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Abstract—This paper presents an ultra-low power
electrocardiogram (ECG) processor that can detect QRS-
waves in real time as the data streams in. The processor
performs out-of-band noise suppression via a linear filter,
and in-band noise suppression via a nonlinear filter. The
nonlinear filter also enhances the QRS-waves by facilitating
stochastic resonance. The processor identifies the QRS-
waves on noise-suppressed and enhanced recordings
using a constant threshold detector. For energy-efficiency
and compactness, the processor exploits current-mode
analog signal processing techniques, which significantly
reduces the design complexity when implementing the
second-order dynamics of the nonlinear filter. The
processor is designed and implemented in TSMC 65 nm
CMOS technology. In terms of detection performance, the
processor achieves an average F1 = 99.88% over the MIT-
BIH Arrhythmia database and outperforms all previous
ultra-low power ECG processors. The processor is the first
that is validated against noisy ECG recordings of MIT-BIH
NST and TELE databases, where it achieves better
detection performances than most digital algorithms run on
digital platforms. The design has a footprint of 0.08 mm?
and dissipates 2.2 nW when supplied by a single 1V supply,
making it the first ultra-low power and real-time processor
that facilitates stochastic resonance.

Index Terms—Energy-efficient IC processor, physical
computation, stochastic resonance, QRS-wave, real-time
signal processing.

|. INTRODUCTION
I .: LECTROCARDIOGRAM (ECGQG) is an electrical biopotential
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Fig. 1. ECG sensor system block diagram. (a) A conventional
system. (b) On-site, real-time and low power ECG processing can
allow gating of power-hungry blocks, thereby reducing the total
system power.

originated from the heart muscle, and it represents important
cardiac and autonomic regulation information. Therefore, ECG
has been a major biosignal for assessment of cardiovascular and
autonomic nervous system [2] health.

Advances in body sensor technologies have allowed ECG
monitoring for extended periods, thereby enabling detection of
rare cardiac cycle abnormalities [3], [4]. Among different ECG
sensor systems, injectables [5] and implantables [6] are more
comfortable than wearables for long term use [7]. The
convenience, however, is achieved by having compact form
factors, which limits the battery capacity. Therefore, to
minimize charging frequency in daily use or frequent
replacements of low-capacity batteries in the long term, strict
power consumption constraints are imposed on these systems.

Conventional injectable/implantable ECG sensors operate on
batteries with capacities ranging from a few pAh to a few tens
of mAh [8], [9]. Typically, the battery powers three major
blocks; namely analog front-end (AFE), signal conditioning
and analog-to-digital converter (ADC), and radio (Fig. 1(a)). Of
these, radio typically dissipates orders of magnitude greater
power than the other blocks. For instance, the lowest reported
power of those blocks in the literature is 20 uW [10] for the
radio, in contrast to 1.05 nW [6] and 1.1 nW [6] for the AFE
and ADC, respectively. Therefore, improvements in radio
power consumption would also significantly improve the
system power dissipation.

One possible approach to reduce the radio power is
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minimizing the volume of data that must be transmitted.
Alternative sampling techniques such as adaptive sampling
[11], compressed sensing [12], and entropy encoder [13] shrink
the data volume. Although these approaches achieve more than
60% data compression [13], and thus reduce both ADC and
radio power dissipation; there is more room for improvement in
long term ECG monitoring applications: Specifically, in
arrhythmia detection and autonomic regulation assessment,
which are among the most common use cases of implantable
and injectable ECG monitoring systems, the most important
feature to detect and analyze is the QRS-wave [2], [7], [14]. The
QRS-wave duration can range between 80 ms and 120 ms [15].
Therefore, considering a heart rate range of 30 beats per minute
(bpm) and 240 bpm [16], [17], by activating the ADC and radio
to transmit only the QRS waves would reduce the data volume
by at least 52% and as much as 96%. It is noteworthy that, the
aforementioned alternative sampling techniques can be applied
on only the QRS-waves to achieve additional data volume
compression.

Notably, in addition to potentially achieving significant data
compression and consequent power consumption reduction, on-
chip QRS-wave detection is particularly appropriate from time
sensitivity and privacy perspectives of ECG monitoring. By
detecting the heart beats and identifying the rare arrhythmia
events on site at the ECG node also minimizes the dependence
to the radio link (Fig. 1(b)), which could suffer from poor data
connections leading to delays in transmission of time sensitive
information [10] or channel attacks targeting the sensitive
health data [18].

Transmission of only the QRS-waves necessitates on-chip
QRS-wave detection [13], [15]. Furthermore, since the
detection should be continuously performed, to fully benefit
from the power savings of data compression, the additional
power consumption of a QRS-wave detection processor should
be significantly smaller than that of the radio and comparable
to that of the AFE, which is the other block that is constantly
on. This study focuses on design and validation of such an
energy-efficient QRS-wave detection processor (Fig. 1(b)).

Several on-chip ECG processors identify the QRS-waves
with high accuracy, while remaining below the strict power
consumption target of a few nW [5], [15], [19]-[21]. In all these
systems, first, a pre-processing stage enhances the QRS-waves
while suppressing noise. Pre-processing is followed by
detection, which is typically performed by thresholding the
enhanced QRS-waves. Therefore, in this scheme, detection
accuracy strongly depends on the pre-processing stage
performance. In fact, the processors implementing more
complicated noise suppression and QRS-wave enhancement
techniques (e.g., curve length transform [15] or wavelet
transform [22]) also report better detection performance than
those implementing simpler enhancement methods (e.g.,
amplitude thresholding [19] or band-pass filtering [23]).

On the flip side, to a first order approximation, algorithm
complexity increases power consumption. A remedy for power
consumption is leveraging analog signal processing (ASP)
instead of digital signal processing (DSP) techniques to
implement an algorithm. To illustrate, a digital implementation

of the popular Pan-Tompkins (PT) algorithm consumes 2.78
uW [24], three orders of magnitude more power than an ASP
implementation in the same technology based on the PT
algorithm in [25]. While transforming an algorithm originally
designed in the digital domain into the analog domain is
attractive for power savings, a one-to-one mapping across the
domains is not always possible. For instance, the adaptive
thresholding obtained as a weighted sum of the QRS-wave
peaks and the noise level of the full recording in the original PT
algorithm [26] is replaced with hard-thresholding in the ASP
version [25] for a memory-free fully analog implementation.
With this simplification in the design, detection sensitivity is
compromised (i.e., 99.83% in a digital PT [24] vs. 99.63%
[25]).

In this study, the overarching goal is to significantly enhance
the battery life of implantable and injectable ECG monitoring
systems. To achieve the goal, the study aims to significantly
reduce the data volume, and thus potentially minimize the radio
power, by detecting the important features of ECG, namely
QRS-waves, in real-time and in an ultra-low power manner. In
doing so, this work follows a different QRS-wave enhancement
approach that has direct physical computing roots, and thus
enabling a natural and efficient implementation as an ASP
algorithm in silicon. The QRS-wave enhancement engine of the
ECG processor is a nonlinear filter. Notably, the filter facilitates
stochastic resonance (SR), where the noise existing in the signal
assists the filter in enhancing the QRS-waves. Accordingly, the
study shows that, even in noisy recordings, the nonlinear filter
leads to high QRS-wave detection performance.

A numerical analysis of the nonlinear filter performing QRS-
wave detection was presented in [27]. Furthermore, a circuit
implementation of the filter was introduced with only
schematic-level simulation results in [28]. Unlike those
previous studies, this work, for the first time, experimentally
demonstrates an ultra-low power implementation of an ECG
processor system that has the proposed nonlinear filter at its
core. The processor detects the QRS-waves truly in real-time as
digitally amplified ECG recordings from multiple ECG
databases are streamed in. The study presents measurement
results characterizing the different blocks of the processor and
the QRS-wave detection performance of the full system in
detail. The novelties of the work are (1) presenting the
experimental results of a nonlinear filter that enhances QRS-
waves in an ECG by facilitating stochastic resonance, (2)
demonstrating an ultra-low power and real-time processor that
facilitates stochastic resonance, and (3) validating an ultra-low
power and real-time ECG processor against noisy MIT-BIH
NST and TELE databases.

In Section II, the nonlinear filter and its mechanisms for noise
suppression and QRS-wave enhancement are presented. In
Section III, the circuit implementation of the ECG processor is
discussed. In Section IV, measurement results of QRS-wave
detection in three major benchmarking databases are presented,
which is followed by the discussion of the results in Section V.
The paper is concluded in Section VI.
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Fig. 2. Block diagram of the proposed QRS-wave detector.
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Il. NONLINEAR FILTERING FOR QRS-WAVE ENHANCEMENT

The block diagram of the proposed ECG processor is shown
in Fig. 2. QRS-wave enhancement is achieved through two
filters, a high-pass filter (HPF) and a novel nonlinear filter. The
HPF is a 1% order linear filter with cut-off frequency set at 1 Hz
to suppress the low-frequency baseline wander. Properties of
the novel nonlinear filter and its mechanisms for in-band noise
suppression and QRS-wave enhancement are presented in the
rest of this section.

A. Nonlinear Filter Overview

To take advantage of the noise existing in an ECG signal
when enhancing the QRS-waves, the nonlinear filter
implements the dynamics of a particle inside a well potential,
which is a system widely used in the literature studying signal
enhancement by facilitating noise, namely stochastic resonance
(SR) [29]. Following numerical analyses on different potential
shapes and damping scenarios [30], high SNR improvements
for QRS-waves are demonstrated when the system is an
underdamped monostable potential well in [27] (Fig. 3). In this
system, the particle moves inside the well potential under the
influence of two forces, fgcq (t) and f,0;; (%, t). Of these forces
exerted onto the particle, the former is the input of the system,
ECG, and the latter is the force applied by the monostable well
potential, U(x,t) = ax(t)?/2, towards the stable point with
fweu(x,t) = =dU(x,t)/dx = —ax(t), where a determines
the steepness of the well. The output of the system is the
projection of the particle on the x-axis, x(t). The differential
equation governing the dynamics of this system is presented in
Section I11.B.

B. In-Band Noise Suppression

The nonlinear filter performs in-band noise suppression on
accounts of the presence of a stable point in the system.
Accordingly, when fg¢; is small; such as ECG portions outside
the prominent QRS-wave, P-wave, or T-wave features; fi,qu
rapidly balances fgc; out. Therefore, fzc; cannot move the
particle considerably away from the stable point, which causes
the particle to swing within a proximity around the stable point
and keeps the output, x(t), small.

C. QRS-Wave Enhancement

Two mechanisms are responsible from QRS-wave
enhancement: (i) large fr¢; during the QRS-waves and (ii) SR.
Large fzc during QRS-waves can move the particle outside the
stable point, and thus increasing the x(t) amplitude.
Additionally, the system exhibits SR, where a noisy fzce can
help the particle reach greater x(t) compared to a noise-free
fEce- In this system, it is essential to have an optimum noise
intensity that is large enough to observe the aid of noise and
small enough to prevent ECG from being swamped by noise.
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Fig. 3. A nonlinear system facilitating stochastic resonance is a
particle in an underdamped monostable well. The forces, fz¢;(t)
and f,,..;:(x, t), acting on the particle are shown for different particle
locations.

Facilitation of SR in a system of particle inside a monostable
well is theoretically verified in [31]. Verification of SR on the
physical implementation of the system is presented in Section
IV.C.

Ill. ECG PROCESSOR

The ECG processor is designed in TSMC 65nm CMOS
technology. To minimize gate leakage, high-voltage devices are
used. Two major points are considered when transforming the
digital algorithm in [27] into the analog domain.

The first consideration is achieving design simplicity to
minimize power, area, and noise. Analog processing offers
better power and area efficiency than digital for smaller
effective resolution levels (i.e., six to eight bits of effective
resolution). However, one should be particularly careful with
the noise in the circuit, which increases with design complexity,
since unlike digital processing, analog computing does not offer
bit correction. To reduce complexity, this work follows three
design choices: (i) Unlike digital processors, where voltage is
used to represent digitized levels of information, in analog, the
designer has the liberty to represent the continuous information
as current or voltage. To easily interface with a preceding
analog front-end stage feeding the ECG signals and control a
succeeding signal conditioning and radio blocks following the
QRS-wave detection, the processor is designed to receive
voltage inputs and generate voltage pulses. On the other hand,
to efficiently perform the several signal manipulations in the
processing chain (e.g., multiplications, additions/subtractions,
differentiation, etc.), the information is presented as current
signals inside the processing chain. (ii) While transforming the
developed digital nonlinear filter into the analog domain, the
processor uses a simplified version of the monostable well
potential function used in the simulation-based nonlinear
filtering studies presented in [27] and [28], which form the
bases of this work. The monostable well in Fig. 3 is represented
by a 2™ order function, ax?/2, rather than a 4" order function,
ax?/2 + bx*/4, informed by a previous study showing the
insignificance of the 4" order term on the nonlinear filter
dynamics [32]. (iii) A 1% order high-pass filter is implemented
instead of a higher-order band-pass filter in the digital version
of the algorithm in [27] and [28]. The high-pass filter is
preferred as the baseline wander is more problematic than high
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Fig. 4. An OTA is designed as the transconductance element used
in the processor. Device sizes are given as width/length in ym.
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Fig. 5. A first-order voltage-to-current high-pass filter. (a)
Schematic. (b) Frequency response.

frequency noise for nonlinear filter circuitry. The designed
high-pass filter also converts the voltage input into current for
the rest of the processor.

The second consideration is related to the difference between
solving a differential equation in analog and digital. In digital,
solution of the generalized Langevin equation, which is a 2™
order differential equation, is approximated using numerical
solvers such as the Runge-Kutta method. On the other hand,
solving a differential equation in analog translates into
implementing the differential equation in silicon using circuit
elements, which in real-time solves for the desired variable
without approximations. In implementing the differential
equation in analog circuit shown in Fig. 6, it is ensured that the
integration is achieved within the ECG bandwidth.

The design is supplied by an external power supply of 1 V
and all bias voltages are provided externally. Throughout the
design, identical operational transconductance amplifiers
(OTAs) are used. For energy-efficiency and compactness, all
devices of the pMOS-input OTA are sized to operate in weak
inversion saturation with the device sizes presented in Fig. 4.
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Fig. 6. The closed-loop block diagram of the proposed nonlinear
filter implementing the dynamics of the monostable well in Fig. 3.

The output current-input voltage relationship demonstrates a
transconductance of 85 pS with an input linear range of 90 mV.
The maximum gain is measured as 28 dB and the unity-gain
bandwidth is measured as 2.7 kHz. When biased with 10 pA
(the bias current of the integrators), the OTA dissipates 30 pW
and the area consumption of a single OTA is 0.00484 mm?.
Compared with recent OTAs used in analog signal processing
applications [33]-[35], the designed OTA achieves a high gain-
bandwidth product (GBW) per power and area. Specifically, the
OTA demonstrates a GBW per nW*mm? of 20.25 MHz as
opposed to <50 kHz of the designs in [33] and [34].
The blocks of the ECG processor are detailed below.

A. High-Pass Filter

The band-pass filter (HPF) is designed as a 1%-order voltage-
to-current transconductance stage (Fig. 5(a)). The OTA output
current is copied using M8’ and M6’ devices in Fig. 5(a), which
serve as additional outputs for the M7-M8 and M4-M6 mirrors
in Fig. 4. The filter has the transfer function:

Iout(s) - _ SChpf
Vin(s) 1+SChpf/Gm

€y

where Cp,r = 10 pF. The OTA is biased with 10 pA to achieve
a transconductance of 10 pS and cut-off frequency at 1 Hz, as

shown in Fig. 5(b).
B. Nonlinear Filter

The dynamics of the nonlinear system shown in Fig. 3 are
governed by the generalized Langevin equation [27], [28]:

d?L.(t)

dl(6)
a2 VT ar

= —aly + Igce (0), (2)

where the left-hand side governs force terms proportional to the
acceleration and velocity of the particle and the right-hand side
terms are respectively the f,,o;; and fzc; in Fig. 3. In (2),y is
damping constant, a is monostable well potential constant, and
Igce (t) is high-pass filtered ECG signal. The output of (2) is
implemented as a current variable, I,., which is obtained through
a closed-loop system presented in Fig. 6. The integrator outputs
are scaled to reflect the values of the damping constant, y = 20,
and well potential constant, a = 1; and fed back to the input
node. Integrator output scaling is performed via cascode current
mirrors.

The selection of a and y are informed by their effects on SNR
improvement [27], [30], which is evaluated numerically in
MATLAB (MathWorks, Natick, MA, USA) using the
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Fig. 7. The SNR improvement of the nonlinear filter with respect to
a and y. The results are obtained using the recording 100 of the
MIT-BIH Arrhythmia database.
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Fig. 8. Current-to-current integrator. (a) Schematic. Both OTAs have
the same schematic given in Fig. 4. (b) Frequency response.

recording 100 of the MIT-BIH Arrhythmia database [36].
Here, signal-to-noise ratio (SNR) is defined as:

App of QRS—waves

SNR = 20log ( ) @)

Standard deviation of a noise segment

where A,, is the average peak-to-peak amplitude of 100
arbitrarily selected QRS-waves. QRS regions are segmented as
100 ms time windows centered around the true QRS-wave
points. The 100 QRS-wave point set consists of one
automatically and arbitrarily selected QRS-wave point using
the rand function of MATLAB and the 99 QRS-wave points
succeeding it. For noise standard deviation, 100 noise segments
(~1 s each) are selected arbitrarily inside the sections between
the selected QRS-wave segments. It is noteworthy that, with the
target of this study being QRS-wave detection, all ECG signal
portions outside the QRS-wave segments are counted as noise.
The SNR improvement (ASNR) is calculated as ASNR =
SNR,,: — SNR;, where SNR;, and SNR,,, are input and
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output SNRs calculated with (3). ASNR peaksata = 1l andy =
20 as shown in a parametric sweep in Fig. 7.

To facilitate current-mode signal processing, the integrators
are designed as current-input and current-output (Fig. 8). An
integrator consists of two OTAs, where the 1% and the 2" OTAs
respectively serve as a transimpedance integrator stage and a
transconductance stage. Both OTAs have the same schematic
as given in Fig. 4. By mirroring the devices at the output branch
of the 2™ OTA, the integrator output is equal to the output
current of the 2" OTA. With a parasitic capacitance, C,, at the
output node of the 2™ OTA, the transfer function consists of
two poles at p; = Cj,/Gmy and p, = C,,/Gm,, and a zero at 0
Hz:

Iout(s) _ SCp/Gml
Iin(s) (1 +sp)(1 +spz)

(4

In (4), the gain is controlled by C,,/Gm, . For integration over
the ECG bandwidth of [0.5-100] Hz, the poles are placed at 0.1
Hz and 500 Hz by setting Gm, and Gm, values as 10 pS and 65
nS (Fig. 8(b)).

C. Threshold Detector

The threshold detector is implemented as a current
comparator that compares the nonlinear filter output I, with a
dc threshold, I, (Fig. 9). When I, is higher (lower) than I;;,,
the output voltage, V,,,;, is pulled to a low (high) voltage by Me
(My). For a recording, I, is kept constant. However, for each
recording, I, is individually set in multiples of 0.1 nA to
maximize QRS-wave detection performance quantified using
the F1 score explained in Section IV.D. The I;;, value is set at
0.1 nA for most of the ECG recordings across databases.
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Fig. 11. Measurement setup. The acquisition PC is used to control
the Digilent Analog Discovery 2 devices, which supply the bias
voltages and feed the ECG recording to the processor. B2901BL
and B2912A sourcemeters are used to characterize the integrators
and the nonlinear filter, where the B2912A sources input currents
and B901BL measures output currents of the block under test.

Voltage (V) Current (nA) Current (nA) Voltage (V)

1
0.5
0
1 15 2 25 3 35 4 45 5 55 [
Time (s)

Fig. 12. Waveforms from the processing chain for a 6 s portion of a
recording. SNR improvement for this portion is ASNR = 0.42 dB.
From top to bottom; the raw ECG signal; the high-pass filtered ECG
current signal, Ig.;; the nonlinear filter output, I,; and the threshold
detector output V,,,; are shown. The true and detected QRS-wave
positions are shown on the top row with black and red dots,
respectively. The third raw also shows the threshold I,;, level. The
gray brackets on the top row indicate the search windows used to
evaluate the QRS-wave detection performance as explained in
Section IV.D.

V. RESULTS

The total area of the processor is 0.08 mm? (Fig. 10). The
processor dissipates 2.2 nW when supplied by a single 1 V.
Area and power dissipation breakdown are as follows: High-
pass filter consumes 0.1 nW and 0.012 mm? integrators
consume 1.9 nW and 0.061 mm?, current mirrors consume 0.15
nW and 0.005 mm?, and threshold detector consumes 0.05 nW
and 0.002 mm?.

A. Measurement Setup

The measurement setup is shown in Fig. 11. A printed circuit
board (PCB) interface is designed to interface the chip with the
measurement instruments. Analog Discovery 2 (Digilent,
Pullman, WA) instruments are used for supplying the 1 V and
bias voltages, as well as supplying the analog ECG recordings
to the processor after performing 14-bit digital-to-analog
conversion of the recordings at frequencies that match the
original sampling rates (i.e., 360 Hz for MIT-BIH Arrhythmia
and MIT-BIH NST databases, and 500 Hz for TELE database).
B2912A and B2901BL sourcemeters (Keysight Technologies,
Santa Rosa, CA), an SRS SR785 spectrum analyzer (Stanford
Research Systems, Sunnyvale, CA), and an MSOX3024T
oscilloscope (Keysight Technologies, Santa Rosa, CA) are used
to individually characterize the blocks. For precise current
measurements, the chip is connected to the sourcemeters via

DZ: __:": — Measured
%) -+ Theoretical
42

2 4 6 8

Noise Standard Deviation (nA)

Fig. 13. A6 s portion of the recording 100 of the MIT-BIH Arrhythmia
database is added with increasing intensities of noise and the SNR
improvement is measured. The SNR improvement displays the
characteristic bell curve shape of SR and peaks at a noise standard
deviation of 3.15 nA. The theoretical expectation of SNR
improvement with noise obtained using the Fokker-Planck equation
displays a similar trend.

N1294A-001 banana-triax adapters. The voltage waveform
outputs of the processor are captured using an MP 160 data
acquisition system (Biopac Systems Inc., Goleta, CA), for
detection performance assessment on MATLAB. For
illustration purposes, nonlinear filter current output waveforms,
I, are captured by the B2912A sourcemeter.

Waveforms from the processing chain corresponding to an
exemplary six second portion of the recording 100 from the
MIT-BIH Arrhythmia database [36] are presented in Fig. 12.

B. In-Band Noise Suppression Assessment

To verify the in-band noise suppression of the nonlinear
filter, three ECG recordings from the MIT-BIH Arrhythmia
databases are used [36]. First, QRS-wave segments in ECG
signal and nonlinear filter output are identified by selecting 100
ms time windows around the true QRS-waves. Then, the ECG
portions between the selected QRS-wave segments are
identified as noise sections. Notably, although such ECG
portions include other physiologically important ECG features
(e.g., P-wave and T-wave), they are undesired from QRS-wave
detection perspective. Among all noise sections, ECG in-band
([0.5-100 Hz]) power of arbitrarily-selected 100 of them are
calculated both for the input, Iz-; and the output, I, signals.
The average power decrease for the recordings are calculated as
8.83 dB, 8.6 dB, and 8.58 dB respectively for low- (#103),
medium- (#116), and high-noise (#207) recordings.

C. Demonstration of Stochastic Resonance in QRS-
Wave Enhancement

The SR facilitation in the nonlinear filter is demonstrated
using an exemplary 6 s portion of one of the cleanest recordings
(#100) of the MIT-BIH Arrhythmia database. White Gaussian
noise at varying standard deviations, g, were added digitally on
the recording in MATLAB and fed to the nonlinear filter. The
nonlinear filter outputs are stored and ASNR is calculated as
described in (3), this time using only eight QRS-waves. The
SNR improvement obtained by the nonlinear filter in Fig. 13
demonstrates the characteristic bell curve of SR, where an
optimum additive non-zero white Gaussian noise intensity (o =
3.15 nA) maximizes ASNR. Notably, this behavior is in line
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Fig. 14. 5 s portions of sample waveforms for poor quality noisy
recordings from the (a) MIT-BIH Arrhythmia (Recording 215,
ASNR = 6.8dB), (b) MIT-BIH NST (Recording 118e00, ASNR =
6.54dB), and (c) TELE databases (Recording 79, ASNR =
14.71 dB). For each recording; the raw ECG signal; the high-pass
filter output, Iz.;; and the nonlinear filter output I, are shown. The
true and detected QRS-wave timestamps are given on the top row
with black and red dots, respectively.
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with the theoretical expectations. The noise suppression and
signal enhancement of the nonlinear filter is theoretically
analyzed with statistical methods and specifically using the
Fokker-Planck equation, which assesses ASNR with noise. The
ASNR is inversely and exponentially proportional to noise

2
intensity as [37], ASNR a (GATU) exp (— AFU) where D is the
noise intensity, € is the input signal amplitude to the nonlinear
filter, and AU is the potential well change by particle

movement. For € = 3.23 and AU = 8, the Fokker-Planck leads
to the dashed curve in Fig. 13.

TABLE |
PERFORMANCE EVALUATION OF THE PROPOSED PROCESSOR ON THE
MIT-BIH ARRHYTHMIA DATABASE

Total #

ECG

record # of beats Se (%) +P (%) DER Ace (%)
101 1865 99.84 99.95 0.2 99.79
104 2229 99.92 99.92 0.17 99.82
114 1879 100 99.84 0.15 99.84
116 2412 99.3 100 0.7 99.3
201 1963 99.95 100 0.05 99.95
207 1860 99.84 91.71 9.2 91.57
208 2955 99.8 100 0.2 99.8
215 3363 99.59 100 0.4 99.59
217 2208 99.91 100 0.09 99.91
222 2483 99.52 100 0.48 99.52
228 2053 99.52 100 0.48 99.52

Remaining 84248 100 100 0 100
Overall 109518 99.94 99.82 0.25 99.76

D. QRS-Wave Detection Performance on Major ECG
Databases

The proposed ECG processor is evaluated using the MIT-
BIH Arrhythmia [36], MIT-BIH Noise Stress Test (NST) [38],
and Telehealth (TELE) [16] databases.

The MIT-BIH Arrhythmia database [36] includes 48 30-
minute ECG recordings, and it is widely used as a
benchmarking database for QRS-wave detection.

The MIT-BIH NST database contains 12 30-minute
recordings created by adding calibrated amounts of electrode
motion artifact noise on two clean recordings from the MIT-
BIH Arrhythmia database [38]. The MIT-BIH NST database is
used to assess the QRS-wave detection performance of the
proposed processor on the noisy ECG signals.

TELE database includes 250 recordings in different lengths
measured in telehealth environment while subjects are holding
electrodes on their hands. 250 recordings are selected from
measurements conducted with 208 subjects [16]. TELE
database is also used to evaluate the QRS-wave detection
performance on poor quality recordings.

In Fig. 14, example portions of waveforms of high-noise
recordings from all three databases along with respective
outputs from the processor are shown.

QRS-wave detection performance is assessed using
sensitivity (Se), positive predictivity (+P), and F1 score (F1)
metrics described as below:

TP
Se = =————%100,+P =

———— %100,
TP + FN TP + FP :
Fl_Z*Se*(+P) ®)
© Se+(+P)’

where TP, FN, and FP are respectively the numbers of true
positive, false negative, and false positive detections obtained
by following the ANSI/AAML ECS57 standard [39], which
defines the time window used to identify the true positive (TP)
and false negative (FN) values after an ECG recording is
processed for QRS-wave detection. For each QRS; e,
existence of a QRS etecteq 18 Investigated through a search
within a + 150 ms time window around the QRS .. If a
QRS etectea 18 found, then the TP is incremented. If a
QRSgetecteq 18 missing, then the FN is incremented. The
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TABLE Il
PERFORMANCE COMPARISON WITH ULTRA-LOW POWER QRS DETECTORS VALIDATED USING THE MIT-BIH ARRHYTHMIA DATABASE
Algorithm / Domain Type / Technolo Performance Power Area
1 1 W
8 P il Se (%) +P (%) (mm?)
This work Nonlinear filter / Analog ASIC/ 65nm 99.94 99.82 2.2 nW 0.08
Giingor, 2021 [25] PT-based / Analog ASIC / 65nm 99.63 99.47 1.2 nW 0.078
Tekeste, 2019 [15] A-CLT / Digital ASIC / 65nm 99.3 99.38 6.5nW* 0.1
He, 2015 [19] Analog 180nm N/A N/A 4.8 nW' 0.762
Yin, 2021 [20] Derivative / Digital ASIC / 65nm 98.22 99.26 81.9 nW 1.772
Bose, 2020 [21] Adaptive Th / Digital ASIC / 180nm N/A N/A 92 nW 0.24°3
Tang, 2021 [40] Digital ASIC / 180nm 99.08 99.76 151 nW 0.248
! For a direct comparison, only the processor blocks of the system are considered. ? Total active/digital area. 3 Estimated from the annotated die photo.
4 Simulated power consumption.
TABLE Il TABLE V
RS DETECTION PERFORMANCE COMPARISON (TELE
QRS DETECTION PERFORMANCE OF THE PROCESSOR (MIT-BIH NST) aRS c ( )
QRS detection Se +P F1 Score
ref(ﬁg # onothflz Se (%) +P (%) F1 Score (%) method (%) (%) (%)
1824 7273 100 100 100 This work Nonlinear filter 98.56 98.67 98.37
e Khamis, 2016 [16] UNSW 98.05 95.75 96.88
118218 2278 2983 99.83 99.83 Pan, 1985 [26] ! PT 9733 8558  91.07
118el2 2278 100 99.74 99.87 1
118606 2278 100 99.7 99.85 GR, 2015 [47] GR 95.18 91.94 93.53
118600 2278 99.87 99 '65 99.76 Kasnif, 2017 [17] STAPLE 96.89 98.33 97.60
© : : ) Arzeno, 2008 [48] 2 HT + Derivative 93.9 90.6 92.22
118e 6 2278 99.26 99.65 99.455 .
119624 1987 100 99.9 99.95 Jia, 2020 [41] CNN 98.99 95.57 97.24
) ) thy, 2021 [4 2 1 .
11918 1987 100 9995 99.975 Ganapathy, 201 (#9) ___ CNN _____ 572 9818 9747
119e12 1987 99.95 994 99.674 ! Implemented in [16]. ? Implemented in [17]. GR: Gutierrez Rivas
119¢06 1987 995 97.2 98.337 algorithm, STAPLE: Simultaneous truth and performance level
119¢00 1987 99 95 96.1 97.987 estimation, HT: Hilbert Transform. CNN: Convolutional Neural Network.
119¢ 6 1987 88.63 94.89 91.653 . .
Overall 25590 98.92 08.84 08.86 processor outperforms other signal processing methods
validated on the MIT-BIH NST database (Table IV).
TABLE IV The proposed processor achieves 98.56% average sensitivity
QRS DETECTION PERFORMANGE COMPARISON (MIT-BIH NST) and 98.67% average positive predictivity on 250 recordings in
QRS detection Se +P F1 Score the TELE database (Table V). The processor can detect the
method (%) (%) (%) QRS-waves with better sensitivity than the other methods,
This work Nonlinear filter 98.92  98.84 98.86 except for a convolutional neural network (CNN) approach in
Giingor, 2022 [27] SR 98.65 99.11 98.87 [41]
Benitez, 2000 [42] Hilbert Transform 93.48 90.6 92.02 ’
Merah, 2015 [43] Stationary WT 95.3 93.98 94.63
Jia, 2020 [41] CNN 99.25  96.31 97.76 V. DISCUSSION
Elgendi, 2013 [44 Squaring + MA 95.39 90.25 92.74 . .
Pagnder,2022 |[45]] au FC]%IC 9527 947 94,98 The Tables II, IV, and V summarize the detection
’ : : . .
Rahul, 2021 [46] Third power + AT 97.58  96.04 96.8 performance of the processor on three different databases. As

SR: Stochastic Resonance, WT: Wavelet Transform, MA: Moving
Average, FCMC: Fuzzy c-median Clustering, EMD: Empirical Mode
Decomposition, AT: Adaptive Thresholding.

number of false positives (FP) is calculated as the difference of
the number of QRS erecteq and TP.

The QRS-wave detection performance for the MIT-BIH
Arrhythmia database is presented in Table I. In Table I,
recordings with non-zero detection error rate (DER) are
presented as separate lines, while the performance metrics of all
remaining recordings with zero DER are presented in the last
row. The average sensitivity and positive predictivity values for
MIT-BIH Arrhythmia database are 99.94% and 99.82%,
respectively. A comparison of the proposed processor with the
state-of-the-art low-power QRS-wave detectors is presented in
Table II. The processor achieves the best detection performance
and fits in the most compact form factor, while dissipating 2.2
nW, making it one of the most power-efficient ECG processors.

The QRS-wave detection performance for the MIT-BIH NST
database is presented in Table III. The average Se and +P
values are 99.84% and 98.95%, respectively. The proposed

evident from the tables, the processor achieves better detection
performance than most algorithms both in Se and +P with the
exception being a CNN algorithm. In the MIT-BIH NST and
the TELE databases, [41] achieve better Se than the proposed
processor. The better performance of the CNN algorithm in
[41], is likely related to its complexity (6 layers each with 30
neurons) and the rich dataset of all recordings in the MIT-BIH
Arrhythmia, MIT-BIH NST, and TELE databases used to train
the network. Additionally, the results are obtained through 5-
fold cross-validation. In fact, in another CNN algorithm in [49],
which has less complexity (2 layers each with 20 neurons) and
is trained using limited datasets, the performance is worse than
the proposed processor on the TELE database as evident in the
Table V. It should be noted that, in terms of F1, which is a
balanced metric between Se and +P, the proposed processor
outperforms all algorithms including [41]. Notably, using
multiple layers in CNN approaches results in high complexity,
which necessitate rich datasets for training [41]. On the other
hand, the proposed processor has low complexity, and it
processes signals in real-time without need for training. The
better QRS-wave detection performance of the proposed
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Fig. 15. The empirically-selected threshold values, I, 4o¢, and the
standard deviation of the full recording, I, ;;4, almost overlap for
three noisy recordings from the three databases. Both values are
shown over single QRS-waves of the investigated recordings of (a)
#215 of the MIT-BIH Arrhythmia database, (b), #118e00 of the MIT-
BIH NST database, and (c) #79 of the TELE database.

processor with low-complexity in real-time marks superiority
of the processor over CNN algorithms.

The QRS-wave detection performance results ascribe the
significant noise suppression and QRS-wave enhancement
performance of the proposed nonlinear filter. Specifically, the
optimized a and y values in (2) are shown to be robust against
different recording conditions and subjects. It is noteworthy
that, the selection of threshold level is another critical factor
leading to the high detection performance. In this work,
threshold level is kept constant throughout a recording.
However, the constant threshold value is selected empirically
as multiples of 0.1 nA (i.e., 0.1 nA, 0.2 nA, 0.3 nA, etc.) such
that the F1 score is maximized for each recording. Considering
the inaccessibility to the true QRS-wave locations in a practical
recording, adjusting the threshold level for a recording can be
seen as a disadvantage. However, in the future, the selection of
the threshold level can be made based on the statistics of the
nonlinear filter output, I,.. In fact, the initial analysis performed
on recordings from the databases shows that, the selected
threshold value is very similar to the variance of the complete
recording (Fig. 15).

To evaluate the consistency and reliability of the proposed
processor, Monte Carlo and process corner simulations are
performed in Cadence Spectre using a medium-noise recording
(#116) from the MIT-BIH Arrhythmia database. The recording
is fed to the nonlinear filter to evaluate the SNR improvement
variability and to the complete processor to evaluate the QRS-
wave detection variability. In both cases, the output is exported
into MATLAB for the assessment across Monte Carlo iterations
and process corners (tt, ff, ss, sf, fs). For the Monte Carlo
simulations, 100 iterations of simulation are performed on the
given recording. The mean SNR improvement of the nonlinear
filter across the Monte Carlo and process corner simulations are
50.2 dB and 58.3 dB, respectively. Even though the nonlinear
filter has relatively high SNR improvement standard deviations
across Monte Carlo and process corner simulations
(£10.96 dB and +16.44 dB, respectively), the QRS-wave
detection performance of the proposed processor is distinctly
consistent across both Monte Carlo and process corner
simulations. Specifically, QRS-wave detection sensitivity is
simulated as 99.36 + 0.03% and 99.37 + 0.07% across Monte
Carlo and process corner simulations while positive predictivity
is 100% for both cases.

Notably, the processor demonstrates superior F1 detection
performance in real time in ultra-low power and compact
manners. As evident in the Table II, the proposed ECG

processor offers better detection performance more compactly
than all recent processors. Furthermore, the power dissipation
is smaller than all recent processors except [25]. It is
noteworthy that, when compared with the processor in [25], the
proposed processor performs even better on noisy ECG
recordings. When only the recordings of the MIT-BIH
Arrhythmia database with nonzero DER in Table I are
considered, the proposed processor achieves an average F1
score of 99.48%, compared to 98.9% of the [25].

Notably, because the processor in [25] was not evaluated on
the noisy MIT-BIH NST and the TELE databases, it is not
possible to make an additional direct detection performance
comparison of the two processors. However; comparisons of
the numerical implementations of (1) the proposed processor;
and (2) the Pan-Tompkins algorithm, the algorithm that the
processor in [25] is based on; could potentially serve as an
indirect comparison of the approach in this manuscript and the
processor in [25]. In fact, such a numerical comparison was
made in [27] on the noisy MIT-BIH NST database. The results
showed that the nonlinear filter algorithm achieves 98.87%
compared to 87.12% of the Pan-Tompkins. It should not be
neglected that because of (1) the inherent differences in solving
an algorithm numerically in digital and electronically in analog
and (2) variations between the analog and digital
implementations of the algorithms, this comparison is not direct
or conclusive. Nonetheless, as presented in Table IV, the
processor proposed in this manuscript and the numerical
implementation of the nonlinear filter in [27] yield very similar
detection performances as evident by the F1 scores.

It is anticipated that, the QRS-wave detection performance of
the proposed processor could be further improved by tuning
parameters a and y on the implemented processor. By enabling
tunability of nonlinear filter parameters, the proposed processor
is expected to perform better for different types of ECG
recordings towards interpatient robustness. In addition, like the
digital implementation in [27], the damping coefficient, y,
could be dynamically adjusted based on the ECG amplitude. As
such, it could be possible to improve the in-band noise
suppression and QRS-wave enhancement performances, which
could improve the detection performance.

The remarkable power and area performances can be
attributed primarily to facilitation of analog signal processing
techniques in implementing the proposed nonlinear filter
dynamics. Analog computing, compared to digital, is naturally
more appropriate for implementing differential equations as the
equation to solve can be simply mapped onto silicon in the form
of an analog circuit. Additionally, owing to the several design
simplifications presented in Section III, the power and area
dissipation are respectively reduced by 42% and 5% compared
to the simulation-based study in [28].

There are three major technical contributions of the work.
First, the nonlinear filter, which serves as in-band noise
suppression and QRS-wave enhancement engine of the
processor, is demonstrated as an efficient 2"-order differential
equation solver using current-mode analog signal processing
elements of current-mode integrators and current mirrors. The
study further discusses how to numerically optimize the key
design variables, a and y, of the circuit implementation of the
filter. Second, the study presents experimental results of
functional and performance characterizations of the nonlinear
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filter and the other blocks of the processor. For the nonlinear
filter, the study demonstrates facilitation of stochastic
resonance via the characteristic bell curve shape of SNR
improvement with added noise intensity. Additionally, the
study presents simulation-based statistical analyses of the full
processing chain. Third, the complete processor is validated
experimentally using the major ECG database of MIT-BIH
Arrhythmia as well as two noisy ECG databases of MIT BIH
NST and TELE. The study discusses reasons degrading the
detection performance and potential ways to address those in
the future.

The significance of this study can be recognized from three
different aspects, namely QRS-wave detection performance,
efficient ECG processing, and weak signal detection. First,
regarding QRS-wave detection, the SNR improvement via in-
band noise suppression and QRS-wave enhancement reflects
onto the QRS-wave detection performance. When evaluated on
the major ECG database of the MIT-BIH Arrhythmia, the
proposed processor achieves the best QRS-wave detection
performance among all ultra-low power ECG processors
reported. When evaluated on the noisy ECG databases of the
MIT-BIH NST and TELE, the proposed processor achieves one
of the best QRS-wave detection performance among the ECG
algorithms. Notably, different from the ECG algorithms
reporting results for these databases, the proposed processor
detects the QRS-waves in real-time as the data streams and in
an ultra-low power manner. Second, regarding efficient ECG
processing, the proposed processor achieves one of the lowest
power and area consumption performance among ultra-low
power processors reported. Third, facilitation of stochastic
resonance via an ultra-low power real-time nonlinear filter to
suppress the in-band noise and enhance the QRS-waves can
have uses in other weak signal detection problems in resource-

limited settings such as intracortical neural recording
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