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Abstract

Limbal stem cell deficiency and corneal disorders are among the top global threats for human
vision. Emerging therapies that integrate stem cell transplantation with engineered hydrogel
scaffolds for biological and mechanical support are becoming a rising trend in the field. However,
methods for high-throughput fabrication of hydrogel scaffolds, as well as knowledge of the
interaction between limbal stem/progenitor cells (LSCs) and the surrounding extracellular matrix
(ECM) are still much needed. Here, we employed digital light processing (DLP)-based bioprinting
to fabricate hydrogel scaffolds encapsulating primary LSCs and studied the ECM-dependent LSC
phenotypes. The DLP-based bioprinting with gelatin methacrylate (GelMA) or hyaluronic acid
glycidyl methacrylate (HAGM) generated microscale hydrogel scaffolds that could support the
viability of the encapsulated primary rabbit LSCs (rbLSCs) in culture. Immunocytochemistry and
transcriptional analysis showed that the encapsulated rbLSCs remained active in GelMA-based
scaffolds while exhibited quiescence in the HAGM-based scaffolds. The primary human LSCs
encapsulated within bioprinted scaffolds showed consistent ECM-dependent active/quiescent
statuses. Based on these results, we have developed a novel bioprinted dual ECM ‘Yin-Yang’ model
encapsulating LSCs to support both active and quiescent statues. Our findings provide valuable
insights towards stem cell therapies and regenerative medicine for corneal reconstruction.

1. Introduction

Corneal epithelium is a transparent nonkeratinized
epithelium that contributes to the refractive power of
eye and serves as the first protective barrier against
the outside world [1, 2]. Limbal stem/progenitor cells
(LSCs) are endogenous stem cells that reside at the
limbus, the periphery of the cornea [3]. LSCs are
responsible for the homeostasis of corneal epithe-
lium, thus, facilitating optical clarity and light trans-
mission [2, 3]. Worldwide, there are over 5 million
individuals affected by corneal blindness and limbal
stem cell deficiency (LSCD) being a common etiology

© 2021 IOP Publishing Ltd

[4-6]. Conventional LSCD treatments employ sur-
gical repair interventions using such sources as amni-
otic membrane (AM) as substrate or scaffold com-
bined with keratolimbal autografts, or allografts [7].
These treatment approaches are limited by the lack of
standardized preparation of AM, risk of developing
iatrogenic LSCD and immunologic rejection [8—10].

Recent advances in regenerative medicine and
tissue engineering have facilitated the develop-
ment of novel transplantation approaches using
advanced biomaterials for the treatment of LSCD
[11]. Hydrogel scaffolds based on collagen, gelatin,
hyaluronic acid (HA), and synthetic polymers have
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been investigated as LSC carriers for transplantation
[12-15]. Among the various approaches of hydrogel
scaffold fabrication, digital light processing (DLP)-
based bioprinting stands out as a high-throughput
platform allowing fabrication of hydrogel scaffolds
that support the encapsulation of numerous types
of stem cells including retinal progenitor cells, con-
junctival stem cells, mesenchymal stem cells, neural
progenitor cells and cancer stem cells [16-21]. The
spatiotemporal control of light exposure afforded
by DLP-based bioprinting also enables the stiffness
tunability within desired regions of the fabricated
hydrogel scaffolds, thus allowing one to manipulate
the phenotypes of the encapsulated cells [19, 22-25].
Moreover, DLP-based bioprinting enables the use
of multiple extracellular matrix (ECM) components
and multiple cell types during hydrogel fabrication to
better recapitulate the complex native microenviron-
ment of stem cells [16, 17, 26].

Biological and biomechanical interactions
between stem cells and their ECM have been shown to
affect cell fate and phenotype [27-29]. Biomechanical
factors such as substrate stiffness have been shown to
regulate the activities of LSCs and the corneal regen-
eration under physiological and pathological con-
ditions [30]. Stem cells can also interact with the
scaffolds in a composition-dependent way as vari-
ous types of cell surface receptors responding to the
ECM by triggering downstream intracellular signal-
ing pathways that dynamically and comprehensively
manipulate cell programming [12, 31-35]. The del-
icate balance between activation and quiescence of
endogenous stem cells, including LSCs, is critical for
the system homeostasis under varying healthy, aging,
and diseased circumstances [34, 36, 37]. Recent stud-
ies have showed that engineered scaffolds are able to
tune the transition of activation/quiescence in LSCs
[33, 38]. Therefore, understanding how the different
ECM compositions regulate LSCs in a 3D microen-
vironment is important for developing novel trans-
plantable LSC scaffolds.

In this study, we present a bioprinting approach
in fabricating primary LSC-encapsulated microscale
hydrogel scaffolds to study the ECM-dependent
LSC activities. With the customized DLP-based
bioprinting system, we fabricated microscale hydro-
gel scaffolds with gelatin methacrylate (GelMA) and
hyaluronic acid glycidyl methacrylate (HAGM) that
supported the encapsulation and cell viability of
primary rabbit LSCs (rbLSCs). Next, we analyzed
the different phenotypes of encapsulated rbLSCs at
mRNA and protein levels. In addition, we extended
the study on primary human LSCs (hLSCs) from
different individuals with bioprinting. Furthermore,
we performed multimaterial bioprinting and fab-
ricated a dual ECM ‘Yin-Yang’ model encapsulating
primary rbLSCs in active/quiescent status. Overall,
we developed an innovative DLP-based bioprinting
approach for LSC engineering while broadening the
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understanding of ECM-dependent LSCs phenotypes,
which is a meaningful step towards the development
of regenerative medicine for LSCD and other severe
ocular surface diseases.

2. Materials and methods

2.1. Primary rabbit, hLSCs isolation and culture
The rabbit tissues from 10 to 12 weeks old New
Zealand White rabbit eyes (Oryctolagus Cuniculus)
were acquired from Sierra for Medical Science, Inc.
(Whittier, CA). The human corneoscleral rims were
acquired from One Legacy or Saving Sight eye banks.
Consent was obtained by the eye banks for the tissues
to be used for research. Experimentation on human
tissue adhered to the tenets of the Declaration of
Helsinki. The protocol for human corneal tissue col-
lection and dissection was evaluated and exempted
by the University of California, Los Angeles (UCLA)
Institutional Review Boards (IRB#12-000363). The
overall procedure was approved by University of Cali-
fornia San Diego Institutional Biosafety Committee.

For rbLSCs, rabbit eyeballs were washed in Dul-
becco’s phosphate-buffered saline (DPBS) and Dul-
becco’s modified eagle medium (DMEM, Ther-
moFisher Scientific) with penicillin-streptomycin,
respectively, and the corneoscleral rims were isol-
ated for further dissection. hLSCs were harvested
from donor corneoscleral rims stored in Optisol-
GS. Corneoscleral rims from three different donors
with no significant history of corneal diseases were
used in this study. The isolation of both rbLSCs and
hLSCs was performed as previously described [2].
Briefly, limbal epithelium with underlying stroma
was excised circumferentially and minced using Van-
nas scissors. Type IV collagenase (0.2%, Sigma Ald-
rich) was used for digestion at 37 °C with constant
shaking at 120 rpm for 1-1.5 h. Following the incub-
ation, cells were pelleted and washed with PBS. Fol-
lowing a 10 min digestion using 0.25% Trypsin-EDTA
(ethylenediamine tetraacetic acid) (Sigma Aldrich),
the cells were filtered through a 70 pum cell strainer
(Corning) to obtain single cells. The cells were seeded
onto Collagen I coated plates (ThermoFisher Sci-
entific). The culture medium used was composed
of DMEM /F-12 (3:1, ThermoFisher Scientific) with
10% fetal bovine serum (ThermoFisher Scientific),
penicillin-streptomycin (ThermoFisher Scientific),
400 ng ml~! hydrocortisone (Sigma Aldrich),
1x insulin-transferrin-selenium (Corning), 2 nM
reverse T3 (Sigma Aldrich), and 0.1 nM cholera toxin
(Sigma Aldrich), 10 ng ml~! epidermal growth factor
(EGE, R&D System), and 10 uM Y27632 (Tocris
Bioscience).

2.2. Material synthesis and photocrosslinkable
bioink preparation

The synthesis process of GelMA and HAGM was
performed following previously established protocols
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[16, 17, 19, 26, 39]. Briefly, for GelMA, a 10% (w/v)
gelatin solution was prepared by dissolving porcine
skin gelatin type A (Sigma Aldrich) in a 0.25 M
carbonate-bicarbonate (3:7) buffer at pH 9 while stir-
ring at 50 °C. Methacrylic anhydride (Sigma Ald-
rich) was then mixed in a dropwise fashion to the
gelatin solution to reach 100 pl methacrylic anhyd-
ride per gram of gelatin. Then, following 1 h of con-
tinuous stirring at 50 °C, the product was subjected to
overnight fluid dynamic dialysis using 13.5 kDa dia-
lysis tubes (Repligen). Lyophilization for three days
was then conducted to produce GelMA powder which
was then stored at —80 °C. The degree of methac-
rylation of the resultant GelMA is approximately 95%
[17].

To synthesize HAGM, 1.0 g of sodium hyaluro-
nate (Lifecore Biomedical) was dissolved in 100 ml
water: acetone solution (1:1 ratio) and stirred at
room temperature overnight to prepare a 1% (w/v)
HA solution. The flask was subjected to vacuum for
3 s or until the solution boils then flooded with
Argon. This step was repeated twice and the solu-
tion was stirred overnight protected from light. On
the next day, 7.2 ml triethylamine (Sigma Aldrich)
20-fold in excess was slowly added to the reaction
flask until thoroughly mixed. The reaction was then
flooded with argon gas, then immediately sealed, and
mixed for 30 min. Using a syringe, 7.2 ml of glycidyl
methacrylate (GM, Sigma Aldrich) in 20-fold excess
was added dropwise to the reaction. Afterwards, the
reaction was flooded with Argon, sealed, and stirred
overnight at room temperature. The resulting mater-
ial was precipitated using acetone and vacuum filtra-
tion was used to collect the precipitate which was dis-
solved in DI water. The dissolved material was then
dialyzed, lyophilized, and stored at —80 °C until fur-
ther use. The degree of methacrylation of the result-
ant HAGM is approximately 35% [17].

For photopolymerization, lithium phenyl-2,4,6-
trimethylbenzoylphosphinate (LAP) was used as
a photoinitiator and synthesized per previously
published protocols [16, 19]. Briefly, dimethyl
phenylphosphonite (18 mmol, Sigma Aldrich)
was added dropwise to an equimolar 2,4,6-
trimethylbenzoyl chloride (Acros Organics). The
reaction was constantly stirred for 18 h at room tem-
perature. A solution of lithium bromide (6.1 g, Sigma
Aldrich) in 100 ml of 2-butanone (Sigma Aldrich)
was then mixed into the reaction. Following a 10 min
stirring at 50 °C, the mixture was incubated overnight
atroom temperature. Filter-washing with 2-butanone
for three times was carried out to remove unreacted
lithium bromide. The LAP solids that resulted from
the reaction were crushed into powder and stored
under argon in the dark at 4 °C.

About 8% (w/v) GelMA with 0.25% (w/v) LAP
and 4% (w/v) HAGM with 0.25% (w/v) LAP were
dissolved in warm DPBS, filtered using a 0.22 yum
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syringe and used as prepolymer solutions for DLP-
based bioprinting with or without LSCs. The cells
were detached from the culture plates with 0.25%
trypsin-EDTA, and then neutralized with a pre-made
culture medium. The cell solution was then filtered
with a 70 pm cell strainer and the cell concentra-
tion was measured with a hemocytometer. The bioink
containing 1-2 x 107 cells mI~! LSCs and Gel-
MA/HAGM prepolymer solution was prepared right
before printing.

2.3. Bioprinting of GelMA and HAGM hydrogel
scaffolds

Our in-house DLP-based bioprinting system was
used for the rapid biofabrication of hydrogel scaf-
folds. The system is composed of a 365 nm light
source (Hamamatsu), a projection optics assembly,
a motion-controlled stage (Newport) and a digital
micromirror device (DMD, Texas Instruments.) used
for patterning the light. We generated digital pat-
terns using Adobe photoshop which were imported
into the custom operation software that controls the
DMD chip to modulate light projection depending on
the imported pattern. For the bioprinting setup, two
polydimethylsiloxane (PDMS) spacers with thickness
of 250 um were set between a PDMS base that is
attached to a glass slide and a methacrylated cover-
slip. This creates a gap of desired thickness where the
prepolymer bioink was loaded. Then, photopolymer-
ization was performed with the DLP bioprinter and
the printed constructs were immediately moved to
a 24-well plate and washed in pre-warmed DPBS to
remove the excess bioink materials. The DPBS was
then substituted with warmed culture medium and
the bioprinted constructs were incubated in 5% CO,
at 37 °C.

2.4. Immunofluorescence staining

Primary LSCs cultured on Millicell EZ slides (Milli-
pore Sigma) were washed twice with DPBS to prepare
for 2D cell staining. The cells were fixed at room tem-
perature for 20 min with 4% (w/v) paraformaldehyde
(FUJIFILM Wako), followed by three washes with
DPBS, each for 10 min. Then, the samples under-
went blocking and permeabilization for 1 h using 5%
bovine serum albumin (Sigma Aldrich) and 0.3% tri-
ton X-100 (Sigma Aldrich) in DPBS at room tem-
perature. Primary antibody incubation was done at
4 °C overnight followed by three DPBS washes for
10 min each. Afterwards, the cells were incubated with
secondary antibodies (Alexa Fluor-conjugated, Invit-
rogen) for 1 h at room temperature. The samples
were further washed with DPBS and nuclear staining
was done with 1:500 4/,6-diamidino-2-phenylindole
(ThermoFisher Scientific) in DPBS for 10 min. After
a final DPBS wash the samples were left to air-dry for
30 s and mounted with Fluoromount-G™ Mounting
Medium (ThermoFisher Scientific). Hydrogel cells



10P Publishing

Biofabrication 13 (2021) 044101

staining was performed with the exact same proced-
ure, except without mounting, where the samples
were left in DPBS to be imaged. The samples were all
imaged within 48 h of staining to preserve clarity. Fur-
ther information on details of antibodies and dilution
rates is provided in supplementary table 1 (available
online at stacks.iop.org/BF/00/00000/mmedia).

2.5. Mechanical properties characterization

A micromechanical testing machine (Microsquisher,
CellScale) was used to determine the Young’s mod-
ulus of the bioprinted scaffolds based on GelMA
and HAGM. Cylindrical test specimens (500 pm dia-
meter, 500 pm height) printed with 8% GelMA or 4%
HAGM were fabricated and incubated at 37 °C for
overnight. We followed the manufacturer’s instruc-
tions when measuring the compressive modulus. The
sample’s hysteresis was removed using two cycles of
predetermined compression. During mechanical test-
ing, the samples were compressed at a 10% strain with
a strain rate of 2 um s~ !. After the force and displace-
ment data was collected from the Microsquisher, we
used custom MATLAB script to calculate the com-
pressive Young’s modulus.

2.6. Viability evaluation

The viability of the LSCs encapsulated in the hydro-
gels were studied with the viability/cytotoxicity kit
(Thermo Fisher), also known as Live/Dead™ stain-
ing. They were incubated with 2 M calcein acetoxy-
methyl ester, along with 4 uM ethidium homodimer
in DPBS, for 30 min at 37 °C. Fluorescent imaging
was done with a Leica microscope (DMI 6000-B). The
viability test was carried out in triplicates.

2.7. RNA isolation, reverse transcription, and real
time quantitative PCR

For RNA extraction, a TRIzol® reagent (Ambion
Thermo Fisher) was continuously pipetted into the
pelleted 2D-cultured cells. For the encapsulated LSCs
in GelMA- and HAGM-based bioprinted hydrogel
scaffolds, the constructs were stripped off their cov-
erslips using a scalpel and subjected to enzymatic
digestion with 0.2% Type IV collagenase (Sigma Ald-
rich) and 1kU/ml hyaluronidase (STEMCELL Tech-
nologies), respectively, at 37 °C for 15 min. The
resulting cell solution was pelleted with centrifuga-
tion immediately followed by addition of TRIzol®
reagent to the pellet. The lysate was then used dir-
ectly or stored in —80 °C. Direct-zol™ RNA Puri-
fication kit (Zymo Research) was used for the extrac-
tion of RNA following the manufacturer’s protocol.
NanoDrop™ 2000 (Thermo Fisher Scientific) was
used to quantify the purified RNA. The RNA was
then used for cDNA synthesis and reverse transcrip-
tion using the iScript™ c¢DNA Synthesis Kit (Bio-
Rad) with thermal cycler StepOne™ Real-Time PCR
System (Thermo Fisher Scientific). Luna® Universal
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qPCR Master Mix was used for real-time quantitat-
ive polymerase chain reaction (qPCR). The primer
details used in the qPCR can be found in supplement-
ary table 2.

2.8. Flow cytometry

For flow cytometry, GelMA- and HAGM-based
bioprinted scaffolds were enzymatically digested
to isolate the encapsulated LSCs. Following the
enzymatic digestion, the cells extracted from the
scaffolds and 2D-cultured cells were digested with
0.25% trypsin-EDTA and filtered with a 70 ym cell
strainer. After centrifugation, cell pellets were resus-
pended and fixed with Cytofix™ Fixation Buffer (BD)
for 20 min followed by three 5 min wash with Cell
Staining Buffer (Biolegend) supplemented with 0.2%
triton X-100. Primary antibodies were diluted with
Cell staining buffer and applied for 20 min. Follow-
ing a wash, secondary antibodies were diluted with
cell staining buffer and applied for 20 min. All the
antibody incubations were performed at room tem-
perature. Cell solutions were then kept on ice in the
dark until use. The propidium iodide (Biolegend)
viability staining was performed following the man-
ufacturer’s procedures. Briefly, 10 pl per million cells
of the propidium iodide solution was added to the
cell suspension. The solution was then incubated
for 15 mins at 4 °C avoiding light before analysis.
Flow cytometry was performed using BD Accuri™
C6 flow cytometer following the instructions of the
manufacturer. The data was collected from at least
100 000 events for each group and processed using
FlowJo.

2.9. Imaging and processing

Confocal and brightfield/regular fluorescence ima-
ging of the samples were taken using SP8 Confocal
and DMI 6000-B Leica microscopes, respectively.
Image] and LAS X were used to further process the
images.

2.10. Statistical analysis

Data obtained from the experiments were processed
with Microsoft Excel and presented in a way of
mean =+ standard deviations Student’s t-test (two
tailed) or one-way ANOVA were applied to determ-
ine statistical significance which was denoted on the
figures with an asterisk where appropriate (*P < 0.05;
**P<0.01; ***P < 0.001.).

3. Results

3.1. Bioprinted GeIMA and HAGM hydrogel
scaffolds supported the viability of encapsulated
primary rbLSCs

Our customized DLP-based bioprinting sys-
tem can spatially manipulate light based on
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Figure 1. Bioprinting of GeIMA- or HAGM-based scaffolds encapsulating primary rbLSCs. (A) Schematic of DLP-based
bioprinting workflow; (B) representative bright field images of bioprinted Mona Lisa with acellular GelMA or HAGM;
(C) representative images of Live/Dead™ staining of rbLSCs encapsulated with GelMA- or HAGM-based bioprinted scaffolds at

day 1, day 3 and day 6 of culture (scale bars: 100 pzm).

user-defined input designs, allowing for precise
photopolymerization-based patterning of cellular-
ized hydrogel constructs containing different mater-
ial compositions (figure 1(A)) [18, 19, 24]. GeMA is
a photocrosslinkable gelatin that has been extensively
studied as a bioink for the bioprinting of stem cells
including conjunctival stem cells and mesenchymal
stem cells [19, 40]. HAGM as another photocross-
linkable bioink, was found to support the encap-
sulation of retinal progenitor cells and cancer stem
cells [16, 17]. Using DLP-based bioprinting tech-
niques, we were able to fabricate GelMA- or HAGM-
based hydrogel scaffolds with a complex pattern and
microscale resolution within a matter of seconds
(figure 1(B)). To encapsulate LSCs in 3D scaffolds,
we isolated and expanded the primary rbLSCs from
fresh rabbit limbal tissues and characterized with
immunofluorescence staining of various LSC mark-
ers (supplementary figure S1(A)). To test biocom-
patibility, we fabricated GelMA- or HAGM-based
bioprinted scaffolds encapsulating primary rbLSCs.
The Live/Dead™ staining confirmed that both types
of bioprinted scaffolds were able to support the
viability of the encapsulated rbLSCs after seven
days of culture (figure 1(C)). We have also quanti-
fied the viability of the encapsulated rbLSC in both
types of bioprinted scaffolds by flow cytometry with
propidium iodide staining (supplementary figure
S1(B)). Based on the results, the live cell ratios were
86.7 + 1.6% in GelMA scaffolds and 92.1 + 0.8%
in HAGM scaffolds after seven days of culture.
In brief, we were able to fabricate both GelMA-
and HAGM-based scaffolds encapsulating viable
primary rbLSCs using our DLP-based bioprinting
system.

3.2. Encapsulated primary rbLSCs displayed active
status in GelMA-based bioprinted scaffolds while
exhibiting quiescence in HAGM-based bioprinted
scaffolds

While both GelMA- and HAGM-based bioprinted
scaffolds maintained viable encapsulated primary
rbLSCs, the cells displayed different behaviors
depending on which scaffold they were cultured in.
More cell aggregates or colonies were observed in
GelMA-based bioprinted scaffolds, while rbLSCs
encapsulated with HAGM-based scaffolds largely
remained as single-cells after six days of culture (sup-
plementary figure S1(C)). These results suggest that
the interaction between rbLSCs and their surround-
ing ECM in the different bioprinted scaffolds influ-
enced the stem cell status following the encapsulation.
To further explore the effect of the scaffold matrix
material on LSC-ECM interaction, we first needed to
control the stiffness. Our DLP-based bioprinting sys-
tem enables us to control the mechanical properties of
the fabricated hydrogel scaffolds via spatiotemporal
regulation of light exposure [23, 24]. Mechanical
testing of GeIMA- and HAGM-based bioprinted scaf-
folds indicated positive linear correlation between the
Young’s modulus and the light exposure time in our
printing system (figure 2(A), supplementary figure
S1(D)). Based on the results, GeIMA and HAGM
scaffolds had a similar Young’s modulus with the
light exposure time set to 25 s which was adopted as
the primary bioprinting parameters for subsequent
experiments.

To investigate the behavior of LSCs in the different
scaffolds, we examined the expression of various LSC
markers. Immunofluorescence staining showed the
expression of PAX6, an ocular lineage marker, in both
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Figure 2. Encapsulated primary rbLSCs displayed different status in GelMA- or HAGM-based bioprinted scaffolds. (A) Linear
plot of compressive modulus of the GeIMA- or HAGM-based scaffolds versus the light exposure time (mean =+ sd, n > 3);

(B) representative images of immunofluorescence staining of proliferation marker KI67 and LSC lineage marker PAX6 on rbLSCs
encapsulated in GeIMA- or HAGM-based scaffolds after two days of culture (scale bars: 50 um); (C) KI67-positive and
ANP63-positve populations of the primary rbLSCs cultured in 2D and encapsulated in GelMA- or HAGM-based scaffolds after
two days of culture as determined by flow cytometry (mean =+ sd, n = 3); (D) heatmap of real-time qPCR data showing relative
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mRNA expression of LSC markers (KRT14, P63, PAX6, BMI1), LSC quiescent markers (CD200, P27X!P1), corneal epithelium
differentiation marker (KRT3), canonical WNT signaling pathway marker (CTNNB1) and non-canonical WNT signaling
pathway markers (WNT5A, VANGL1) on rbLSCs on 2D surface or encapsulated in GelMA- or HAGM-based scaffolds after two

days of culture.

GelMA- and HAGM-encapsulated rbLSCs while the
expression of proliferation marker, KI67, was present
only in the GeIMA-based scaffolds (figure 2(B)). Con-
sistently, flow cytometry identified significantly smal-
ler percentage of K167 positive rbLSCs encapsulated
in HAGM-based bioprinted scaffolds compared to
the population encapsulated in GelMA, while the
positive ratio of stemness marker, ANP63, remained
identical in both scaffolds (figure 2(C), supple-
mentary figure S2(A)). The decreased KI67 positive
population of rbLSCs encapsulated in HAGM-based
bioprinted scaffolds can be reversed by releasing the
cells from scaffolds (supplementary figure S2(B)).
We have also performed transcriptional analysis with
real-time qPCR to compare rbLSCs in 2D cul-
ture or encapsulation with GelMA- or HAGM-based
bioprinted scaffolds (figure 2(D)). We found up-
regulated mRNA expression of PAX6 and BMI1 in the
HAGM group compared to the 2D control, while P63
was up-regulated in the GelMA group. In addition,
the expression of two previously reported LSC quies-
cence markers, CD200 and P27X"! | were up-regulated
in the HAGM group [41-43]. The expression of
corneal epithelium differentiation marker, KRT3, was
downregulated in the GelMA group and showed no
significant change in the HAGM group in comparison
with the 2D control. Furthermore, mRNA expression
of markers of non-canonical WNT pathway, VANGLI
and WNT5A, were up-regulated in the HAGM group
but down-regulated in the GelMA group. Mean-
while, the expression of marker of canonical WNT

pathway, CTNNBI, remained unchanged among the
three groups. These results indicated the potential
participation of non-canonical WNT pathway in the
LSCs-ECM interactions [44—47]. Collectively, these
results demonstrated an active status of the rbLSCs
encapsulated in GelMA-based scaffolds and quies-
cent characteristics of rbLSCs in the HAGM-based
scaffolds.

3.3. Encapsulated primary hLSCs were viable but
displayed different status in GelMA- or
HAGM-based scaffolds

Based on the ECM-dependent response of rbLSCs in
the GeMA- or HAGM-based scaffolds, we further
explored the LSC-ECM interaction in hLSCs. Primary
hLSCs were isolated and expanded from human
corneoscleral rims of three different donors and
subjected to bioprinting with GelMA and HAGM,
respectively. Similar to the rbLSCs, Live/Dead™
staining showed that most of the encapsulated
hLSCs remained viable in both types of bioprin-
ted scaffolds during culture (figure 3(A)). Con-
sistent with rbLSCs, aggregated colonies of hLSCs
were largely found in the GelMA-based scaffolds
but rarely observed in the HAGM-based scaffolds
(figure 3(B)). Real-time qPCR showed that the hLSCs
encapsulated in HAGM-based scaffolds had signific-
antly higher expression of PAX6, CD200 and P27,
while the expression of KI67 was significantly down-
regulated compared to the 2D control and the GelMA
group (figure 3(C)). In addition, KRT14 expression
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Figure 3. Encapsulated primary hLSCs remained viable and displayed different status in GelMA- or HAGM-based scaffolds.

(A) Representative images of Live/Dead™ staining of hLSCs encapsulated with GelMA- or HAGM-based scaffolds at day 2 and
day 5 of culture (scale bars: 100 pm); (B) representative bright field images of bioprinted scaffolds with GelMA/HAGM
encapsulating primary hLSCs after five days of culture (scale bars: 100 pzm); (C) real-time qPCR data showing relative mRNA
expression of proliferation marker (KI67), LSC markers (KRT14, PAX6), LSC quiescent markers (CD200, P27XIP1) of the primary
hLSCs on 2D surface or encapsulated in GelMA- or HAGM-based scaffolds after two days of culture (mean =+ sd, n = 3).

was significantly up-regulated in both bioprinted
groups comparing with the 2D control. These results
reinforce the observation that LSCs respond differ-
ently (e.g. exhibiting active proliferation or quies-
cence) to the surrounding ECM composition, and
appears to be consistent whether the LSCs are isolated
from rabbits or humans, suggesting that this may be
highly valuable for future clinical studies.

3.4. DLP-based bioprinting of dual ECM Yin-Yang’
LSC model

After ascertaining the ECM-dependent active/quies-
cent status of encapsulated LSCs in GelMA- and
HAGM-based scaffolds, we aimed to build a dual
in vitro ECM model that could facilitate these differ-
ential statuses of cells within the same hydrogel, thus
coming closer to recapitulating native LSC niches
where cells in both activated/quiescent states coex-
ist [3]. For this, we chose to utilize a ‘Yin-Yang pat-
tern that allows for the placement of GelMA and
HAGM distinctly separate yet spatially close regions.
To demonstrate the feasibility of our design, we first
printed the Yin-Yang pattern in microscale with
GelMA and HAGM mixed with fluorescence micro-
spheres (figure 4(A)). Fluorescent microscopic ima-
ging showed the precise patterning of the acellular
hydrogel materials matching our design specification.
In follow-up prints, we replaced fluorescent micro-
spheres with primary rbLSCs and verified the status
of the encapsulated rbLSCs in different parts of the
dual ECM model (figure 4(B)). Immunofluorescence
staining showed the positive expression of KI67 in
the GelMA-based region while few KI67 positive cells
were found in the HAGM-based region (figure 4(B)).
Therefore, with our bioprinting method, we were
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able to fabricate the dual ECM ‘Yin-Yang model
whose separate ECM-portions induced active/quies-
cent statuses for the LSC.

4, Discussion

With the recent technological advances in tissue
engineering and regenerative medicine, stem cell
therapies based on hydrogel scaffolds have become
popular for the treatment of LSCD [12]. However,
cost effective approaches for the high-throughput
fabrication of hydrogel scaffolds encapsulating
primary LSCs remains an active area of research.
Furthermore, behavior that LSCs exhibit in response
to different 3D matrices presents an attractive oppor-
tunity in formulating scaffolds that can effectively
recapitulate the native microenvironment of the LSC
niche. Our study demonstrated a novel engineer-
ing approach applying DLP-based bioprinting for
the fabrication of hydrogel scaffolds encapsulating
both rabbit and human primary LSCs. We success-
fully printed GelMA- and HAGM-based microscale
hydrogel scaffolds that maintained the viability of
the encapsulated primary rbLSCs. The cells exhibited
ECM-dependent phenotypes with an active status
in GelMA- and quiescent status in HAGM-based
scaffolds. We repeated the bioprinting experiments
with hLSCs and confirmed the consistency of the
ECM-dependent phenotype in primary human cells.
Moreover, we applied DLP-based bioprinting to build
a dual ECM Yin-Yang’ model encapsulating LSCs in
active and quiescent status within the same culture.
3D engineered tissues are 3D fabricated biomi-
metic systems consisted of the corresponding cells
from the target tissue and organ, as well as the
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B Active

Figure 4. Bioprinting of a dual ECM ‘Yin-Yang’ model encapsulating rbLSCs. (A) Illustration of the design patterns and bright
field images of the acellular dual ECM ‘Yin-Yang’ models encapsulating fluorescent microspheres (scale bars: 500 pm); (B)
illustration and a representative image of immunofluorescence staining of K167 on dual ECM ‘Yin-Yang’ model encapsulating

primary rbLSCs after two days of culture (scale bars: 100 pzm).

hydrogel scaffolds that mimic ECM [18, 48]. As
the construct geometry and the cell distribution
can be manipulated to recapitulate the physiolo-
gical microenvironment, 3D engineered tissues could
have better performance in applications like drug
screening, disease modeling, and regenerative medi-
cine compared to the 2D monolayer cell model
[17, 19, 49]. Tissue regeneration using endogenous
stem cell is a promising solution for many medical
conditions [2, 28, 50, 51]. As the essential endo-
genous epithelial stem cell contributing to corneal
regeneration, LSCs have been explored in various
approaches in combination with hydrogel scaffolds
for corneal epithelium reconstruction [52, 53]. DLP-
based bioprinting has been instrumental in tissue
engineering as it facilitated the fabrication of high-
throughput hydrogel scaffolds encapsulating various
types of stem cells [18]. We used DLP-based bioprint-
ing to produce GelMA- or HAGM-based hydrogel
scaffolds encapsulating primary rbLSCs and hLSCs.
DLP-based bioprinting maintained the viability and
stemness of the encapsulated LSCs in both mater-
ials. With flexible and precise control over mor-
phological structures, the microscale hydrogel scaf-
folds encapsulating LSCs can be optimized by our
bioprinting system to serve various therapeutic pur-
poses including minimally invasive injectable stem
cell transplantation [54]. In addition, the translucent
nature of the GelMA and HAGM scaffolds not only
enabled facile monitoring of cell morphology and
behaviors, but also makes ideal candidates for corneal
tissue-on-a-chip in vitro disease modeling. Although
the bioprinted hydrogel scaffolds in this study were
2.5D constructs that have consistent pattern along the

thickness direction, they were able to provide insight-
ful information for disease modeling [17, 26]. In the
future, we could use the DLP-based bioprinting sys-
tem to fabricate true 3D constructs such as a corneal
tissue with complex 3D features for various biomed-
ical applications [55].

The ECM-dependent regulation and reprogram-
ming of epithelial stem cell fate have been indic-
ated as prevalent mechanisms in different tissues
including epidermis, lung, intestine, colon and cornea
[30, 56-59]. By controlling the matrix stiffness with
our bioprinting system, we were able to compare the
influence of ECM component on the encapsulated
LSCs. As a result, we found that primary rbLSCs
and hLSCs actively proliferated and formed aggreg-
ated colonies in the GelMA-based scaffolds while
showed inhibited proliferation and aggregation in
the HAGM-based scaffolds. Further analysis showed
the active/quiescent status of encapsulated LSCs by
comparing proliferation and stemness markers. The
quiescence of LSCs in HAGM-based scaffolds can
potentially be mediated by the HA-specific cell adhe-
sion excluding integrins [60-62]. We also found the
HAGM-encapsulated rbLSCs presented proliferative
status after being released from scaffolds and cultured
for a week, indicating that the HAGM-encapsulated
rbLSCs were reversibly quiescent. Non-canonical
WNT signaling pathways (planar cell polarity) have
been reported to modify the activation/quiescence in
multiple endogenous stem cells [46, 47, 63]. Notably,
we found upregulated mRNA expression of mark-
ers related to non-canonical WNT signaling pathways
in primary LSCs encapsulated in HAGM-based scaf-
folds, which is consistent with the previously reported
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ECM-response of primary LSCs cultured on engin-
eered HA scaffolds [38, 64]. As a proof-of-concept,
we further combined these findings with multima-
terial bioprinting to fabricate a dual ECM ‘Yin-Yang’
model simultaneously encapsulating primary LSCs
in active/quiescent status. The dual ECM model can
be an attractive platform for drug screening since it
reproduced stem cell quiescence that was correlated
to drug-resistance and recapitulated the stem cells in
heterogeneous status that could react to drugs differ-
ently [65-67].

5. Conclusions

We applied DLP-based bioprinting to fabricate engin-
eered microscale hydrogel scaffolds based on GelMA
and HAGM. These scaffolds supported not only the
viability of encapsulated primary rbLSCs and hLSCs,
but also exhibited differential regulation. LSCs were
found to display an ECM-dependent active/quiescent
status as they actively proliferated in the GelMA-
based scaffolds and took on quiescent characterist-
ics in the HAGM-based scaffolds. A bioprinted dual-
ECM Yin-Yang model encapsulating both active and
quiescent LSCs were fabricated based on these find-
ings. Together, these results illustrated an innovat-
ive engineering approach for disease modeling, drug
screening and the development of an LSC-based
regenerative therapy for the treatment of LSCD and
related ocular diseases. Future studies exploring other
types of biomaterials or integrating different cell types
would be valuable to investigate.
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