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Abstract—This paper presents an ultra-low power 
electrocardiogram (ECG) processor that can detect QRS-
waves in real time as the data streams in. The processor 
performs out-of-band noise suppression via a linear filter, 
and in-band noise suppression via a nonlinear filter. The 
nonlinear filter also enhances the QRS-waves by facilitating 
stochastic resonance. The processor identifies the QRS-
waves on noise-suppressed and enhanced recordings 
using a constant threshold detector. For energy-efficiency 
and compactness, the processor exploits current-mode 
analog signal processing techniques, which significantly 
reduces the design complexity when implementing the 
second-order dynamics of the nonlinear filter. The 
processor is designed and implemented in TSMC 65 nm 
CMOS technology. In terms of detection performance, the 
processor achieves an average 𝑭𝟏 = 𝟗𝟗. 𝟖𝟖% over the MIT-
BIH Arrhythmia database and outperforms all previous 
ultra-low power ECG processors. The processor is the first 
that is validated against noisy ECG recordings of MIT-BIH 
NST and TELE databases, where it achieves better 
detection performances than most digital algorithms run on 
digital platforms. The design has a footprint of 0.08 mm2 
and dissipates 2.2 nW when supplied by a single 1V supply, 
making it the first ultra-low power and real-time processor 
that facilitates stochastic resonance. 

 
Index Terms—Energy-efficient IC processor, physical 

computation, stochastic resonance, QRS-wave, real-time 
signal processing.  

I. INTRODUCTION 

LECTROCARDIOGRAM (ECG) is an electrical biopotential 

 
 

originated from the heart muscle, and it represents important 

cardiac and autonomic regulation information. Therefore, ECG 

has been a major biosignal for assessment of cardiovascular and 

autonomic nervous system [2] health. 

Advances in body sensor technologies have allowed ECG 

monitoring for extended periods, thereby enabling detection of 

rare cardiac cycle abnormalities [3], [4]. Among different ECG 

sensor systems, injectables [5] and implantables [6] are more 

comfortable than wearables for long term use [7]. The 

convenience, however, is achieved by having compact form 

factors, which limits the battery capacity. Therefore, to 

minimize charging frequency in daily use or frequent 

replacements of low-capacity batteries in the long term, strict 

power consumption constraints are imposed on these systems. 

 Conventional injectable/implantable ECG sensors operate on 

batteries with capacities ranging from a few μAh to a few tens 

of mAh [8], [9]. Typically, the battery powers three major 

blocks; namely analog front-end (AFE), signal conditioning 

and analog-to-digital converter (ADC), and radio (Fig. 1(a)). Of 

these, radio typically dissipates orders of magnitude greater 

power than the other blocks. For instance, the lowest reported 

power of those blocks in the literature is 20 μW [10] for the 

radio, in contrast to 1.05 nW [6] and 1.1 nW [6] for the AFE 

and ADC, respectively. Therefore, improvements in radio 

power consumption would also significantly improve the 

system power dissipation. 

One possible approach to reduce the radio power is 
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Fig. 1. ECG sensor system block diagram. (a) A conventional 
system. (b) On-site, real-time and low power ECG processing can 
allow gating of power-hungry blocks, thereby reducing the total 
system power. 
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minimizing the volume of data that must be transmitted. 

Alternative sampling techniques such as adaptive sampling 

[11], compressed sensing [12], and entropy encoder [13]  shrink 

the data volume. Although these approaches achieve more than 

60% data compression [13], and thus reduce both ADC and 

radio power dissipation; there is more room for improvement in 

long term ECG monitoring applications: Specifically, in 

arrhythmia detection and autonomic regulation assessment, 

which are among the most common use cases of implantable 

and injectable ECG monitoring systems, the most important 

feature to detect and analyze is the QRS-wave [2], [7], [14]. The 

QRS-wave duration can range between 80 ms and 120 ms [15]. 

Therefore, considering a heart rate range of 30 beats per minute 

(bpm) and 240 bpm [16], [17], by activating the ADC and radio 

to transmit only the QRS waves would reduce the data volume 

by at least 52% and as much as 96%. It is noteworthy that, the 

aforementioned alternative sampling techniques can be applied 

on only the QRS-waves to achieve additional data volume 

compression.  

Notably, in addition to potentially achieving significant data 

compression and consequent power consumption reduction, on-

chip QRS-wave detection is particularly appropriate from time 

sensitivity and privacy perspectives of ECG monitoring. By 

detecting the heart beats and identifying the rare arrhythmia 

events on site at the ECG node also minimizes the dependence 

to the radio link (Fig. 1(b)), which could suffer from poor data 

connections leading to delays in transmission of time sensitive 

information [10] or channel attacks targeting the sensitive 

health data [18]. 

Transmission of only the QRS-waves necessitates on-chip 

QRS-wave detection [13], [15]. Furthermore, since the 

detection should be continuously performed, to fully benefit 

from the power savings of data compression, the additional 

power consumption of a QRS-wave detection processor should 

be significantly smaller than that of the radio and comparable 

to that of the AFE, which is the other block that is constantly 

on. This study focuses on design and validation of such an 

energy-efficient QRS-wave detection processor (Fig. 1(b)). 

Several on-chip ECG processors identify the QRS-waves 

with high accuracy, while remaining below the strict power 

consumption target of a few nW [5], [15], [19]–[21]. In all these 

systems, first, a pre-processing stage enhances the QRS-waves 

while suppressing noise. Pre-processing is followed by 

detection, which is typically performed by thresholding the 

enhanced QRS-waves. Therefore, in this scheme, detection 

accuracy strongly depends on the pre-processing stage 

performance. In fact, the processors implementing more 

complicated noise suppression and QRS-wave enhancement 

techniques (e.g., curve length transform [15] or wavelet 

transform [22]) also report better detection performance than 

those implementing simpler enhancement methods (e.g., 

amplitude thresholding [19] or band-pass filtering [23]).  

On the flip side, to a first order approximation, algorithm 

complexity increases power consumption. A remedy for power 

consumption is leveraging analog signal processing (ASP) 

instead of digital signal processing (DSP) techniques to 

implement an algorithm. To illustrate, a digital implementation 

of the popular Pan-Tompkins (PT) algorithm consumes 2.78 

μW [24], three orders of magnitude more power than an ASP 

implementation in the same technology based on the PT 

algorithm in [25]. While transforming an algorithm originally 

designed in the digital domain into the analog domain is 

attractive for power savings, a one-to-one mapping across the 

domains is not always possible. For instance, the adaptive 

thresholding obtained as a weighted sum of the QRS-wave 

peaks and the noise level of the full recording in the original PT 

algorithm [26] is replaced with hard-thresholding in the ASP 

version [25] for a memory-free fully analog implementation. 

With this simplification in the design, detection sensitivity is 

compromised (i.e., 99.83% in a digital PT [24] vs. 99.63% 

[25]). 

In this study, the overarching goal is to significantly enhance 

the battery life of implantable and injectable ECG monitoring 

systems. To achieve the goal, the study aims to significantly 

reduce the data volume, and thus potentially minimize the radio 

power, by detecting the important features of ECG, namely 

QRS-waves, in real-time and in an ultra-low power manner. In 

doing so, this work follows a different QRS-wave enhancement 

approach that has direct physical computing roots, and thus 

enabling a natural and efficient implementation as an ASP 

algorithm in silicon. The QRS-wave enhancement engine of the 

ECG processor is a nonlinear filter. Notably, the filter facilitates 

stochastic resonance (SR), where the noise existing in the signal 

assists the filter in enhancing the QRS-waves. Accordingly, the 

study shows that, even in noisy recordings, the nonlinear filter 

leads to high QRS-wave detection performance. 

A numerical analysis of the nonlinear filter performing QRS-

wave detection was presented in [27]. Furthermore, a circuit 

implementation of the filter was introduced with only 

schematic-level simulation results in [28]. Unlike those 

previous studies, this work, for the first time, experimentally 

demonstrates an ultra-low power implementation of an ECG 

processor system that has the proposed nonlinear filter at its 

core. The processor detects the QRS-waves truly in real-time as 

digitally amplified ECG recordings from multiple ECG 

databases are streamed in. The study presents measurement 

results characterizing the different blocks of the processor and 

the QRS-wave detection performance of the full system in 

detail. The novelties of the work are (1) presenting the 

experimental results of a nonlinear filter that enhances QRS-

waves in an ECG by facilitating stochastic resonance, (2) 

demonstrating an ultra-low power and real-time processor that 

facilitates stochastic resonance, and (3) validating an ultra-low 

power and real-time ECG processor against noisy MIT-BIH 

NST and TELE databases. 

In Section II, the nonlinear filter and its mechanisms for noise 

suppression and QRS-wave enhancement are presented. In 

Section III, the circuit implementation of the ECG processor is 

discussed. In Section IV, measurement results of QRS-wave 

detection in three major benchmarking databases are presented, 

which is followed by the discussion of the results in Section V. 

The paper is concluded in Section VI. 
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II. NONLINEAR FILTERING FOR QRS-WAVE ENHANCEMENT 

The block diagram of the proposed ECG processor is shown 

in Fig. 2. QRS-wave enhancement is achieved through two 

filters, a high-pass filter (HPF) and a novel nonlinear filter. The 

HPF is a 1st order linear filter with cut-off frequency set at 1 Hz 

to suppress the low-frequency baseline wander. Properties of 

the novel nonlinear filter and its mechanisms for in-band noise 

suppression and QRS-wave enhancement are presented in the 

rest of this section. 

A.  Nonlinear Filter Overview 

To take advantage of the noise existing in an ECG signal 

when enhancing the QRS-waves, the nonlinear filter 

implements the dynamics of a particle inside a well potential, 

which is a system widely used in the literature studying signal 

enhancement by facilitating noise, namely stochastic resonance 

(SR) [29]. Following numerical analyses on different potential 

shapes and damping scenarios [30], high SNR improvements 

for QRS-waves are demonstrated when the system is an 

underdamped monostable potential well in [27] (Fig. 3). In this 

system, the particle moves inside the well potential under the 

influence of two forces, 𝑓𝐸𝐶𝐺(𝑡) and 𝑓𝑤𝑒𝑙𝑙(𝑥, 𝑡). Of these forces 

exerted onto the particle, the former is the input of the system, 

ECG, and the latter is the force applied by the monostable well 

potential, 𝑈(𝑥, 𝑡) = 𝑎𝑥(𝑡)2/2, towards the stable point with 

𝑓𝑤𝑒𝑙𝑙(𝑥, 𝑡) = −𝑑𝑈(𝑥, 𝑡)/𝑑𝑥 = −𝑎𝑥(𝑡), where 𝑎 determines 

the steepness of the well. The output of the system is the 

projection of the particle on the 𝑥-axis, 𝑥(𝑡). The differential 

equation governing the dynamics of this system is presented in 

Section III.B. 

B.  In-Band Noise Suppression 

The nonlinear filter performs in-band noise suppression on 

accounts of the presence of a stable point in the system. 

Accordingly, when 𝑓𝐸𝐶𝐺  is small; such as ECG portions outside 

the prominent QRS-wave, P-wave, or T-wave features; 𝑓𝑤𝑒𝑙𝑙  

rapidly balances 𝑓𝐸𝐶𝐺  out. Therefore, 𝑓𝐸𝐶𝐺  cannot move the 

particle considerably away from the stable point, which causes 

the particle to swing within a proximity around the stable point 

and keeps the output, 𝑥(𝑡), small. 

C.  QRS-Wave Enhancement 

Two mechanisms are responsible from QRS-wave 

enhancement: (i) large 𝑓𝐸𝐶𝐺  during the QRS-waves and (ii) SR. 

Large 𝑓𝐸𝐶𝐺  during QRS-waves can move the particle outside the 

stable point, and thus increasing the 𝑥(𝑡) amplitude. 

Additionally, the system exhibits SR, where a noisy 𝑓𝐸𝐶𝐺  can 

help the particle reach greater 𝑥(𝑡) compared to a noise-free 

𝑓𝐸𝐶𝐺 . In this system, it is essential to have an optimum noise 

intensity that is large enough to observe the aid of noise and 

small enough to prevent ECG from being swamped by noise. 

Facilitation of SR in a system of particle inside a monostable 

well is theoretically verified in [31]. Verification of SR on the 

physical implementation of the system is presented in Section 

IV.C. 

III. ECG PROCESSOR 

The ECG processor is designed in TSMC 65nm CMOS 

technology. To minimize gate leakage, high-voltage devices are 

used. Two major points are considered when transforming the 

digital algorithm in [27] into the analog domain. 

The first consideration is achieving design simplicity to 

minimize power, area, and noise. Analog processing offers 

better power and area efficiency than digital for smaller 

effective resolution levels (i.e., six to eight bits of effective 

resolution). However, one should be particularly careful with 

the noise in the circuit, which increases with design complexity, 

since unlike digital processing, analog computing does not offer 

bit correction. To reduce complexity, this work follows three 

design choices: (i) Unlike digital processors, where voltage is 

used to represent digitized levels of information, in analog, the 

designer has the liberty to represent the continuous information 

as current or voltage. To easily interface with a preceding 

analog front-end stage feeding the ECG signals and control a 

succeeding signal conditioning and radio blocks following the 

QRS-wave detection, the processor is designed to receive 

voltage inputs and generate voltage pulses. On the other hand, 

to efficiently perform the several signal manipulations in the 

processing chain (e.g., multiplications, additions/subtractions, 

differentiation, etc.), the information is presented as current 

signals inside the processing chain. (ii) While transforming the 

developed digital nonlinear filter into the analog domain, the 

processor uses a simplified version of the monostable well 

potential function used in the simulation-based nonlinear 

filtering studies presented in [27] and [28], which form the 

bases of this work. The monostable well in Fig. 3 is represented 

by a 2nd order function, 𝑎𝑥2/2, rather than a 4th order function, 

𝑎𝑥2/2 + 𝑏𝑥4/4, informed by a previous study showing the 

insignificance of the 4th order term on the nonlinear filter 

dynamics [32]. (iii) A 1st order high-pass filter is implemented 

instead of a higher-order band-pass filter in the digital version 

of the algorithm in [27] and [28]. The high-pass filter is 

preferred as the baseline wander is more problematic than high 

 
Fig. 3. A nonlinear system facilitating stochastic resonance is a 
particle in an underdamped monostable well. The forces, 𝑓𝐸𝐶𝐺(𝑡) 

and 𝑓𝑤𝑒𝑙𝑙(𝑥, 𝑡), acting on the particle are shown for different particle 
locations. 

 
Fig. 2. Block diagram of the proposed QRS-wave detector. 
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frequency noise for nonlinear filter circuitry. The designed 

high-pass filter also converts the voltage input into current for 

the rest of the processor. 

The second consideration is related to the difference between 

solving a differential equation in analog and digital. In digital, 

solution of the generalized Langevin equation, which is a 2nd 

order differential equation, is approximated using numerical 

solvers such as the Runge-Kutta method. On the other hand, 

solving a differential equation in analog translates into 

implementing the differential equation in silicon using circuit 

elements, which in real-time solves for the desired variable 

without approximations. In implementing the differential 

equation in analog circuit shown in Fig. 6, it is ensured that the 

integration is achieved within the ECG bandwidth.  

The design is supplied by an external power supply of 1 V 

and all bias voltages are provided externally. Throughout the 

design, identical operational transconductance amplifiers 

(OTAs) are used. For energy-efficiency and compactness, all 

devices of the pMOS-input OTA are sized to operate in weak 

inversion saturation with the device sizes presented in Fig. 4. 

The output current-input voltage relationship demonstrates a 

transconductance of 85 pS with an input linear range of 90 mV. 

The maximum gain is measured as 28 dB and the unity-gain 

bandwidth is measured as 2.7 kHz. When biased with 10 pA 

(the bias current of the integrators), the OTA dissipates 30 pW 

and the area consumption of a single OTA is 0.00484 mm2. 

Compared with recent OTAs used in analog signal processing 

applications [33]–[35], the designed OTA achieves a high gain-

bandwidth product (GBW) per power and area. Specifically, the 

OTA demonstrates a GBW per nW*mm2 of 20.25 MHz as 

opposed to <50 kHz of the designs in [33] and [34]. 

The blocks of the ECG processor are detailed below. 

A.  High-Pass Filter 

The band-pass filter (HPF) is designed as a 1st-order voltage-

to-current transconductance stage (Fig. 5(a)). The OTA output 

current is copied using M8’ and M6’ devices in Fig. 5(a), which 

serve as additional outputs for the M7-M8 and M4-M6 mirrors 

in Fig. 4. The filter has the transfer function:  

𝐼𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
= −

𝑠𝐶ℎ𝑝𝑓

1 + 𝑠𝐶ℎ𝑝𝑓/𝐺𝑚

                        (1) 

where 𝐶ℎ𝑝𝑓 = 10 𝑝𝐹. The OTA is biased with 10 pA to achieve 

a transconductance of 10 𝑝𝑆 and cut-off frequency at 1 Hz, as 

shown in Fig. 5(b). 

B. Nonlinear Filter 

The dynamics of the nonlinear system shown in Fig. 3 are 

governed by the generalized Langevin equation [27], [28]: 

𝑑2𝐼𝑥(𝑡)

𝑑𝑡2
+ 𝛾

𝑑𝐼𝑥(𝑡)

𝑑𝑡
= −𝑎𝐼𝑥 + 𝐼𝐸𝐶𝐺 (𝑡),                  (2) 

where the left-hand side governs force terms proportional to the 

acceleration and velocity of the particle and the right-hand side 

terms are respectively the 𝑓𝑤𝑒𝑙𝑙  and 𝑓𝐸𝐶𝐺  in Fig. 3. In (2), 𝛾 is 

damping constant, 𝑎 is monostable well potential constant, and 

𝐼𝐸𝐶𝐺 (𝑡) is high-pass filtered ECG signal. The output of (2) is 

implemented as a current variable, 𝐼𝑥, which is obtained through 

a closed-loop system presented in Fig. 6. The integrator outputs 

are scaled to reflect the values of the damping constant, 𝛾 = 20, 

and well potential constant, 𝑎 = 1; and fed back to the input 

node. Integrator output scaling is performed via cascode current 

mirrors.  

The selection of 𝑎 and 𝛾 are informed by their effects on SNR 

improvement [27], [30], which is evaluated numerically in 

MATLAB (MathWorks, Natick, MA, USA) using the 

 
Fig. 4. An OTA is designed as the transconductance element used 
in the processor. Device sizes are given as 𝑤𝑖𝑑𝑡ℎ/𝑙𝑒𝑛𝑔𝑡ℎ in μm. 

 
Fig. 5. A first-order voltage-to-current high-pass filter. (a) 
Schematic. (b) Frequency response. 

 
Fig. 6. The closed-loop block diagram of the proposed nonlinear 
filter implementing the dynamics of the monostable well in Fig. 3. 
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recording 100 of the MIT-BIH Arrhythmia database [36].  

Here, signal-to-noise ratio (SNR) is defined as: 

   𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝐴𝑝𝑝 𝑜𝑓 𝑄𝑅𝑆−𝑤𝑎𝑣𝑒𝑠

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑛𝑜𝑖𝑠𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
),     (3) 

where 𝐴𝑝𝑝 is the average peak-to-peak amplitude of 100 

arbitrarily selected QRS-waves. QRS regions are segmented as 

100 ms time windows centered around the true QRS-wave 

points. The 100 QRS-wave point set consists of one 

automatically and arbitrarily selected QRS-wave point using 

the 𝑟𝑎𝑛𝑑 function of MATLAB and the 99 QRS-wave points 

succeeding it. For noise standard deviation, 100 noise segments 

(~1 s each) are selected arbitrarily inside the sections between 

the selected QRS-wave segments. It is noteworthy that, with the 

target of this study being QRS-wave detection, all ECG signal 

portions outside the QRS-wave segments are counted as noise. 

The SNR improvement (∆𝑆𝑁𝑅) is calculated as ∆𝑆𝑁𝑅 =
𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛 where 𝑆𝑁𝑅𝑖𝑛 and 𝑆𝑁𝑅𝑜𝑢𝑡 are input and 

output SNRs calculated with (3). ∆𝑆𝑁𝑅 peaks at 𝑎 = 1 and 𝛾 =
20 as shown in a parametric sweep in Fig. 7.  

To facilitate current-mode signal processing, the integrators 

are designed as current-input and current-output (Fig. 8). An 

integrator consists of two OTAs, where the 1st and the 2nd OTAs 

respectively serve as a transimpedance integrator stage and a 

transconductance stage. Both OTAs have the same schematic 

as given in Fig. 4. By mirroring the devices at the output branch 

of the 2nd OTA, the integrator output is equal to the output 

current of the 2nd OTA. With a parasitic capacitance, 𝐶𝑝, at the 

output node of the 2nd OTA, the transfer function consists of 

two poles at 𝑝1 = 𝐶𝑖𝑛𝑡/𝐺𝑚1 and 𝑝2 = 𝐶𝑝/𝐺𝑚2, and a zero at 0 

Hz: 

𝐼𝑜𝑢𝑡(𝑠)

𝐼𝑖𝑛(𝑠)
=

𝑠𝐶𝑝/𝐺𝑚1

(1 + 𝑠𝑝1)(1 + 𝑠𝑝2)
                     (4) 

In (4), the gain is controlled by 𝐶𝑝/𝐺𝑚1. For integration over 

the ECG bandwidth of [0.5-100] Hz, the poles are placed at 0.1 

Hz and 500 Hz by setting 𝐺𝑚1 and 𝐺𝑚2 values as 10 pS and 65 

nS (Fig. 8(b)). 

C.  Threshold Detector 

The threshold detector is implemented as a current 

comparator that compares the nonlinear filter output 𝐼𝑥 with a 

dc threshold, 𝐼𝑡ℎ (Fig. 9). When 𝐼𝑡ℎ is higher (lower) than 𝐼𝑖𝑛, 

the output voltage, 𝑉𝑜𝑢𝑡, is pulled to a low (high) voltage by M6 

(M4). For a recording, 𝐼𝑡ℎ is kept constant. However, for each 

recording, 𝐼𝑡ℎ is individually set in multiples of 0.1 nA to 

maximize QRS-wave detection performance quantified using 

the F1 score explained in Section IV.D. The 𝐼𝑡ℎ value is set at 

0.1 nA for most of the ECG recordings across databases. 

 
Fig. 7. The SNR improvement of the nonlinear filter with respect to 
𝑎 and 𝛾. The results are obtained using the recording 100 of the 
MIT-BIH Arrhythmia database. 

 
Fig. 8. Current-to-current integrator. (a) Schematic. Both OTAs have 
the same schematic given in Fig. 4. (b) Frequency response.  

 

Fig. 9. Current comparator. 

 

Fig. 10. Die photo. 
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IV. RESULTS 

The total area of the processor is 0.08 mm2 (Fig. 10). The 

processor dissipates 2.2 nW when supplied by a single 1 V. 

Area and power dissipation breakdown are as follows: High-

pass filter consumes 0.1 nW and 0.012 mm2, integrators 

consume 1.9 nW and 0.061 mm2, current mirrors consume 0.15 

nW and 0.005 mm2, and threshold detector consumes 0.05 nW 

and 0.002 mm2. 

A.  Measurement Setup 

The measurement setup is shown in Fig. 11. A printed circuit 

board (PCB) interface is designed to interface the chip with the 

measurement instruments. Analog Discovery 2 (Digilent, 

Pullman, WA) instruments are used for supplying the 1 V and 

bias voltages, as well as supplying the analog ECG recordings 

to the processor after performing 14-bit digital-to-analog 

conversion of the recordings at frequencies that match the 

original sampling rates (i.e., 360 Hz for MIT-BIH Arrhythmia 

and MIT-BIH NST databases, and 500 Hz for TELE database). 

B2912A and B2901BL sourcemeters (Keysight Technologies, 

Santa Rosa, CA), an SRS SR785 spectrum analyzer (Stanford 

Research Systems, Sunnyvale, CA), and an MSOX3024T 

oscilloscope (Keysight Technologies, Santa Rosa, CA) are used 

to individually characterize the blocks. For precise current 

measurements, the chip is connected to the sourcemeters via 

N1294A-001 banana-triax adapters. The voltage waveform 

outputs of the processor are captured using an MP 160 data 

acquisition system (Biopac Systems Inc., Goleta, CA), for 

detection performance assessment on MATLAB. For 

illustration purposes, nonlinear filter current output waveforms, 

𝐼𝑥, are captured by the B2912A sourcemeter. 

Waveforms from the processing chain corresponding to an 

exemplary six second portion of the recording 100 from the 

MIT-BIH Arrhythmia database [36] are presented in Fig. 12.  

B.  In-Band Noise Suppression Assessment 

To verify the in-band noise suppression of the nonlinear 

filter, three ECG recordings from the MIT-BIH Arrhythmia 

databases are used [36]. First, QRS-wave segments in ECG 

signal and nonlinear filter output are identified by selecting 100 

ms time windows around the true QRS-waves. Then, the ECG 

portions between the selected QRS-wave segments are 

identified as noise sections. Notably, although such ECG 

portions include other physiologically important ECG features 

(e.g., P-wave and T-wave), they are undesired from QRS-wave 

detection perspective. Among all noise sections, ECG in-band 

([0.5-100 Hz]) power of arbitrarily-selected 100 of them are 

calculated both for the input, 𝐼𝐸𝐶𝐺  and the output, 𝐼𝑥 signals. 

The average power decrease for the recordings are calculated as 

8.83 𝑑𝐵, 8.6 𝑑𝐵, and 8.58 𝑑𝐵 respectively for low- (#103), 

medium- (#116), and high-noise (#207) recordings. 

C.  Demonstration of Stochastic Resonance in QRS-
Wave Enhancement 

The SR facilitation in the nonlinear filter is demonstrated 

using an exemplary 6 s portion of one of the cleanest recordings 

(#100) of the MIT-BIH Arrhythmia database. White Gaussian 

noise at varying standard deviations, 𝜎, were added digitally on 

the recording in MATLAB and fed to the nonlinear filter. The 

nonlinear filter outputs are stored and ∆𝑆𝑁𝑅 is calculated as 

described in (3), this time using only eight QRS-waves. The 

SNR improvement obtained by the nonlinear filter in Fig. 13 

demonstrates the characteristic bell curve of SR, where an 

optimum additive non-zero white Gaussian noise intensity (𝜎 =
3.15 𝑛𝐴) maximizes ∆𝑆𝑁𝑅. Notably, this behavior is in line 

 

Fig. 11. Measurement setup. The acquisition PC is used to control 
the Digilent Analog Discovery 2 devices, which supply the bias 
voltages and feed the ECG recording to the processor. B2901BL 
and B2912A sourcemeters are used to characterize the integrators 
and the nonlinear filter, where the B2912A sources input currents 
and B901BL measures output currents of the block under test. 

 
Fig. 12. Waveforms from the processing chain for a 6 s portion of a 
recording. SNR improvement for this portion is ∆𝑆𝑁𝑅 = 0.42 𝑑𝐵. 
From top to bottom; the raw ECG signal; the high-pass filtered ECG 
current signal, 𝐼𝐸𝐶𝐺; the nonlinear filter output, 𝐼𝑥; and the threshold 

detector output 𝑉𝑜𝑢𝑡 are shown. The true and detected QRS-wave 
positions are shown on the top row with black and red dots, 
respectively. The third raw also shows the threshold 𝐼𝑡ℎ level. The 
gray brackets on the top row indicate the search windows used to 
evaluate the QRS-wave detection performance as explained in 
Section IV.D. 

 

Fig. 13. A 6 s portion of the recording 100 of the MIT-BIH Arrhythmia 
database is added with increasing intensities of noise and the SNR 
improvement is measured. The SNR improvement displays the 
characteristic bell curve shape of SR and peaks at a noise standard 
deviation of 3.15 nA. The theoretical expectation of SNR 
improvement with noise obtained using the Fokker-Planck equation 
displays a similar trend. 
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with the theoretical expectations. The noise suppression and 

signal enhancement of the nonlinear filter is theoretically 

analyzed with statistical methods and specifically using the 

Fokker-Planck equation, which assesses ∆𝑆𝑁𝑅 with noise. The 

∆𝑆𝑁𝑅 is inversely and exponentially proportional to noise 

intensity as [37], ∆𝑆𝑁𝑅 𝛼 (
𝜖∆𝑈

𝐷
)

2

𝑒𝑥𝑝 (−
∆𝑈

𝐷
) where 𝐷 is the 

noise intensity, 𝜖 is the input signal amplitude to the nonlinear 

filter, and ∆𝑈 is the potential well change by particle 

movement. For 𝜖 = 3.23 and ∆𝑈 = 8, the Fokker-Planck leads 

to the dashed curve in Fig. 13. 

D.  QRS-Wave Detection Performance on Major ECG 
Databases  

The proposed ECG processor is evaluated using the MIT-

BIH Arrhythmia [36], MIT-BIH Noise Stress Test (NST) [38], 

and Telehealth (TELE) [16] databases.  

The MIT-BIH Arrhythmia database [36] includes 48 30-

minute ECG recordings, and it is widely used as a 

benchmarking database for QRS-wave detection.  

The MIT-BIH NST database contains 12 30-minute 

recordings created by adding calibrated amounts of electrode 

motion artifact noise on two clean recordings from the MIT-

BIH Arrhythmia database [38]. The MIT-BIH NST database is 

used to assess the QRS-wave detection performance of the 

proposed processor on the noisy ECG signals.   

TELE database includes 250 recordings in different lengths 

measured in telehealth environment while subjects are holding 

electrodes on their hands. 250 recordings are selected from 

measurements conducted with 208 subjects [16]. TELE 

database is also used to evaluate the QRS-wave detection 

performance on poor quality recordings. 

In Fig. 14, example portions of waveforms of high-noise 

recordings from all three databases along with respective 

outputs from the processor are shown. 

QRS-wave detection performance is assessed using 

sensitivity (𝑆𝑒), positive predictivity (+𝑃), and F1 score (𝐹1) 

metrics described as below:  

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100, +𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100, 

(5) 

𝐹1 =
2 ∗ 𝑆𝑒 ∗ (+𝑃)

𝑆𝑒 + (+𝑃)
, 

where 𝑇𝑃, 𝐹𝑁, and 𝐹𝑃 are respectively the numbers of true 

positive, false negative, and false positive detections obtained 

by following the ANSI/AAML EC57 standard [39], which 

defines the time window used to identify the true positive (𝑇𝑃) 

and false negative (𝐹𝑁) values after an ECG recording is 

processed for QRS-wave detection. For each 𝑄𝑅𝑆𝑡𝑟𝑢𝑒, 

existence of a 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  is investigated through a search 

within a ± 150 𝑚𝑠 time window around the 𝑄𝑅𝑆𝑡𝑟𝑢𝑒. If a 

𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  is found, then the 𝑇𝑃 is incremented. If a 

𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  is missing, then the 𝐹𝑁 is incremented. The 

 
Fig. 14. 5 s portions of sample waveforms for poor quality noisy 
recordings from the (a) MIT-BIH Arrhythmia (Recording 215, 
∆𝑆𝑁𝑅 = 6.8 𝑑𝐵), (b) MIT-BIH NST (Recording 118e00, ∆𝑆𝑁𝑅 =
6.54 𝑑𝐵), and (c) TELE databases (Recording 79, ∆𝑆𝑁𝑅 =
14.71 𝑑𝐵). For each recording; the raw ECG signal; the high-pass 
filter output, 𝐼𝐸𝐶𝐺; and the nonlinear filter output 𝐼𝑥 are shown. The 
true and detected QRS-wave timestamps are given on the top row 
with black and red dots, respectively. 

TABLE I 
PERFORMANCE EVALUATION OF THE PROPOSED PROCESSOR ON THE 

MIT-BIH ARRHYTHMIA DATABASE 

ECG 

record # 

Total # 

of beats 
Se (%) +P (%) DER Acc (%) 

101 1865 99.84 99.95 0.2 99.79 

104 2229 99.92 99.92 0.17 99.82 
114 1879 100 99.84 0.15 99.84 

116 2412 99.3 100 0.7 99.3 

201 1963 99.95 100 0.05 99.95 
207 1860 99.84 91.71 9.2 91.57 

208 2955 99.8 100 0.2 99.8 
215 3363 99.59 100 0.4 99.59 

217 2208 99.91 100 0.09 99.91 

222 2483 99.52 100 0.48 99.52 
228 2053 99.52 100 0.48 99.52 

Remaining 84248 100 100 0 100 

Overall 109518 99.94 99.82 0.25 99.76 

 
  



First Author et al.: Title 3 

number of false positives (𝐹𝑃) is calculated as the difference of 

the number of 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 and 𝑇𝑃.  [25] [15] [19] [20] 

The QRS-wave detection performance for the MIT-BIH 

Arrhythmia database is presented in Table I. In Table I, 

recordings with non-zero detection error rate (𝐷𝐸𝑅) are 

presented as separate lines, while the performance metrics of all 

remaining recordings with zero 𝐷𝐸𝑅 are presented in the last 

row. The average sensitivity and positive predictivity values for 

MIT-BIH Arrhythmia database are 99.94% and 99.82%, 

respectively. A comparison of the proposed processor with the 

state-of-the-art low-power QRS-wave detectors is presented in 

Table II. The processor achieves the best detection performance 

and fits in the most compact form factor, while dissipating 2.2 

nW, making it one of the most power-efficient ECG processors.  

The QRS-wave detection performance for the MIT-BIH NST 

database is presented in Table III. The average 𝑆𝑒 and +𝑃 

values are 99.84% and 98.95%, respectively. The proposed 

processor outperforms other signal processing methods 

validated on the MIT-BIH NST database (Table IV). [21] [40]   

The proposed processor achieves 98.56% average sensitivity 

and 98.67% average positive predictivity on 250 recordings in 

the TELE database (Table V). The processor can detect the 

QRS-waves with better sensitivity than the other methods, 

except for a convolutional neural network (CNN) approach in 

[41]. [27] [42] [43] [41] [44] [45] [46]  [16] [26] [47] [17] [48]  

V.  DISCUSSION 

The Tables II, IV, and V summarize the detection 

performance of the processor on three different databases. As 

evident from the tables, the processor achieves better detection 

performance than most algorithms both in 𝑆𝑒 and +𝑃 with the 

exception being a CNN algorithm. In the MIT-BIH NST and 

the TELE databases, [41] achieve better 𝑆𝑒 than the proposed 

processor. The better performance of the CNN algorithm in 

[41], is likely related to its complexity (6 layers each with 30 

neurons) and the rich dataset of all recordings in the MIT-BIH 

Arrhythmia, MIT-BIH NST, and TELE databases used to train 

the network. Additionally, the results are obtained through 5-

fold cross-validation. In fact, in another CNN algorithm in [49], 

which has less complexity (2 layers each with 20 neurons) and 

is trained using limited datasets, the performance is worse than 

the proposed processor on the TELE database as evident in the 

Table V. It should be noted that, in terms of 𝐹1, which is a 

balanced metric between 𝑆𝑒 and +𝑃, the proposed processor 

outperforms all algorithms including [41]. Notably, using 

multiple layers in CNN approaches results in high complexity, 

which necessitate rich datasets for training [41]. On the other 

hand, the proposed processor has low complexity, and it 

processes signals in real-time without need for training. The 

better QRS-wave detection performance of the proposed 

TABLE II 
PERFORMANCE COMPARISON WITH ULTRA-LOW POWER QRS DETECTORS VALIDATED USING THE MIT-BIH ARRHYTHMIA DATABASE 

 Algorithm / Domain Type / Technology 
Performance 

Power 
Area 

(mm2) Se (%) +P (%) 

This work Nonlinear filter / Analog ASIC / 65nm 99.94 99.82 2.2 nW 0.08 

Güngör, 2021 [25] PT-based / Analog ASIC / 65nm 99.63 99.47 1.2 nW 0.078 

Tekeste, 2019 [15] A-CLT / Digital ASIC / 65nm 99.3 99.38 6.5 nW 4 0.1 

He, 2015 [19] Analog 180nm N/A N/A 4.8 nW 1 0.76 2 

Yin, 2021 [20] Derivative / Digital ASIC / 65nm 98.22 99.26 81.9 nW 1.77 2 

Bose, 2020 [21] Adaptive Th / Digital ASIC / 180nm N/A N/A 92 nW 0.24 3 

Tang, 2021 [40] Digital ASIC / 180nm 99.08 99.76 151 nW 0.248 

1 For a direct comparison, only the processor blocks of the system are considered. 2 Total active/digital area. 3 Estimated from the annotated die photo.          
4 Simulated power consumption.  

TABLE III 
QRS DETECTION PERFORMANCE OF THE PROCESSOR (MIT-BIH NST)  

ECG 

record # 

Total # 

of beats 
Se (%) +P (%) F1 Score (%) 

118e24 2278 100 100 100 

118e18 2278 99.83 99.83 99.83 

118e12 2278 100 99.74 99.87 

118e06 2278 100 99.7 99.85 
118e00 2278 99.87 99.65 99.76 

118e_6 2278 99.26 99.65 99.455 

119e24 1987 100 99.9 99.95 
119e18 1987 100 99.95 99.975 

119e12 1987 99.95 99.4 99.674 
119e06 1987 99.5 97.2 98.337 

119e00 1987 99.95 96.1 97.987 

119e_6 1987 88.63 94.89 91.653 

Overall 25590 98.92 98.84 98.86 

 
  TABLE IV 

QRS DETECTION PERFORMANCE COMPARISON (MIT-BIH NST) 

 
QRS detection 

method 

Se 

(%) 

+P 

(%) 

F1 Score 

(%) 

This work Nonlinear filter 98.92 98.84 98.86 

Güngör, 2022 [27] SR 98.65 99.11 98.87 
Benitez, 2000 [42] Hilbert Transform 93.48 90.6 92.02 

Merah, 2015 [43] Stationary WT 95.3 93.98 94.63 

Jia, 2020 [41] CNN 99.25 96.31 97.76 
Elgendi, 2013 [44] Squaring + MA 95.39 90.25 92.74 

Pander, 2022 [45] FCMC 95.27 94.7 94.98 

Rahul, 2021 [46] Third power + AT 97.58 96.04 96.8 

SR: Stochastic Resonance, WT: Wavelet Transform, MA: Moving 

Average, FCMC: Fuzzy c-median Clustering, EMD: Empirical Mode 
Decomposition, AT: Adaptive Thresholding.  

 
  

TABLE V 
QRS DETECTION PERFORMANCE COMPARISON (TELE)  

 
QRS detection 

method 

Se 

(%) 

+P 

(%) 

F1 Score 

(%) 

This work Nonlinear filter 98.56 98.67 98.37 

Khamis, 2016 [16] UNSW 98.05 95.75 96.88 

Pan, 1985 [26] 1 PT 97.33 85.58 91.07 

GR, 2015 [47] 1 GR 95.18 91.94 93.53 
Kasnif, 2017 [17] STAPLE 96.89 98.33 97.60 

Arzeno, 2008 [48] 2 HT + Derivative 93.9 90.6 92.22 

Jia, 2020 [41] CNN 98.99 95.57 97.24 
Ganapathy, 2021 [49] CNN 97.2 98.16 97.67 

1 Implemented in [16]. 2 Implemented in [17]. GR: Gutierrez Rivas 
algorithm, STAPLE: Simultaneous truth and performance level 

estimation, HT: Hilbert Transform, CNN: Convolutional Neural Network.  
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processor with low-complexity in real-time marks superiority 

of the processor over CNN algorithms. 

The QRS-wave detection performance results ascribe the 

significant noise suppression and QRS-wave enhancement 

performance of the proposed nonlinear filter. Specifically, the 

optimized 𝑎 and 𝛾 values in (2) are shown to be robust against 

different recording conditions and subjects. It is noteworthy 

that, the selection of threshold level is another critical factor 

leading to the high detection performance. In this work, 

threshold level is kept constant throughout a recording. 

However, the constant threshold value is selected empirically 

as multiples of 0.1 nA (i.e., 0.1 nA, 0.2 nA, 0.3 nA, etc.) such 

that the 𝐹1 score is maximized for each recording. Considering 

the inaccessibility to the true QRS-wave locations in a practical 

recording, adjusting the threshold level for a recording can be 

seen as a disadvantage. However, in the future, the selection of 

the threshold level can be made based on the statistics of the 

nonlinear filter output, 𝐼𝑥 . In fact, the initial analysis performed 

on recordings from the databases shows that, the selected 

threshold value is very similar to the variance of the complete 

recording (Fig. 15).  [41] [49] 

To evaluate the consistency and reliability of the proposed 

processor, Monte Carlo and process corner simulations are 

performed in Cadence Spectre using a medium-noise recording 

(#116) from the MIT-BIH Arrhythmia database. The recording 

is fed to the nonlinear filter to evaluate the SNR improvement 

variability and to the complete processor to evaluate the QRS-

wave detection variability. In both cases, the output is exported 

into MATLAB for the assessment across Monte Carlo iterations 

and process corners (tt, ff, ss, sf, fs). For the Monte Carlo 

simulations, 100 iterations of simulation are performed on the 

given recording. The mean SNR improvement of the nonlinear 

filter across the Monte Carlo and process corner simulations are 

50.2 𝑑𝐵 and 58.3 𝑑𝐵, respectively. Even though the nonlinear 

filter has relatively high SNR improvement standard deviations 

across Monte Carlo and process corner simulations 

(±10.96 𝑑𝐵 and ±16.44 𝑑𝐵, respectively), the QRS-wave 

detection performance of the proposed processor is distinctly 

consistent across both Monte Carlo and process corner 

simulations. Specifically, QRS-wave detection sensitivity is 

simulated as 99.36 ± 0.03% and 99.37 ± 0.07% across Monte 

Carlo and process corner simulations while positive predictivity 

is 100% for both cases. 

Notably, the processor demonstrates superior 𝐹1 detection 

performance in real time in ultra-low power and compact 

manners. As evident in the Table II, the proposed ECG 

processor offers better detection performance more compactly 

than all recent processors. Furthermore, the power dissipation 

is smaller than all recent processors except [25]. It is 

noteworthy that, when compared with the processor in [25], the 

proposed processor performs even better on noisy ECG 

recordings. When only the recordings of the MIT-BIH 

Arrhythmia database with nonzero DER in Table I are 

considered, the proposed processor achieves an average 𝐹1 

score of 99.48%, compared to 98.9% of the [25]. 

Notably, because the processor in [25] was not evaluated on 

the noisy MIT-BIH NST and the TELE databases, it is not 

possible to make an additional direct detection performance 

comparison of the two processors. However; comparisons of 

the numerical implementations of (1) the proposed processor; 

and (2) the Pan-Tompkins algorithm, the algorithm that the 

processor in [25] is based on; could potentially serve as an 

indirect comparison of the approach in this manuscript and the 

processor in [25]. In fact, such a numerical comparison was 

made in [27] on the noisy MIT-BIH NST database. The results 

showed that the nonlinear filter algorithm achieves 98.87% 

compared to 87.12% of the Pan-Tompkins. It should not be 

neglected that because of (1) the inherent differences in solving 

an algorithm numerically in digital and electronically in analog 

and (2) variations between the analog and digital 

implementations of the algorithms, this comparison is not direct 

or conclusive. Nonetheless, as presented in Table IV, the 

processor proposed in this manuscript and the numerical 

implementation of the nonlinear filter in [27] yield very similar 

detection performances as evident by the 𝐹1 scores. 

It is anticipated that, the QRS-wave detection performance of 

the proposed processor could be further improved by tuning 

parameters 𝑎 and 𝛾 on the implemented processor. By enabling 

tunability of nonlinear filter parameters, the proposed processor 

is expected to perform better for different types of ECG 

recordings towards interpatient robustness. In addition, like the 

digital implementation in [27], the damping coefficient, 𝛾, 

could be dynamically adjusted based on the ECG amplitude. As 

such, it could be possible to improve the in-band noise 

suppression and QRS-wave enhancement performances, which 

could improve the detection performance. 

The remarkable power and area performances can be 

attributed primarily to facilitation of analog signal processing 

techniques in implementing the proposed nonlinear filter 

dynamics. Analog computing, compared to digital, is naturally 

more appropriate for implementing differential equations as the 

equation to solve can be simply mapped onto silicon in the form 

of an analog circuit. Additionally, owing to the several design 

simplifications presented in Section III, the power and area 

dissipation are respectively reduced by 42% and 5% compared 

to the simulation-based study in [28].  

There are three major technical contributions of the work. 

First, the nonlinear filter, which serves as in-band noise 

suppression and QRS-wave enhancement engine of the 

processor, is demonstrated as an efficient 2nd-order differential 

equation solver using current-mode analog signal processing 

elements of current-mode integrators and current mirrors. The 

study further discusses how to numerically optimize the key 

design variables, 𝑎 and 𝛾, of the circuit implementation of the 

filter. Second, the study presents experimental results of 

functional and performance characterizations of the nonlinear 

 

Fig. 15. The empirically-selected threshold values, 𝐼𝑡ℎ,𝑑𝑒𝑡, and the 

standard deviation of the full recording, 𝐼𝑡ℎ,𝑠𝑡𝑑, almost overlap for 

three noisy recordings from the three databases. Both values are 
shown over single QRS-waves of the investigated recordings of (a) 
#215 of the MIT-BIH Arrhythmia database, (b), #118e00 of the MIT-
BIH NST database, and (c) #79 of the TELE database. 
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filter and the other blocks of the processor. For the nonlinear 

filter, the study demonstrates facilitation of stochastic 

resonance via the characteristic bell curve shape of SNR 

improvement with added noise intensity. Additionally, the 

study presents simulation-based statistical analyses of the full 

processing chain. Third, the complete processor is validated 

experimentally using the major ECG database of MIT-BIH 

Arrhythmia as well as two noisy ECG databases of MIT BIH 

NST and TELE. The study discusses reasons degrading the 

detection performance and potential ways to address those in 

the future. 

 The significance of this study can be recognized from three 

different aspects, namely QRS-wave detection performance, 

efficient ECG processing, and weak signal detection. First, 

regarding QRS-wave detection, the SNR improvement via in-

band noise suppression and QRS-wave enhancement reflects 

onto the QRS-wave detection performance. When evaluated on 

the major ECG database of the MIT-BIH Arrhythmia, the 

proposed processor achieves the best QRS-wave detection 

performance among all ultra-low power ECG processors 

reported. When evaluated on the noisy ECG databases of the 

MIT-BIH NST and TELE, the proposed processor achieves one 

of the best QRS-wave detection performance among the ECG 

algorithms. Notably, different from the ECG algorithms 

reporting results for these databases, the proposed processor 

detects the QRS-waves in real-time as the data streams and in 

an ultra-low power manner. Second, regarding efficient ECG 

processing, the proposed processor achieves one of the lowest 

power and area consumption performance among ultra-low 

power processors reported. Third, facilitation of stochastic 

resonance via an ultra-low power real-time nonlinear filter to 

suppress the in-band noise and enhance the QRS-waves can 

have uses in other weak signal detection problems in resource-

limited settings such as intracortical neural recording 

processing in brain-machine interfaces [30], [32], where 

energy-efficiency and online operation are critical. 

 It is noteworthy that, the proposed processor is the first ultra-

low power and real-time ECG processor that is validated on the 

MIT-BIH NST and TELE databases, which are developed to 

reflect the different noise sources in practical ECG recording 

scenarios. The high detection performance of the proposed 

processor in those recordings potentially suggests robustness in 

ECG monitoring in mobile subjects. However, integration with 

an ECG amplifier and investigation of the performance on 

human subjects during activities of daily life are left as future 

work. 

VI. CONCLUSION 

This paper presents design and validation of an ultra-low 

power ECG processor in TSMC 65nm CMOS technology to 

detect QRS-waves in real time. For energy-efficiency, the 

processor facilitates analog signal processing techniques 

implemented using CMOS devices in weak inversion. The high 

detection performance, which is experimentally validated on a 

standard ECG database and two noisy ECG databases, is 

attributed to in-band noise suppression and QRS-wave 

enhancement performances of a 2nd order nonlinear filter. The 

energy-efficient nonlinear filter is the first ultra-low power 

implementation that demonstrates stochastic resonance for 

signal enhancement. With 2.2 nW power dissipation, the 

processor enables real-time gating signal generation for the 

power-hungry blocks of an implantable/injectable ECG 

monitoring system, thereby potentially significantly reducing 

the overall system power consumption. The design and the 

results can also potentially pave the way to facilitating 

stochastic resonance in other online feature extraction 

applications with tight power budgets. 
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