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Optomechanical dissipative solitons

Jing Zhang1,2, Bo Peng1, Seunghwi Kim3, Faraz Monifi1, Xuefeng Jiang1, Yihang Li1, Peng Yu4, 
Lianqing Liu4, Yu-xi Liu5, Andrea Alù3,6 & Lan Yang1 ✉

Nonlinear wave–matter interactions may give rise to solitons, phenomena that feature 
inherent stability in wave propagation and unusual spectral characteristics. Solitons 
have been created in a variety of physical systems and have had important roles  
in a broad range of applications, including communications, spectroscopy and 
metrology1–4. In recent years, the realization of dissipative Kerr optical solitons in 
microcavities has led to the generation of frequency combs in a chip-scale platform5–10. 
Within a cavity, photons can interact with mechanical modes. Cavity optomechanics 
has found applications for frequency conversion, such as microwave-to-optical or 
radio-frequency-to-optical11–13, of interest for communications and interfacing 
quantum systems operating at different frequencies. Here we report the observation 
of mechanical micro-solitons excited by optical fields in an optomechanical 
microresonator, expanding soliton generation in optical resonators to a different 
spectral window. The optical field circulating along the circumference of a whispering 
gallery mode resonator triggers a mechanical nonlinearity through optomechanical 
coupling, which in turn induces a time-varying periodic modulation on the 
propagating mechanical mode, leading to a tailored modal dispersion. Stable localized 
mechanical wave packets—mechanical solitons—can be realized when the mechanical 
loss is compensated by phonon gain and the optomechanical nonlinearity is balanced 
by the tailored modal dispersion. The realization of mechanical micro-solitons driven 
by light opens up new avenues for optomechanical technologies14 and may find 
applications in acoustic sensing, information processing, energy storage, 
communications and surface acoustic wave technology.

Cavity optomechanics has attracted extensive attention in recent 
years, creating opportunities for high-precision sensing, commu-
nications and quantum information processing14, as well as for fun-
damental science, for example, macroscopic quantum effects in 
mechanical systems15 and gravitational wave detection16. Although 
most of the studies about cavity optomechanics focus on the ‘cooling’ 
regime—where the cavity is driven by a laser red-detuned from the 
cavity resonance and thus absorbs phonons from mechanical modes—
extensive research has been recently devoted to the ‘heating’ regime 
of cavity optomechanics. In this regime, a photon blue-detuned from 
the cavity resonance will emit a phonon into the mechanical modes 
when entering the cavity. Various phenomena have been observed 
in this regime, such as phonon lasing, in which coherent mechani-
cal vibrations are excited through optical pumping17–19. For strong 
pumps, it is also possible to observe nonlinear optical effects, such 
as chaos20,21 optical solitons22–24, and surface acoustic wave frequency 
combs25–28.

Recently, optical solitons have been demonstrated and exploited in 
Kerr optical frequency combs, which provide robust, equally spaced 
spectral lines, ideally suited for timing and metrology1–4. These devel-
opments have enabled the realization of chip-scale frequency combs 
through Kerr nonlinearity or electro-optical interactions29–32 obtained 

by balancing nonlinearity and dispersion in Kerr microresonators5,33. 
The phononic counterparts of the optical frequency comb, that is, 
mechanical frequency combs, have been theoretically proposed using 
Fermi–Pasta–Ulam–Tsingou chains, and later demonstrated in micro-
mechanical resonators using nonlinear three-wave mixing25,34,35. Their 
repetition rates are from a few Hz up to kHz, ten orders of magnitude 
smaller than the typical rates of optical combs, implying much finer 
frequency resolution.

Here we investigate nonlinear mechanical phenomena in opto-
mechanical resonators and report observation of mechanical 
micro-solitons in an optical whispering gallery mode (WGM) toroidal 
microresonator. Although optical solitons have been observed in vari-
ous WGM microresonators6–10, here we experimentally demonstrate 
optomechanical solitons—that is, localized acoustic waves stimulated 
by an optical pumping field—in WGM optomechanical resonators. In 
certain parameter regimes, we also observe mechanical frequency 
combs. The observed localized acoustic waves through optomechani-
cal interactions are distinct from optical solitons—that is, localized pho-
tonic wavepackets, theoretically predicted in optomechanical arrays22, 
in which both Kuznetsov–Ma solitons23 and Akhmediev breathers24 have 
been studied. In addition—unlike previous studies on frequency combs 
in optomechanical resonators25–28 formed by cascaded four-wave 
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mixing of different mechanical modes via nonlinear optomechanical 
coupling—the frequency combs observed in our experiments stem 
from the cnoidal wave mechanical motion associated with soliton for-
mation. As the pump grows, this periodic-pulse-type motion becomes 
localized and turns into a single mechanical wavepacket, supporting 
a mechanical micro-soliton.

Figure 1 shows a toroidal microdisk resonator supporting both 
high-quality factor (Q) optical and mechanical modes. We focus on 
radial mechanical modes supported by the thin disk (Fig. 1a–c). When 
a blue-detuned optical pump is coupled into the resonator, radial 
mechanical waves are excited. At the rim of the microresonator, the 
back-action of the optical mode leads to the indirect coupling between 
the counterpropagating mechanical modes. A high optical pump power 
triggers the nonlinearity in the mechanical wave propagating from the 
rim of the resonator towards the central pedestal (Fig. 1a). At the silicon 
pedestal, the mechanical travelling wave experiences a π phase shift 
upon reflection and travels back towards the perimeter of the toroid 
(Fig. 1b). Once the mechanical travelling wave meets the ring of the 
toroid where the optical mode resides, the optomechanical coupling 
enables optically induced modulation of the mechanical wave, which 
travels back towards the central pedestal again.

This multiple scattering process of the mechanical wave can be 
modelled as the propagation through an effective mechanical lat-
tice36 (Fig. 1d). Inward propagation towards the pedestal (illustrated 
by the blue travelling waves in Fig. 1c) experiences effective mechanical 
properties (blue block in Fig. 1d) that are different to those of outward 
travelling waves (red in Fig. 1c, d), owing to the different roles played by 
the nonlinear optomechanical interactions. Hence, the overall mechani-
cal response of the toroid can be described by the effective mechanical 
lattice sketched in Fig. 1d, with an added π phase shift at the end of each 
red block (red arrows in Fig. 1d). This acoustic-wave lattice induces an 
unusual dispersion of the mechanical travelling wave. A self-reinforcing 
wavepacket (that is, a micro-soliton), following the same dynamics of a 
shallow-water wave with a weak nonlinear restoring force37 (longwave 
scenario), can, therefore, arise in such a mechanical effective lattice. 
Figure 1e illustrates how the mechanical travelling waves collectively 
behave as a single wavepacket under the nonlinear coupling via optom-
echanical interactions with the blue-detuned pumping. The envelope 
of the mechanical wavepacket (see the green envelope in Fig. 1c and the 
wavepacket in Fig. 1e) is much larger than the unit cell of the mechani-
cal lattice, and so the micro-soliton has a time-varying wave amplitude 
rather than a visualized packet in a single cell, as shown in Fig. 1c, d.
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Fig. 1 | Mechanism of acoustic-wave propagation in an optomechanical 
resonator. a, An inward mechanical travelling wave is excited and periodically 
modulated by the optical field at the rim of the microresonator. b, An outward 
mechanical travelling wave reflected by the silicon pedestal. c, The multiple 
reflections, properly tailored by nonlinearities and modal dispersion, can form 
an optomechanical soliton with dimension much larger than the physical size 

of the resonator. Snapshots of the propagating mechanical travelling wave are 
shown as a function of time. d, An equivalent optomechanical lattice, in which 
the optical field modulates the mechanical travelling wave periodically.  
e, Analogy of the optomechanical micro-soliton to a conventional mechanical 
soliton. The blue and pink curves denote inward and reflected outward waves, 
respectively.
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In the parameter space, the mechanical dynamics can experience 
different regimes. By tuning the pump power or the frequency detuning 
between the pump field and the cavity mode, transitions from sinusoi-
dal to cnoidal and solitary regimes can be observed for the mechanical 
motion. When the optical pump power is low, the optomechanically 
induced mechanical nonlinearity can be neglected. A simple continu-
ous sinusoidal wave is excited in the resonator. As the pump power 
increases, the system becomes unstable: the optomechanical interac-
tion introduces a third-order mechanical nonlinear term36. Meanwhile, 
the optomechanical interaction modifies the dispersion relation as 
ωμ = Ωm + D1μ + D3μ3, where μ, D1 and D3 are the relative mode number 
and the first- and third-order dispersion coefficients of the mechanical 
travelling wave36, respectively. The mechanical dispersion broadens 
the travelling wave, and the mechanical nonlinearity sharpens the 
wavepacket.

When nonlinearity and dispersion balance each other, a stable and 
localized mechanical wave packet, that is, an optomechanical soliton, 
is achieved. In the soliton regime, the shape of the soliton pulse can 
largely vary with pump power as well as with frequency detuning, which 
affects the strength of nonlinearity and the mode dispersion. This 
mechanism is quite different from the formation of optical solitons 
in microresonators described by the Lugiato–Lefever equation5. The 
dynamics of our soliton system can be characterized by the following 
modified Korteweg–de Vries equation,
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where u(z, t) is the amplitude of the mechanical travelling wave, z is 
the coordinate along the radius of the microtoroid, v is the effective 
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Fig. 2 | Generation of an optomechanical soliton. a, Different observed 
regimes as a function of frequency detuning between pump and cavity mode. 
Inset, the energy transfer mechanism from optical to mechanical mode. More 
energy can be efficiently fed into the mechanical mode from the optical mode 
under the matching condition Δ = ωp − ω0 = Ωm, leading to the formation of 
mechanical solitons. ωp, ω0 and Δ are the frequencies of the pump field, cavity 
mode and frequency detuning, respectively, and Ωm is the mechanical mode 
frequency. b–d, Time-domain spectra of the output field in periodic (b), 

cnoidal wave (c) and soliton (d) regimes. The frequency detuning of the input 
field increases from left to right, and we can observe phonon localization for 
increased frequency detuning. e–g, Output spectra in the frequency domain of 
the pump field in periodic (e; single peak), cnoidal wave (f; frequency-comb-type 
spectrum) and soliton (g; broadband peak) regimes. h, Dispersion spectra for 
different normalized frequency detunings. i, Dispersion spectra for different 
pump powers, P. dBm, decibel milliwatts; FFT, fast Fourier transform; RF, radio 
frequency; WGM, whispering gallery mode.
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propagating speed of the soliton, σ is the aforementioned optom-
echanically induced third-order mechanical nonlinear coefficient, 
dKdV = (8π3/λ3)/D3 is the normalized third-order dispersion coefficient 
of the mechanical travelling wave, λ is the wavelength of the mechanical 
mode, G designates the mechanical gain induced by the phonon lasing 
effects, Γm characterizes the damping rate of the mechanical wave, ξ 
is the strength of the third-order mechanical nonlinear term induced 
by optomechanics, ζ(t) denotes white noise satisfying E(ζ(t)) = 0, 
E(ζ(t)ζ(t′)) = Dδ(t − t′) where δ(·) is the Dirac delta function, which is 
0 everywhere except at the origin, and its integral from -∞ to +∞ is equal 
to 1, and D is the strength of the noise. Note that the Korteweg–de Vries 
equation has been used to study mechanical solitons in shallow-water 
waves37 as well as acoustic solitons in solid-state structures36. Unlike 
cavity optical solitons described by the Lugiato–Lefever equation, in 
which loss is compensated by a coherent input field38–42, the mechanical 
loss in our system is compensated by mechanical gain and nonlinear 

saturation induced by phonon lasing. This is analogous to dissipative 
solitons observed in laser systems, in which loss is balanced by laser 
gain43.

We experimentally observe these phenomena in an optomechanical 
microresonator with Ωm = 27.3 MHz and quality factor of 8 × 106 coupled 
to a tapered fibre. Several phase transitions of the mechanical mode 
can be observed by gradually increasing the blue detuning of the driv-
ing field from the resonant frequency (Fig. 2a). On the blue-detuned 
side, the energy is fed into the mechanical mode by the energy trans-
fer between the optical pump and the cavity mode, as shown in the 
energy diagram in Fig. 2a, inset. When the detuning is much smaller 
than the mechanical frequency, a sinusoidal waveform is excited owing 
to a weak modulation of the mechanical mode by the optomechanical 
effects (Fig. 2b, e, which shows the temporal and frequency responses, 
respectively). A further increase of the detuning induces cascaded side-
bands around the main peak of the mechanical mode in the frequency 
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Fig. 3 | Localized periodic phonon pulses in the cnoidal wave regime and 
soliton regime. a–c, Slowly varying envelope of the amplitude of the periodic 
mechanical motion in the cnoidal wave regime with increasing magnification. 
d–f, Width (d), period (e) and amplitude (f) of the periodic pulses in the output 
field versus different frequency detunings of the input field in the cnoidal wave 
regime. g–i, Width (g), period (h) and amplitude (i) of the periodic pulses in the 

output field versus different input pump power in the cnoidal wave regime.  
The pulse width decreases, and period and amplitude increase with increased 
frequency detuning and pump power in the cnoidal wave regime. j–l, With 
increased detuning frequency, an eight-soliton pulse ( j), a four-soliton pulse  
(k) and a single-soliton pulse (l) are generated. a.u., arbitrary units.
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domain (Fig. 2f) and a periodic localized wavepacket in the time domain 
(Fig. 2c). The localized wavepacket observed here is induced by a par-
ticular mechanical motion of the microtoroid, cnoidal wave motion44–46, 
which leads to a localized wavepacket in the output field. Further blue 
detuning towards the mechanical frequency leads to an increase in the 
period of the localized pulse, until the system enters a regime in which 
the recurrence of the localized pulse stops being periodic, and several 
localized pulses may appear at the same time. This corresponds to the 
multi-soliton regime, in which the mechanical nonlinearity is so strong 
that the localized mechanical wavepackets may not be stable, but they 
interact, merge and collide with each other. Finally, the single-soliton 
wavepacket regime is reached, when the blue detuning is close to the 
mechanical frequency. Under this condition, the mechanical mode 
is resonant with the radiation force; thus, energy can be efficiently 
transferred from the optical mode to the mechanical mode (Fig. 2a, 
inset), maximizing the optomechanically induced mechanical non-
linearity. In this regime, we can obtain maximum localization of the 
mechanical wavepacket and observe a single pulse in the time domain 
(Fig. 2d), corresponding to a broadband frequency spectrum (Fig. 2g). 
Figure 2h, i shows the dispersion curves of the mechanical travelling 
wave for different frequency detuning levels and different pump pow-
ers, respectively.

To provide further insight into the phenomena observed in Fig. 2, we 
have explored the effect of radiation force, which serves as the energy 
source to the mechanical mode. The strength of the radiation force 
driving the mechanical mode can be enhanced by increasing either 
the detuning of the pump frequency or the pump power. In Fig. 3a–c, 

we see that the localized pulse in the cnoidal wave regime is a slowly 
varying envelope of the oscillating optical signal induced by the peri-
odic mechanical motion. By adjusting the frequency detuning and the 
pump power separately, we observe changes in the spectral features 
of the pulses, as shown in Fig. 3d–f and Fig. 3g–i, respectively. With 
an increase in the frequency detuning and pump power, the width of 
the pulse in the output field that is induced by the localized mechani-
cal wavepacket decreases (Fig. 3d, g), while the period of the pulse 
increases (Fig. 3e, h). The peak value of the wavepacket is proportional 
to the input pump power (Fig. 3i) and also increases with the frequency 
detuning (Fig. 3f). When we increase the pump power or change the 
detuning Δ between the pump field and the cavity mode to Ωm, more 
energy is transferred from the optical mode to the mechanical mode47, 
leading to an enhancement of the optomechanically induced mechani-
cal nonlinearity. In turn, the localized acoustic wave becomes narrower 
with a higher amplitude and a larger period. The cnoidal wave motion 
provides a more controllable way to generate mechanical frequency 
combs, in comparison to traditional approaches using wave-mixing 
processes25,26. Additionally, the localized wavepackets observed in our 
experiments are induced by the localized mechanical motion of the 
microtoroid, rather than optomechanical-induced localized photonic 
wavepacket (see our analysis in Supplementary Information section V).

The distinctive feature of our optomechanical solitons spanning a 
broad spectral window (as shown in Fig. 2g) indicates exciting oppor-
tunities for sensing applications. To show this, we exploit the optome-
chanical soliton to detect weak low-frequency vibrations of a cantilever 
tip actively excited by external electric pumping circuits (Fig. 4a). The 
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microtoroid in the periodic regime. d, Power spectrum for detecting the 
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eigenfrequency of the mechanical cantilever tip is Ωtip = 384.24 kHz, 
which is far smaller than the eigenfrequency of the mechanical mode 
of the microtoroid. When the optomechanical resonator is in the peri-
odic regime, it does not resonate with the low-frequency vibration of 
the tip. Consequently, we cannot observe the response of the optom-
echanical resonator to the vibrating cantilever tip (Fig. 4c). However, 
when the optomechanical resonator is in the soliton regime, with a 
wider power spectrum, more mechanical modes with different fre-
quencies contribute to the response to the vibration of the cantilever 
tip. Although each mode gives a small contribution to the response to 
the tip vibration, which is far off resonance of the resonator, the col-
lective contributions of all optomechanical modes are large enough 
to detect the low-frequency vibration of the cantilever tip (Fig. 4d). 
Figure 4b shows the detection efficiency increases with the width of 
the optomechanical soliton in the frequency domain. When the optom-
echanical soliton has a stronger localization in time domain, the width 
of the optomechanical soliton will increase. In this case, more modes 
of the optomechanical resonator will be involved, and therefore the 
enhancement will increase (Fig. 4b, inset).

In summary, we have reported the formation of a mechanical 
micro-soliton excited by light in an optomechanical microresonator. 
The stable mechanical soliton pulses result from two competing effects: 
(i) the dispersion of phonons induced by periodic modulation of the 
mechanical travelling wave owing to optomechanical interactions at the 
edge of the microtoroid; and (ii) optomechanically induced mechanical 
nonlinearity. We have also demonstrated that the shape of the mechani-
cal soliton pulses can be controlled by tuning various system param-
eters, such as the pump power and the frequency detuning between 
the pump field and the cavity mode. The ability to localize phonons 
by optomechanically induced mechanical nonlinearity in nanostruc-
tures opens up new avenues for optomechanical applications. Cnoidal 
wave motion of the microtoroid resonator can be seen as a peculiar 
radio-frequency comb, and thus it may be useful for radio-frequency 
standards, clocks, astrocombs, and so on. The stable localized soliton 
pulse may be of great interest for sensing and transferring information 
in the radio-frequency regime using nanophotonic structures.
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Methods

Our system includes a high-Q whispering gallery mode optomechanical 
microtoroid resonator coupled to a tapered optical-fibre waveguide19,48. 
In our experiments, a tunable external-cavity laser diode in the 1,550-nm 
band was amplified by an erbium-doped fibre amplifier before it is cou-
pled into a fibre connected to the tapered fibre waveguide. By changing 
the gap between the resonator and the tapered fibre, we could adjust 
the portion of the pump power coupled into the resonator. The output 
of the fibre-coupled resonator was fed into a photodetector that was 
connected to an oscilloscope, in order to monitor the time-domain 
behaviour of the transmission spectra, and also to an electrical spec-
trum analyser to obtain the power spectra.
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