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ABSTRACT: We numerically implement the concept of thermal
radiation pumps in realistic photonic circuits and demonstrate their
efficiency to control the radiation current, emitted between two
reservoirs with equal temperature. The proposed pumping scheme
involves a cyclic adiabatic modulation of two parameters that
control the spectral characteristics of the photonic circuit. We show
that the resulting pumping cycle exhibits maximum radiation
current when a cyclic modulation of the system is properly
engineered to be in the proximity of a resonance degeneracy in the
parameter space of the photonic circuit. A developed Floquet
scattering framework, which in the adiabatic limit boils down to the analysis of an instantaneous scattering matrix, is offering an
engineering tool for designing and predicting the performance of such thermal pumps. Our predictions are confirmed by time-
domain simulations invoking an adiabatically driven photonic cavity.
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T he subfield of thermal photonics is attracting a lot of
attention due to the rapid technological progress in

nanophotonics and the promise that these developments can
be utilized for thermal radiation management.1−4 In this
respect, researchers are challenged to develop novel protocols
that tackle a variety of bottlenecks imposed by fundamental
limitations dictating thermal radiation. For example, a current
research effort aims to bypass the constraints set by Kirchoff’s
and Planck’s laws by capitalizing on the importance of
evanescent waves in case of subwavelength photonic
circuits.5−11 In parallel, other studies exploit the applicability
of recent proposals for radiation control to daytime passive
radiative cooling,12−16 radiative cooling of solar cells,17,18

energy harvesting,19−24 thermal camouflage,25,26 and so on.
Along these lines, an important milestone for thermal

radiation management is the implementation of photonic
protocols that allow for a nonreciprocal heat transfer. The
majority of these studies rely on magneto-optical effects27−29

or nonlinearities.30−33 Only recently, photonic designs that
enforce directional radiation transfer via temporal modulations
are being explored.34−38

In this paper we consider an adiabatic thermal radiation
pump that consists of a silicon-based square resonator
exchanging, in the near-field, radiation with two thermal
reservoirs that are at the same temperature. Two circular
domains of the resonator are adiabatically driven by an out-of-
phase periodic modulation. We show that, when the cyclic
modulation is engineered in a way that its center, in the
parameter space of the system, is in the proximity of a
resonance degeneracy, the pumped current acquires a

maximum value. It is interesting to point out that, on some
occasions, resonance degeneracies have been associated with
an exceptional point degeneracy of the spectrum of a (non-
Hermitian) effective Hamiltonian describing the system
connected to the reservoirs.34 Further design of the pumping
cycle for our photonic pump is done following the predictions
of a Floquet scattering theory, which, in the adiabatic limit, is
utilizing an instantaneous scattering matrix (ISM), and it is
confirmed via direct time-domain simulations.
The structure of the paper is as follows. In the next section

we present the Floquet scattering formalism and analyze in
detail the specific case of adiabatic pumping. Furthermore,
utilizing an ISM approximation, we identify conditions that will
lead to the design of efficient pumping circles. Based on the
insights gained from the ISM Floquet formalism, we design an
adiabatic thermal radiation pump using a photonic circuit
consisting of a periodically modulated microcavity. The direct
time-domain calculations of the radiated thermal current
confirm nicely the expectations, thus establishing the ISM
Floquet formalism as a useful tool for the design of efficient
pumping cycles. Our conclusions are presented at the last
section of the paper.
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■ THEORETICAL CONSIDERATIONS

Floquet Scattering Formalism. We consider two thermal
reservoirs α = 1 and 2 at temperature Tα that exchange thermal
energy via a periodically modulated photonic circuit. The
reservoirs emit radiation with amplitudes θ ωα

+( ) that satisfy the
condition

θ ω θ ω
π

ω δ δ ω ω⟨[ ]* ′ ⟩ = Θ̃ − ′α β α α β
+ +( ) ( )

1

2
( ) ( ), (1)

where ⟨·⟩ indicates a thermal ensemble average, and

θ ω⟨| ]| ⟩α
+( ) 2 describes the mean number of ω photons injected

from the α-th thermal reservoir to the circuit. The mean

photon number is ω ω ωΘ̃ = Φ ·Θα α α( ) ( ) ( ), where ωΘ =α( )

−ωℏ −αe( 1)k T/ 1B and Φα(ω) is a spectral filter function. The
latter can be used to control the spectral emissivity of the
thermal reservoirs and can be achieved via the deposition of
photonic crystals that support band-gaps or their coupling to
the photonic circuit via a waveguide or a cavity with cutoff
frequencies, and so on.1−3

We further assume that the circuit is periodically driven with

a set of time-varying parameters ⃗ + = ⃗
π

Ω( )x t x t( )
2

= [ ]x t x t( ), ..., ( )N
T

1 that modulate, for instance, the refractive
index of its constituent materials. When radiation at frequency
ω enters into the driven circuit, it can be scattered to other
sidebands with frequencies ωm = ω + mΩ, m ∈ Z. The
incoming/outgoing radiations with amplitudes θ ωα

±( ) from/
toward the reservoir α are related via the Floquet scattering
matrix SF as follows:39−41

∑θ ω ω ω θ ω=α

β

α β β
− +

S( ) ( , ) ( )
m

m m

,

,
F

(2)

where the matrix element ω ω
′α βS ( , )m m,

F describes the

transmission/reflection amplitude of the electromagnetic field
entering the reservoir α with frequency ωm′, provided that it
was emitted from reservoir β with frequency ωm. We
furthermore assume that the number of photons is conserved
during the Floquet scattering process,39 leading to a unitary

Floquet scattering matrix, that is, = =† † IS S S S( ) ( )F F F F .
We are now ready to evaluate the average photon current

toward the reservoir α. The latter takes the following form:

∫
π

θ θ̅ =
Ω

[⟨| | ⟩ − ⟨| | ⟩]α

π Ω
− +I t t t

2
d ( ) ( )Ph

0

2 /
2 2

(3)

where ∫θ θ ω ω=α α
ω± ∞ ± −t e( ) ( ) di t

0
is the complex field

amplitude. Specifically, using eqs 1 and 2, we obtain

∫

∑

ω

π
ω

ω ω ω ω ω

̅ =

= −Θ̃ + | | Θ̃

α α

α α

β

α β β

I N

N S

d

2
( ),

( ) ( ) ( , ) ( )
m

F
m m

Ph

,

,
2

(4)

where Nα(ω) is the photon current density entering reservoir
α.
Similarly, we can evaluate the corresponding thermal

radiation energy. The associated average energy current α̅I
toward the thermal reservoir α reads:

∫

∫∑

ω

π
ω ω

ω

π
ω ω ω ω ω

̅ = ℏ

= ℏ | | [Θ̃ − Θ̃ ]

α α

β

α β β α

I N

S

d

2
( ),

d

2
( , ) ( ) ( )

m

m
F

m m

,

,
2

(5)

where for the second equality we have employed the unitarity
of the Floquet scattering matrix SF. Equations 4 and 5 extend
the Landauer-like formalism developed in the framework of
mesoscopic quantum electronics39 to the case of photons and
radiative energy currents through time-modulated circuits. See
the detailed derivation of eqs 4 and 5 in the Supporting
Information.

Adiabatic Limit of Thermal Radiation. We can do a
further analytical progress with eq 5 in the limit of adiabatic
modulations, that is, Ω → 0, and small temperature gradients.
In this case, the Floquet scattering matrix SF can be expressed
in terms of the instantaneous scattering matrix St(ω) as

∫ω ω ω ω ω= =
π

π

−
Ω Ω ΩtS eS S( , ) ( , ) d ( )m m

t im tF F

2 0

2 /
(see Sup-

porting Information). Substitution of this expression in eq 5
allows us to separate the total energy current, eq 5, into three
distinct contributions:

̅ ≈ ̅ + ̅ + ̅α α α αI I I Ib p d, , , (6)

The first contribution, α̅I b, , is due to the temperature

gradient between the reservoirs and does not depend on the
modulation frequency Ω,

∫ ω

π
ω ω ω ω̅ = ̅ ℏ [Θ̃ − Θ̃ ]α α α′I

d

2
( ) ( ) ( )b, (7)

Here, ∫ ω̅ = | |
π

Ω
t Sd ( )t

2 2,1
2 is the average transmittance of

the frozen system over one modulation cycle. Notice that it is
the same for left and right emitted radiation since the
reciprocity of the frozen (undriven) system enforces the

relation ω ω| | = | |S S( ) ( )t t
2,1

2
1,2

2.

The second contribution α̅I p, is the thermal radiative

pumped energy flux, which originates from the modulation
of the scatterer and is given as

∫
π

ω

π
ω ω

ω
ω ω̅ ≈

Ω
ℏ Θ̃

∂

∂
+ Θ̃α

α
α

lmono |}o~oI
P

P
2

d

2
( ) ( ) ( )p, 0 0

(8)

where ω ωΘ̃ = Θ̃ |α =α
( ) ( ) T T0 0

is associated with a mean

temperature T0 = (T1 + T2)/2, and ∫ω =αP i t( ) d

α α

†( )S( )
S

t

td

d
,

t

. In the classical limit ωΘ̃ ≈( )0 ωℏk T /( )B 0 , the

integration of the first term of eq 8 approaches zero. We note
that α̅I p, can be different than zero, even in the absence of a

temperature gradient. In addition, the direction of the energy
current can be easily controlled by the orientation of the
modulation loop in the parameter space.
Finally, the third term, α̅I d, , in eq 6 is the analogue of a

dissipation term found in adiabatic quantum pumps in
condensed matter physics39,45−47 and reads

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.1c00896
ACS Photonics 2021, 8, 2973−2979

2974



∫ ∮
π

ω

π

ω

ω

ω ω

ω

̅ =
Ω

ℏ
∂
∂

∂
∂

× −
∂Θ̃

∂
−

∂ Θ̃

∂

α

π

α α

α α

†
Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅÅÅ ikjjjjj y{zzzzz

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑÑÄ

ÇÅÅÅÅÅÅÅÅÅÅ
É
ÖÑÑÑÑÑÑÑÑÑÑ

I x
S

x

S

x2

d

2
d

( )

( )

2

( )

d

x x

,

2

0

2

,

2

2
(9)

where x = Ωt. In contrast to the pumped current, α̅I d, is

proportional to Ω( )2 , and its direction does not depend on
the orientation of the modulation loop, that is, the substituting
of Ω → −Ω does not reverse the direction of this current
contribution. Moreover, in the adiabatic limit, the dissipative
current is negligible as compared to the pumped current, which
scales as Ω( ). Obviously, the smaller the value of α̅I d, , the

better is the performance of an adiabatic thermal pump.
Adiabatic Pumping Current. Of particular interest is the

analysis of the adiabatic energy flux between two reservoirs at
the same temperature. In such a scenario, known as adiabatic
thermal radiation pumping,34 the thermal radiative flux is
dominated by the pumping current contribution. This can be
evaluated using eq 8 and employing the slow modulation Ω →

0 limit. We get

∫
π

ω

π
ω ω ω

ω
ω

ω ω

ω

̅ ≈
Ω

ℏ Θ̃

=
∂[ ]

∂

α α

α

α

→ +

lmoonoo |}oo~oo
I Q

Q
P

2

d

2
( ) ( ),

( ) lim
1 1 ( )

0

0 (10)

where Qα(ω) represents the radiative energy density per
pumping area, and we have also assumed that the modulation
cycle encloses a small area in the parameter space, that is,

∮= Π →ν ν= Xd 0N
1 . In the derivation of eq 10, we have

also omitted the dissipative term Iα,d since it is proportional to

Ω( )2 .
It is interesting to note that Pα (and thus Qα) can be given

conveniently in terms of the instantaneous scattering matrix St.
To better understand this, we parametrize St as

=
−

−
≤ ≤φ

α

α−

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑS e

R e i R

i R R e

R
1

1

, 0 1t i
t i t

t t i

tt

t

t

(11)

where φt is the transmission phase, Rt is the reflectance, and αt

is the phase of the reflection coefficient. With this para-
metrization, we can show that

∫ α
= − =

π Ω
P P tR

t
d

d

d

t
t

1 2
0

2 /

(12)

which highlights the geometric character of the pumping
operation.42,43 Equation 12 also constitutes a dramatic
computational simplification for the evaluation of α̅I (compare
with eqs 13 and 14 below).
On the other hand, the radiative (time-averaged) pumped

thermal energy flux α̅I during one pumping cycle can be
evaluated directly from direct time domain experiments using
the following expression34

∫ ∫
π

ω

π
ω ω ω̅ ≡

Ω
ℏ Θ̃α

π Ω
I t t

2
d

d

2
( , ) ( )x

0

2 /

00 (13)

where x0
is the normalized time-dependent directional net

energy current evaluated at some observation position x0

between the system and the reservoir. Comparison between
eqs 10 and 13 allows us to identify the radiative energy density
(i.e., per area in the parameter space) Q(ω) to be equal to

∫ω ω≡
π

→

Ω
Q t t( ) lim

1
d ( , )x

0 0

2 /

0 (14)

Clearly, the evaluation of the pumping current via eq 14
requires the knowledge of ωt( , )x0

during the whole period t

∈ [0, 2π/Ω) and for all emission frequencies ω. This is a heavy
computational effort in case of adiabatic drivings. For its
calculation, we will consider uncorrelated thermal emissions at
frequency ω of unit incident flux from the two reservoirs. In
our realistic example below with an adiabatically modulated
resonator, we shall utilize both expressions and confirm their
equivalence.

Design Rules for Efficient Pumping Circles. A careful
analysis of the integrand in eq 10 allows us to derive a number
of design rules for the engineering of efficient adiabatic thermal
radiation pumps. First observation stems from the fact that an
appropriate design of the spectral filtering function Φ(ω) can
lead to an enhancement/suppression of specific frequency
components of Q(ω), thus, controlling the integral in eq 10
and therefore the value of α̅I . At the same time, we observe that
even in the absence of spectral filtering (i.e., Φα(ω) = 1), the
smooth positive function ω ωΘ̃ ( )0 introduces a frequency
weight that suppresses the high-frequency components of Qα,
while enhancing its corresponding low-frequency ones. There-
fore, knowledge of Q(ω) through the ISM approximation may
guide the design of efficient pumping circles.
Another observation is associated with the dependence of

P(ω) from the scattering parameters, see eq 12. This
dependence allows us to conclude that the main contribution
to ̅ originates from a frequency range around transmission
resonances, where ωP( ) becomes significant due to the rapid
changes of the instantaneous reflection phase αt and
reflectance Rt. It is natural to assume that when a pair of
nearby resonances approach one-another, they can further
enchance the sensitivity of αt and Rt on the parameters of the
pump, thus increasing the pumping-induced thermal energy
flux density ̅ . These observations will be allowing us to
understand and engineer the radiation current of a realistic
photonic pump as we will show in the next section.

■ MICROCAVITY IMPLEMENTATION

We are now ready to evaluate the thermal energy flux for a
realistic photonic adiabatic pump consisting of a square optical
microcavity, see Figure 1. The cavity has a linear length a = 50
μm, and it is formed by a dielectric material (silicon) with a
relative permittivity ε = 11.6 (silicon). We assume that the
cavity is surrounded with perfect electric conductors (PECs).
The cavity is brought in the proximity of two reservoirs with
the same temperature T = 300 K.
We adiabatically drive the cavity by modulating the

permittivities ε1(2)(t) within two embedded circular spots,
while the permeability μ0 remains constant, see Figure 1. In our
simulations below, we will consider the specific modulation
protocol ε1(2) = ε(U + Δε1(2)), where ε εΔ Δ =( , )1 2

− Ω Ω
ε

Δ
t t( sin , cos ) and the offset U shifts the driving circle

along the line ε1 = ε2 = εU in the parameter space (Δε1, Δε2).
This type of time-modulation of the dielectric constant of
silicon could be achieved via carrier injection with frequency
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up to several GHz.44 Our goal is to design efficient pumping
circles using the ISM Floquet formalism and confirm their
efficiency by evaluating the pumped current using direct time-
domain simulations.
Eigenmode Analysis. Before analyzing the pumped

energy current, we will first describe the spectral properties
of the microcavity and the parametric change of the
eigenmodes with respect to the permittivity variations ε(x, y)
= ε[1 + Δε(x, y)]. To this end, we first consider the uniform
square cavity of size a by setting Δε(x, y) = 0. Due to its
geometric symmetry, the microcavity presents spectral
degeneracies which we will be using for the design of optimal
pumping circles.
The spectrum can be evaluated explicitly by solving directly

the frequency-domain Maxwell’s equations

ωμ ωε∇ × ⃗ = − ⃗ ∇ × ⃗ = − ⃗E i H H i E;
0 0 (15)

We assume transverse electric (TE) modes of the form
⃗ = ⃗E E x y( , )t , ⃗ = ⃗ + ̂H H x y H x y z( , ) ( , )t z , where the vectors

⃗E x y( , )t and H⃗ x y( , )t with the subscript t stand for transverse
field components in the x−y plane. From eq 15, we have

⃗ =H 0t and ωε⃗ = ∇ × ̂−E i H z( )t t z
1 , leading to the 2D

Helmholtz equation

ω εμ∇ + =H x y H x y( , ) ( , ) 0t z z
2 2

0 (16)

that when supplemented with the PEC boundary condition,

that is, =
∂

∂
0

H

n

z yields

=H H k x k ycos( ) cos( )z
mn

mn x y (17)

where kx = mπ/a, ky = nπ/a, with n, m = 0, 1, 2, ... The
corresponding frequency spectrum is

ω
π

εμ
= + =

a
m n n m, 0, 1, 2, ...mn

0

2 2

(18)

where ε = ε0εr is the permittivity and a is the linear size of the
square cavity.
We focus on the two degenerate TE modes with the lowest

frequencies ω π ω π ω π εμ= = = ≈−a/(2 ) /(2 ) /(2 ) (2 ) 0.8802d 10 01 0
1

THz, and the corresponding electric field profiles

μ

ε

π

μ

ε

π

⃗ = ̂ =

⃗ = ̂ = −

ikjjj y{zzzikjjj y{zzz
E E x E i

a a
y

E E y E i
a a

x

;
2

sin

;
2

sin

x x

y y

01 01 01 0

10 10 01 0

(19)

The modification of the permittivities ε1(2) lifts the
degeneracy. Accordingly, the mode profiles will be modified
and their electric fields will satisfy the following relation

ω ε∇ × ∇ × ⃗ = + Δ ⃗E c E( / ) (1 )2
(20)

We approximate the solution near ωd via the linear

combination φ φ⃗ ≈ ⃗ + ⃗E E E
1

01

2

10
and obtain the following

relation using eq 20

ω ω
φ φ

ω
ε φ φ

− ⃗ + ⃗ = Δ ⃗ + ⃗
ikjjjjj y{zzzzz ikjjj y{zzzc

E E
c

E E( ) ( )d
2 2

2 1

01

2

10
2

1

01

2

10

(21)

which, after taking the dot product with the vectors ⃗ *
E
01

and

⃗ *
E
10

and the subsequent integral over space, yields

ω ω

ω

φ

φ

φ

φ

−
=

ikjjjjj y{zzzzzikjjjjj y{zzzzzikjjjjj y{zzzzz ikjjjjj y{zzzzzikjjjjj y{zzzzzD

D

N N

N N

0

0

d
2 2

2

0

0

1

2

0 01

10 1

1

2 (22)

where ∬ ∬= ⃗ *· ⃗ = ⃗ *· ⃗ =D E E x y E E x y N( ) d d ( ) d d ,0 01 01 10 10 0

∬ | ⃗ |E
01 2

εΔ x yd d , ∬ ε= | ⃗ | ΔN E x yd d1 10 2 , and = *N N10 01

∫ ε= ⃗ · ⃗ Δ
*

E E x yd d
10 01

.

The existence of the nonzero solution of eq 22 allows us to
find the frequencies of the perturbed modes:

ω

ω

Δ
≈ −

+ ± − +N N N N N N

D

( ) 4

4d

0 1 0 1 2 01 10

0
(23)

where Δω = ω − ωd. It is important to notice that ⃗E
01

is

perpendicular to ⃗E
10
, which results in = * =N N( ) 010 01 .

Consequently, the splitting of the eigenfrequencies Δω would
vanish when N0 = N1, producing a degenerate line in the
parameter space.
The condition N0 = N1 for degeneracy is not related to the

symmetry of the system. For example, consider the case of a
material perturbation on two separate domains with Δε(x, y) =
Δε1(x, y) + Δε2(x, y). In this case, we have

∬
μ

ε

π π

ε ε

− = +

× [Δ + Δ ]

ÄÇÅÅÅÅÅÅÅÅÅ ikjjj y{zzz ikjjj y{zzzÉÖÑÑÑÑÑÑÑÑÑN N
a

x y
a
x

a
y

x y x y

2
d d sin sin

( , ) ( , )

0 1 0 2 2

1 2 (24)

Therefore, for a given Δε1(x, y), we can easily find a Δε2(x, y)
such that N0

− N1 = 0. In such a case, the degeneracy will
survive even in the presence of these specific permittivity
perturbations, which evidently destroy the geometric symmetry
of the cavity. Of course, the above claim is correct up to first
order perturbation. It is therefore imperative to analyze
numerically their existence and even question it in the case
that the cavity is coupled to the reservoirs. This latter situation
needs additional care since the coupling to the reservoirs
introduces an additional perturbation that might destroy the
degeneracy of the associated resonant modes.

Figure 1. Microcavity for adiabatic thermal radiation pumping.
Scheme of a two-dimensional microcavity coupled to two thermal
baths at the same temperature T. The uniform permittivity ε filling
the cavity undergoes perturbations Δε1 and Δε2 that, when
periodically modulated in time, produce a nonzero current between
reservoirs.
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To confirm the conclusions of the perturbation argument,
we analyze in detail the transmission spectrum of the cavity in
a frequency range containing the two lowest resonances, see
Figure 2. Due to the coupling to the reservoirs, the resonant

frequencies are detuned with respect to the eigenfrequencies of
the isolated resonator, leading to a destruction of the
degenerate line. The position of the resonant modes as a
function of the offset parameter U is indicated in Figure 2 with
solid and dashed black lines. We are able to identify a
degenerate point where the resonances coalesce as a function
of the shift parameter U. The degeneracy, occurring at ωd/
(2π) ≈ 0.95 THz for an offset value Ud = 1.05, will be the
starting point for the design of an efficient pumping circle.
Pumping Cycles and Optimal Thermal Radiation

Currents. We assume that the two thermal reservoirs that
are attached to the microcavity are at fixed temperature T =
300 K. We model these two reservoirs as two identical lumped
ports with characteristic impedance Z0 = 50 Ohms and length

a
1

20
(for the specific arrangement, see Figure 1 and Supporting

Information). The ports carry time-dependent voltage
excitations originating from synthesized noise sources Vα,

which satisfy the correlation relation ω ω⟨
′

* ′ ⟩ =α αV V( ) ( )

ω ω δ ω ω χℏ Φ − ′
′π α α

( ) ( )
Z2

,
0 with ΘC(ω) = kBT/(ℏω).

In order to isolate the frequency domain where the
resonance degeneracy ωd/(2π) ≈ 0.95 THz occurs, we have
filtered the emission of the baths using a spectral filtering
function Φ(ω) = θH(ω − ωmin) − θH(ω − ωmax), where θH(ω)
is the Heaviside step function, ωmin/(2π) = 0.88 THz, and
ωmax/(2π) ≤ 1.06 THz was chosen in a way that maximizes the
radiative current.
Next, we calculate the radiative energy density Q(ω) versus

frequency. Although the evaluation of Q(ω) is a demanding
computational task in the case of a direct implementation of eq
14, the simplicity of the ISM approach, eq 10, allows us to
perform this task easily for a large number of U values. The
results of our calculation are shown in Figure 3. We find that
Q(ω) is significantly enhanced at frequencies ω, which are at
the vicinity of the resonance frequencies (indicated with solid
and dashed black lines in Figure 3). Importantly, this
enhancement turns out to be more pronounced in the
neighborhood of the resonance degeneracy around Ud ≈

1.05. In this case, Q(ω) becomes symmetric around ωd where
it acquires its maximum magnitude. For slightly different U
values, for example, U = Ud ± 0.05, the Q(ω; U) becomes

antisymmetric (see Figure 3), developing two resonant peaks
symmetrically placed around a particular frequency ωc, where
Q(ωc; U) = 0.
The integration of Q(ω) with the weight function ℏωΘα(ω)

(we assume Φ(ω) = 1) leads to a slightly enhanced
contribution of the smaller frequencies in the radiative pumped
current α̅I , eq 10. However, the antisymmetric shape of Q(ω)
affects the calculation for α̅I such that it turns out to be
(almost) zero. Of course, one can further the enhancement of
the magnitude of the radiative current by appropriately
engineering the spectral filtering function that applies at the
reservoirs. In Figure 4, we report the thermal radiation current

α̅I versus the control parameter U for an example case of a
spectral filter such that ωmax = ωd + a·(U − Ud), with a ≈

−1.84 × 1011, that fits the resonances around U ≈ Ud. Such

Figure 2. Transmittance spectrum |S2,1|
2 of the cavity (in absence of

driving) as a function of frequency ω/(2π) and U. The peaks of the
transmittance show a resonance degeneracy around U = 1.05.

Figure 3. Radiative pumped energy density Q(ω) versus frequency
ω/(2π) for different values of U. The driving protocol is given by the
parametric cycle ε1(2) = ε(U + Δε1(2)), where ε εΔ Δ =( , )1 2

−
ε

Δ
x x( sin , cos ) for x ∈ [0, 2π). The resonant frequencies, fitted

from the peaks of |S2,1|
2, are shown with black solid and dashed lines.

The highest values of Q(ω) are obtained at U = 1 and U = 1.1, which
are in the neighborhood of the resonance degeneracy. For the

calculation of Q, we used a parametric area π ε= Δ( / )2, Δ = 0.2,48

ε = 11.6, and frequency range [ωmin, ωmax)/(2π) = [0.88, 1.06) THz.

Figure 4. Total (averaged) pumped radiative energy current ̅I vs U
from the integration in frequency of Q(ω) according to eq 10, blue
circles joined through a dotted line. The red asterisk indicates the
associated radiative energy current from the time domain simulations.
(Inset) Average pumped radiative energy density Q(ω) vs frequency
ω/(2π) for U = 1. The solid blue line is obtained from the scattering
parameters through eq 10, and the red square dots are the results of
the time domain simulation. For the latter we used a modulation
frequency Ω = 0.0125ω0, where ω0 ≈ 2π × 1 THz. We set the total
time to 0.5 ns, which contains at least five modulation cycles, ensuring
a fairly reasonable steady state.
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filtering enforces a complete suppression of the large ω-
contributions to the integral of eq 10, leading to a dramatic
increase of the radiation current. Since the radiative energy
density is also antisymmetric with respect to the offset
parameter U around the degeneracy point Ud, the “sign” of
the first peak will change as we are moving across Ud. As a
result, the relative position (with respect to Ud) of the driving
cycle in the parameter space can be used as a reconfigurable
“knob” for managing the direction of the pumping flux ̅I . At
the same figure, we also report (red star) the total radiation
current using a direct implementation of eqs 13 and 14 for the
case of U = 1. The corresponding Q(ω) has been evaluated via
time-domain simulations using eq 14 and it is shown in the
inset of Figure 4b. For these simulations, the photonic cavity
has been illuminated with uncorrelated excitations of unit flux
via the ports that has been generated using monochromatic
voltage sources. Once the steady state is achieved, we
integrated the average net power over one modulation cycle
to obtain Q(ω) by employing eq 14. The nice agreement
between these two methods (see blue line and red squares in
the inset) confirms the efficiency of the instantaneous
scattering matrix approach.

■ CONCLUSION

We have developed a Floquet scattering formalism that allows
us to design periodic, time-modulation schemes for thermal
radiation management. In the adiabatic limit, we arrived to
analytical expressions where the net average radiative energy
current can be separated into three contributions identified as
bias current, pumped energy current, and dissipation due to
the driving. All these components have been conveniently
expressed in terms of the instantaneous scattering matrix. The
resulting expressions allow for better insight into the problem
of radiation management. As an example, we have used them
to enhance the radiation current in the case of an adiabatic
thermal pump corresponding to the scenario of thermal
reservoirs with equal temperature. We validate the analytical
results by performing realistic time domain simulations in a
photonic microcavity setup. We show that when a pumping
cycle is designed to operate in the proximity of a spectral
degeneracy, the pumped energy flux is dramatically enhanced.
Furthermore, the direction of the radiative current can be
reconfigured by displaying the position of the center of the
pumping cycle with respect to the degeneracy point in the
parameter space. Our results can be used for the study of
efficient thermal radiative machines, and they offer a new
computational tool that allows us to design efficient driving
protocols for radiation management.
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