk (e.g., 10 frames).
A - User-specified query accuracy (e.g., 0.95).
t — Tolerable error bound (e.g., 0.03).
E - Estimator used for model pruning.

Output:Return a list of execution plans.

1 return GetQueryPlan(0, Length(V))

2 Function GetQueryPlan(start, end)
Output: A collection of plans under A constraint within ¢.
3 Vi « V [start, end] // Obtain chunk.

4 Ve UniformSample(V;, A) // Sample frames.
5 M « PruneModel (E, M)

6 Re{
// Profiling step.
7 for ve Vdo
8 for m € M do
o R +={[v, m]: Predict(y, m) ==
10 \; Predict(v, mreference) }

11 UpdateEstimator(E, R, M)

12 K « EstimateSampleSize(R, M)

13 FurtherChunkingCost, ExecCost «— EstimateCost(R, M)
// Determine whether to continue splitting.

14 plan « {}

15 if (K < A and ExecCost < FurtherChunkingCost)

16 or (|end - start| < 100 frames) then

17 L plan += { [start,end]: PickBestModel (R, M, A, t)}
18 else

19 plan += GetQueryPlan(start, e'zld)

20 L plan += GetQueryPlan(e’;d, end)

21 return plan

time metrics. For those selected models, the estimator evaluates
all of them on sampled frames and updates their reward.

ENSEMBLE PRUNING + VIDEO CHUNKING. We adapt the estima-
tor to operate on fine-grained chunks. First, it is important to let the
OrtimizeR do sufficient exploration at very beginning. So, the Op-
TIMIZER evaluates all the models on the very first chunk. Otherwise,
it may prune certain models without sufficient analysis. Second,
the OPTIMIZER prunes and updates the estimated reward values
for models at chunk granularity. For a given chunk, the OpTimMIZER
first decides which models to prune based on their estimated re-
ward value. It then evaluates those models to construct the plan.
Based on the profiling step, it updates the estimated reward value
of the evaluated models. For the next chunk, the OPTIMIZER prunes
the models based on their updated reward estimates. This enables
fine-grained, local adaptation of ensemble pruning to each chunk.

6 QUERY OPTIMIZATION ALGORITHM

In this section, we present the overall query optimization algorithm.
As shown in Algorithm 1, the OPTIMIZER operates on a chunk V;
defined by the start and end frames. It begins by treating the entire
video V as a single chunk (Line 2). Given a chunk c, the OPTIMIZER

picks a A number of samples from ¢ (Line 4). The OPTIMIZER then
prunes the set of models using the estimator that is built using a
variant of Thompson sampling (Line 5). For the very first chunk, it
does not prune any model. For later chunks, it prunes the ensemble
to three models.

Next, the OPTIMIZER computes reward by measuring consensus
between a model and the reference model on sampled video frames.
It then updates the reward estimates (Line 11). Using the techniques
presented in §4, the OPTIMIZER estimates the required sample size
bound (K) and the benefits of further splitting the chunk based
on the current query plan. If the number of samples (1) is greater
than the lower bound K, and further splitting does not lower the
query processing time, then the OPTIMIZER returns the current plan
(Line 16). The OPTIMIZER also stops searching for a better plan even
when the chunk is too small (i.e., less than 100 frames). Otherwise,
the OPTIMIZER continues to recursively split the chunk and compute
plans for the resulting sub-chunks (Line 20). We next present two
additional optimizations to reduce the query processing time:

AFFINITY-BASED SAMPLING FOR RESUSING RESULTs. Evaluat-
ing the consensus between models (Line 10) is computationally
expensive as the VDBMS must evaluate those models. We use an
affinity-based sampling technique that enables the OPTIMIZER to
reuse profiling results. In Line 4, instead of using a strict uniform
random sampling algorithm, the OPTIMIZER prioritizes frames over
which other models have already been evaluated. This allows the
OPTIMIZER to reuse profiling results, thereby reducing the number
of model invocations.

CHUNK S1ZE LImIT. As shown in Line 16, we constrain the size of
the smallest chunk to 100 frames. This corresponds to a maximal
sampling rate of 10% (A is set to 10 frames based on a sensitivity
analysis shown in §7.7). The reasons are two-fold. First, we config-
ure the other baselines we compare FiGO against to use 10% of the
video frames. To ensure a fair comparison, we also constrain the
maximal sampling rate of FiGO. Second, we empirically found that
this maximal sampling rate strikes a balance between accuracy and
query processing time.

7 EXPERIMENTAL EVALUATION

We seek to answer the following questions in our evaluation:
RQ1 - How effective is FIGO compared to the state-of-the-art
techniques for accelerating queries in VDBMSs?
RQ2 - How does FiGO perform on complex queries with multi-
ple atomic predicates?
RQ3 - What is the impact of the accuracy threshold?
RQ4 - How much does pruning lower optimization time?
RQ5 - How optimal is the plan found by the OpTIMIZER?
RQ6 - How does sample size affect accuracy & processing time?
RQ7 - How does FiGO generalize to another model ensemble?

7.1 Evaluation Setup

EvaLuATION METRICS. Like other VDBMSs [12-14], we measure
accuracy with respect to the reference model (i.e., Det-7). We com-
pute F-1 score of a baseline relative to the results of the reference
model. We report query optimization time, execution time, and
overall processing time (i.e., optimization time + execution time).

QUERIES. Similar to the query shown in §1, we evaluate the base-
lines on queries that focus on finding frames containing target
object(s). We vary the dataset and the predicate to construct these
queries. We report the average selectivity of these queries in Table 2
(i.e., the fraction of frames that satisfy the predicate(s)).

EvaLUATED TECHNIQUES. We reimplement these three key tech-
niques used in state-of-the-art DBMSs: (1) model specialization
with filtering (MS-FILTER), (2) model cascade (MC), and (3) model
ensemble with coarse-grained optimization (ME-COARSE).

MobpEL ENSEMBLE. FiGO uses the EFFICIENTDET family of object
detection models [28]. In particular, the ensemble consists of eight
models (Det-0~Det-7) with different accuracy-execution time trade-
offs. All the models are pre-trained on COCO dataset [17]. FiGO
uses these off-the-shelf models to robustly answer diverse queries
over different datasets. We configure the sample size of each chunk
(A) used by FiGO to 10 frames based on a sensitivity analysis (§7.7).

MS-FILTER. With model specialization, we construct a baseline
inspired by PP. The model configuration consists of a lightweight
filter that discards irrelevant frames followed by the heavyweight,
reference model. We configure MS-FILTER to picks the optimal filter
based on evaluation on 10% of the frames (elaborated in §7.7). It
picks a filter from Det-0 through Det-6 models, and uses Det-7
as the reference model. We found that directly returning answers
using lightweight model often returns inaccurate results (MS-Ski1p).
So, we do not compare FiGO against this baseline.

MC. We replicate the model cascade approach by connecting all the
eight models in EFFICIENTDET in a sequence. We first optimize MC
on 10% video frames to determine the optimal confidence thresholds
to use for a given query. During query execution, MC decides to
when to short-circuit the inference based on confidence threshold.

ME-CoARsE. This baseline also uses a model ensemble similar to
FiGO. Unlike FiGO, ME-CoARSE takes a coarse-grained approach
to optimization. It uniformly samples 10% of the frames from the
entire video and profiles all the models over the sampled frames.
It then picks exactly one model from the ensemble to process the
remaining frames in the video.

DATASETS. As shown in Table 2, we evaluate these baselines on
four representative video datasets: (1) UA-DeTrac [31], (2) Jackson-
Town dataset from [14], (3) a subset of BDD100K dataset [33], and
(4) a subset of VIRAT dataset [23].

UA-DETRAC AND JACKSON-TowN. These datasets are obtained
from traffic surveillance cameras. The majority of the objects in
their videos are vehicles: cars, trucks, or buses. These datasets differ
in terms of video length and content. Videos in UA-DeTrac are
relatively short. They are often only 30 seconds long (i.e., 1K video
frames). In contrast, videos in the Jackson-Town dataset are longer.

BDD. Unlike the previous dataset, the BDD dataset consists of
vidoes obtained from dashcams. Since the videos are obtained from
a moving camera, it is more challenging to deliver accurate answers
on them. Videos in the BDD dataset are also comparatively short (~
1K frames). Besides vehicles, the videos contain many traffic lights.

. Avg.Video Avg. | Chunk Size | Qry Proc. QryExec. Qry Opt.
Dataset Predicat

Query atase redicate Size Sel. | Avg. Std. | Time (s) Time (s) Time (s)
Q1.1 UA-DeTrac Count(Car) >4 1404 0.95 273 276 128.8 99.3 29.5
Q1.2 BDD Count(Traffic Light)>1 1205 0.47 163 69 187.1 149.4 37.7
Q1.3 VIRAT Count (Person)>2 1316 0.76 149 99 208.7 161.0 47.7
Q14 Jackson Count(Car)=>1 10000 0.23 194 515 815.2 571.9 243.3
Q2.1 UA-DeTrac Count(Car)>4 AND Count(Bus)>1 1404 073 | 166 150 186.3 141.6 447
Q2.2 BDD Count(Traffic Light)>1 AND Count(Car)=>1 1205 0.46 | 165 67 190.2 1523 37.9

Table 2: Query Chacteristics — Properties of queries and their associated video datasets. We first report the average size of videos and the selectivity of the
queries. We then present the average chunk size and standard deviation. We finally report the overall query processing, optimization, and execution time.

FiGO ® ME-Coarse MC MS-Filter
QL1 Q1.2
10»'@7‘2“3 Dapee @ 10f 0 ™
ed /
09b 0.9t
0.8t 0.8t
o 0 200 100 600 0 200 400 600 800
S
o
1%}
—
o Q13 QL4
1.0-_"\ o, ®®| 100 L)
0.9F 0.9F
e ‘lc’,
0.8F 0.8t

0 500 1000 0 2000 1000 6000
Query Processing Time (s)

Figure 6: End-to-end Performance — F-1 and query processing time of
all the system across four queries.

VIRAT. To ensure that FiGO works well on objects other than
vehicles, we evaluate it on the VIRAT dataset for pedestrian detec-
tion. We pick a subset of videos from VIRAT that mainly contains
difficult-to-detect human objects in the background of the frames.
These videos range from 400 to 3K frames.

SoFTWARE AND HARDWARE. We implement FiGO with the Py-
Torch [24] framework. We use a server with 44 CPU cores and
256 GB memory along with one Titan Xp GPU with 12 GB memory.

7.2 RQ1 - End-to-End Performance

In this experiment, we first compare the F-1 score and query
processing time of all the systems. The results are shown in Figure 6.
With FiGO, we set the accuracy threshold « to 0.95 and the error
range t to be 0.03. We evaluate the query on the target video dataset
five times and take the average of collect the metrics. We separately
plot the F-1 score and query processing time on each video. We
also mark the centroid across all videos for a given system using a
scatter plot. The most notable observation is that FiGO outperforms
other systems on both accuracy and query processing time.

Q1.1. The UA-DeTrac dataset contains videos of busy traffic inter-
sections. So the selectivity of this query is high, as shown in Table 2.
Due to this, MS-FILTER has very high query processing time demon-
strated in Figure 6. In contrast, both ME-CoARsE and MC accelerate
the query on some videos. While ME-CoARsE offers a high F-1
score as it is easier to optimize, it leads to higher query processing
time (e.g., 632 s) on videos that require more compute-intensive
models. MC is faster but its F-1 score is lower (e.g., it drops to 0.82
on a video). Compared to other systems, FiGO delivers better F-1
and processing time. We attribute this to two factors. First, FiGO
finds better fine-grained plans that often use faster models. Second,
FiGO uses a sample size bound and ensemble pruning to lower
optimization time, that leads to faster query processing.

Q1.2 AND Q1.3. Besides vehicles, we compare the performance of
FiGO against other baselines on more complex objects like traffic
lights and pedestrians. Since these objects are relatively smaller in
the frame, the VDBMS often requires slower, compute-intensive
models to provide accurate predictions. As shown in Figure 6, FiGO
still consistently beats ME-CoARSE and MC on both queries (1.8X
and 3.2X on Q1.2 and 1.9% and 1.4X on Q1.3). MS-FILTER is compa-
rable to FiGO, as its filter is able to discard many irrelevant video
frames on these low selectivity queries. FiGO is 1.5 and 1.2 faster
than MS-FILTER and delivers 0.06 and 0.01 higher average F-1 score
on Q1.2 and Q1.3 respectively.

Q1.4. Lastly, we compare FiGO against other baselines on a query
that operates on much longer videos. In this case, the processing
time difference between FiGO and other systems is more prominent.
This illustrates the importance of using fine-grained optimization
in tandem with a model ensemble. MS-FILTER also has lower query
processing time as the filter is effective in this low query selectivity
(Table 2). In this case, FiGO still shows is 1.4x faster than MS-FILTER
and delivers 0.08 higher F-1 score on average across all videos.

CHUNK S1zE. We report the average chunk size and the standard
deviation of chunk size for each query when the videos are pro-
cessed by FiGO. The results indicate that the OpTIMIZER is effec-
tively adjusting the chunk size based on the queries and the contents
of the videos. For instance, the average chunk size decreases from
299 frames in Q1.1. to 243 frames in Q2.1 due to harder predicate.

7.3 RQ2 - Complex Queries

In this experiment, we examine the performance of FiGO and
other systems on two representative complex queries with multiple

FiGO ® ME-Coarse MC MS-Filter
Q2.1 Q2.2
1.0 @"n @ 1.0 | »OD
N X
4
]
w 0.9 0.9
—
w
0.8 0.8
0 500 1000 0 200 100 600 800

Query Processing Time (s)

Figure 7: End-to-end Performance on Complex Queries — F-1 and
query processing time of all the system across two complex queries.

F-1 QryProc. QryExec. QryOpt.
Query . . .
Score Time (s) Time (s) Time (s)
| 021 099 691.69 49538 196.31
ME- -
CoarseJoin | 05 099 588.30 43552 152.78
. . Q21 099 295.17 242.19 52.98
FiGO-
1GO-Join Q22 099 275.88 238.66 37.22
FGO Q21 098 186.31 141.69 44.62
Q22 095 190.23 152.36 37.87

Table 3: FiGO vs. FiGO - Join - F-1 score and query processing time
metrics of: (1) FiGO (evaluating predicates together) and (2) FiGO - Join
(evaluating predicates separately).

predicates (Q2.1 and Q2.2 in Table 2). For example, the relational
algebraic plan for Q2.1 is shown below:

O Classification< Count(Car) >4 A Count(Bus)>1 > (UA-DeTrac)

We tailor the OPTIMIZER to find a model that works well for both
predicates together.

As shown in Figure 7, on both queries, FiGO delivers a lower
query processing time than other systems. As the predicates become
more complex, MC requires significantly longer query processing
time than others. In case of MS-FILTER, complex predicates lead to
lower selectivity. So the filter is able to discard more frames using
faster models. However, we observe that this approach suffers from
lower F-1 score compared to FiGO (0.04 and 0.06 points on Q2.1
and Q2.2, respectively). ME-CoOARSE also suffers from higher query
processing time since it does not leverage intra-video opportunities.

ExEcUTION WITH JOIN. We next compare the current technique
for jointly evaluating a complex predicate against another technique
that separately evaluates the predicates and joins the results based
on the frame number. With this technique, the algebraic plan for
Q2.1 is given by:

(UClassificatian< Count(Bus)>1> (UA-DeTrac))

>framelD (O'Classification< Count(Car) >4 > (UA-DeTrac))

In this case, the OpTIMIZER in FiGO separately finds the optimal
model for each atomic predicate. After obtaining results from both
models, it joins them to return the final set of frames that satisfies
both atomic predicates.

We compare these two techniques on Q2.1 and Q2.2. We also im-
plement join with ME-CoARsE for comparison (as it is the strongest

1500 F
1ok _ 500 . (o)
R
£ o
£
¢ (. #1000 2 ’L é
3095 § T
(6]
o 8) o
2
§ 500
o < o &
0.8 T

" "
095 09 0. 095 0.9 0.

<)
<)

Accuracy Threshold

Figure 8: Impact of Accuracy Threshold - F-1 score and query process-
ing time metrics under different accuracy thresholds.

baseline). We report the average F-1 score and query processing
time metrics associated with these systems in Table 3. Our results
demonstrate that there is a tradeoff between these two approaches.
First, evaluating each predicate separately improves F-1 score. This
is because combining multiple predicates together complicates the
process of estimating the sample size bound. In contrast, evaluating
multiple predicates together in the OpTIMIZER lowers query pro-
cessing time (due to lower optimization time and execution time).
Better support for complex predicates is beyond the scope of this
paper. We plan to explore this problem in the future.

7.4 RQ3 - Impact of Accuracy Threshold

In this experiment, we investigate how the accuracy threshold
affects the F-1 score and query processing time. We use Q1.4 that
operates on longer videos. This allows us to better illustrate the im-
pact of the accuracy threshold and the associated sample size bound.
We evaluate FiGO across three accuracy thresholds: 0.95, 0.9, and
0.8. Across all cases, we configure the tolerable error range ¢ to 0.03.
FiGO executes Q1.4 100 times. We report the min, 25% percentile,
median, 75% percentile, and max of results of all executions.

As shown in Figure 8, when we lower the accuracy threshold,
the final query F-1 score is reduced as expected. This is because the
sample size bound computed by the OpTIMIZER is highly correlated
with the final F-1 score. We note that FiGO does not provide a strict
accuracy guarantee. In addition, we observe that the variance of F-1
score increases when accuracy threshold is lowered. This is because
while the OPTIMIZER may find a good plan with fewer samples, it
often ends up with a sub-optimal plan.

Besides F-1 score, we also evaluate the query processing time of
FiGO under different accuracy thresholds. We discover that speedup
increases when the threshold is lowered. The reasons are two-fold.
First, fewer samples are needed by the OpTIMIZER when the system
has a lower accuracy threshold, leading to lower optimization time.
Second, with fewer samples, the OPTIMIZER often picks a faster, less
accurate model for processing the chunk. Thus, a sub-optimal plan
also results in lower execution time.

7.5 RQ4 - Optimization Time

In this experiment, we examine the efficacy of model pruning in
reducing the optimization time. We focus on three systems: ME-
CoARSE, FiGO - no pruning, and FiGO. FiGO - no pruning differs
from FiGO in that it picks the best model from all the models in
the ensemble. Similar to FiGO, it also chunks the video during

optimization. We measure the optimization time of all the queries
across these three systems. We report the average time spent on

1 ME-Coarse FiGO - no pruning 1 FiGO

1.0

T I i I

Q1.1 Q1.2 Q13 Q1.4 Q2.1 Q2.2

Figure 9: Optimization Time — Comparison of optimization overhead of
three systems: ME-Coarsk, FiGO without model pruning, and FiGO.

[Perfect FiGO

25F |ﬂ
0.0 I
: QL2

QL1 1

[0 ME-Coarse 1 FrameDiff

Lil

Q1.4 Q2.1 Q2.2

0
Q1

Figure 10: Plan Optimality - Comparison of query execution time with
respect to that of the FiGO plan across four systems.

query optimization over five runs. We normalize the optimization
time of each system against that of ME-COARSE.

The most notable observation shown in Figure 9 is that model
pruning further reduces the optimization overhead. The reduction
in optimization time depends on the query (e.g., Q1.1 vs. Q1.3). This
is because optimization time is unevenly distributed over different
models (i.e.,, evaluating a compute-intensive model costs more than
evaluating a faster model). If the system prunes more compute-
intensive models, the reduction in is more significant.

Q1.1. This query only requires a faster model. So FiGO prunes
all the compute-intensive models. Thus, ensemble pruning lowers
optimization time by 2X as shown in Figure 9.

Q1.3. Correctly detecting pedestrian objects in Q1.3 is much harder.
This is only feasible with compute-intensive object detection mod-
els. So, on this query, FiGO only prunes the faster models (must
keep the slower models to meet the accuracy constraint). So, the
impact of pruning on optimization time is smaller than that in Q1.1.

DiscussION. As listed in Table 2, optimization time accounts for
~25% of the total query processing time. So, the optimization over-
head is non-trivial compared to the total processing time. To further
reduce the optimization overhead, we consider training a selector
model that is a fast deep neural network to directly estimate which
model to use (instead of relying on the profiling step). Nevertheless,
this approach suffers from two limitations. First, it is challenging to
obtain enough training data. Second, the collected training dataset
often has a skewed distribution. Due to its ineffectiveness, we do
not include its results in this paper.

7.6 RQ5 — Plan Optimality

We refer to the plan that delivers the smallest query processing
time with no loss in accuracy with respect to the reference model
as the perfect plan. In this experiment, we study the optimality
of plans generated by ME-CoARsE, FiGO, and another baseline by
comparing their query execution time against that of the corre-
sponding perfect plan. We examine the FRAMEDIFF baseline in this

D
=
-

'

'S

QL2- | 2z
o
QL3 - [| &i
QL4 - 02§§
Q2.1- B =
Q2.2 -
........- 0.0
D A
-2 ORI A CO Y
X588 % 8558858 %
ooo0oo0oo0oonoono

Figure 11: Model Usage Distribution - The distribution of usage of mod-
els in the ensemble across all queries.

experiment. FRAMEDIFF leverages on the frame skipping technique
presented in NoScope [14]. It uses traditional frame-wise structural
similarity index to determine whether inference with the reference
model is necessary for the given frame. We identify the perfect
plan by profiling all the models over every chunk. While this leads
to high optimization overhead, the goal of this experiment is to only
compare the query execution time associated with the resulting
plan. We normalize the execution time metrics of these systems
against that of FiGO.

The results shown in Figure 10 demonstrate that the plans pro-
vided by ME-COARSE is sub-optimal compared to the corresponding
perfect plans resulting in large performance gaps. FiGO consistently
outperforms ME-CoARrsE. Execution time of FiGO may be further
improved on Q1.1 and Q1.3. However, getting closer to the perfect
plan will also increase the optimization overhead as it corresponds
to smaller-sized chunks (i.e., high sampling rate). On queries like
Q1.2, FiGO even outperforms the perfect plan. This is because the
OrTIMIZER selects faster models than that required for accurate
predictions leading to tolerable drop in F-1 score. FRAMEDIFF has
higher normalized execution time than other systems. The reasons
are two-fold. First, the target objects may be very small with re-
spect to the entire frame. In this case, frame difference calculated
by traditional algorithm is not able to detect any significant change
in the frame. Second, it must configure the threshold value used to
determine whether frame difference is significant enough to require
inference with the reference model. To ensure tolerable accuracy,
we configure a conservative threshold value, that further increases
the execution overhead.

MoDEL USAGE DISTRIBUTION. Lastly, we examine the distribu-
tion of usage of models in the ensemble across all queries. The
results are shown in Figure 11. The distribution changes across
queries that operate on different datasets. On queries with low se-
lectivity (e.g., Q1.4), the OPTIMIZER skips several chunks. On queries
with hard-to-detect events (e.g., Q1.2 and Q2.2), it frequently uses
the reference model to reach a high F-1 score. This illustrates that
OpTIMIZER adapts the plan to different queries and datasets.

7.7 RQ6 — Impact of Sampling Rate

In this experiment, we investigate the impact of sampling rate. We
examine these settings for sampling rate: 2%, 5%, 10%, 20% and 50%.
Recall that FiGO always picks fixed number (1) of samples from
each chunk but varies the size of each chunk. We instead vary the
value of A: 2, 5, 10, 20, and 50 samples in each chunk.

The results for a representative query (Q1.3) are shown in Fig-
ure 12. With FiGO, if very small number of samples are picked from
each chunk, then the sample size lower bound does not work due

FiGO ® ME-Coarse MC MS-Filter
w
~ o)
1.0{ @@ -Pp======== ° -
x* E
3 = 600 ot
[-
5 : g »”
B 094 ! a -~
! 8 4004, W
— 1 8 ; _ -
[I o » SoamT
! e L */f’
05 i > 2009 4
-© e S g
2510 20 50 c 2510 20 50

Sampling Rate (%)

Figure 12: Impact of Sample Rate — Comparison of the impact of sample
rate on: (1) F-1 score, and (2) Query processing time.
[EfficientDet

YOLOv4 1 Hybrid

1.0F

13
T

0011 QL2 QL3 QL4 Q2.1 Q22

(a) Generalization to Other Ensembles: F-1 Score — Comparison of F-1 score be-
tween different model ensembles.

1.0F

&
:

00 Q11 Q1.2 Q13 Q1.4 Q21 Q2.2

(b) Generalization to Other Ensembles: Processing Time — Comparison of pro-
cessing time between different model ensembles. We also report optimization time
(hatched pattern) vs execution time breakdown.

Figure 13: Generalization to Other Ensembles - FiGO on different
model ensembles.

to high variance. So, this leads to lower F-1 score (A == 2). With
ME-CoARSE, sampling rate has significant impact on both F-1 score
and query processing time. It lowers processing time by lowering
the sampling rate, but that also lowers the F-1 score. F-1 score of
ME-CoARsE does not improve when it surpass 10% sampling rate.
FiGO delivers lower query processing time under the same F-1 score.
With MS-FILTER, a higher sampling rate causes lower F-1 score. The
reason is because in our setting, MS-FILTER is able to pick a more
aggressive filtering threshold value, which can incorrectly filter out
positive events. Based on these results, we configure the sampling
rate to 10% in all the other experiments to do a fair comparison
between systems. While other systems may also reduce sampling
rate to lower query processing time (e.g., 5% for ME-COARSE), FiGO
is still significantly faster.

7.8 RQ7 - Generalization to Other Ensembles

We next study the ability of FiGO to generalize to other model
ensembles. We first evaluate FiGO over the ScALED-YOLOV4 en-
semble [30] with five object detection models. The models in the
ScALED-YOLOV4 ensemble deliver similar accuracy to those in EF-
FICIENTDET. They support faster inference, but only offer a few
performance-accuracy tradeoffs. We also evaluate FiGO over a hy-
brid ensemble (i.e., HYBRID) that combines all the models in the
EFFICIENTDET and ScALED-YOLOV4 ensembles (13 models in total).

In Figure 13a, we report the average F-1 score comparison be-
tween three model ensembles. The F-1 score of all model ensembles
is evaluated against the reference model in EFFICIENTDET. In Fig-
ure 13b, we report the query processing time of three model en-
sembles. The processing time is normalized to the EFFICIENTDET
model ensemble. We report the time breakdown by showing the
optimization time (hatched pattern) and execution time.

The most notable observation is that the idea of fine-grained
query optimization generalizes to different model ensembles. FiGO
delivers good F-1 scores with all the ensembles. ScALED-YOLOv4
ensemble has lower F-1 score compared to other ensembles, because
of limited model diversity. So, it does not provide smooth tradeoffs
between processing time and F-1 score. In the case of HyBrID, FiGO
is able to pick an optimal query execution plan. The F-1 score of
HyBRID is higher than ScALED-YOLOV4 ensemble, and it has lower
query processing time than EFFICIENTDET ensemble.

8 RELATED WORK

We present a brief review of related work on query optimization.
DB2’s LEarning Optimizer (Leo) was a pioneering effort in improv-
ing the efficacy of query optimizers [27]. Leo learns from its mis-
takes by adjusting its statistical estimates over time. More recently,
Neo [21] adopts a novel deep neural network-based approach for
finding the optimal plan. It uses a value network for accurately
predicting the latency of partial and complete query plans.

The overhead of query optimization in production DBMSs has
increased over time. Developers of MemSQL reported that opti-
mization time in analytical workloads may even be higher than
query execution time [6]. It is critical for the OPTIMIZER to strike a
balance between optimization and execution time. We discuss how
FiGO tackles this problem in §5.

9 CONCLUSION

We presented, FiGO, a video analytics system for efficiently process-
ing visual data at scale. FiGO couples a model ensemble approach
with fine-grained query optimization. Its OPTIMIZER first splits the
video into a sequence of differently-sized chunks based on a sample
size bound. It then picks a model from the ensemble that delivers
the lowest query execution time while meeting the target accuracy
constraint. Lastly, its EXECUTION ENGINE processes the remaining
frames within the chunk using the selected model. FiGO prunes
the model ensemble to lower query optimization time. We empir-
ically show that these techniques enable FiGO to outperform the
state-of-the-art approaches for processing queries over videos by
3.3% on average across four video datasets.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback
in improving the paper. This work was supported in part by NSF
(CNS-1815047, 11S-1850342, and I1S-1908984), Cisco, Adobe, and
Alibaba. This work was partially supported by Institute of Infor-
mation and Communications Technology Planning and Evaluation
grant funded by the Korea government (No. 2021-0-00766).

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1815047
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1850342
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1908984

References

[10]

[11]

[12]

[13]

[14]

[15]

[16

[17]

Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for the
multi-armed bandit problem. In COLT.

Michael R. Anderson, Michael Cafarella, German Ros, and Thomas F. Wenisch.
2019. Physical Representation-Based Predicate Optimization for a Visual Analyt-
ics Database. In ICDE. 1466-1477.

Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-
hammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam
Madden. 2020. MIRIS: Fast Object Track Queries in Video. In SIGMOD. 1907-1921.
Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,
David G Andersen, Michael Kaminsky, and Subramanya R Dulloor. 2019. Scaling
Video Analytics on Constrained Edge Nodes. In SysML.

Olivier Chapelle and Lihong Li. 2011. An Empirical Evaluation of Thompson
Sampling. In NeurIPS.

Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. 2016. The MemSQL Query Optimizer: A Modern Optimizer
for Real-Time Analytics in a Distributed Database. In PVLDB. 1401-1412.

Anil K Gupta, Ken G Smith, and Christina E Shalley. 2006. The interplay between
exploration and exploitation. Academy of management journal (2006), 693-706.
Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena
Balazinska, Alvin Cheung, and Luis Ceze. 2021. VSS: A Storage System for Video
Analytics. In SIGMOD. 685-696.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. In CVPR. 770-778.

Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. 2018.
Focus: Querying Large Video Datasets with Low Latency and Low Cost. In OSDL
269-286.

J. L. W. V. Jensen. 1906. Sur les fonctions convexes et les inégalités entre les
valeurs moyennes. Acta Mathematica (1906), 175-193.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ton
Stoica. 2018. Chameleon: scalable adaptation of video analytics. In SIGCOMM.
253-266.

Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. Blazelt: Optimizing Declara-
tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.
In PVLDB. 533-546.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale. In
PVLDB. 1586-1597.

Michael N Katehakis and Arthur F Veinott Jr. 1987. The multi-armed bandit
problem: decomposition and computation. Mathematics of Operations Research
(1987), 262-268.

Sanjay Krishnan, Adam Dziedzic, and Aaron J Elmore. 2019. DeepLens: Towards
a Visual Data Management System.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In ECCV. 740-755.

(18

[19

[20

[21]

~
&,

[23

[24]

&
&

&
20

™
=

@
&,

%
3

&
=)

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
In ECCV. 21-37.

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.
Accelerating Machine Learning Inference with Probabilistic Predicates. In SIG-
MOD. 1493-1508.

James G March. 1991. Exploration and exploitation in organizational learning.
Organization science (1991), 71-87.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: a learned
query optimizer. In PVLDB. 1705-1718.

Oscar Moll, Favyen Bastani, Sam Madden, Mike Stonebraker, Vijay Gadepally, and
Tim Kraska. 2020. ExSample: Efficient Searches on Video Repositories through
Adaptive Sampling. arXiv:2005.09141 [es] (2020).

Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,
Jong Taek Lee, Saurajit Mukherjee, J. K. Aggarwal, Hyungtae Lee, Larry Davis,
Eran Swears, Xioyang Wang, Qiang Ji, Kishore Reddy, Mubarak Shah, Carl Von-
drick, Hamed Pirsiavash, Deva Ramanan, Jenny Yuen, Antonio Torralba, Bi Song,
Anesco Fong, Amit Roy-Chowdhury, and Mita Desai. 2011. A Large-Scale Bench-
mark Dataset for Event Recognition in Surveillance Video. In CVPR. 3153-3160.
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NeurIPS.

Shaoging Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. In NeurIPS.
91-99.

S.N.Bernstein. 1924. On a modification of Chebyshev’s inequality and of the
error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math (1924).

Michael Stillger, Guy Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO —
DB2’s LEarning Optimizer. In PVLDB. 19-28.

Mingxing Tan, Ruoming Pang, and Quoc V. Le. 2020. EfficientDet: Scalable and
Efficient Object Detection. In CVPR. 10778-10787.

William R. Thompson. 1933. On the Likelihood That One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples. Biometrika (1933),
285-294.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. 2021. Scaled-
YOLOV4: Scaling Cross Stage Partial Network. In CVPR. 13029-13038.

Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang
Qi, Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. 2020. UA-DETRAC: A New
Benchmark and Protocol for Multi-Object Detection and Tracking. In CVIU.
Toannis Xarchakos and Nick Koudas. 2019. SVQ: Streaming Video Queries. In
SIGMOD. 2013-2016.

Fisher Yu, Haofeng Chen, Xin Wang, Wengi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. 2020. BDD100K: A Diverse Driving
Dataset for Heterogeneous Multitask Learning. (2020).

Yuhao Zhang and Arun Kumar. 2019. Panorama: A Data System for Unbounded
Vocabulary Querying over Video. In PVLDB. 477-491.

	Abstract
	1 INTRODUCTION
	1.1 Limitations
	1.2 FiGO

	2 BACKGROUND
	3 OUR APPROACH
	3.1 Fine-Grained Optimization over Ensemble
	3.2 System Architecture

	4 VIDEO CHUNKING
	4.1 Variable Chunk Size
	4.2 Sample Size Lower Bound
	4.3 Cost Model

	5 ONLINE MODEL ENSEMBLE PRUNING
	5.1 Motivation
	5.2 Connection to Multi-Armed Bandit
	5.3 Ensemble Pruning via Thompson Sampling

	6 QUERY OPTIMIZATION ALGORITHM
	7 EXPERIMENTAL EVALUATION
	7.1 Evaluation Setup
	7.2 RQ1 – End-to-End Performance
	7.3 RQ2 – Complex Queries
	7.4 RQ3 – Impact of Accuracy Threshold
	7.5 RQ4 – Optimization Time
	7.6 RQ5 – Plan Optimality
	7.7 RQ6 – Impact of Sampling Rate
	7.8 RQ7 – Generalization to Other Ensembles

	8 RELATED WORK
	9 CONCLUSION
	Acknowledgments
	References

