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Abstract

In this paper, we aim at synthesizing a free-viewpoint video of an arbitrary human
performance using sparse multi-view cameras. Recently, several works have
addressed this problem by learning person-specific neural radiance fields (NeRF) to
capture the appearance of a particular human. In parallel, some work proposed to
use pixel-aligned features to generalize radiance fields to arbitrary new scenes and
objects. Adopting such generalization approaches to humans, however, is highly
challenging due to the heavy occlusions and dynamic articulations of body parts.
To tackle this, we propose Neural Human Performer, a novel approach that learns
generalizable neural radiance fields based on a parametric human body model for
robust performance capture. Specifically, we first introduce a temporal transformer
that aggregates tracked visual features based on the skeletal body motion over
time. Moreover, a multi-view transformer is proposed to perform cross-attention
between the temporally-fused features and the pixel-aligned features at each time
step to integrate observations on the fly from multiple views. Experiments on the
ZJU-MoCap and AIST datasets show that our method significantly outperforms
recent generalizable NeRF methods on unseen identities and poses. The video
results and code are available at https://youngjoongunc.github.io/nhp.

1 Introduction

Free-viewpoint video of a human performer has a variety of applications in the area of telepres-
ence, mixed reality, gaming and etc. Conventional free-viewpoint video systems require extremely
expensive setups such as dense camera rigs [4, 7, 43] or accurate depth sensors [6, 13], to capture
person-specific appearance information. In this paper, we aim at a scalable solution for free-viewpoint
human performance rendering that generalizes across different human performers and requires only
sparse camera views. However, representing and rendering arbitrary human performances is ex-
tremely challenging when the observations are highly sparse (up to three to four views) due to heavy
self-occlusions and dynamic articulations of the body parts. In particular, an effective solution needs
to coherently aggregate appearance information from sparse multi-view observations across time as
the body undergoes a 3D motion. Furthermore, the solution needs to generalize to unseen motions
and characters at test time.

Recently, neural radiance fields (NeRF) [26, 11, 17, 30, 33, 35, 36, 47, 50, 52, 53] have shown
photo-realistic novel view synthesis results in per-scene optimization settings. To avoid the expensive
per-scene training and improve the practicality, generalizable NeRFs [36, 52, 47] have been proposed
which use image-conditioned, pixel-aligned features and achieve feed-forward view synthesis from
sparse input views [36, 52]. Direct application of these methods to complex and non-rigid human
motion is not straightforward, however, and naive solutions suffer from significant artifacts as shown
in Fig. 3. Some existing methods [37, 52] aggregate image features across multiple views by simple
average pooling, which often leads to over-smoothed outputs when details observed from multiple
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views (e.g., front and side views) differ due to self occlusions of humans. Alternatively, several
methods [23, 33] have proposed to learn person-specific global appearance features from multi-view
observations. However, such methods are not able to generalize to new human performers.

To address these challenges, we propose Neural Human Performer, a novel approach that learns
generalizable radiance fields based on a parametric 3D body model for robust performance capture.
In addition to exploiting a parametric body model as a geometric prior, the core of our method
is a combination of temporal and multi-view transformers which help to effectively aggregate
spatio-temporal observations to robustly compute the density and color of a query point. First, the
temporal transformer aggregates trackable visual features based on the input skeletal body motion
across time. The following multi-view transformer performs cross-attention between the temporally-
augmented skeletal features and the pixel-aligned features for each time step. The proposed modules
collectively contribute to the adaptive aggregation of multi-time and multi-view information, resulting
in significant improvements in synthesis results in different generalization settings of unseen motions
and identities.

We study the efficacy of Neural Human Performer on two multi-view human performance capture
datasets, ZJU-MoCap [33] and AIST [16]. Experiments show that our method significantly out-
performs recent generalizable radience field (NeRF) methods. Furthermore, we compare ours with
identity-specific methods [33, 44, 49] that also utilize a 3D human body model prior. Surprisingly,
our generalized method achieves better rendering quality than the person-specific dedicated methods
when tested on novel poses demonstrating the effectiveness of our transformer-based generalizable
representation.

To summarize, our contributions are:

• We present a new feed-forward method of synthesizing novel-view videos of arbitrary
human performers from sparse camera views. We propose Neural Human Performer that
learns generalizable neural radiance representations by leveraging a 3D body motion prior.

• We design a combination of temporal and multi-view transformers that can aggregate
information on the fly over video frames across multiple views to render each frame of the
novel-view video.

• We show significant improvements over recent generalizable NeRF methods on unseen
identities and poses. Moreover, our generalization results can outperform even person-
specific methods when tested on unseen poses.

2 Related works

Human performance capture. Novel view synthesis of human performance has a long history
in computer vision and graphics. Traditional methods rely on complicated hardware such as dense
camera rigs [4, 7, 43] or accurate depth sensors [6, 13]. To enable free-view video from sparse
camera views, template-based methods [3, 5, 10, 42] exploit pre-scanned human models to track the
motion of a person. However, their synthesis results are not photo-realistic and pre-scanned human
models are not available in most cases. Recent methods [27, 37, 38, 54] learn 3D human geometry
priors along with pixel aligned features to enable detailed 3D human reconstructions even from single
images. However, these methods often suffer under complex human poses that are never seen during
training and hence cannot be directly used for our purpose of human performance synthesis.

Neural 3D representations. Recently, there has been great progress in learning neural networks
to represent the shape and appearance of scenes. The 3D representations are learned from 2D images
via differentiable rendering networks. Convolutional neural networks are used to predict volumetric
representations via 3D voxel-grid features [40, 23, 29, 25, 14, 15], point clouds [1, 49], textured
meshes [18, 21, 44] and multi-plane images [8, 55]. The learnt representations are projected by a
3D-to-2D operation to synthesize images. Some methods [14, 15] introduce consistency loss to
improve the multi-view and temporal consistency. However, these methods often have difficulty in
scaling to higher resolution due to memory restrictions.

To eschew these problems, implicit function-based methods [20, 22, 28, 41] learn a multi-layer
perceptron that directly translates a 3D positional feature into a pixel generator. The more recent
NeRF [26] learns implicit fields of density and color with a volume rendering technique and achieves
photo-realistic view synthesis. Among many following NeRF extensions, [30, 31, 35, 53, 17, 50]
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Figure 1: Given a sparse set of multi-view videos of a person, Neural Human Performer uses temporal and
multi-view transformers to learn pixel aligned features on the surface of a deformable body template such
as SMPL. Such features are utilized to predict the color and density value of query points to render novel
views of possibly unseen poses of the person.

focus on dynamic scenes. While showing impressive results, it’s an extremely under-constrained
problem to jointly learn NeRF and highly dynamic deformation fields. To regularize the training,
Neural Body [33] combines NeRF with a deformable human body model (e.g., SMPL [24]). Despite
the promising results, these general deformable NeRF [17, 53] and human-specific NeRF [11, 9,
33, 32] methods must be optimized for each new video separately, and generalize poorly on unseen
scenarios. Generalizable NeRFs [36, 47, 52] try to avoid the expensive per-scene optimization by
image-conditioning using pixel-aligned features. However, directly extending such methods to model
complex and dynamic 3D humans is not straightforward when available observations are highly
sparse. Unlike existing works, our method exploits temporal and multi-view information on-the-fly
and achieves free-viewpoint human rendering in a feed-forward manner, also generalizing to new,
unseen human identities and poses.

3 Method

3.1 Neural Human Performer

Problem definition. In our setting, given a sparse set (e.g., 3 or 4) of multi-view cameras
c = 1, . . . , C , input videos of an arbitrary human performance Ic,1:T := {Ic,1, Ic,2, ..., Ic,T } are
captured for each camera view c defined by {Kc, [R|t]c}. We assume that the 3D human body model
fit corresponding to each frame is given. Our goal is to synthesize a novel view video Îq,1:T for a
query viewpoint q defined by {Kq, [R|t]q}.

Overview. To compensate for the sparsity of available input views, we propose to exploit temporal
information across video frames. In practice, we sample M memory frames from the original input
videos to augment each queried timestep t. Our goal is to learn generalizable 3D representations of
human performers from multi-time (M ) and multi-view (C) observations.

To this end, the Neural Human Performer is proposed with two main components as illustrated in
Fig. 1. First, we construct the time-augmented skeletal features {s}. We exploit a human body
model (SMPL [24]) to construct 3D skeletal features by projecting all the SMPL vertices onto each
memory frame and picking up the pixel-aligned image features [36, 37, 52] at the projected 2D
locations. The skeletal features are sampled from all memory frames to construct the skeletal feature
bank. Inspired by Transformers[2, 46, 48], we propose a temporal Transformer that aggregates these
memory features into the time-augmented skeletal features {s′}.

In the second stage, given a query 3D point x, skeletal features are sampled at x. In addition,
pixel-aligned features {p} at each time t are sampled by directly projecting x onto the input images
{I}t. The multi-view Transformer is proposed to learn the correlation between the pixel-aligned
features {p} and the time-augmented skeletal features {s′}, and to adaptively fuse the multi-view
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information. The final fused feature of the query point x is fed into the radiance field module to
predict its color and density.

3.2 Construction of time-augmented skeletal features

Unlike static scenes, video inputs of moving characters inherently contain more visual cues as the
occluded regions in a frame may be visible in other (potentially distant) frames. To take advantage
of this temporal information, we first build up the skeletal feature bank from memory frames by
leveraging a parametric body model (see Fig. 1). Then, we propose a temporal Transformer module
that aggregates such collected features.

For each view c and time t, we first build frame-level skeletal features sc,t ∈ RL×d by sampling
image features at the projection of the SMPL vertices in each image Ic,t ∈ RH×W×3. L denotes the
number of SMPL vertices and d is the dimension of image features.

After collecting all the skeletal features from all memory frames, we aggregate the time information in
an attention-aware manner, instead of using simple average pooling. Specifically, for any ith skeletal
feature vertex sic,t ∈ Rd, the proposed temporal Transformer casts attention over all other features
contained in the vertex’s memory bank sic,t1:tM = {sic,t1 , s

i
c,t2 , ..., s

i
c,tM } ∈ RM×d. In particular,

we compute soft weights for all memory feature vertices in a non-local manner with respect to the
current timestep t. Then, the values of the memory features are weighted summed as

t_attic,t = ψ
( 1√

d0
q(sic,t) · k(sic,t1:tM )

T )
, t_attic,t ∈ R1×M

s′c,t
i
= t_attic,t · v(sic,t1:tM ) + sic,t, s′c,t ∈ RL×d ∀i

(1)

where ψ represents the softmax operator along the second axis, q(·), k(·) and v(·) are learnable query,
key and value embedding functions Rd→d0 of the temporal Transformer.

In other words, the representation sic,t of each skeletal vertex at time t is computed through a
dynamically weighted combination of all its previous and next representations in the memory frames.
This allows our network to incorporate helpful information and ignore irrelevant ones from other
timesteps. In practice, the temporal Transformer operation in Eq. (1) is performed by a batch matrix
multiplication for all skeletal vertices L and all available viewpoints C.

3.3 Multi-view aggregation of skeletal and query features

Given a query 3D point x ∈ R3, we retrieve the corresponding (time-augmented) skeletal feature
s′c,t

x ∈ Rd at the queried location via trilinear interpolation in the SMPL space with SparseCon-
vNet [19], following [39, 34, 51, 33].

In addition, we sample pixel-aligned image feature pxc,t via direct R3→2 projection of the query point
x on Ic,t. It is important to note that the pixel-aligned feature pxc,t is time-specific and represents the
exact query location of x, while the skeletal feature s′c,t

x is time-augmented (w.r.t t) and contains
inherent geometric deviations in the SMPL vertices and the following trilinear interpolations. We
propose to combine these two complementary features, which will be shown to be effective in Sec. 4.4.

Given the two sets of multi-view features, skeletal s′1:C,t
x
= {s′c,t

x|c = 1, ..., C} ∈ RC×d and
pixel-aligned px1:C,t = {pxc,t|c = 1, ..., C} ∈ RC×d, we propose a multi-view Transformer that
performs cross-attention from skeletal to pixel-aligned features. Specifically, the values of pixel-
aligned features from all viewpoints is re-weighted based on how much compatible they are with
each skeletal features. The non-local cross-attention mv_att is constructed as:

mv_attxt = ψ
( 1√

d1
k(s′1:C,t

x
) · k(px1:C,t)

T
)
, mv_attxt ∈ RC×C

zx1:C,t = mv_attxt · v(px1:C,t) + v(s′1:C,t
x
), zx1:C,t ∈ RC×d, zxc,t ∈ R1×d

(2)

where ψ represents the softmax operator along the second axis. Note that k and v are new layers
independent from those in the temporal Transformer. The confident observations in each view will
have large weights and be highlighted, and vice versa. Finally, we use the view-wise mean of
zxt = 1

C

∑
c z

x
c,t ∈ Rd as our meta-time and meta-view representation of the query point x.
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The final density σt(x) and color values rgbt(x) at time t are computed as:

σt(x) =MLPσ(z
x
t ), rgbt(X) =MLPrgb(

∑
c

(zxc,t; γd(d))/C), (3)

where MLPσ and MLPrgb consist of four and two linear layers respectively, and γd : R3→6×l is a
positional encoding of viewing direction d ∈ R3 as in [26] with 2× l different basis functions.

More details on the network architecture can be found in the supplementary material.

3.4 Volume Rendering

The predicted color of a pixel p ∈ R2 for a target viewpoint q in the focal plane of the camera and
center r0 ∈ R3 is obtained by marching rays into the scene using the camera-to-world projection
matrix, P−1 = [Rq|tq]−1K−1

q with the direction of the rays given by d = P−1p−r0
∥P−1p−r0∥ .

We then accumulate the radiance and opacity along the ray r(z) = r0 + zd for z ∈ [znear, zfar] as
defined in NeRF [26] as follows:

Iq(p) =

∫ zfar

znear

T(z)σ(r(z))c(r(z),d)dz, where T(z) = exp

(
−
∫ z

znear

σ(r(s))ds

)
(4)

In practice, we uniformly sample a set of 64 points z ∼ [znear, zfar]. We set X = r(z) and use
the quadrature rule to approximate the integral. We compute the 3D bounding box of the SMPL
parameters at time t and derive the bounds for ray sampling znear, zfar.

3.5 Loss Function

Given the ground truth target images Iq,t, we train both the radiance field and feature extraction
networks using a simple photometric reconstruction loss L = ∥Îq,t − Iq,t∥2 .

4 Experiments

We present novel view synthesis and 3d reconstruction results of human performances in different
generalization scenarios. We compare our method against the current best view-synthesis methods
from two classes: per-subject optimization methods that also use a human body model prior (Sec. 4.1)
and generalizable NeRF methods (Sec. 4.2). We experiment on the ZJU-MoCap [33] and AIST
datasets [45, 16]. For training and testing our model as well as the baselines, we remove the
background using the foreground masks that are either provided by the dataset or pre-computed using
an off-the-shelf method. Unless otherwise specified, we sample two memory frames {t− 20, t+ 20}
at time t (i.e., three timesteps in total) and take three canonical input views in all experiments. The
details of the implementation, datasets, training process are provided in the supplementary material.

4.1 Comparison with body model-based, per-subject optimization methods.

Baselines. We perform comparisons with the state-of-the-art Neural Body (NB) [33] that combines
the body model prior SMPL and NeRF in a per-subject optimization setting. Neural Textures (NT)
[44] renders a coarse mesh with latent texture maps and uses a 2D CNN to render target images.
We use the SMPL mesh as the coarse mesh input to NT in our experiments. NHR [49] extracts 3D
features from input point clouds and renders them into 2D images. Since dense point clouds are
difficult to obtain from sparse camera views, we use the SMPL vertices as input point clouds. These
methods have reported that they can adapt to new poses of the same performer, hence we compare to
them for the task of novel pose synthesis.

Setup. We experiment with ZJU-MoCap dataset [33] which provides performance captures of 10
human subjects captured from 23 synchronized cameras, human body model parameters as well as
the foreground mask corresponding to each frame. Each video contains complex motions such as
kicking and Taichi and is between 1000 to 2000 frames long. We first split the dataset into two parts:
source and target videos. In all comparisons, the first 300 frames of either source or target videos are
used during training, and the remaining next frames (unseen poses) are held out for testing. Note that
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Method PSNR SSIM
Trained on source subjects
NB 23.79 0.887
NHR 22.31 0.871
NT 22.28 0.872
Trained on source subjects
Ours 26.94 0.929

a . Test results on unseen poses of
source subjects

Method PSNR SSIM
Trained on target subjects
NB 22.88 0.880
NHR 22.03 0.875
NT 21.92 0.873
Trained on source subjects
Ours 24.75 0.906

b . Test results on unseen poses of
target subjects

Method PSNR SSIM
Trained on source subjects
NB 28.51 0.947
NHR 23.95 0.897
NT 23.86 0.896
Trained on source subjects
Ours 28.73 0.936
Ours per-subject 31.57 0.966

c . Test results on seen poses of source
subjects

Table 1: Comparison with other body model-based, per-subject optimization methods.

Figure 2: Pose generalization – comparison with per-scene optimization methods that use a human body
prior. Results of NT(Neural textures) [44], NHR (Neural human rendering) [49], NB (Neural body) [33] and
ours. Novel view synthesis on the ZJU-MoCap for unseen poses of source subjects. While ours is a single
model trained on all source subjects; baselines are trained in a per-subject manner.

the baseline methods are always trained in a per-subject manner. To validate whether the training
is reproducible, we experiment with 5 independent runs with random train/test splits and observe a
variance of 0.15 PSNR, showing that the results are consistent. In each independent run, we used
seven models for training and the other three for testing.

Results. We present three different comparison settings to validate our method. We would like
to point out that all the comparison settings place our method (‘ours’) in disadvantage. This is
because our model is trained on all the source subjects at once (one network for all subjects), while
the competing methods are per-subject trained on the subject to be tested (one network for one
subject) - easier setting. First, we evaluate the pose generalization capability (Table. 1a and Fig. 2)
where we train on the training splits of the source subjects and test on the testing splits, i.e., unseen
poses, of the same source subjects. Our method significantly outperforms all the baselines and the
state-of-the-art Neural Body [33] by +3.15 PSNR and +0.042 SSIM scores. We next evaluate the
identity generalization capability (Table. 1b) by testing on the unseen poses of target subjects. While
our method is trained on source subjects only, baselines are trained on target subjects. Note that this
comparison is disadvantageous to us since unlike our method the baselines have seen the testing
subjects as they must be trained separately for each subject. Surprisingly, however, our method still
outperforms all the baselines by a healthy margin of +1.87 PSNR and +0.026 SSIM scores. These
results indicate that our proposed architecture with the temporal and the multi-view transformers
generalizes well across unseen identities and poses, and produces photo-realistic results. Finally, in
Table. 1c, we evaluate our method and baselines on seen poses of seen subjects. Even when we train
a single model of our method for all the source sobjects (‘ours’), ours achieves comparable results
with the state-of-the-art per-subject based methods [33]. To make a more fair comparison, we also
train our method in the same per-subject setting similar to the baselines. Table. 1c shows that in this
case, our model (‘ours per-subject’) achieves a significant improvement over the best-performing
baseline [33] by +3 PSNR and +1.4% SSIM.
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Figure 3: Identity-and-pose generalization – comparison with generalizable NeRF methods. Results of
Pixel-Nerf [52], PVA (Pixel-aligned volumetric avatar) [36] and ours. Novel view synthesis on the ZJU-MoCap
dataset where all methods are trained on source subjects and tested on unseen poses of target subjects.

Method PSNR SSIM
Pixel-NeRF 23.17 0.8693
PVA 23.15 0.8663
Ours 24.75 0.9058

a . Generalization results on ZJU-MoCap.

Method PSNR SSIM
Pixel-NeRF 18.06 0.7304
PVA 17.82 0.7211
Ours 19.03 0.8390

b . Generalization results on AIST.

Table 2: Comparison with generalizable NeRF methods.

4.2 Comparison with generalizable NeRF methods.

Baselines. Among the recent generalizable NeRF methods [36, 52, 47], we compare with Pixel-
NeRF [52] and PVA [36] which focus on very sparse (up to 3 or 4) input views. We reimplement
[36] since the code is not available.

Setup. In addition to the ZJU-MoCap dataset (see Sec. 4.1), we experiment on the larger AIST
dataset [45, 16] to further evaluate the generalization abilities of different methods. AIST dataset
provides dance videos of 30 human subjects captured from 9 cameras, together with the corresponding
SMPL fits. We extract the foregroud mask of each image using an off-the-shelf human parser [12].
AIST dataset contains highly diverse motions, slow to fast, simple to complex. We split the dataset
into 20 and 10 subjects for training and testing respectively, where the testing dataset contains unseen
poses of unseen subjects.

Novel view synthesis results. As shown in Table. 2, across all the datasets and all the metrics, our
method consistently outperforms the baselines by healthy margins of +1.6 PSNR and +0.037 SSIM
scores. Fig. 3 and Fig. 5 present the same tendency in visualizations. Pixel-NeRF and PVA aggregate
multi-view observations via average pooling without explicitly considering the correlation between
the views. In contrast, our temporal and multi-view transformers learn to model the correlation
between input views and integrate different observations to help the NeRF module to produce higher
quality results. Another advantage of our method is that the used body model prior provides a robust
geometric cue to handle the self-occlusion of the human body.

3D reconstruction results. We also evaluate the 3D reconstruction quality of generalizable NeRF
methods and our method on the ZJU-MoCap (Fig. 4) and AIST datasets (Fig. 5) given three input
views. The visualizations show that our 3D reconstructions align well with the input images, and is
more accurate than even the per-subject method [33] (e.g., the shape of the upper cloth in Fig. 4).

Overall, these results verify that since humans are complex and prone to occlusions, more sophis-
ticated designs compared to simple image-conditioning are required to learn robust and accurate
appearance representations.

4.3 Cross-dataset generalization.

We further study the generalization ability of our method across different datasets by training on one
dataset and testing on another one as shown in Table. 4a. We would like to point out that the two
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datasets [33, 16] have significantly different statistics both in terms of color distribution (background,
lighting) and distance of the camera to the subject, making the cross-dataset generalization task
extremely challenging. Nevertheless, we found that only 8-minute fine-tuning on the target dataset can
already outperform the baselines fully-trained on the target dataset. 16-minute fine-tuning performs
on par with our model fully-trained on the target dataset.

4.4 Ablation studies

Table. 3 shows the ablation study on the ZJU-MoCap dataset for unseen subjects and unseen poses,
using three time-steps and three camera views as input. Note that all the variations without either
temporal or multi-view transformer modules use simple average pooling instead, to fuse temporal or
multi-view observations respectively.

Complementariness of skeletal and pixel-aligned query features. ‘Sk’ uses only time-
augmented skeletal features (Sec. 3.2) without time-specific pixel-aligned features, while ‘Px’ uses
only the time-specific pixel-aligned features, on the contrary. Both ‘only’ models show the largest
drops compared to our full model, and ‘Sk + Px’ model improves them by +1.2 PSNR and +0.9
PSNR respectively. This validates the complementariness between the skeletal and pixel-aligned
features in that one is time-augmented but involves slight geometric deviations, while another is
time-specific and represents exact query location, as discussed in Sec. 3.3.

Impact of temporal and multi-view transformers. ‘Sk + Px’ uses no transformers so far, falling
behind our full model by -1.3 PSNR score. Then ‘Sk + Px + T’ adds the temporal transformer
and improves +0.7 PSNR score, showing its effectiveness in aggregating information over video
frames. ‘Sk + Px + MV’ uses the multi-view transformer module and shows the largest gain of +1.0
PSNR, indicating the efficacy of learnt cross-attention between the skeletal features and pixel-aligned
features, as well as the importance of learnt inter-view correlations. Our full model ‘Sk + Px + T +
MV’ shows the best use of all the proposed components and achieves 24.75 PSNR and 0.9058 SSIM.

Impact of number of camera views. Table. 4b shows the performance of our method when
tested with different number of input views, fixing the number of timesteps to one. As expected, the
performance degrades slightly with fewer input views (e.g., as few as one).
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Variant Skeletal Pixel-aligned T-transformer MV-transformer PSNR SSIM
Sk ✓ 22.31 0.8865
Px ✓ 22.58 0.8780
Sk + Px ✓ ✓ 23.47 0.8906
Sk + Px + T ✓ ✓ ✓ 24.21 0.9016
Sk + Px + MV ✓ ✓ ✓ 24.44 0.9034
Sk + Px + T + MV ✓ ✓ ✓ ✓ 24.75 0.9058

Table 3: Ablation study. Results on the ZJU-MoCap dataset for unseen subjects and unseen poses. Sk: skeletal
features, Px: pixel-aligned features, T: temporal transformer, MV: multi-view transformer.

Exp. protocol Fine-tune PSNR SSIM
Trained on AIST 8-min 24.25 0.8954
Fine-tuned on ZJU-Mocap 16-min 24.73 0.9023
Trained on ZJU-Mocap 8-min 18.63 0.8242
Fine-tuned on AIST 16-min 18.83 0.8374

a . Cross-dataset generalization.

# Timesteps # Views PSNR SSIM

1

1 20.13 0.835
2 21.82 0.871
3 23.33 0.906
4 23.51 0.913

b . Impact of number of camera views.
Table 4: Cross-dataset generalization (left) and impact of different number of camera views tested on the
ZJU-Mocap dataset for unseen poses of unseen subjects (right).

5 Limitations

While our novel generalizable human performance rendering method outperforms recent per-subject
and generalizable NERF methods, there are remaining challenges yet to be explored. 1) While we
show that our method can generalize across datasets with finetuning, the generalization capability
will be limited as the distribution of the datasets become significantly different. 2) The performance
of our method will be affected as the SMPL parameter accuracy degrades. This is the reason for
lower performance on the AIST dataset where the accuracy of the SMPL fits are low due to highly
complex motion sequences. It is an interesting direction to jointly refine the SMPL parameters
using differentiable rendering within our framework. 3) Our algorithm does not have an explicit
assumption of static cameras. However, in practice, it might be hard to estimate the inputs to our
method (SMPL fits, camera parameters, foreground masks) with moving cameras due to motion blur,
changing background, lighting, and synchronization issues etc. We consider this as an orthogonal
problem and expect that any advancements in unconstrained multi-view capture setups will help to
generalize our method to in-the-wild settings.

6 Societal impact

We discuss the potential societal impact of our work. On a positive note, the human performance
synthesis is the key component of realizing telepresence, which has become more important especially
in this pandemic era. In the future, people physically apart can feel like they are in the same space
and feel connected with a few inexpensive webcams and AR/VR headsets thanks to the development
of the telepresence. Like any other technology, our method can also be used for other reasons by
corporations, e.g., for identity recognition from a small number of surveillance cameras. We strongly
hope that our research will be used in positive directions.

7 Conclusion

We present Neural Human Performer, a generalizable radiance field network based on a parametric
body model that can synthesize free-viewpoint videos for arbitrary human performers from sparse
camera views. Leveraging the trackable visual features from the input body motion prior, we propose
a combination of a temporal and a multi-view Transformer that integrates multi-time and multi-view
observations in a feed-forward manner. Our method can produce photo-realistic view synthesis
of unseen poses and identities at test time. In various generalization settings on the ZJU-MoCap
and AIST datasets, our method achieves state-of-the-art performance compared to other per-subject
methods that utilize a human body prior as well as the generalizable NeRF methods.
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